401
|
Lau YT, Gambino L, Santos B, Pales Espinosa E, Allam B. Transepithelial migration of mucosal hemocytes in Crassostrea virginica and potential role in Perkinsus marinus pathogenesis. J Invertebr Pathol 2018. [PMID: 29518429 DOI: 10.1016/j.jip.2018.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have recently described the presence of hemocytes associated with mucus covering the pallial organs (mantle, gills, and body wall) 3 of the eastern oyster Crassostrea virginica. These hemocytes, hereby designated "pallial hemocytes" share common general characteristics with circulating hemocytes but also display significant differences particularly in their cell surface epitopes. The specific location of pallial hemocytes as peripheral cells exposed directly to the marine environment confers them a putative sentinel role. The purpose of this study was to gain a better understanding of the source of these pallial hemocytes by evaluating possible exchanges between circulatory and pallial hemocyte populations and whether these exchanges are regulated by pathogen exposure. Bi-directional transepithelial migrations of hemocytes between pallial surfaces and the circulatory system were monitored using standard cell tracking approaches after staining with the vital fluorescent dye carboxyfluorescein diacetate succinimidyl ester (CFSE) in conjunction with fluorescent microscopy and flow cytometry. Results showed bi-directional migration of hemocytes between both compartments and suggest that hemocyte migration from the pallial mucus layer to the circulatory system may occur at a greater rate compared to migration from the circulatory system to the pallial mucus layer, further supporting the role of pallial hemocytes as sentinel cells. Subsequently, the effect of the obligate parasite Perkinsus marinus and the opportunistic pathogen Vibrio alginolyticus on transepithelial migration of oyster hemocytes was investigated. Results showed an increase in hemocyte migration in response to P. marinus exposure. Furthermore, P. marinus cells were acquired by pallial hemocytes before being visible in underlying tissues and the circulatory system suggesting that this parasite could use pallial hemocytes as a vehicle facilitating its access to oyster tissues. These results are discussed in light of new evidence highlighting the role of oyster pallial organs as a portal for the initiation of P. marinus infections in oysters.
Collapse
Affiliation(s)
- Yuk-Ting Lau
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Laura Gambino
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bianca Santos
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
402
|
Marinov GK, Kundaje A. ChIP-ping the branches of the tree: functional genomics and the evolution of eukaryotic gene regulation. Brief Funct Genomics 2018; 17:116-137. [PMID: 29529131 PMCID: PMC5889016 DOI: 10.1093/bfgp/ely004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Advances in the methods for detecting protein-DNA interactions have played a key role in determining the directions of research into the mechanisms of transcriptional regulation. The most recent major technological transformation happened a decade ago, with the move from using tiling arrays [chromatin immunoprecipitation (ChIP)-on-Chip] to high-throughput sequencing (ChIP-seq) as a readout for ChIP assays. In addition to the numerous other ways in which it is superior to arrays, by eliminating the need to design and manufacture them, sequencing also opened the door to carrying out comparative analyses of genome-wide transcription factor occupancy across species and studying chromatin biology in previously less accessible model and nonmodel organisms, thus allowing us to understand the evolution and diversity of regulatory mechanisms in unprecedented detail. Here, we review the biological insights obtained from such studies in recent years and discuss anticipated future developments in the field.
Collapse
Affiliation(s)
- Georgi K Marinov
- Corresponding author: Georgi K. Marinov, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA. E-mail:
| | | |
Collapse
|
403
|
López-Escardó D, López-García P, Moreira D, Ruiz-Trillo I, Torruella G. Parvularia atlantis gen. et sp. nov., a Nucleariid Filose Amoeba (Holomycota, Opisthokonta). J Eukaryot Microbiol 2018; 65:170-179. [PMID: 28741861 PMCID: PMC5708529 DOI: 10.1111/jeu.12450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 07/10/2017] [Accepted: 07/17/2017] [Indexed: 12/01/2022]
Abstract
The opisthokonts constitute a eukaryotic supergroup divided into two main clades: the holozoans, which include animals and their unicellular relatives, and the holomycotans, which include fungi, opisthosporidians, and nucleariids. Nucleariids are phagotrophic filose amoebae that phenotypically resemble more their distant holozoan cousins than their holomycotan phylogenetic relatives. Despite their evolutionary interest, the diversity and internal phylogenetic relationships within the nucleariids remain poorly studied. Here, we formally describe and characterize by molecular phylogeny and microscopy observations Parvularia atlantis gen. et sp. nov. (formerly Nuclearia sp. ATCC 50694), and compare its features with those of other nucleariid genera. Parvularia is an amoebal genus characterized by radiating knobbed and branching filopodia. It exhibits prominent vacuoles observable under light microscopy, a cyst-like stage, and completely lacks cilia. P. atlantis possesses one or two nuclei with a central nucleolus, and mitochondria with flat or discoid cristae. These morphological features, although typical of nucleariids, represent a combination of characters different to those of any other described Nuclearia species. Likewise, 18S rRNA-based phylogenetic analyses show that P. atlantis represents a distinct lineage within the nucleariids.
Collapse
Affiliation(s)
- David López-Escardó
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003, Catalonia, Spain
| | - Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003, Catalonia, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 645, Barcelona 08028, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Guifré Torruella
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
404
|
Pozdnyakov I, Matantseva O, Skarlato S. Diversity and evolution of four-domain voltage-gated cation channels of eukaryotes and their ancestral functional determinants. Sci Rep 2018; 8:3539. [PMID: 29476068 PMCID: PMC5824947 DOI: 10.1038/s41598-018-21897-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/12/2018] [Indexed: 12/19/2022] Open
Abstract
Four-domain voltage-gated cation channels (FVCCs) represent a large family of pseudo-tetrameric ion channels which includes voltage-gated calcium (Cav) and sodium (Nav) channels, as well as their homologues. These transmembrane proteins are involved in a wide range of physiological processes, such as membrane excitability, rhythmical activity, intracellular signalling, etc. Information about actual diversity and phylogenetic relationships of FVCCs across the eukaryotic tree of life is scarce. We for the first time performed a taxonomically broad phylogenetic analysis of 277 FVCC sequences from a variety of eukaryotes and showed that many groups of eukaryotic organisms have their own clades of FVCCs. Moreover, the number of FVCC lineages in several groups of unicellular eukaryotes is comparable to that in animals. Based on the primary structure of FVCC sequences, we characterised their functional determinants (selectivity filter, voltage sensor, Nav-like inactivation gates, Cavβ-interaction motif, and calmodulin-binding region) and mapped them on the obtained phylogeny. This allowed uncovering of lineage-specific structural gains and losses in the course of FVCC evolution and identification of ancient structural features of these channels. Our results indicate that the ancestral FVCC was voltage-sensitive, possessed a Cav-like selectivity filter, Nav-like inactivation gates, calmodulin-binding motifs and did not bear the structure for Cavβ-binding.
Collapse
Affiliation(s)
- Ilya Pozdnyakov
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia.
| | - Olga Matantseva
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| | - Sergei Skarlato
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| |
Collapse
|
405
|
Tashyreva D, Prokopchuk G, Yabuki A, Kaur B, Faktorová D, Votýpka J, Kusaka C, Fujikura K, Shiratori T, Ishida KI, Horák A, Lukeš J. Phylogeny and Morphology of New Diplonemids from Japan. Protist 2018; 169:158-179. [PMID: 29604574 DOI: 10.1016/j.protis.2018.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 10/18/2022]
Abstract
Diplonemids were recently found to be the most species-rich group of marine planktonic protists. Based on phylogenetic analysis of 18S rRNA gene sequences and morphological observations, we report the description of new members of the genus Rhynchopus - R. humris sp. n. and R. serpens sp. n., and the establishment of two new genera - Lacrimia gen. n. and Sulcionema gen. n., represented by L. lanifica sp. n. and S. specki sp. n., respectively. In addition, we describe the organism formerly designated as Diplonema sp. 2 (ATCC 50224) as Flectonema neradi gen. n., sp. n. The newly described diplonemids share a common set of traits. Cells are sac-like but variable in shape and size, highly metabolic, and surrounded by a naked cell membrane, which is supported by a tightly packed corset of microtubules. They carry a single highly reticulated peripheral mitochondrion containing a large amount of mitochondrial DNA, with lamellar cristae. The cytopharyngeal complex and flagellar pocket are contiguous and have separate openings. Two parallel flagella are inserted sub-apically into a pronounced flagellar pocket. Rhynchopus species have their flagella concealed in trophic stages and fully developed in swimming stages, while they permanently protrude in all other known diplonemid species.
Collapse
Affiliation(s)
- Daria Tashyreva
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Akinori Yabuki
- Department of Marine Diversity, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Binnypreet Kaur
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Jan Votýpka
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Chiho Kusaka
- Department of Marine Diversity, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Katsunori Fujikura
- Department of Marine Diversity, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | | | - Ken-Ichiro Ishida
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
406
|
Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, Ekelund F, Fernández LD, Jousset A, Krashevska V, Singer D, Spiegel FW, Walochnik J, Lara E. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol Rev 2018; 42:293-323. [DOI: 10.1093/femsre/fuy006] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/12/2018] [Indexed: 12/27/2022] Open
Affiliation(s)
- Stefan Geisen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Edward A D Mitchell
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel 2000, Switzerland
- Jardin Botanique de Neuchâtel, Chemin du Perthuis-du-Sault 58, Neuchâtel 2000, Switzerland
| | - Sina Adl
- Department of Soil Sciences, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Canada
| | - Michael Bonkowski
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Institute of Zoology, Terrestrial Ecology, Zülpicher Straße 47b, 50674 Köln, Germany
| | - Micah Dunthorn
- Department of Ecology, University of Kaiserslautern, Erwin-Schrödinger Straße, 67663 Kaiserslautern, Germany
| | - Flemming Ekelund
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Leonardo D Fernández
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O’Higgins, Avenida Viel 1497, Santiago, Chile
| | - Alexandre Jousset
- Department of Ecology and Biodiversity, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Valentyna Krashevska
- University of Göttingen, J.F. Blumenbach Institute of Zoology and Anthropology, Untere Karspüle 2, 37073 Göttingen, Germany
| | - David Singer
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel 2000, Switzerland
| | - Frederick W Spiegel
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, United States of America
| | - Julia Walochnik
- Molecular Parasitology, Institute of Tropical Medicine, Medical University, 1090 Vienna, Austria
| | - Enrique Lara
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel 2000, Switzerland
- Real Jardín Botánico, CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| |
Collapse
|
407
|
Petit D, Teppa E, Cenci U, Ball S, Harduin-Lepers A. Reconstruction of the sialylation pathway in the ancestor of eukaryotes. Sci Rep 2018; 8:2946. [PMID: 29440651 PMCID: PMC5811610 DOI: 10.1038/s41598-018-20920-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/25/2018] [Indexed: 11/18/2022] Open
Abstract
The biosynthesis of sialylated molecules of crucial relevance for eukaryotic cell life is achieved by sialyltransferases (ST) of the CAZy family GT29. These enzymes are widespread in the Deuterostoma lineages and more rarely described in Protostoma, Viridiplantae and various protist lineages raising the question of their presence in the Last eukaryotes Common Ancestor (LECA). If so, it is expected that the main enzymes associated with sialic acids metabolism are also present in protists. We conducted phylogenomic and protein sequence analyses to gain insights into the origin and ancient evolution of ST and sialic acid pathway in eukaryotes, Bacteria and Archaea. Our study uncovered the unreported occurrence of bacterial GT29 ST and evidenced the existence of 2 ST groups in the LECA, likely originating from the endosymbiotic event that generated mitochondria. Furthermore, distribution of the major actors of the sialic acid pathway in the different eukaryotic phyla indicated that these were already present in the LECA, which could also access to this essential monosaccharide either endogenously or via a sialin/sialidase uptake mechanism involving vesicles. This pathway was lost in several basal eukaryotic lineages including Archaeplastida despite the presence of two different ST groups likely assigned to other functions.
Collapse
Affiliation(s)
- Daniel Petit
- Université de Limoges, Laboratoire Pereine 123, av. A. Thomas, 87060, Limoges Cedex, France
| | - Elin Teppa
- Bioinformatics Unit, Fundación Instituto Leloir -IIBBA CONICET, Av. Patricias Argentinas 435, C1405BWE, Buenos Aires, Argentina
| | - Ugo Cenci
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000, Lille, France
- UGSF, Bât. C9, Université de Lille - Sciences et Technologies, 59655, Villeneuve d'Ascq, France
| | - Steven Ball
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000, Lille, France
- UGSF, Bât. C9, Université de Lille - Sciences et Technologies, 59655, Villeneuve d'Ascq, France
| | - Anne Harduin-Lepers
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000, Lille, France.
- UGSF, Bât. C9, Université de Lille - Sciences et Technologies, 59655, Villeneuve d'Ascq, France.
| |
Collapse
|
408
|
Iritani D, Horiguchi T, Wakeman KC. Molecular Phylogenetic Positions and Ultrastructure of Marine Gregarines (Apicomplexa) Cuspisella ishikariensis n. gen., n. sp. and Loxomorpha cf. harmothoe from Western Pacific scaleworms (Polynoidae). J Eukaryot Microbiol 2018; 65:637-647. [PMID: 29399925 DOI: 10.1111/jeu.12509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 01/21/2023]
Abstract
Marine gregarines are unicellular parasites of invertebrates commonly found infecting the intestine and coelomic spaces of their hosts. Situated at the base of the apicomplexan tree, marine gregarines offer an opportunity to explore the earliest stages of apicomplexan evolution. Classification of marine gregarines is often based on the morphological traits of the conspicuous feeding stages (trophozoites) in combination with host affiliation and molecular phylogenetic data. Morphological characters of other life stages such as the spore are also used to inform taxonomy when such stages can be found. The reconstruction of gregarine evolutionary history is challenging, due to high levels of intraspecific variation of morphological characters combined with relatively few traits that are taxonomically unambiguous. The current study combined morphological data with a phylogenetic analysis of small subunit rDNA sequences to describe and establish a new genus and species (Cuspisella ishikariensis n. gen., n. sp.) of marine gregarine isolated from the intestine of a polynoid host (Lepidonotus helotypus) collected from Hokkaido, Japan. This new species possesses a set of unusual morphological traits including a spiked attachment apparatus and sits on a long branch on the molecular phylogeny. Furthermore, this study establishes a molecular phylogenetic position for Loxomorpha cf. harmothoe, a previously described marine gregarine, and reveals a new group of gregarines that infect polynoid hosts.
Collapse
Affiliation(s)
- Davis Iritani
- Faculty of Science, Hokkaido University, North 10, West 8, Sapporo, 060-0810, Japan
| | - Takeo Horiguchi
- Faculty of Science, Hokkaido University, North 10, West 8, Sapporo, 060-0810, Japan
| | - Kevin C Wakeman
- Graduate School of Science, Hokkaido University, North 10, West 8, Sapporo, 060-0810, Japan.,Institute for International Collaboration, Hokkaido University, Sapporo, 060-0815, Japan
| |
Collapse
|
409
|
Yabuki A, Ishida KI. An Orphan Protist Quadricilia rotundata Finally Finds Its Phylogenetic Home in Cercozoa. J Eukaryot Microbiol 2018; 65:729-732. [PMID: 29345018 DOI: 10.1111/jeu.12502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 11/27/2022]
Abstract
Quadricilia rotundata is a heterotrophic flagellate with four flagella. However, because this species has no clear morphological characteristics or molecular data affiliating it with any known group, Q. rotundata has been treated as a protist incertae sedis, for a long time. Here, we established a clonal culture of Q. rotundata and sequenced its 18S rDNA sequence. Molecular phylogenetic analysis successfully placed Q. rotundata in an environmental clade within Cercozoa, which contributes to expand the morphological and species diversity within Cercozoa. We also discuss morphological evolution within Cercozoa based on this finding.
Collapse
Affiliation(s)
- Akinori Yabuki
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| | - Ken-Ichiro Ishida
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|
410
|
Kaur B, Valach M, Peña-Diaz P, Moreira S, Keeling PJ, Burger G, Lukeš J, Faktorová D. Transformation of Diplonema papillatum, the type species of the highly diverse and abundant marine microeukaryotes Diplonemida (Euglenozoa). Environ Microbiol 2018; 20:1030-1040. [PMID: 29318727 DOI: 10.1111/1462-2920.14041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 11/30/2022]
Abstract
Diplonema papillatum is the type species of diplonemids, which are among the most abundant and diverse heterotrophic microeukaryotes in the world's oceans. Diplonemids are also known for a unique form of post-transcriptional processing in mitochondria. However, the lack of reverse genetics methodologies in these protists has hampered elucidation of their cellular and molecular biology. Here we report a protocol for D. papillatum transformation. We have identified several antibiotics to which D. papillatum is sensitive and thus are suitable selectable markers, and focus in particular on puromycin. Constructs were designed encoding antibiotic resistance markers, fluorescent tags, and additional genomic sequences from D. papillatum to facilitate vector integration into chromosomes. We established conditions for effective electroporation, and demonstrate that electroporated constructs can be stably integrated in the D. papillatum nuclear genome. In D. papillatum transformants, the heterologous puromycin resistance gene is transcribed into mRNA and translated into protein, as determined by Southern hybridization, reverse transcription, and Western blot analyses. This is the first documented case of transformation in a euglenozoan protist outside the well-studied kinetoplastids, making D. papillatum a genetically tractable organism and potentially a model system for marine microeukaryotes.
Collapse
Affiliation(s)
- Binnypreet Kaur
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Matus Valach
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada
| | - Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Sandrine Moreira
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada
| | - Patrick J Keeling
- Botany Department, University of British Columbia, Vancouver, Canada
| | - Gertraud Burger
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
411
|
Reis-Cunha JL, Valdivia HO, Bartholomeu DC. Gene and Chromosomal Copy Number Variations as an Adaptive Mechanism Towards a Parasitic Lifestyle in Trypanosomatids. Curr Genomics 2018; 19:87-97. [PMID: 29491737 PMCID: PMC5814966 DOI: 10.2174/1389202918666170911161311] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/14/2017] [Accepted: 04/18/2017] [Indexed: 12/21/2022] Open
Abstract
Trypanosomatids are a group of kinetoplastid parasites including some of great public health importance, causing debilitating and life-long lasting diseases that affect more than 24 million people worldwide. Among the trypanosomatids, Trypanosoma cruzi, Trypanosoma brucei and species from the Leishmania genus are the most well studied parasites, due to their high prevalence in human infections. These parasites have an extreme genomic and phenotypic variability, with a massive expansion in the copy number of species-specific multigene families enrolled in host-parasite interactions that mediate cellular invasion and immune evasion processes. As most trypanosomatids are heteroxenous, and therefore their lifecycles involve the transition between different hosts, these parasites have developed several strategies to ensure a rapid adaptation to changing environments. Among these strategies, a rapid shift in the repertoire of expressed genes, genetic variability and genome plasticity are key mechanisms. Trypanosomatid genomes are organized into large directional gene clusters that are transcribed polycistronically, where genes derived from the same polycistron may have very distinct mRNA levels. This particular mode of transcription implies that the control of gene expression operates mainly at post-transcriptional level. In this sense, gene duplications/losses were already associated with changes in mRNA levels in these parasites. Gene duplications also allow the generation of sequence variability, as the newly formed copy can diverge without loss of function of the original copy. Recently, aneuploidies have been shown to occur in several Leishmania species and T. cruzi strains. Although aneuploidies are usually associated with debilitating phenotypes in superior eukaryotes, recent data shows that it could also provide increased fitness in stress conditions and generate drug resistance in unicellular eukaryotes. In this review, we will focus on gene and chromosomal copy number variations and their relevance to the evolution of trypanosomatid parasites.
Collapse
Affiliation(s)
- João Luís Reis-Cunha
- Universidade Federal de Minas Gerais, Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | - Hugo O. Valdivia
- Universidade Federal de Minas Gerais, Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Callao, Peru
| | - Daniella Castanheira Bartholomeu
- Universidade Federal de Minas Gerais, Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Callao, Peru
| |
Collapse
|
412
|
Gahura O, Šubrtová K, Váchová H, Panicucci B, Fearnley IM, Harbour ME, Walker JE, Zíková A. The F 1 -ATPase from Trypanosoma brucei is elaborated by three copies of an additional p18-subunit. FEBS J 2018; 285:614-628. [PMID: 29247468 DOI: 10.1111/febs.14364] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/16/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023]
Abstract
The F-ATPases (also called the F1 Fo -ATPases or ATP synthases) are multi-subunit membrane-bound molecular machines that produce ATP in bacteria and in eukaryotic mitochondria and chloroplasts. The structures and enzymic mechanisms of their F1 -catalytic domains are highly conserved in all species investigated hitherto. However, there is evidence that the F-ATPases from the group of protozoa known as Euglenozoa have novel features. Therefore, we have isolated pure and active F1 -ATPase from the euglenozoan parasite, Trypanosoma brucei, and characterized it. All of the usual eukaryotic subunits (α, β, γ, δ, and ε) were present in the enzyme, and, in addition, two unique features were detected. First, each of the three α-subunits in the F1 -domain has been cleaved by proteolysis in vivo at two sites eight residues apart, producing two assembled fragments. Second, the T. brucei F1 -ATPase has an additional subunit, called p18, present in three copies per complex. Suppression of expression of p18 affected in vitro growth of both the insect and infectious mammalian forms of T. brucei. It also reduced the levels of monomeric and multimeric F-ATPase complexes and diminished the in vivo hydrolytic activity of the enzyme significantly. These observations imply that p18 plays a role in the assembly of the F1 domain. These unique features of the F1 -ATPase extend the list of special characteristics of the F-ATPase from T. brucei, and also, demonstrate that the architecture of the F1 -ATPase complex is not strictly conserved in eukaryotes.
Collapse
Affiliation(s)
- Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Karolína Šubrtová
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - Hana Váchová
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - Ian M Fearnley
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Michael E Harbour
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - John E Walker
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
413
|
Nevers Y, Prasad MK, Poidevin L, Chennen K, Allot A, Kress A, Ripp R, Thompson JD, Dollfus H, Poch O, Lecompte O. Insights into Ciliary Genes and Evolution from Multi-Level Phylogenetic Profiling. Mol Biol Evol 2018; 34:2016-2034. [PMID: 28460059 PMCID: PMC5850483 DOI: 10.1093/molbev/msx146] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cilia (flagella) are important eukaryotic organelles, present in the Last Eukaryotic Common Ancestor, and are involved in cell motility and integration of extracellular signals. Ciliary dysfunction causes a class of genetic diseases, known as ciliopathies, however current knowledge of the underlying mechanisms is still limited and a better characterization of genes is needed. As cilia have been lost independently several times during evolution and they are subject to important functional variation between species, ciliary genes can be investigated through comparative genomics. We performed phylogenetic profiling by predicting orthologs of human protein-coding genes in 100 eukaryotic species. The analysis integrated three independent methods to predict a consensus set of 274 ciliary genes, including 87 new promising candidates. A fine-grained analysis of the phylogenetic profiles allowed a partitioning of ciliary genes into modules with distinct evolutionary histories and ciliary functions (assembly, movement, centriole, etc.) and thus propagation of potential annotations to previously undocumented genes. The cilia/basal body localization was experimentally confirmed for five of these previously unannotated proteins (LRRC23, LRRC34, TEX9, WDR27, and BIVM), validating the relevance of our approach. Furthermore, our multi-level analysis sheds light on the core gene sets retained in gamete-only flagellates or Ecdysozoa for instance. By combining gene-centric and species-oriented analyses, this work reveals new ciliary and ciliopathy gene candidates and provides clues about the evolution of ciliary processes in the eukaryotic domain. Additionally, the positive and negative reference gene sets and the phylogenetic profile of human genes constructed during this study can be exploited in future work.
Collapse
Affiliation(s)
- Yannis Nevers
- Complex Systems and Translational Bioinformatics, ICube UMR 7357, Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Megana K Prasad
- Laboratoire de Génétique Médicale, Institut de Génétique Médicale d'Alsace, INSERM U1112, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Laetitia Poidevin
- Complex Systems and Translational Bioinformatics, ICube UMR 7357, Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Kirsley Chennen
- Complex Systems and Translational Bioinformatics, ICube UMR 7357, Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Alexis Allot
- Complex Systems and Translational Bioinformatics, ICube UMR 7357, Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Arnaud Kress
- Complex Systems and Translational Bioinformatics, ICube UMR 7357, Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Raymond Ripp
- Complex Systems and Translational Bioinformatics, ICube UMR 7357, Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Julie D Thompson
- Complex Systems and Translational Bioinformatics, ICube UMR 7357, Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Hélène Dollfus
- Laboratoire de Génétique Médicale, Institut de Génétique Médicale d'Alsace, INSERM U1112, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Centre de Référence pour les Affections Rares en Génétique Ophtalmologique, Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Olivier Poch
- Complex Systems and Translational Bioinformatics, ICube UMR 7357, Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Odile Lecompte
- Complex Systems and Translational Bioinformatics, ICube UMR 7357, Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| |
Collapse
|
414
|
Jackson C, Knoll AH, Chan CX, Verbruggen H. Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Sci Rep 2018; 8:1523. [PMID: 29367699 PMCID: PMC5784168 DOI: 10.1038/s41598-017-18805-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/15/2017] [Indexed: 11/08/2022] Open
Abstract
Secondary plastids derived from green algae occur in chlorarachniophytes, photosynthetic euglenophytes, and the dinoflagellate genus Lepidodinium. Recent advances in understanding the origin of these plastids have been made, but analyses suffer from relatively sparse taxon sampling within the green algal groups to which they are related. In this study we aim to derive new insights into the identity of the plastid donors, and when in geological time the independent endosymbiosis events occurred. We use newly sequenced green algal chloroplast genomes from carefully chosen lineages potentially related to chlorarachniophyte and Lepidodinium plastids, combined with recently published chloroplast genomes, to present taxon-rich phylogenetic analyses to further pinpoint plastid origins. We integrate phylogenies with fossil information and relaxed molecular clock analyses. Our results indicate that the chlorarachniophyte plastid may originate from a precusor of siphonous green algae or a closely related lineage, whereas the Lepidodinium plastid originated from a pedinophyte. The euglenophyte plastid putatively originated from a lineage of prasinophytes within the order Pyramimonadales. Our molecular clock analyses narrow in on the likely timing of the secondary endosymbiosis events, suggesting that the event leading to Lepidodinium likely occurred more recently than those leading to the chlorarachniophyte and photosynthetic euglenophyte lineages.
Collapse
Affiliation(s)
- Christopher Jackson
- School of Biosciences, University of Melbourne, Melbourne, Victoria, 3010, Australia.
| | - Andrew H Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138, USA
| | - Cheong Xin Chan
- Institute for Molecular Bioscience, and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Heroen Verbruggen
- School of Biosciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
415
|
García-Gutiérrez Á, Cánovas FM, Ávila C. Glutamate synthases from conifers: gene structure and phylogenetic studies. BMC Genomics 2018; 19:65. [PMID: 29351733 PMCID: PMC5775586 DOI: 10.1186/s12864-018-4454-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/15/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Plants synthesize glutamate from ammonium by the combined activity of the enzymes glutamine synthetase (GS) and glutamate synthase (GOGAT) through the glutamate synthase cycle. In plants, there are two forms of glutamate synthases that differ in their electron donors, NADH-GOGAT (EC 1.4.1.14) and Fd-GOGAT (EC 1.4.7.1), which have differential roles either in primary ammonia assimilation or in the reassimilation of ammonium from different catabolic processes. Glutamate synthases are complex iron-sulfur flavoproteins containing functional domains involved in the control and coordination of their catalytic activities in annual plants. In conifers, partial cDNA sequences for GOGATs have been isolated and used for gene expression studies. However, knowledge of the gene structure and of phylogenetic relationships with other plant enzymes is quite scant. RESULTS Technological advances in conifer megagenomes sequencing have made it possible to obtain full-length cDNA sequences encoding Fd- and NADH-GOGAT from maritime pine, as well as BAC clones containing sequences for NADH-GOGAT and Fd-GOGAT genes. In the current study, we studied the genomic organization of pine GOGAT genes, the size of their exons/introns, copy numbers in the pine genome and relationships with other plant genes. Phylogenetic analysis was performed, and the degree of preservation and dissimilarity of key domains for the catalytic activities of these enzymes in different taxa were determined. CONCLUSIONS Fd- and NADH-GOGAT are encoded by single-copy genes in the maritime pine genome. The Fd-GOGAT gene is extremely large spanning more than 330 kb and the presence of very long introns highlights the important contribution of LTR retrotransposons to the gene size in conifers. In contrast, the structure of the NADH-GOGAT gene is similar to the orthologous genes in angiosperms. Our phylogenetic analysis indicates that these two genes had different origins during plant evolution. The results provide new insights into the structure and molecular evolution of these essential genes.
Collapse
Affiliation(s)
- Ángel García-Gutiérrez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain
| | - Francisco M. Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain
| | - Concepción Ávila
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain
| |
Collapse
|
416
|
Tyml T, Dyková I. Sappinia sp. (Amoebozoa: Thecamoebida) and Rosculus sp. (SAR: Cercozoa) Isolated From King Penguin Guano Collected in the Subantarctic (South Georgia, Salisbury Plain) and their Coexistence in Culture. J Eukaryot Microbiol 2018; 65:544-555. [PMID: 29336503 DOI: 10.1111/jeu.12500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/02/2017] [Accepted: 01/02/2018] [Indexed: 11/28/2022]
Abstract
Two amoeboid organisms of the genera Sappinia Dangeard, 1896 and Rosculus Hawes, 1963 were identified in a sample containing king penguin guano. This sample, collected in the Subantarctic, enlarges the list of fecal habitats known for the presence of coprophilic amoebae. The two organisms were co-isolated and subcultured for over 6 mo, with continuous efforts being invested to separate each one from the mixed culture. In the mixed culture, Rosculus cells were fast growing, tolerated changes in culturing conditions, formed cysts, and evidently were attracted by Sappinia trophozoites. The separation of the Rosculus strain was accomplished, whereas the Sappinia strain remained intermixed with inseparable Rosculus cells. Sappinia cell populations were sensitive to changes in culturing conditions; they improved with reduction of Rosculus cells in the mixed culture. Thick-walled cysts, reportedly formed by Sappinia species, were not seen. The ultrastructure of both organisms was congruent with the currently accepted generic characteristics; however, some details were remarkable at the species level. Combined with the results of phylogenetic analyses, our findings indicate that the ultrastructure of the glycocalyx and the presence/absence of the Golgi apparatus in differential diagnoses of Sappinia species require a critical re-evaluation.
Collapse
Affiliation(s)
- Tomáš Tyml
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 370 05, Czech Republic
| | - Iva Dyková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| |
Collapse
|
417
|
Huang JB, Zhang T, Zhang Q, Li Y, Warren A, Pan H, Yan Y. Further insights into the highly derived haptorids (Ciliophora, Litostomatea): Phylogeny based on multigene data. ZOOL SCR 2018. [DOI: 10.1111/zsc.12269] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jie B. Huang
- Institute of Evolution & Marine Biodiversity; Ocean University of China; Qingdao China
| | - Tengteng Zhang
- Institute of Evolution & Marine Biodiversity; Ocean University of China; Qingdao China
| | - Qianqian Zhang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation; Yantai Institute of Coastal Zone Research; Chinese Academy of Science; Yantai China
| | - Yuan Li
- Institute of Evolution & Marine Biodiversity; Ocean University of China; Qingdao China
| | - Alan Warren
- Department of Life Sciences; Natural History Museum; London UK
| | - Hongbo Pan
- College of Oceanography; Hohai University; Nanjing China
| | - Ying Yan
- Institute of Evolution & Marine Biodiversity; Ocean University of China; Qingdao China
| |
Collapse
|
418
|
Mehrabi S, Stjelja S, Dixelius C. Root Gall Formation, Resting Spore Isolation and High Molecular Weight DNA Extraction of Plasmodiophora brassicae. Bio Protoc 2018. [DOI: 10.21769/bioprotoc.2864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
419
|
Faktorová D, Valach M, Kaur B, Burger G, Lukeš J. Mitochondrial RNA Editing and Processing in Diplonemid Protists. RNA METABOLISM IN MITOCHONDRIA 2018. [DOI: 10.1007/978-3-319-78190-7_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
420
|
Wojtkowska M, Buczek D, Suzuki Y, Shabardina V, Makałowski W, Kmita H. The emerging picture of the mitochondrial protein import complexes of Amoebozoa supergroup. BMC Genomics 2017; 18:997. [PMID: 29284403 PMCID: PMC5747110 DOI: 10.1186/s12864-017-4383-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/14/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The existence of mitochondria-related organelles (MROs) is proposed for eukaryotic organisms. The Amoebozoa includes some organisms that are known to have mitosomes but also organisms that have aerobic mitochondria. However, the mitochondrial protein apparatus of this supergroup remains largely unsampled, except for the mitochondrial outer membrane import complexes studied recently. Therefore, in this study we investigated the mitochondrial inner membrane and intermembrane space complexes, using the available genome and transcriptome sequences. RESULTS When compared with the canonical cognate complexes described for the yeast Saccharomyces cerevisiae, amoebozoans with aerobic mitochondria, display lower differences in the number of subunits predicted for these complexes than the mitochondrial outer membrane complexes, although the predicted subunits appear to display different levels of diversity in regard to phylogenetic position and isoform numbers. For the putative mitosome-bearing amoebozoans, the number of predicted subunits suggests the complex elimination distinctly more pronounced than in the case of the outer membrane ones. CONCLUSION The results concern the problem of mitochondrial and mitosome protein import machinery structural variability and the reduction of their complexity within the currently defined supergroup of Amoebozoa. This results are crucial for better understanding of the Amoebozoa taxa of both biomedical and evolutionary importance.
Collapse
Affiliation(s)
- Małgorzata Wojtkowska
- Laboratory of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Dorota Buczek
- Laboratory of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
- Institute of Bioinformatics, Faculty of Medicine, University of Muenster, Niels Stensen Strasse 14, 48149 Muenster, Germany
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562 Japan
| | - Victoria Shabardina
- Institute of Bioinformatics, Faculty of Medicine, University of Muenster, Niels Stensen Strasse 14, 48149 Muenster, Germany
| | - Wojciech Makałowski
- Institute of Bioinformatics, Faculty of Medicine, University of Muenster, Niels Stensen Strasse 14, 48149 Muenster, Germany
| | - Hanna Kmita
- Laboratory of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| |
Collapse
|
421
|
A single-cysteine mutant and chimeras of essential Leishmania Erv can complement the loss of Erv1 but not of Mia40 in yeast. Redox Biol 2017; 15:363-374. [PMID: 29310075 PMCID: PMC5760468 DOI: 10.1016/j.redox.2017.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/17/2017] [Accepted: 12/21/2017] [Indexed: 11/21/2022] Open
Abstract
Mia40/CHCHD4 and Erv1/ALR are essential for oxidative protein folding in the mitochondrial intermembrane space of yeast and mammals. In contrast, many protists, including important apicomplexan and kinetoplastid parasites, lack Mia40. Furthermore, the Erv homolog of the model parasite Leishmania tarentolae (LtErv) was shown to be incompatible with Saccharomyces cerevisiae Mia40 (ScMia40). Here we addressed structure-function relationships of ScErv1 and LtErv as well as their compatibility with the oxidative protein folding system in yeast using chimeric, truncated, and mutant Erv constructs. Chimeras between the N-terminal arm of ScErv1 and a variety of truncated LtErv constructs were able to rescue yeast cells that lack ScErv1. Yeast cells were also viable when only a single cysteine residue was replaced in LtErvC17S. Thus, the presence and position of the C-terminal arm and the kinetoplastida-specific second (KISS) domain of LtErv did not interfere with its functionality in the yeast system, whereas a relatively conserved cysteine residue before the flavodomain rendered LtErv incompatible with ScMia40. The question whether parasite Erv homologs might also exert the function of Mia40 was addressed in another set of complementation assays. However, neither the KISS domain nor other truncated or mutant LtErv constructs were able to rescue yeast cells that lack ScMia40. The general relevance of Erv and its candidate substrate small Tim1 was analyzed for the related parasite L. infantum. Repeated unsuccessful knockout attempts suggest that both genes are essential in this human pathogen and underline the potential of mitochondrial protein import pathways for future intervention strategies.
Collapse
|
422
|
Zhang W, Pan Y, Yang J, Chen H, Holohan B, Vaudrey J, Lin S, McManus GB. The diversity and biogeography of abundant and rare intertidal marine microeukaryotes explained by environment and dispersal limitation. Environ Microbiol 2017; 20:462-476. [PMID: 28881067 DOI: 10.1111/1462-2920.13916] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/15/2017] [Accepted: 08/26/2017] [Indexed: 02/03/2023]
Abstract
Benthic microeukaryotes are key ecosystem drivers in marine sandy beaches, an important and dynamic environment; however, little is known about their diversity and biogeography on a large spatial scale. Here, we investigated the community composition and geographical distributions of benthic microeukaryotes using high-throughput sequencing of the 18S rRNA gene and quantified the contributions of environmental factors and spatial separation on the distribution patterns of both rare and abundant taxa. We collected 36 intertidal samples at 12 sandy beaches from four regions that spanned distances from 0.001 to 12,000 km. We found 12,890 operational taxonomic units (OTUs; 97% sequence identity level) including members of all eukaryotic super-groups and several phyla of uncertain position. Arthropoda and Diatomeae dominated the sequence reads in abundance, but Ciliophora and Discoba were the most diverse groups across all samples. About one-third of the OTUs could not be definitively classified at a similarity level of 80%, supporting the view that a large number of rare and minute marine species may have escaped previous characterization. We found generally similar geographical patterns for abundant and rare microeukaryotic sub-communities, and both showed a significant distance-decay similarity trend. Variation partitioning showed that both rare and abundant sub-communities exhibited a slightly stronger response to environmental factors than spatial (distance) factors. However, the abundant sub-community was strongly correlated with variations in spatial, environmental and sediment grain size factors (66% of variance explained), but the rare assemblage was not (16%). This suggests that different or more complex mechanisms generate and maintain diversity in the rare biosphere in this habitat.
Collapse
Affiliation(s)
- Wenjing Zhang
- State Key Laboratory of Marine Environmental Science, Marine Biodiversity and Global Change Research Center, Xiamen University, Xiamen 361005, People's Republic of China.,Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| | - Yongbo Pan
- State Key Laboratory of Marine Environmental Science, Marine Biodiversity and Global Change Research Center, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jun Yang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Huihuang Chen
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Bridget Holohan
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| | - Jamie Vaudrey
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, Marine Biodiversity and Global Change Research Center, Xiamen University, Xiamen 361005, People's Republic of China.,Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| | - George B McManus
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| |
Collapse
|
423
|
Scholl JP, Wiens JJ. Diversification rates and species richness across the Tree of Life. Proc Biol Sci 2017; 283:rspb.2016.1334. [PMID: 27605507 DOI: 10.1098/rspb.2016.1334] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/12/2016] [Indexed: 11/12/2022] Open
Abstract
Species richness varies dramatically among clades across the Tree of Life, by over a million-fold in some cases (e.g. placozoans versus arthropods). Two major explanations for differences in richness among clades are the clade-age hypothesis (i.e. species-rich clades are older) and the diversification-rate hypothesis (i.e. species-rich clades diversify more rapidly, where diversification rate is the net balance of speciation and extinction over time). Here, we examine patterns of variation in diversification rates across the Tree of Life. We address how rates vary across higher taxa, whether rates within higher taxa are related to the subclades within them, and how diversification rates of clades are related to their species richness. We find substantial variation in diversification rates, with rates in plants nearly twice as high as in animals, and rates in some eukaryotes approximately 10-fold faster than prokaryotes. Rates for each kingdom-level clade are then significantly related to the subclades within them. Although caution is needed when interpreting relationships between diversification rates and richness, a positive relationship between the two is not inevitable. We find that variation in diversification rates seems to explain most variation in richness among clades across the Tree of Life, in contrast to the conclusions of previous studies.
Collapse
Affiliation(s)
- Joshua P Scholl
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721-0088, USA
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721-0088, USA
| |
Collapse
|
424
|
Sproles AE, Kirk NL, Kitchen SA, Oakley CA, Grossman AR, Weis VM, Davy SK. Phylogenetic characterization of transporter proteins in the cnidarian-dinoflagellate symbiosis. Mol Phylogenet Evol 2017; 120:307-320. [PMID: 29233707 DOI: 10.1016/j.ympev.2017.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 10/22/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022]
Abstract
Metabolic exchange between cnidarians and their symbiotic dinoflagellates is central to maintaining their mutualistic relationship. Sugars are translocated to the host, while ammonium and nitrate are utilized by the dinoflagellates (Symbiodinium spp.). We investigated membrane protein sequences of each partner to identify potential transporter proteins that move sugars into cnidarian cells and nitrogen products into Symbiodinium cells. We examined the facilitated glucose transporters (GLUT), sodium/glucose cotransporters (SGLT), and aquaporin (AQP) channels in the cnidarian host as mechanisms for sugar uptake, and the ammonium and high-affinity nitrate transporters (AMT and NRT2, respectively) in the algal symbiont as mechanisms for nitrogen uptake. Homologous protein sequences were used for phylogenetic analysis and tertiary structure deductions. In cnidarians, we identified putative glucose transporters of the GLUT family and glycerol transporting AQP proteins, as well as sodium monocarboxylate transporters and sodium myo-inositol cotransporters homologous to SGLT proteins. We hypothesize that cnidarians use GLUT proteins as the primary mechanism for glucose uptake, while glycerol moves into cells by passive diffusion. We also identified putative AMT proteins in several Symbiodinium clades and putative NRT2 proteins only in a single clade. We further observed an upregulation of expressed putative AMT proteins in Symbiodinium, which may have emerged as an adaptation to conditions experienced inside the host cell. This study is the first to identify transporter sequences from a diversity of cnidarian species and Symbiodinium clades, which will be useful for future experimental analyses of the host-symbiont proteome and the nutritional exchange of Symbiodinium cells in hospite.
Collapse
Affiliation(s)
- Ashley E Sproles
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Nathan L Kirk
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Sheila A Kitchen
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Arthur R Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand.
| |
Collapse
|
425
|
Abrahamian M, Kagda M, Ah-Fong AMV, Judelson HS. Rethinking the evolution of eukaryotic metabolism: novel cellular partitioning of enzymes in stramenopiles links serine biosynthesis to glycolysis in mitochondria. BMC Evol Biol 2017; 17:241. [PMID: 29202688 PMCID: PMC5715807 DOI: 10.1186/s12862-017-1087-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022] Open
Abstract
Background An important feature of eukaryotic evolution is metabolic compartmentalization, in which certain pathways are restricted to the cytosol or specific organelles. Glycolysis in eukaryotes is described as a cytosolic process. The universality of this canon has been challenged by recent genome data that suggest that some glycolytic enzymes made by stramenopiles bear mitochondrial targeting peptides. Results Mining of oomycete, diatom, and brown algal genomes indicates that stramenopiles encode two forms of enzymes for the second half of glycolysis, one with and the other without mitochondrial targeting peptides. The predicted mitochondrial targeting was confirmed by using fluorescent tags to localize phosphoglycerate kinase, phosphoglycerate mutase, and pyruvate kinase in Phytophthora infestans, the oomycete that causes potato blight. A genome-wide search for other enzymes with atypical mitochondrial locations identified phosphoglycerate dehydrogenase, phosphoserine aminotransferase, and phosphoserine phosphatase, which form a pathway for generating serine from the glycolytic intermediate 3-phosphoglycerate. Fluorescent tags confirmed the delivery of these serine biosynthetic enzymes to P. infestans mitochondria. A cytosolic form of this serine biosynthetic pathway, which occurs in most eukaryotes, is missing from oomycetes and most other stramenopiles. The glycolysis and serine metabolism pathways of oomycetes appear to be mosaics of enzymes with different ancestries. While some of the noncanonical oomycete mitochondrial enzymes have the closest affinity in phylogenetic analyses with proteins from other stramenopiles, others cluster with bacterial, plant, or animal proteins. The genes encoding the mitochondrial phosphoglycerate kinase and serine-forming enzymes are physically linked on oomycete chromosomes, which suggests a shared origin. Conclusions Stramenopile metabolism appears to have been shaped through the acquisition of genes by descent and lateral or endosymbiotic gene transfer, along with the targeting of the proteins to locations that are novel compared to other eukaryotes. Colocalization of the glycolytic and serine biosynthesis enzymes in mitochondria is apparently necessary since they share a common intermediate. The results indicate that descriptions of metabolism in textbooks do not cover the full diversity of eukaryotic biology. Electronic supplementary material The online version of this article (10.1186/s12862-017-1087-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melania Abrahamian
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Meenakshi Kagda
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Audrey M V Ah-Fong
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
426
|
Heiss AA, Heiss AW, Lukacs K, Kim E. The flagellar apparatus of the glaucophyte Cyanophora cuspidata. JOURNAL OF PHYCOLOGY 2017; 53:1120-1150. [PMID: 28741699 DOI: 10.1111/jpy.12569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/12/2017] [Indexed: 05/16/2023]
Abstract
Glaucophytes are a kingdom-scale lineage of unicellular algae with uniquely underived plastids. The genus Cyanophora is of particular interest because it is the only glaucophyte that is a flagellate throughout its life cycle, making its morphology more directly comparable than other glaucophytes to other eukaryote flagellates. The ultrastructure of Cyanophora has already been studied, primarily in the 1960s and 1970s. However, the usefulness of that work has been undermined by its own limitations, subsequent misinterpretations, and a recent taxonomic revision of the genus. For example, Cyanophora's microtubular roots have been widely reported as cruciate, with rotationally symmetrical wide and thin roots, although the first ultrastructural work described it as having three wide and one narrow root. We examine Cyanophora cuspidata using scanning and transmission electron microscopy, and construct a model of its cytoskeleton using serial-section TEM. We confirm the earlier model, with asymmetric roots. We describe previously unknown and unsuspected features of its microtubular roots, including (i) a rearrangement of individual microtubules within the posterior right root, (ii) a splitting of the posterior left root into two subroots, and (iii) the convergence and termination of the narrow roots against wider ones in both the anterior and posterior subsystems of the flagellar apparatus. We also describe a large complement of nonmicrotubular components of the cytoskeleton, including a substantial connective between the posterior right root and the anterior basal body. Our work should serve as the starting point for a re-examination of both internal glaucophyte diversity and morphological evolution in eukaryotes.
Collapse
Affiliation(s)
- Aaron A Heiss
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th St., New York, New York, 10024, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th St., New York, New York, 10024, USA
| | - Alaric W Heiss
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th St., New York, New York, 10024, USA
| | - Kaleigh Lukacs
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th St., New York, New York, 10024, USA
| | - Eunsoo Kim
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th St., New York, New York, 10024, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th St., New York, New York, 10024, USA
| |
Collapse
|
427
|
Frada MJ, Rosenwasser S, Ben-Dor S, Shemi A, Sabanay H, Vardi A. Morphological switch to a resistant subpopulation in response to viral infection in the bloom-forming coccolithophore Emiliania huxleyi. PLoS Pathog 2017; 13:e1006775. [PMID: 29244854 PMCID: PMC5756048 DOI: 10.1371/journal.ppat.1006775] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/05/2018] [Accepted: 11/27/2017] [Indexed: 11/18/2022] Open
Abstract
Recognizing the life cycle of an organism is key to understanding its biology and ecological impact. Emiliania huxleyi is a cosmopolitan marine microalga, which displays a poorly understood biphasic sexual life cycle comprised of a calcified diploid phase and a morphologically distinct biflagellate haploid phase. Diploid cells (2N) form large-scale blooms in the oceans, which are routinely terminated by specific lytic viruses (EhV). In contrast, haploid cells (1N) are resistant to EhV. Further evidence indicates that 1N cells may be produced during viral infection. A shift in morphology, driven by meiosis, could therefore constitute a mechanism for E. huxleyi cells to escape from EhV during blooms. This process has been metaphorically coined the 'Cheshire Cat' (CC) strategy. We tested this model in two E. huxleyi strains using a detailed assessment of morphological and ploidy-level variations as well as expression of gene markers for meiosis and the flagellate phenotype. We showed that following the CC model, production of resistant cells was triggered during infection. This led to the rise of a new subpopulation of cells in the two strains that morphologically resembled haploid cells and were resistant to EhV. However, ploidy-level analyses indicated that the new resistant cells were diploid or aneuploid. Thus, the CC strategy in E. huxleyi appears to be a life-phase switch mechanism involving morphological remodeling that is decoupled from meiosis. Our results highlight the adaptive significance of morphological plasticity mediating complex host-virus interactions in marine phytoplankton.
Collapse
Affiliation(s)
- Miguel José Frada
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shilo Rosenwasser
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Bioinformatics and Biological Computing Unit–Department of Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | - Adva Shemi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Helena Sabanay
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
428
|
Mueller C, Graindorge A, Soldati-Favre D. Functions of myosin motors tailored for parasitism. Curr Opin Microbiol 2017; 40:113-122. [DOI: 10.1016/j.mib.2017.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 01/01/2023]
|
429
|
Phylogeny mandalas for illustrating the Tree of Life. Mol Phylogenet Evol 2017; 117:168-178. [DOI: 10.1016/j.ympev.2016.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/12/2016] [Accepted: 11/01/2016] [Indexed: 01/01/2023]
|
430
|
Abstract
Trypanosomes (genus Trypanosoma) are parasites of humans, and wild and domestic mammals, in which they cause several economically and socially important diseases, including sleeping sickness in Africa and Chagas disease in the Americas. Despite the development of numerous molecular diagnostics and increasing awareness of the importance of these neglected parasites, there is currently no universal genetic barcoding marker available for trypanosomes. In this review we provide an overview of the methods used for trypanosome detection and identification, discuss the potential application of different barcoding techniques and examine the requirements of the 'ideal' trypanosome genetic barcode. In addition, we explore potential alternative genetic markers for barcoding Trypanosoma species, including an analysis of phylogenetically informative nucleotide changes along the length of the 18S rRNA gene.
Collapse
|
431
|
Kang S, Tice AK, Spiegel FW, Silberman JD, Pánek T, Cepicka I, Kostka M, Kosakyan A, Alcântara DMC, Roger AJ, Shadwick LL, Smirnov A, Kudryavtsev A, Lahr DJG, Brown MW. Between a Pod and a Hard Test: The Deep Evolution of Amoebae. Mol Biol Evol 2017; 34:2258-2270. [PMID: 28505375 PMCID: PMC5850466 DOI: 10.1093/molbev/msx162] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Amoebozoa is the eukaryotic supergroup sister to Obazoa, the lineage that contains the animals and Fungi, as well as their protistan relatives, and the breviate and apusomonad flagellates. Amoebozoa is extraordinarily diverse, encompassing important model organisms and significant pathogens. Although amoebozoans are integral to global nutrient cycles and present in nearly all environments, they remain vastly understudied. We present a robust phylogeny of Amoebozoa based on broad representative set of taxa in a phylogenomic framework (325 genes). By sampling 61 taxa using culture-based and single-cell transcriptomics, our analyses show two major clades of Amoebozoa, Discosea, and Tevosa. This phylogeny refutes previous studies in major respects. Our results support the hypothesis that the last common ancestor of Amoebozoa was sexual and flagellated, it also may have had the ability to disperse propagules from a sporocarp-type fruiting body. Overall, the main macroevolutionary patterns in Amoebozoa appear to result from the parallel losses of homologous characters of a multiphase life cycle that included flagella, sex, and sporocarps rather than independent acquisition of convergent features.
Collapse
Affiliation(s)
- Seungho Kang
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS.,Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS
| | - Alexander K Tice
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS.,Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS
| | | | | | - Tomáš Pánek
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czech Republic
| | - Ivan Cepicka
- Department of Zoology, Charles University, Prague, Czech Republic
| | - Martin Kostka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Českě Budějovice, Czech Republic.,Department of Parasitology, University of South Bohemia, Českě Budějovice, Czech Republic
| | - Anush Kosakyan
- Department of Zoology, University of São Paulo, São Paulo, Brazil
| | | | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Lora L Shadwick
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR
| | - Alexey Smirnov
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Alexander Kudryavtsev
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Daniel J G Lahr
- Department of Zoology, University of São Paulo, São Paulo, Brazil
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS.,Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS
| |
Collapse
|
432
|
Shadwick JDL, Silberman JD, Spiegel FW. Variation in the SSUrDNA of the Genus Protostelium Leads to a New Phylogenetic Understanding of the Genus and of the Species Concept for Protostelium mycophaga (Protosteliida, Amoebozoa). J Eukaryot Microbiol 2017; 65:331-344. [PMID: 29044743 DOI: 10.1111/jeu.12476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/01/2017] [Accepted: 09/25/2017] [Indexed: 11/30/2022]
Abstract
Members of the genus Protostelium (including P. mycophaga, P. nocturnum, and P. okumukumu) are protosteloid amoebae commonly found in terrestrial habitats on dead plant matter. They, along with the closely allied nominal genus Planoprotostelium, containing the single species Pl. aurantium, all have an amoeboid trophic stage with acutely pointed subpseudopodia and orange lipid droplets in the granuloplasm. These amoebae form stalked fruiting bodies topped with a single, usually deciduous spore. The species are identified based on their fruiting body morphologies except for Pl. aurantium which looks similar to P. mycophaga in fruiting morphology, but has amoebae that can make flagella in liquid medium. We built phylogenetic trees using nuclear small subunit ribosomal DNA sequences of 35 isolates from the genera Protostelium and Planoprotostelium and found that (1) the nonflagellated P. nocturnum and P. okumukumu branch basally in the genus Protostelium, (2) the flagellate, Pl. aurantium falls within the genus Protostelium in a monophyletic clade with the nominal variety, P. mycophaga var. crassipes, (3) the cultures initially identified as Protostelium mycophaga can be divided into at least three morphologically recognizable taxa, P. aurantium n. comb., P. apiculatum n. sp., and P. m. rodmani n. subsp., as well as a paraphyletic assemblage that includes the remainder of the P. mycophaga morphotype. These findings have implications for understanding the ecology, evolution, and diversity of these amoeboid organisms and for using these amoebae as models for other amoeboid groups.
Collapse
Affiliation(s)
- John D L Shadwick
- Department of Biological Sciences, University of Arkansas, Science and Engineering Building Room 601, Fayetteville, Arkansas, 72701
| | - Jeffery D Silberman
- Department of Biological Sciences, University of Arkansas, Science and Engineering Building Room 601, Fayetteville, Arkansas, 72701
| | - Frederick W Spiegel
- Department of Biological Sciences, University of Arkansas, Science and Engineering Building Room 601, Fayetteville, Arkansas, 72701
| |
Collapse
|
433
|
Archigregarines of the English Channel revisited: New molecular data on Selenidium species including early described and new species and the uncertainties of phylogenetic relationships. PLoS One 2017; 12:e0187430. [PMID: 29099876 PMCID: PMC5669490 DOI: 10.1371/journal.pone.0187430] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/19/2017] [Indexed: 11/20/2022] Open
Abstract
Background Gregarines represent an important transition step from free-living predatory (colpodellids s.l.) and/or photosynthetic (Chromera and Vitrella) apicomplexan lineages to the most important pathogens, obligate intracellular parasites of humans and domestic animals such as coccidians and haemosporidians (Plasmodium, Toxoplasma, Eimeria, Babesia, etc.). While dozens of genomes of other apicomplexan groups are available, gregarines are barely entering the molecular age. Among the gregarines, archigregarines possess a unique mixture of ancestral (myzocytosis) and derived (lack of apicoplast, presence of subpellicular microtubules) features. Methodology/Principal findings In this study we revisited five of the early-described species of the genus Selenidium including the type species Selenidium pendula, with special focus on surface ultrastructure and molecular data. We were also able to describe three new species within this genus. All species were characterized at morphological (light and scanning electron microscopy data) and molecular (SSU rDNA sequence data) levels. Gregarine specimens were isolated from polychaete hosts collected from the English Channel near the Station Biologique de Roscoff, France: Selenidium pendula from Scolelepis squamata, S. hollandei and S. sabellariae from Sabellaria alveolata, S. sabellae from Sabella pavonina, Selenidium fallax from Cirriformia tentaculata, S. spiralis sp. n. and S. antevariabilis sp. n. from Amphitritides gracilis, and S. opheliae sp. n. from Ophelia roscoffensis. Molecular phylogenetic analyses of these data showed archigregarines clustering into five separate clades and support previous doubts about their monophyly. Conclusions/Significance Our phylogenies using the extended gregarine sampling show that the archigregarines are indeed not monophyletic with one strongly supported clade of Selenidium sequences around the type species S. pendula. We suggest the revision of the whole archigregarine taxonomy with only the species within this clade remaining in the genus Selenidium, while the other species should be moved into newly erected genera. However, the SSU rDNA phylogenies show very clearly that the tree topology and therefore the inferred relationships within and in between clades are unstable and such revision would be problematic without additional sequence data.
Collapse
|
434
|
Fort P, Blangy A. The Evolutionary Landscape of Dbl-Like RhoGEF Families: Adapting Eukaryotic Cells to Environmental Signals. Genome Biol Evol 2017; 9:1471-1486. [PMID: 28541439 PMCID: PMC5499878 DOI: 10.1093/gbe/evx100] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2017] [Indexed: 12/27/2022] Open
Abstract
The dynamics of cell morphology in eukaryotes is largely controlled by small GTPases of the Rho family. Rho GTPases are activated by guanine nucleotide exchange factors (RhoGEFs), of which diffuse B-cell lymphoma (Dbl)-like members form the largest family. Here, we surveyed Dbl-like sequences from 175 eukaryotic genomes and illuminate how the Dbl family evolved in all eukaryotic supergroups. By combining probabilistic phylogenetic approaches and functional domain analysis, we show that the human Dbl-like family is made of 71 members, structured into 20 subfamilies. The 71 members were already present in ancestral jawed vertebrates, but several members were subsequently lost in specific clades, up to 12% in birds. The jawed vertebrate repertoire was established from two rounds of duplications that occurred between tunicates, cyclostomes, and jawed vertebrates. Duplicated members showed distinct tissue distributions, conserved at least in Amniotes. All 20 subfamilies have members in Deuterostomes and Protostomes. Nineteen subfamilies are present in Porifera, the first phylum that diverged in Metazoa, 14 in Choanoflagellida and Filasterea, single-celled organisms closely related to Metazoa and three in Fungi, the sister clade to Metazoa. Other eukaryotic supergroups show an extraordinary variability of Dbl-like repertoires as a result of repeated and independent gain and loss events. Last, we observed that in Metazoa, the number of Dbl-like RhoGEFs varies in proportion of cell signaling complexity. Overall, our analysis supports the conclusion that Dbl-like RhoGEFs were present at the origin of eukaryotes and evolved as highly adaptive cell signaling mediators.
Collapse
Affiliation(s)
- Philippe Fort
- CRBM, Université of Montpellier, France.,CNRS, UMR5237, Montpellier, France
| | - Anne Blangy
- CRBM, Université of Montpellier, France.,CNRS, UMR5237, Montpellier, France
| |
Collapse
|
435
|
Brodie J, Ball SG, Bouget FY, Chan CX, De Clerck O, Cock JM, Gachon C, Grossman AR, Mock T, Raven JA, Saha M, Smith AG, Vardi A, Yoon HS, Bhattacharya D. Biotic interactions as drivers of algal origin and evolution. THE NEW PHYTOLOGIST 2017; 216:670-681. [PMID: 28857164 DOI: 10.1111/nph.14760] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/10/2017] [Indexed: 05/07/2023]
Abstract
Contents 670 I. 671 II. 671 III. 676 IV. 678 678 References 678 SUMMARY: Biotic interactions underlie life's diversity and are the lynchpin to understanding its complexity and resilience within an ecological niche. Algal biologists have embraced this paradigm, and studies building on the explosive growth in omics and cell biology methods have facilitated the in-depth analysis of nonmodel organisms and communities from a variety of ecosystems. In turn, these advances have enabled a major revision of our understanding of the origin and evolution of photosynthesis in eukaryotes, bacterial-algal interactions, control of massive algal blooms in the ocean, and the maintenance and degradation of coral reefs. Here, we review some of the most exciting developments in the field of algal biotic interactions and identify challenges for scientists in the coming years. We foresee the development of an algal knowledgebase that integrates ecosystem-wide omics data and the development of molecular tools/resources to perform functional analyses of individuals in isolation and in populations. These assets will allow us to move beyond mechanistic studies of a single species towards understanding the interactions amongst algae and other organisms in both the laboratory and the field.
Collapse
Affiliation(s)
- Juliet Brodie
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK
| | - Steven G Ball
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille CNRS, F 59000, Lille, France
| | - François-Yves Bouget
- Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, University Pierre et Marie Curie, University of Paris VI, CNRS, F-66650, Banyuls-sur-Mer, France
| | - Cheong Xin Chan
- Institute for Molecular Bioscience and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Olivier De Clerck
- Phycology Research Group, Ghent University, Krijgslaan 281, S8, 9000, Gent, Belgium
| | - J Mark Cock
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, F-29688, France
| | | | - Arthur R Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK
| | - Mahasweta Saha
- Helmholtz Center for Ocean Research, Kiel, 24105, Germany
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
436
|
Táborský P, Pánek T, Čepička I. Anaeramoebidae fam. nov., a Novel Lineage of Anaerobic Amoebae and Amoeboflagellates of Uncertain Phylogenetic Position. Protist 2017; 168:495-526. [DOI: 10.1016/j.protis.2017.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/17/2017] [Accepted: 07/27/2017] [Indexed: 12/18/2022]
|
437
|
Maritz JM, Rogers KH, Rock TM, Liu N, Joseph S, Land KM, Carlton JM. An 18S rRNA Workflow for Characterizing Protists in Sewage, with a Focus on Zoonotic Trichomonads. MICROBIAL ECOLOGY 2017; 74:923-936. [PMID: 28540488 PMCID: PMC5653731 DOI: 10.1007/s00248-017-0996-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/12/2017] [Indexed: 05/07/2023]
Abstract
Microbial eukaryotes (protists) are important components of terrestrial and aquatic environments, as well as animal and human microbiomes. Their relationships with metazoa range from mutualistic to parasitic and zoonotic (i.e., transmissible between humans and animals). Despite their ecological importance, our knowledge of protists in urban environments lags behind that of bacteria, largely due to a lack of experimentally validated high-throughput protocols that produce accurate estimates of protist diversity while minimizing non-protist DNA representation. We optimized protocols for detecting zoonotic protists in raw sewage samples, with a focus on trichomonad taxa. First, we investigated the utility of two commonly used variable regions of the 18S rRNA marker gene, V4 and V9, by amplifying and Sanger sequencing 23 different eukaryotic species, including 16 protist species such as Cryptosporidium parvum, Giardia intestinalis, Toxoplasma gondii, and species of trichomonad. Next, we optimized wet-lab methods for sample processing and Illumina sequencing of both regions from raw sewage collected from a private apartment building in New York City. Our results show that both regions are effective at identifying several zoonotic protists that may be present in sewage. A combination of small extractions (1 mL volumes) performed on the same day as sample collection, and the incorporation of a vertebrate blocking primer, is ideal to detect protist taxa of interest and combat the effects of metazoan DNA. We expect that the robust, standardized methods presented in our workflow will be applicable to investigations of protists in other environmental samples, and will help facilitate large-scale investigations of protistan diversity.
Collapse
Affiliation(s)
- Julia M Maritz
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Krysta H Rogers
- Wildlife Investigations Laboratory, California Department of Fish and Wildlife, Rancho Cordova, CA, 95670, USA
| | - Tara M Rock
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Nicole Liu
- Department of Biological Sciences, University of the Pacific, Stockton, CA, 95211, USA
| | - Susan Joseph
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Kirkwood M Land
- Department of Biological Sciences, University of the Pacific, Stockton, CA, 95211, USA
| | - Jane M Carlton
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA.
| |
Collapse
|
438
|
The Role of Cytoplasmic mRNA Cap-Binding Protein Complexes in Trypanosoma brucei and Other Trypanosomatids. Pathogens 2017; 6:pathogens6040055. [PMID: 29077018 PMCID: PMC5750579 DOI: 10.3390/pathogens6040055] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/21/2017] [Accepted: 10/22/2017] [Indexed: 11/16/2022] Open
Abstract
Trypanosomatid protozoa are unusual eukaryotes that are well known for having unusual ways of controlling their gene expression. The lack of a refined mode of transcriptional control in these organisms is compensated by several post-transcriptional control mechanisms, such as control of mRNA turnover and selection of mRNA for translation, that may modulate protein synthesis in response to several environmental conditions found in different hosts. In other eukaryotes, selection of mRNA for translation is mediated by the complex eIF4F, a heterotrimeric protein complex composed by the subunits eIF4E, eIF4G, and eIF4A, where the eIF4E binds to the 5'-cap structure of mature mRNAs. In this review, we present and discuss the characteristics of six trypanosomatid eIF4E homologs and their associated proteins that form multiple eIF4F complexes. The existence of multiple eIF4F complexes in trypanosomatids evokes exquisite mechanisms for differential mRNA recognition for translation.
Collapse
|
439
|
Tekle YI, Wood FC, Katz LA, Cerón-Romero MA, Gorfu LA. Amoebozoans Are Secretly but Ancestrally Sexual: Evidence for Sex Genes and Potential Novel Crossover Pathways in Diverse Groups of Amoebae. Genome Biol Evol 2017; 9:375-387. [PMID: 28087686 PMCID: PMC5381635 DOI: 10.1093/gbe/evx002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2017] [Indexed: 12/12/2022] Open
Abstract
Sex is beneficial in eukaryotes as it can increase genetic diversity, reshuffle their genomes, and purge deleterious mutations. Yet, its evolution remains a mystery. The eukaryotic clade supergroup Amoebozoa encompasses diverse lineages of polymorphic amoeboid forms, including both free-living and parasitic lineages. The group is generally believed to be asexual, though recent studies show that some of its members are implicated in cryptic forms of sexual cycles. In this study, we conduct a comprehensive inventory and analysis of genes involved in meiosis and related processes, in order to investigate the evolutionary history of sex in the clade. We analyzed genomic and transcriptomic data of 39 amoebozoans representing all major subclades of Amoebozoa. Our results show that Amoebozoa possess most of the genes exclusive to meiosis but lack genes encoding synaptonemal complex (SC). The absence of SC genes is discussed in the context of earlier studies that reported ultrastructural evidence of SC in some amoebae. We also find interclade and intrageneric variation in sex gene distribution, indicating diversity in sexual pathways in the group. Particularly, members of Mycetozoa engage in a novel sexual pathway independent of the universally conserved meiosis initiator gene, SPO11. Our findings strongly suggest that not only do amoebozoans possess sex genes in their genomes, but also, based on the transcriptome evidence, the present sex genes are functional. We conclude that Amoebozoa is ancestrally sexual, contrary to the long held belief that most of its members are asexual. Thus, asexuality in Amoebozoa, if confirmed to be present, is a derived-trait that appeared later in their evolution.
Collapse
Affiliation(s)
- Yonas I Tekle
- Department of Biology, Spelman College, Atlanta, Georgia
| | - Fiona C Wood
- Department of Biology, Spelman College, Atlanta, Georgia
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts.,Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst
| | - Mario A Cerón-Romero
- Department of Biological Sciences, Smith College, Northampton, Massachusetts.,Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst
| | - Lydia A Gorfu
- Department of Biology, Spelman College, Atlanta, Georgia
| |
Collapse
|
440
|
Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr Genet 2017; 64:365-387. [DOI: 10.1007/s00294-017-0761-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/22/2017] [Accepted: 10/04/2017] [Indexed: 11/24/2022]
|
441
|
Szafranski P. Intercompartmental Piecewise Gene Transfer. Genes (Basel) 2017; 8:genes8100260. [PMID: 28984842 PMCID: PMC5664110 DOI: 10.3390/genes8100260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 11/16/2022] Open
Abstract
Gene relocation from the residual genomes of organelles to the nuclear genome still continues, although as a scaled down evolutionary phenomenon, limited in occurrence mostly to protists (sensu lato) and land plants. During this process, the structural integrity of transferred genes is usually preserved. However, the relocation of mitochondrial genes that code for respiratory chain and ribosomal proteins is sometimes associated with their fragmentation into two complementary genes. Herein, this review compiles cases of piecewise gene transfer from the mitochondria to the nucleus, and discusses hypothesized mechanistic links between the fission and relocation of those genes.
Collapse
Affiliation(s)
- Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
442
|
Malicki M, Iliopoulou M, Hammann C. Retrotransposon Domestication and Control in Dictyostelium discoideum. Front Microbiol 2017; 8:1869. [PMID: 29051748 PMCID: PMC5633606 DOI: 10.3389/fmicb.2017.01869] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/13/2017] [Indexed: 01/22/2023] Open
Abstract
Transposable elements, identified in all eukaryotes, are mobile genetic units that can change their genomic position. Transposons usually employ an excision and reintegration mechanism, by which they change position, but not copy number. In contrast, retrotransposons amplify via RNA intermediates, increasing their genomic copy number. Hence, they represent a particular threat to the structural and informational integrity of the invaded genome. The social amoeba Dictyostelium discoideum, model organism of the evolutionary Amoebozoa supergroup, features a haploid, gene-dense genome that offers limited space for damage-free transposition. Several of its contemporary retrotransposons display intrinsic integration preferences, for example by inserting next to transfer RNA genes or other retroelements. Likely, any retrotransposons that invaded the genome of the amoeba in a non-directed manner were lost during evolution, as this would result in decreased fitness of the organism. Thus, the positional preference of the Dictyostelium retroelements might represent a domestication of the selfish elements. Likewise, the reduced danger of such domesticated transposable elements led to their accumulation, and they represent about 10% of the current genome of D. discoideum. To prevent the uncontrolled spreading of retrotransposons, the amoeba employs control mechanisms including RNA interference and heterochromatization. Here, we review TRE5-A, DIRS-1 and Skipper-1, as representatives of the three retrotransposon classes in D. discoideum, which make up 5.7% of the Dictyostelium genome. We compile open questions with respect to their mobility and cellular regulation, and suggest strategies, how these questions might be addressed experimentally.
Collapse
Affiliation(s)
- Marek Malicki
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Maro Iliopoulou
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Christian Hammann
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
443
|
Borrelli C, Hou Y, Pawlowski JW, Holzmann M, Katz ME, Chandler GT, Bowser SS. Assessing SSU rDNA Barcodes in Foraminifera: A Case Study using Bolivina quadrata. J Eukaryot Microbiol 2017; 65:220-235. [PMID: 28865158 DOI: 10.1111/jeu.12471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 08/07/2017] [Accepted: 08/22/2017] [Indexed: 12/15/2022]
Abstract
The Small Subunit Ribosomal RNA gene (SSU rDNA) is a widely used tool to reconstruct phylogenetic relationships among foraminiferal species. Recently, the highly variable regions of this gene have been proposed as DNA barcodes to identify foraminiferal species. However, the resolution of these barcodes has not been well established, yet. In this study, we evaluate four SSU rDNA hypervariable regions (37/f, 41/f, 43/e, and 45/e) as DNA barcodes to distinguish among species of the genus Bolivina, with particular emphasis on Bolivina quadrata for which ten new sequences (KY468817-KY468826) were obtained during this study. Our analyses show that a single SSU rDNA hypervariable sequence is insufficient to resolve all Bolivina species and that some regions (37/f and 41/f) are more useful than others (43/e and 45/e) to distinguish among closely related species. In addition, polymorphism analyses reveal a high degree of variability. In the context of barcoding studies, these results emphasize the need to assess the range of intraspecific variability of DNA barcodes prior to their application to identify foraminiferal species in environmental samples; our results also highlight the possibility that a longer SSU rDNA region might be required to distinguish among species belonging to the same taxonomic group (i.e. genus).
Collapse
Affiliation(s)
- Chiara Borrelli
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, 12180, New York, USA
| | - Yubo Hou
- Wadsworth Center, New York State Department of Health, Albany, 12201, New York, USA
| | - Jan W Pawlowski
- Department of Genetics and Evolution, University of Geneva, Geneva, 1211, Switzerland
| | - Maria Holzmann
- Department of Genetics and Evolution, University of Geneva, Geneva, 1211, Switzerland
| | - Miriam E Katz
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, 12180, New York, USA
| | - G Thomas Chandler
- Arnold School of Public Health, University of South Carolina, Columbia, 29208, South Carolina, USA
| | - Samuel S Bowser
- Wadsworth Center, New York State Department of Health, Albany, 12201, New York, USA
| |
Collapse
|
444
|
Abstract
SUMMARYCell division-cytokinesis-involves large-scale rearrangements of the entire cell. Primarily driven by cytoskeletal proteins, cytokinesis also depends on topological rearrangements of the plasma membrane, which are coordinated with nuclear division in both space and time. Despite the fundamental nature of the process, different types of eukaryotic cells show variations in both the structural mechanisms of cytokinesis and the regulatory controls. In animal cells and fungi, a contractile actomyosin-based structure plays a central, albeit flexible, role. Here, the underlying molecular mechanisms are summarized and integrated and common themes are highlighted.
Collapse
Affiliation(s)
- Michael Glotzer
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
445
|
Barlow LD, Dacks JB. Seeing the endomembrane system for the trees: Evolutionary analysis highlights the importance of plants as models for eukaryotic membrane-trafficking. Semin Cell Dev Biol 2017; 80:142-152. [PMID: 28939036 DOI: 10.1016/j.semcdb.2017.09.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/22/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022]
Abstract
Plant cells show many signs of a unique evolutionary history. This is seen in the system of intracellular organelles and vesicle transport pathways plants use to traffic molecular cargo. Bioinformatic and cell biological work in this area is beginning to tackle the question of how plant cells have evolved, and what this tells us about the evolution of other eukaryotes. Key protein families with membrane trafficking function, including Rabs, SNAREs, vesicle coat proteins, and ArfGAPs, show patterns of evolution that indicate both specialization and conservation in plants. These changes are accompanied by changes at the level of organelles and trafficking pathways between them. Major specializations include losses of several ancient Rabs, novel functions of many proteins, and apparent modification of trafficking in endocytosis and cytokinesis. Nevertheless, plants show extensive conservation of ancestral membrane trafficking genes, and conservation of their ancestral function in most duplicates. Moreover, plants have retained several ancient membrane trafficking genes lost in the evolution of animals and fungi. Considering this, plants such as Arabidopsis are highly valuable for investigating not only plant-specific aspects of membrane trafficking, but also general eukaryotic mechanisms.
Collapse
Affiliation(s)
- L D Barlow
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta,5-31 Medical Sciences Building, Edmonton, Alberta, T6G 2H7, Canada
| | - J B Dacks
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta,5-31 Medical Sciences Building, Edmonton, Alberta, T6G 2H7, Canada.
| |
Collapse
|
446
|
Pollard TD. Nine unanswered questions about cytokinesis. J Cell Biol 2017; 216:3007-3016. [PMID: 28807993 PMCID: PMC5626534 DOI: 10.1083/jcb.201612068] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/05/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022] Open
Abstract
Experiments on model systems have revealed that cytokinesis in cells with contractile rings (amoebas, fungi, and animals) depends on shared molecular mechanisms in spite of some differences that emerged during a billion years of divergent evolution. Understanding these fundamental mechanisms depends on identifying the participating proteins and characterizing the mechanisms that position the furrow, assemble the contractile ring, anchor the ring to the plasma membrane, trigger ring constriction, produce force to form a furrow, disassemble the ring, expand the plasma membrane in the furrow, and separate the daughter cell membranes. This review reveals that fascinating questions remain about each step.
Collapse
Affiliation(s)
- Thomas D Pollard
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
- Department of Cell Biology, Yale University, New Haven, CT
| |
Collapse
|
447
|
Gao F, Huang J, Zhao Y, Li L, Liu W, Miao M, Zhang Q, Li J, Yi Z, El-Serehy HA, Warren A, Song W. Systematic studies on ciliates (Alveolata, Ciliophora) in China: Progress and achievements based on molecular information. Eur J Protistol 2017; 61:409-423. [DOI: 10.1016/j.ejop.2017.04.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/25/2017] [Accepted: 04/29/2017] [Indexed: 10/19/2022]
|
448
|
Are Thraustochytrids algae? Fungal Biol 2017; 121:835-840. [DOI: 10.1016/j.funbio.2017.07.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/30/2022]
|
449
|
Dunthorn M, Kauserud H, Bass D, Mayor J, Mahé F. Yeasts dominate soil fungal communities in three lowland Neotropical rainforests. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:668-675. [PMID: 28799713 DOI: 10.1111/1758-2229.12575] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/03/2017] [Indexed: 05/28/2023]
Abstract
Forest soils typically harbour a vast diversity of fungi, but are usually dominated by filamentous (hyphae-forming) taxa. Compared to temperate and boreal forests, though, we have limited knowledge about the fungal diversity in tropical rainforest soils. Here we show, by environmental metabarcoding of soil samples collected in three Neotropical rainforests, that Yeasts dominate the fungal communities in terms of the number of sequencing reads and OTUs. These unicellular forms are commonly found in aquatic environments, and their hyperdiversity may be the result of frequent inundation combined with numerous aquatic microenvironments in these rainforests. Other fungi that are frequent in aquatic environments, such as the abundant Chytridiomycotina, were also detected. While there was low similarity in OTU composition within and between the three rainforests, the fungal communities in Central America were more similar to each other than the communities in South America, reflecting a general biogeographic pattern also seen in animals, plants and protists.
Collapse
Affiliation(s)
- Micah Dunthorn
- Department of Ecology, University of Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern 67663, Germany
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway
| | - David Bass
- Department of Life Sciences, The Natural History Museum London, Cromwell Road, London SW7 5BD, UK
- Fisheries & Aquaculture Science (Cefas), Centre for Environment, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Jordan Mayor
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgränd, Umeå 90183, Sweden
| | - Frédéric Mahé
- Department of Ecology, University of Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern 67663, Germany
- UMR LSTM, CIRAD, 34398 Montpellier, France
| |
Collapse
|
450
|
Morphology and phylogeny of the testate amoebae Euglypha bryophila Brown, 1911 and Euglypha cristata Leidy, 1874 (Rhizaria, Euglyphida). Eur J Protistol 2017; 61:76-84. [DOI: 10.1016/j.ejop.2017.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 09/04/2017] [Accepted: 09/11/2017] [Indexed: 11/21/2022]
|