401
|
Swift S, Downie JA, Whitehead NA, Barnard AM, Salmond GP, Williams P. Quorum sensing as a population-density-dependent determinant of bacterial physiology. Adv Microb Physiol 2002; 45:199-270. [PMID: 11450110 DOI: 10.1016/s0065-2911(01)45005-3] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The discovery that bacterial cells can communicate with each other has led to the realization that bacteria are capable of exhibiting much more complex patterns of co-operative behaviour than would be expected for simple unicellular microorganisms. Now generically termed 'quorum sensing', bacterial cell-to-cell communication enables a bacterial population to mount a unified response that is advantageous to its survival by improving access to complex nutrients or environmental niches, collective defence against other competitive microorganisms or eukaryotic host defence mechanisms and optimization of population survival by differentiation into morphological forms better adapted to combating environmental threats. The principle of quorum sensing encompasses the production and release of signal molecules by bacterial cells within a population. Such molecules are released into the environment and, as cell numbers increase, so does the extracellular level of signal molecule, until the bacteria sense that a threshold has been reached and gene activation, or in some cases depression or repression, occurs via the activity of sensor-regulator systems. In this review, we will describe the biochemistry and molecular biology of a number of well-characterized N-acylhomoserine lactone quorum sensing systems to illustrate how bacteria employ cell-to-cell signalling to adjust their physiology in accordance with the prevailing high-population-density environment.
Collapse
Affiliation(s)
- S Swift
- Institute of Infections and Immunity, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2RD UK
| | | | | | | | | | | |
Collapse
|
402
|
Steidle A, Sigl K, Schuhegger R, Ihring A, Schmid M, Gantner S, Stoffels M, Riedel K, Givskov M, Hartmann A, Langebartels C, Eberl L. Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl Environ Microbiol 2001; 67:5761-70. [PMID: 11722933 PMCID: PMC93370 DOI: 10.1128/aem.67.12.5761-5770.2001] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Given that a large proportion of the bacteria colonizing the roots of plants is capable of producing N-acyl-L-homoserine lactone (AHL) molecules, it appears likely that these bacterial pheromones may serve as signals for communication between cells of different species. In this study, we have developed and characterized novel Gfp-based monitor strains that allow in situ visualization of AHL-mediated communication between individual cells in the plant rhizosphere. For this purpose, three Gfp-based AHL sensor plasmids that respond to different spectra of AHL molecules were transferred into AHL-negative derivatives of Pseudomonas putida IsoF and Serratia liquefaciens MG1, two strains that are capable of colonizing tomato roots. These AHL monitor strains were used to visualize communication between defined bacterial populations in the rhizosphere of axenically grown tomato plants. Furthermore, we integrated into the chromosome of AHL-negative P. putida strain F117 an AHL sensor cassette that responds to the presence of long-chain AHLs with the expression of Gfp. This monitor strain was used to demonstrate that the indigenous bacterial community colonizing the roots of tomato plants growing in nonsterile soil produces AHL molecules. The results strongly support the view that AHL signal molecules serve as a universal language for communication between the different bacterial populations of the rhizosphere consortium.
Collapse
Affiliation(s)
- A Steidle
- Lehrstuhl für Mikrobiologie, Technische Universität München, D-85350 Freising, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
403
|
Riedel K, Hentzer M, Geisenberger O, Huber B, Steidle A, Wu H, Høiby N, Givskov M, Molin S, Eberl L. N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. MICROBIOLOGY (READING, ENGLAND) 2001; 147:3249-62. [PMID: 11739757 DOI: 10.1099/00221287-147-12-3249] [Citation(s) in RCA: 287] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa and Burkholderia cepacia are capable of forming mixed biofilms in the lungs of cystic fibrosis patients. Both bacteria employ quorum-sensing systems, which rely on N-acylhomoserine lactone (AHL) signal molecules, to co-ordinate expression of virulence factors with the formation of biofilms. As both bacteria utilize the same class of signal molecules the authors investigated whether communication between the species occurs. To address this issue, novel Gfp-based biosensors for non-destructive, in situ detection of AHLs were constructed and characterized. These sensors were used to visualize AHL-mediated communication in mixed biofilms, which were cultivated either in artificial flow chambers or in alginate beads in mouse lung tissue. In both model systems B. cepacia was capable of perceiving the AHL signals produced by P. aeruginosa, while the latter strain did not respond to the molecules produced by B. cepacia. Measurements of extracellular proteolytic activities of defined quorum-sensing mutants grown in media complemented with AHL extracts prepared from culture supernatants of various wild-type and mutant strains supported the view of unidirectional signalling between the two strains.
Collapse
Affiliation(s)
- K Riedel
- Department of Microbiology, TUM, Am Hochanger 4, D-85350 Freising, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
404
|
Manefield M, Welch M, Givskov M, Salmond GP, Kjelleberg S. Halogenated furanones from the red alga, Delisea pulchra, inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopathogen Erwinia carotovora. FEMS Microbiol Lett 2001; 205:131-8. [PMID: 11728727 DOI: 10.1111/j.1574-6968.2001.tb10936.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The plant pathogen Erwinia carotovora regulates expression of virulence factors and antibiotic production via an N-3-oxohexanoyl-L-homoserine lactone (3-oxo-C6-HSL) dependent quorum sensing mechanism. The marine alga Delisea pulchra produces halogenated furanones known to antagonise 3-oxo-C6-HSL activity. We have tested the effects of a halogenated furanone on the production of carbapenem, cellulase and protease in E. carotovora. Despite differences in the regulatory mechanisms controlling carbapenem and exoenzyme production each was inhibited by the algal metabolite. We present evidence to suggest that the furanone dependent inhibition of carbapenem production is a result of the disruption of the 3-oxo-C6-HSL dependent expression of the carABCDEFGH operon.
Collapse
Affiliation(s)
- M Manefield
- School of Microbiology and Immunology, University of New South Wales, Sydney, NSW, Australia.
| | | | | | | | | |
Collapse
|
405
|
Howbrook D, Lynch J, Bainton N. An oxidative stress-responsive biosensor: responses to hydrogen peroxide generated by an extracellular enzyme. Enzyme Microb Technol 2001. [DOI: 10.1016/s0141-0229(01)00420-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
406
|
Michael B, Smith JN, Swift S, Heffron F, Ahmer BM. SdiA of Salmonella enterica is a LuxR homolog that detects mixed microbial communities. J Bacteriol 2001; 183:5733-42. [PMID: 11544237 PMCID: PMC95466 DOI: 10.1128/jb.183.19.5733-5742.2001] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteins of the LuxR family detect the presence of N-acylhomoserine lactones (AHLs) and regulate transcription accordingly. When AHLs are synthesized by the same species that detects them, the system allows a bacterium to measure the population density of its own species, a phenomenon known as quorum sensing. The sdiA genes of Escherichia coli and Salmonella enterica serovar Typhimurium are predicted to encode LuxR homologs. However, these species do not appear to synthesize AHLs or any other molecule detected by SdiA. It has previously been demonstrated that overexpression of sdiA results in the activation of the ftsQAZ locus in E. coli and four other loci in Salmonella serovar Typhimurium. Here we report that transcriptional fusions to these five loci fall into two classes. The first class requires overexpression of sdiA for activation. The second class responds to sdiA expressed from its natural position in the chromosome if the appropriate AHLs are added to the culture. The only member of the second class is a series of Prck-luxCDABE fusions in Salmonella serovar Typhimurium. SdiA responds with highest sensitivity to AHLs that have a keto modification at the third carbon and an acyl chain length of 6 or 8 (half-maximal response between 1 and 5 nM). Growth of Salmonella in proximity to species known to synthesize these AHLs results in sdiA-dependent activation of the Prck-luxCDABE fusions. SdiA appears to be the first AHL receptor discovered that detects signals emanating exclusively from other species.
Collapse
Affiliation(s)
- B Michael
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | | | | | | | |
Collapse
|
407
|
Huber B, Riedel K, Hentzer M, Heydorn A, Gotschlich A, Givskov M, Molin S, Eberl L. The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2517-2528. [PMID: 11535791 DOI: 10.1099/00221287-147-9-2517] [Citation(s) in RCA: 325] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Burkholderia cepacia and Pseudomonas aeruginosa often co-exist as mixed biofilms in the lungs of patients suffering from cystic fibrosis (CF). Here, the isolation of random mini-Tn5 insertion mutants of B. cepacia H111 defective in biofilm formation on an abiotic surface is reported. It is demonstrated that one of these mutants no longer produces N-acylhomoserine lactones (AHLs) due to an inactivation of the cepR gene. cepR and the cepI AHL synthase gene together constitute the cep quorum-sensing system of B. cepacia. By using a gene replacement method, two defined mutants, H111-I and H111-R, were constructed in which cepI and cepR, respectively, had been inactivated. These mutants were used to demonstrate that biofilm formation by B. cepacia H111 requires a functional cep quorum-sensing system. A detailed quantitative analysis of the biofilm structures formed by wild-type and mutant strains suggested that the quorum-sensing system is not involved in the regulation of initial cell attachment, but rather controls the maturation of the biofilm. Furthermore, it is shown that B. cepacia is capable of swarming motility, a form of surface translocation utilized by various bacteria to rapidly colonize appropriate substrata. Evidence is provided that swarming motility of B. cepacia is quorum-sensing-regulated, possibly through the control of biosurfactant production. Complementation of the cepR mutant H111-R with different biosurfactants restored swarming motility while biofilm formation was not significantly increased. This result suggests that swarming motility per se is not essential for biofilm formation on abiotic surfaces.
Collapse
Affiliation(s)
- Birgit Huber
- Lehrstuhl für Mikrobiologie, Technische Universität München, Am Hochanger 4, 85350 Freising, Germany1
| | - Kathrin Riedel
- Lehrstuhl für Mikrobiologie, Technische Universität München, Am Hochanger 4, 85350 Freising, Germany1
| | - Morten Hentzer
- Department of Microbiology, DTU, Building 301, 2800 Lyngby, Denmark2
| | - Arne Heydorn
- Department of Microbiology, DTU, Building 301, 2800 Lyngby, Denmark2
| | - Astrid Gotschlich
- Lehrstuhl für Mikrobiologie, Technische Universität München, Am Hochanger 4, 85350 Freising, Germany1
| | - Michael Givskov
- Department of Microbiology, DTU, Building 301, 2800 Lyngby, Denmark2
| | - Søren Molin
- Department of Microbiology, DTU, Building 301, 2800 Lyngby, Denmark2
| | - Leo Eberl
- Lehrstuhl für Mikrobiologie, Technische Universität München, Am Hochanger 4, 85350 Freising, Germany1
| |
Collapse
|
408
|
El-Sayed AK, Hothersall J, Thomas CM. Quorum-sensing-dependent regulation of biosynthesis of the polyketide antibiotic mupirocin in Pseudomonas fluorescens NCIMB 10586. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2127-2139. [PMID: 11495990 DOI: 10.1099/00221287-147-8-2127] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mupirocin (pseudomonic acid) is a polyketide antibiotic, targeting isoleucyl-tRNA synthase, and produced by Pseudomonas fluorescens NCIMB 10586. It is used clinically as a topical treatment for staphylococcal infections, particularly in contexts where there is a problem with methicillin-resistant Staphylococcus aureus (MRSA). In studying the mupirocin biosynthetic cluster the authors identified two putative regulatory genes, mupR and mupI, whose predicted amino acid sequences showed significant identity to proteins involved in quorum-sensing-dependent regulatory systems such as LasR/LuxR (transcriptional activators) and LasI/LuxI (synthases for N-acylhomoserine lactones--AHLs--that activate LasR/LuxR). Inactivation by deletion mutations using a suicide vector strategy confirmed the requirement for both genes in mupirocin biosynthesis. Cross-feeding experiments between bacterial strains as well as solvent extraction showed that, as predicted, wild-type P. fluorescens NCIMB 10586 produces a diffusible substance that overcomes the defect of a mupI mutant. Use of biosensor strains showed that the MupI product can activate the Pseudomonas aeruginosa lasRlasI system and that P. aeruginosa produces one or more compounds that can replace the MupI product. Insertion of a xylE reporter gene into mupA, the first ORF of the mupirocin biosynthetic operon, showed that together mupR/mupI control expression of the operon in such a way that the cluster is switched on late in exponential phase and in stationary phase.
Collapse
Affiliation(s)
- A Kassem El-Sayed
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK1
| | - Joanne Hothersall
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK1
| | - Christopher M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK1
| |
Collapse
|
409
|
Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 2001; 25:365-404. [PMID: 11524130 DOI: 10.1111/j.1574-6976.2001.tb00583.x] [Citation(s) in RCA: 928] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
It has become increasingly and widely recognised that bacteria do not exist as solitary cells, but are colonial organisms that exploit elaborate systems of intercellular communication to facilitate their adaptation to changing environmental conditions. The languages by which bacteria communicate take the form of chemical signals, excreted from the cells, which can elicit profound physiological changes. Many types of signalling molecules, which regulate diverse phenotypes across distant genera, have been described. The most common signalling molecules found in Gram-negative bacteria are N-acyl derivatives of homoserine lactone (acyl HSLs). Modulation of the physiological processes controlled by acyl HSLs (and, indeed, many of the non-acyl HSL-mediated systems) occurs in a cell density- and growth phase-dependent manner. Therefore, the term 'quorum-sensing' has been coined to describe this ability of bacteria to monitor cell density before expressing a phenotype. In this paper, we review the current state of research concerning acyl HSL-mediated quorum-sensing. We also describe two non-acyl HSL-based systems utilised by the phytopathogens Ralstonia solanacearum and Xanthomonas campestris.
Collapse
Affiliation(s)
- N A Whitehead
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Building O, Downing Site, CB2 1QW, Cambridge, UK
| | | | | | | | | |
Collapse
|
410
|
Chin-A-Woeng TF, van den Broek D, de Voer G, van der Drift KM, Tuinman S, Thomas-Oates JE, Lugtenberg BJ, Bloemberg GV. Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:969-979. [PMID: 11497469 DOI: 10.1094/mpmi.2001.14.8.969] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Pseudomonas chlororaphis PCL1391 controls tomato foot and root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. The production of phenazine-1-carboxamide (PCN) is crucial for this biocontrol activity. In vitro production of PCN is observed only at high-population densities, suggesting that production is under the regulation of quorum sensing. The main autoinducer molecule produced by PCL1391 was identified structurally as N-hexanoyl-L-homoserine lactone (C6-HSL). The two other autoinducers that were produced comigrate with N-butanoyl-L-homoserine lactone (C4-HSL) and N-octanoyl-L-homoserine lactone (C8-HSL). Two PCL1391 mutants lacking production of PCN were defective in the genes phzI and phzR, respectively, the nucleotide sequences of which were determined completely. Production of PCN by the phzI mutant could be complemented by the addition of exogenous synthetic C6-HSL, but not by C4-HSL, C8-HSL, or any other HSL tested. Expression analyses of Tn5luxAB reporter strains of phzI, phzR, and the phz biosynthetic operon clearly showed that phzI expression and PCN production is regulated by C6-HSL in a population density-dependent manner. The introduction of multiple copies of the regulatory genes phzI and phzR on various plasmids resulted in an increase of the production of HSLs, expression of the PCN biosynthetic operon, and consequently, PCN production, up to a sixfold increase in a copy-dependent manner. Surprisingly, our expression studies show that an additional, yet unidentified factor(s), which are neither PCN nor C4-HSL or C8-HSL, secreted into the growth medium of the overnight cultures, is involved in the positive regulation of phzI, and is able to induce PCN biosynthesis at low cell densities in a growing culture, resulting in an increase of PCN production.
Collapse
Affiliation(s)
- T F Chin-A-Woeng
- Leiden University, Institute of Molecular Plant Sciences, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
411
|
Charlton T, Givskov M, deNys R, Andersen JB, Hentzer M, Rice S, Kjelleberg S. Genetic and chemical tools for investigating signaling processes in biofilms. Methods Enzymol 2001; 336:108-28. [PMID: 11398393 DOI: 10.1016/s0076-6879(01)36584-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- T Charlton
- School of Microbiology and Immunology, Centre for Marine Biofouling and Bio-Innovation, University of New South Wales, Sydney 2052, Australia
| | | | | | | | | | | | | |
Collapse
|
412
|
Kojic M, Venturi V. Regulation of rpoS gene expression in Pseudomonas: involvement of a TetR family regulator. J Bacteriol 2001; 183:3712-20. [PMID: 11371535 PMCID: PMC95248 DOI: 10.1128/jb.183.12.3712-3720.2001] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rpoS gene encodes the sigma factor which was identified in several gram-negative bacteria as a central regulator during stationary phase. rpoS gene regulation is known to respond to cell density, showing higher expression in stationary phase. For Pseudomonas aeruginosa, it has been demonstrated that the cell-density-dependent regulation response known as quorum sensing interacts with this regulatory response. Using the rpoS promoter of P. putida, we identified a genomic Tn5 insertion mutant of P. putida which showed a 90% decrease in rpoS promoter activity, resulting in less RpoS being present in a cell at stationary phase. Molecular analysis revealed that this mutant carried a Tn5 insertion in a gene, designated psrA (Pseudomonas sigma regulator), which codes for a protein (PsrA) of 26.3 kDa. PsrA contains a helix-turn-helix motif typical of DNA binding proteins and belongs to the TetR family of bacterial regulators. The homolog of the psrA gene was identified in P. aeruginosa; the protein showed 90% identity to PsrA of P. putida. A psrA::Tn5 insertion mutant of P. aeruginosa was constructed. In both Pseudomonas species, psrA was genetically linked to the SOS lexA repressor gene. Similar to what was observed for P. putida, a psrA null mutant of P. aeruginosa also showed a 90% reduction in rpoS promoter activity; both mutants could be complemented for rpoS promoter activity when the psrA gene was provided in trans. psrA mutants of both Pseudomonas species lost the ability to induce rpoS expression at stationary phase, but they retained the ability to produce quorum-sensing autoinducer molecules. PsrA was demonstrated to negatively regulate psrA gene expression in Pseudomonas and in Escherichia coli as well as to be capable of activating the rpoS promoter in E. coli. Our data suggest that PsrA is an important regulatory protein of Pseudomonas spp. involved in the regulatory cascade controlling rpoS gene regulation in response to cell density.
Collapse
Affiliation(s)
- M Kojic
- Bacteriology Group, International Centre for Genetic Engineering and Biotechnology, 34012 Trieste, Italy
| | | |
Collapse
|
413
|
Milton DL, Chalker VJ, Kirke D, Hardman A, Cámara M, Williams P. The LuxM homologue VanM from Vibrio anguillarum directs the synthesis of N-(3-hydroxyhexanoyl)homoserine lactone and N-hexanoylhomoserine lactone. J Bacteriol 2001; 183:3537-47. [PMID: 11371516 PMCID: PMC95229 DOI: 10.1128/jb.183.12.3537-3547.2001] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio anguillarum, which causes terminal hemorrhagic septicemia in fish, was previously shown to possess a LuxRI-type quorum-sensing system (vanRI) and to produce N-(3-oxodecanoyl)homoserine lactone (3-oxo-C10-HSL). However, a vanI null mutant still activated N-acylhomoserine lactone (AHL) biosensors, indicating the presence of an additional quorum-sensing circuit in V. anguillarum. In this study, we have characterized this second system. Using high-pressure liquid chromatography in conjunction with mass spectrometry and chemical analysis, we identified two additional AHLs as N-hexanoylhomoserine lactone (C6-HSL) and N-(3-hydroxyhexanoyl)homoserine lactone (3-hydroxy-C6-HSL). Quantification of each AHL present in stationary-phase V. anguillarum spent culture supernatants indicated that 3-oxo-C10-HSL, 3-hydroxy-C6-HSL, and C6-HSL are present at approximately 8.5, 9.5, and 0.3 nM, respectively. Furthermore, vanM, the gene responsible for the synthesis of these AHLs, was characterized and shown to be homologous to the luxL and luxM genes, which are required for the production of N-(3-hydroxybutanoyl)homoserine lactone in Vibrio harveyi. However, resequencing of the V. harveyi luxL/luxM junction revealed a sequencing error present in the published sequence, which when corrected resulted in a single open reading frame (termed luxM). Downstream of vanM, we identified a homologue of luxN (vanN) that encodes a hybrid sensor kinase which forms part of a phosphorelay cascade involved in the regulation of bioluminescence in V. harveyi. A mutation in vanM abolished the production of C6-HSL and 3-hydroxy-C6-HSL. In addition, production of 3-oxo-C10-HSL was abolished in the vanM mutant, suggesting that 3-hydroxy-C6-HSL and C6-HSL regulate the production of 3-oxo-C10-HSL via vanRI. However, a vanN mutant displayed a wild-type AHL profile. Neither mutation affected either the production of proteases or virulence in a fish infection model. These data indicate that V. anguillarum possesses a hierarchical quorum sensing system consisting of regulatory elements homologous to those found in both V. fischeri (the LuxRI homologues VanRI) and V. harveyi (the LuxMN homologues, VanMN).
Collapse
Affiliation(s)
- D L Milton
- Department of Cell and Molecular Biology, Umeå University, S-901 87 Umeå, Sweden.
| | | | | | | | | | | |
Collapse
|
414
|
Gotschlich A, Huber B, Geisenberger O, Tögl A, Steidle A, Riedel K, Hill P, Tümmler B, Vandamme P, Middleton B, Camara M, Williams P, Hardman A, Eberl L. Synthesis of multiple N-acylhomoserine lactones is wide-spread among the members of the Burkholderia cepacia complex. Syst Appl Microbiol 2001; 24:1-14. [PMID: 11403388 DOI: 10.1078/0723-2020-00013] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Seventy strains of the Burkholderia cepacia complex, which currently comprises six genomic species, were tested for their ability to produce N-acylhomoserine lactone (AHL) signal molecules. Using thin layer chromatography in conjunction with a range of AHL biosensors, we show that most strains primarily produce two AHLs, namely N-octanoylhomoserine lactone (C8-HSL) and N-hexanoylhomoserine lactone (C6-HSL). Furthermore, some strains belonging to B. vietnamiensis (genomovar V) produce additional long chain AHL molecules with acyl chains ranging from C10 to C14. For B. vietnamiensis R-921 the structure of the most abundant long chain AHL was confirmed as N-decanoylhomoserine lactone (C10-HSL) by liquid chromatography-mass spectrometry (LC-MS) in combination with total chemical synthesis. Interestingly, a number of strains, most notably all representatives of B. multivorans (genomovar II), did not produce AHLs at least under the growth conditions used in this study. All strains were also screened for the production of extracellular lipase, chitinase, protease, and siderophores. However, no correlation between the AHL production and the synthesis of these exoproducts was apparent. Southern blot analysis showed that all the B. cepacia complex strains investigated, including the AHL-negative strains, possess genes homologous to the C8-HSL synthase cepI and to cepR, which encodes the cognate receptor protein. The nucleotide sequence of the cepI and cepR genes from one representative strain from each of the six genomovars was determined. Furthermore, the cepI genes from the different genomovars were expressed in Escherichia coli and it is demonstrated that all genes encode functional proteins that direct the synthesis of C8-HSL and C6-HSL. Given that cepI from the B. multivorans strain encodes a functional AHL synthase, yet detectable levels of AHLs were not produced by the wild-type, this suggests that additional regulatory functions may be present in members of this genomovar that negatively affect expression of cepI.
Collapse
Affiliation(s)
- A Gotschlich
- Lehrstuhl für Mikrobiologie, Technische Universität München, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
415
|
Abstract
The sirA gene of Salmonella enterica serovar Typhimurium encodes a two-component response regulator of the FixJ family that has a positive regulatory influence on the expression of type III secretion genes involved with epithelial cell invasion and the elicitation of bovine gastroenteritis. SirA orthologs in Pseudomonas, Vibrio, and Erwinia control the expression of distinct virulence genes in these genera, but an evolutionarily conserved target of SirA regulation has never been identified. In this study we tested the hypothesis that sirA may be an ancient member of the flagellar regulon. We examined the effect of a sirA mutation on transcriptional fusions to flagellar promoters (flhD, fliE, fliF, flgA, flgB, fliC, fliD, motA, and fliA) while using fusions to the virulence gene sopB as a positive control. SirA had only small regulatory effects on all fusions in liquid medium (less than fivefold). However, in various types of motility agar plates, sirA was able to activate a sopB fusion by up to 63-fold while repressing flagellar fusions by values exceeding 100-fold. Mutations in the sirA orthologs of Escherichia coli, Vibrio cholerae, Pseudomonas fluorescens, and Pseudomonas aeruginosa result in defects in either motility or motility gene regulation, suggesting that control of flagellar regulons may be an evolutionarily conserved function of sirA orthologs. The implications for our understanding of virulence gene regulation in the gamma Proteobacteria are discussed.
Collapse
Affiliation(s)
- R I Goodier
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
416
|
Ravn L, Christensen AB, Molin S, Givskov M, Gram L. Methods for detecting acylated homoserine lactones produced by Gram-negative bacteria and their application in studies of AHL-production kinetics. J Microbiol Methods 2001; 44:239-51. [PMID: 11240047 DOI: 10.1016/s0167-7012(01)00217-2] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the process of evaluating the role of acylated homoserine lactones (AHLs) in food-spoiling Gram-negative bacteria, we have combined a range of bacterial AHL monitor systems to determine the AHL-profile and the kinetics of AHL-production. AHL production from 148 strains of Enterobacteriaceae isolated from foods was tested using Escherichia coli pSB403 (LuxR), Agrobacterium tumefaciens A136 (TraR) and both induction and inhibition of Chromobacterium violaceum CV026 (CviR). All strains except one was found to produce AHL(s). In no case could a single monitor system identify more than 64% of the Enterobacteriaceae as AHL-producers, showing that the simultaneous use of monitor strains is required in the process of screening bacterial populations for AHL-production. AHLs from 20 selected strains were profiled by thin layer chromatography. Most strains produced more than one AHL with 3-N-oxo-hexanoyl homoserine lactone being the most prominent. It was found that the simultaneous use of monitor strains in the top-layer was necessary for the detection of (presumably) all the AHLs. An agar well-diffusion assay based on A. tumefaciens pDZLR4 was used for quantifying AHLs from bacterial supernatants and enabled an assessment of the kinetics of AHL-production of 3 strains (Serratia proteamaculans strain B5a, Erwinia carotovora ATCC 39048 and V. fischeri strain MJ-1). As expected, the production of AHL (OHHL) and luminescence in Vibrio fischeri strain MJ-1 increased faster than growth indicating up-regulation of the AHL regulated phenotype and auto-induction of AHL production. In contrast, production kinetics of AHL (OHHL) in the two Enterobacteriaceae indicated lack of auto-induction.
Collapse
Affiliation(s)
- L Ravn
- Department of Seafood Research, Danish Institute for Fisheries Research, Søltofts Plads, c/o Technical University of Denmark bldg. 221, DK-2800 Kgs. Lyngby, Denmark.
| | | | | | | | | |
Collapse
|
417
|
Ang S, Horng YT, Shu JC, Soo PC, Liu JH, Yi WC, Lai HC, Luh KT, Ho SW, Swift S. The role of RsmA in the regulation of swarming motility in Serratia marcescens. J Biomed Sci 2001; 8:160-9. [PMID: 11287746 DOI: 10.1007/bf02256408] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Swarming motility is a multicellular phenomenon comprising population migration across surfaces by specially differentiated cells. In Serratia marcescens, a network exists in which the flhDC flagellar regulatory master operon, temperature, nutrient status, and quorum sensing all contribute to the regulation of swarming motility. In this study, the rsmA (repressor of secondary metabolites) gene (hereafter rsmA(Sm)) was cloned from S. marcescens. The presence of multicopy, plasmid-encoded rsmA(Sm) expressed from its native promoter in S. marcescens inhibits swarming. Synthesis of N-acylhomoserine lactones, presumably by the product of smaI (a luxI homolog isolated from S. marcescens), was also inhibited. Knockout of rsmA(Sm) on the S. marcescens chromosome shortens the time before swarming motility begins after inoculation to an agar surface. A single copy of the chromosomal PrsmA(Sm)::luxAB reporter of rsmA(Sm) transcription was constructed. Using this reporter, the roles of the flhDC flagellar regulatory master operon, temperature and autoregulation in the control of rsmA(Sm) expression were determined. Our findings indicate that RsmA(Sm) is a component of the complex regulatory network that controls swarming.
Collapse
Affiliation(s)
- S Ang
- School and Graduate Institute of Medical Technology, College of Medicine, National Taiwan University, No. 1, Chan-Der Street, Taipei 100, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
418
|
Elasri M, Delorme S, Lemanceau P, Stewart G, Laue B, Glickmann E, Oger PM, Dessaux Y. Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Appl Environ Microbiol 2001; 67:1198-209. [PMID: 11229911 PMCID: PMC92714 DOI: 10.1128/aem.67.3.1198-1209.2001] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A total of 137 soilborne and plant-associated bacterial strains belonging to different Pseudomonas species were tested for their ability to synthesize N-acyl-homoserine lactones (NAHL). Fifty-four strains synthesized NAHL. Interestingly, NAHL production appears to be more common among plant-associated than among soilborne Pseudomonas spp. Indeed, 40% of the analyzed Pseudomonas syringae strains produced NAHL which were identified most often as the short-chain NAHL, N-hexanoyl-L-homoserine lactone, N-(3-oxo-hexanoyl)-homoserine lactone, and N-(3-oxo-octanoyl)-L-homoserine lactone (no absolute correlation between genomospecies of P. syringae and their ability to produce NAHL could be found). Six strains of fluorescent pseudomonads, belonging to the species P. chlororaphis, P. fluorescens, and P. putida, isolated from the plant rhizosphere produced different types of NAHL. In contrast, none of the strains isolated from soil samples were shown to produce NAHL. The gene encoding the NAHL synthase in P. syringae pv. maculicola was isolated by complementation of an NAHL-deficient Chromobacterium mutant. Sequence analysis revealed the existence of a luxI homologue that we named psmI. This gene is sufficient to confer NAHL synthesis upon its bacterial host and has strong homology to psyI and ahlI, two genes involved in NAHL production in P. syringae pv. tabaci and P. syringae pv. syringae, respectively. We identified another open reading frame that we termed psmR, transcribed convergently in relation to psmI and partly overlapping psmI; this gene encodes a putative LuxR regulatory protein. This gene organization, with luxI and luxR homologues facing each other and overlapping, has been found so far only in the enteric bacteria Erwinia and Pantoea and in the related species P. syringae pv. tabaci.
Collapse
Affiliation(s)
- M Elasri
- Institut des Sciences Végétales, CNRS UPR040, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
419
|
Séveno N, Morgan J, Wellington E. Growth of Pseudomonas aureofaciens PGS12 and the Dynamics of HHL and Phenazine Production in Liquid Culture, on Nutrient Agar, and on Plant Roots. MICROBIAL ECOLOGY 2001; 41:314-324. [PMID: 12032605 DOI: 10.1007/s002480000104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The growth of Pseudomonas aureofaciens PGS12 was followed in nutrient broth (NB), on nutrient agar (NA), and on plant roots by monitoring cell numbers, the production of the autoinducer hexanoyl-homoserine lactone (HHL), and the antibiotic phenazine-1-carboxylic acid (PCA). In NB, as the growth rate declined in transition phase, HHL synthesis increased rapidly, shortly followed by PCA production. During stationary phase, HHL concentration declined rapidly while PCA concentration continued to increase slowly. The luxAB reporter genes were inserted in the phzB gene of the phenazine operon and phenazine transcriptional activity was monitored using measurement of luminescence. Levels and pattern of light output were similar to HHL accumulation and indicated that gene expression was maximal in transition phase and silenced in stationary phase. PCA production continued in stationary phase, suggesting that the protein products of the phenazine operon were maintained in the cell after down regulation. HHL accumulation was 60 times higher on NA than in NB per equivalent volume because of a 60-fold increase in cell density on NA. Higher levels of PCA per cell (6.8 times) and per equivalent volume (360-fold) accumulated in a colony compared to that found in broth. HHL remained at a high concentration in a colony for a longer period compared to a short burst in NB, and this may explain the increased PCA production. In contrast, on wheat seedlings and bean plant roots, bacterial growth was observed, but neither HHL nor PCA was detected; however, transcriptional activity of the phzB::luxAB reporter occurred on the bean plant roots.
Collapse
Affiliation(s)
- N.A. Séveno
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | | | |
Collapse
|
420
|
Andersen JB, Heydorn A, Hentzer M, Eberl L, Geisenberger O, Christensen BB, Molin S, Givskov M. gfp-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl Environ Microbiol 2001; 67:575-85. [PMID: 11157219 PMCID: PMC92623 DOI: 10.1128/aem.67.2.575-585.2001] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to perform single-cell analysis and online studies of N-acyl homoserine lactone (AHL)-mediated communication among bacteria, components of the Vibrio fischeri quorum sensor encoded by luxR-P(luxI) have been fused to modified versions of gfpmut3* genes encoding unstable green fluorescent proteins. Bacterial strains harboring this green fluorescent sensor detected a broad spectrum of AHL molecules and were capable of sensing the presence of 5 nM N-3-oxohexanoyl-L-homoserine lactone in the surroundings. In combination with epifluorescent microscopy, the sensitivity of the sensor enabled AHL detection at the single-cell level and allowed for real-time measurements of fluctuations in AHL concentrations. This green fluorescent AHL sensor provides a state-of-the-art tool for studies of communication between the individuals present in mixed bacterial communities.
Collapse
Affiliation(s)
- J B Andersen
- Department of Microbiology, The Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
421
|
Laue BE, Jiang Y, Chhabra SR, Jacob S, Stewart GSAB, Hardman A, Downie JA, O'Gara F, Williams P. The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl)homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 10):2469-2480. [PMID: 11021923 DOI: 10.1099/00221287-146-10-2469] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several different species of Pseudomonas: produce N:-acylhomoserine lactones (AHLs), quorum-sensing signal molecules which are involved in the cell-density-dependent control of secondary metabolite and virulence gene expression. When Pseudomonas fluorescens F113 was cross-streaked against AHL biosensors capable of sensitively detecting either short (C(4)-C(8)) or long (C(10)-C(14)) acyl chain AHLs, no activity was detectable. However, by extracting cell-free stationary-phase culture supernatants with dichloromethane followed by reverse-phase HPLC, three distinct fractions were obtained capable of activating the AHL biosensors. Three AHLs were subsequently characterized using high-resolution MS and chemical synthesis. These were (i) N:-(3-hydroxy-7-cis-tetradecenoyl)homoserine lactone (3OH, C(14:1)-HSL), a molecule previously known as the Rhizobium leguminosarum small bacteriocin as a consequence of its growth inhibitory properties, (ii) N:-decanoylhomoserine lactone (C(10)-HSL) and (iii) N:-hexanoylhomoserine lactone (C(6)-HSL). A gene (hdtS) capable of directing synthesis of all three P. fluorescens AHLs in Escherichia coli was cloned and sequenced. In vitro transcription/translation of hdtS yielded a protein of approximately 33 kDa capable of directing the synthesis of 3OH, C(14:1)-HSL, C(10)-HSL and C(6)-HSL in E. coli. HdtS does not belong to either of the known AHL synthase families (LuxI or LuxM) and is related to the lysophosphatidic acid acyltransferase family. HdtS may therefore constitute a member of a third protein family capable of AHL biosynthesis.
Collapse
Affiliation(s)
- Bridget E Laue
- School of Pharmaceutical Sciences, University of Nottingham, Nottingham NG7 2RD, UK1
| | - Yan Jiang
- School of Pharmaceutical Sciences, University of Nottingham, Nottingham NG7 2RD, UK1
| | - Siri Ram Chhabra
- School of Pharmaceutical Sciences, University of Nottingham, Nottingham NG7 2RD, UK1
| | - Sinead Jacob
- Biomerit Research Centre, Department of Microbiology, National University of Ireland, Cork, Ireland2
| | - Gordon S A B Stewart
- School of Pharmaceutical Sciences, University of Nottingham, Nottingham NG7 2RD, UK1
| | - Andrea Hardman
- School of Pharmaceutical Sciences, University of Nottingham, Nottingham NG7 2RD, UK1
| | | | - Fergal O'Gara
- Biomerit Research Centre, Department of Microbiology, National University of Ireland, Cork, Ireland2
| | - Paul Williams
- School of Pharmaceutical Sciences, University of Nottingham, Nottingham NG7 2RD, UK1
| |
Collapse
|
422
|
Teplitski M, Robinson JB, Bauer WD. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:637-48. [PMID: 10830263 DOI: 10.1094/mpmi.2000.13.6.637] [Citation(s) in RCA: 300] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In gram-negative bacteria, many important changes in gene expression and behavior are regulated in a population density-dependent fashion by N-acyl homoserine lactone (AHL) signal molecules. Exudates from pea (Pisum sativum) seedlings were found to contain several separable activities that mimicked AHL signals in well-characterized bacterial reporter strains, stimulating AHL-regulated behaviors in some strains while inhibiting such behaviors in others. The chemical nature of the active mimic compounds is currently unknown, but all extracted differently into organic solvents than common bacterial AHLs. Various species of higher plants in addition to pea were found to secrete AHL mimic activities. The AHL signal-mimic compounds could prove to be important in determining the outcome of interactions between higher plants and a diversity of pathogenic, symbiotic, and saprophytic bacteria.
Collapse
Affiliation(s)
- M Teplitski
- Horticulture and Crop Science Department, Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
423
|
Williams P, Camara M, Hardman A, Swift S, Milton D, Hope VJ, Winzer K, Middleton B, Pritchard DI, Bycroft BW. Quorum sensing and the population-dependent control of virulence. Philos Trans R Soc Lond B Biol Sci 2000; 355:667-80. [PMID: 10874739 PMCID: PMC1692775 DOI: 10.1098/rstb.2000.0607] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
One crucial feature of almost all bacterial infections is the need for the invading pathogen to reach a critical cell population density sufficient to overcome host defences and establish the infection. Controlling the expression of virulence determinants in concert with cell population density may therefore confer a significant survival advantage on the pathogen such that the host is overwhelmed before a defence response can be fully initiated. Many different bacterial pathogens are now known to regulate diverse physiological processes including virulence in a cell-density-dependent manner through cell-cell communication. This phenomenon, which relies on the interaction of a diffusible signal molecule (e.g. an N-acylhomoserine lactone) with a sensor or transcriptional activator to couple gene expression with cell population density, has become known as 'quorum sensing'. Although the size of the 'quorum' is likely to be highly variable and influenced by the diffusibility of the signal molecule within infected tissues, nevertheless quorum-sensing signal molecules can be detected in vivo in both experimental animal model and human infections. Furthermore, certain quorum-sensing molecules have been shown to possess pharmacological and immunomodulatory activity such that they may function as virulence determinants per se. As a consequence, quorum sensing constitutes a novel therapeutic target for the design of small molecular antagonists capable of attenuating virulence through the blockade of bacterial cell-cell communication.
Collapse
Affiliation(s)
- P Williams
- Institute of Infections & Immunity, Queen's Medical Centre, University of Nottingham, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
424
|
Thomson NR, Crow MA, McGowan SJ, Cox A, Salmond GP. Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Mol Microbiol 2000; 36:539-56. [PMID: 10844645 DOI: 10.1046/j.1365-2958.2000.01872.x] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Serratia sp. ATCC 39006 produces the carbapenem antibiotic, carbapen-2-em-3-carboxylic acid and the red pigment, prodigiosin. We have previously reported the characterization of a gene, carR, controlling production of carbapenem in this strain. We now describe further characterization of the carR locus to locate the genes encoding carbapenem biosynthetic and resistance functions. A novel family of diverse proteins showing sequence similarity to the C-terminal domain of CarF (required for carbapenem resistance) is described. We also report the isolation of the locus involved in the biosynthesis of the red pigment, prodigiosin. A cosmid containing approximately 35 kb of the Serratia chromosome encodes synthesis of the pigment in the heterologous host, Erwinia carotovora, demonstrating, for the first time, that the complete prodigiosin biosynthetic gene cluster had been cloned and functionally expressed. We report the isolation of a third locus in Serratia, containing convergently transcribed genes, smaI and smaR, encoding LuxI and LuxR homologues respectively. SmaI directs the synthesis of N-acyl homoserine lactones involved in the quorum sensing process. We demonstrate that biosynthesis of the two secondary metabolites, carbapenem antibiotic and prodigiosin pigment, is under pheromone-mediated transcriptional regulation in this bacterium. Finally, we describe a new prodigiosin-based bioassay for detection of some N-acyl homoserine lactones.
Collapse
Affiliation(s)
- N R Thomson
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | | | | | | | | |
Collapse
|
425
|
Geisenberger O, Givskov M, Riedel K, Høiby N, Tümmler B, Eberl L. Production of N-acyl-L-homoserine lactones by P. aeruginosa isolates from chronic lung infections associated with cystic fibrosis. FEMS Microbiol Lett 2000; 184:273-8. [PMID: 10713433 DOI: 10.1111/j.1574-6968.2000.tb09026.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The N-acyl-L-homoserine lactones (AHLs) produced by sequential Pseudomonas aeruginosa isolates from chronically infected patients with cystic fibrosis were analyzed by thin-layer chromatography. It is demonstrated that both the amounts and the types of molecules synthesized by isolates from patients who were monitored over periods of up to 11 years do not change significantly during chronic colonization. However, in the case of a patient who became co-infected with an AHL-producing Burkholderia cepacia strain a dramatic reduction in the amounts of AHLs produced by the co-residing P. aeruginosa isolates was observed.
Collapse
Affiliation(s)
- O Geisenberger
- Lehrstuhl für Mikrobiologie, Technische Universität München, Am Hochanger 4, D-85350, Freising, Germany
| | | | | | | | | | | |
Collapse
|
426
|
Blosser RS, Gray KM. Extraction of violacein from Chromobacterium violaceum provides a new quantitative bioassay for N-acyl homoserine lactone autoinducers. J Microbiol Methods 2000; 40:47-55. [PMID: 10739342 DOI: 10.1016/s0167-7012(99)00136-0] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fatty acyl homoserine lactones (AHLs) are used as extracellular quorum sensing signals by a variety of gram-negative bacteria. By activating proteins belonging to the LuxR family of transcriptional regulators, these signal metabolites allow population density-dependent gene regulation within a species, as well as interspecies communication among different bacteria. The experimental detection of AHLs is important in the identification of quorum sensing capabilities in bacteria. Chromobacterium violaceum is a gram-negative bacterium that produces the purple pigment violacein in response to the presence of the AHL N-hexanoyl homoserine lactone (C6HSL). The mini-Tn5 mutant strain C. violaceum CV0blu is deficient in the production of this signal molecule but retains the ability to synthesize violacein in response to the presence of C6HSL and a variety of other short-chain AHLs. We have developed a quantitative bioassay that measures the amount of violacein produced by this strain in response to the presence of different concentrations of various AHL molecules. This new assay provides a means of quantifying the amount of a given AHL present in a bacterial culture and can be used to measure differences in AHL production among different strains or different batch cultures of a given species.
Collapse
Affiliation(s)
- R S Blosser
- Department of Biology, University of South Florida, Tampa 33620, USA
| | | |
Collapse
|
427
|
Abstract
The view of bacteria as unicellular organisms has strong roots in the tradition of culturing bacteria in liquid media. However, in nature microbial activity is mainly associated with surfaces where bacteria form highly structured and cooperative consortia which are commonly referred to as biofilms. The ability of bacteria to organize structurally and to distribute metabolic activities between the different members of the consortium demands a high degree of coordinated cell-cell interaction. Recent work has established that many bacteria employ sophisticated intercellular communication systems that rely on small signal molecules to control the expression of multiple target genes. In Gram-negative bacteria, the most intensively investigated signal molecules are N-acyl-L-homoserine lactones (AHLs), which are utilized by the bacteria to monitor their own population densities in a process known as 'quorum sensing'. These density-dependent regulatory systems rely on two proteins, an AHL synthase, usually a member of the LuxI family of proteins, and an AHL receptor protein belonging to the LuxR family of transcriptional regulators. At low population densities cells produce a basal level of AHL via the activity of an AHL synthase. As the cell density increases, AHL accumulates in the growth medium. On reaching a critical threshold concentration, the AHL molecule binds to its cognate receptor which in turn leads to the induction/repression of AHL-regulated genes. To date, AHL-dependent quorum sensing circuits have been identified in a wide range of gram-negative bacteria where they regulate various functions including bioluminescence, plasmid conjugal transfer, biofilm formation, motility, antibiotic biosynthesis, and the production of virulence factors in plant and animal pathogens. Moreover, AHL signal molecules appear to play important roles in the ecology of complex consortia as they allow bacterial populations to interact with each other as well as with their eukaryotic hosts.
Collapse
Affiliation(s)
- L Eberl
- Lehrstuhl für Mikrobiologie, Technische Universität München, Freising, Germany.
| |
Collapse
|
428
|
Fray RG, Throup JP, Daykin M, Wallace A, Williams P, Stewart GS, Grierson D. Plants genetically modified to produce N-acylhomoserine lactones communicate with bacteria. Nat Biotechnol 1999; 17:1017-20. [PMID: 10504705 DOI: 10.1038/13717] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
N-acylhomoserine lactones (AHLs) play a critical role in plant/microbe interactions. The AHL, N-(3-oxohexanoyl)-L-homoserine lactone (OHHL), induces exoenzymes that degrade the plant cell wall by the pathogenic bacterium Erwinia carotovora. Conversely, the antifungal activity of the biocontrol bacterium Pseudomonas aureofaciens 30-84 is due (at least in part) to phenazine antibiotics whose synthesis is regulated by N-hexanoylhomoserine lactone (HHL). Targeting the product of an AHL synthase gene (yenI) from Yersinia enterocolitica to the chloroplasts of transgenic tobacco plants caused the synthesis in plants of the cognate AHL signaling molecules (OHHL and HHL). The AHLs produced by the transgenic plants were sufficient to induce target gene expression in several recombinant bacterial AHL biosensors and to restore biocontrol activity to an HHL-deficient P. aureofaciens strain. In addition, pathogenicity was restored to an E. carotovora strain rendered avirulent as a consequence of a mutation in the OHHL synthase gene, carI. The ability to generate bacterial quorum-sensing signaling molecules in the plant offers novel opportunities for disease control and for manipulating plant/microbe interactions.
Collapse
Affiliation(s)
- R G Fray
- School of Biological Sciences, Nottingham University, Loughborough LE12 5RD, UK.
| | | | | | | | | | | | | |
Collapse
|
429
|
Holden MT, Ram Chhabra S, de Nys R, Stead P, Bainton NJ, Hill PJ, Manefield M, Kumar N, Labatte M, England D, Rice S, Givskov M, Salmond GP, Stewart GS, Bycroft BW, Kjelleberg S, Williams P. Quorum-sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram-negative bacteria. Mol Microbiol 1999; 33:1254-66. [PMID: 10510239 DOI: 10.1046/j.1365-2958.1999.01577.x] [Citation(s) in RCA: 386] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In cell-free Pseudomonas aeruginosa culture supernatants, we identified two compounds capable of activating an N-acylhomoserine lactone (AHL) biosensor. Mass spectrometry and NMR spectroscopy revealed that these compounds were not AHLs but the diketopiperazines (DKPs), cyclo(DeltaAla-L-Val) and cyclo(L-Pro-L-Tyr) respectively. These compounds were also found in cell-free supernatants from Proteus mirabilis, Citrobacter freundii and Enterobacter agglomerans [cyclo(DeltaAla-L-Val) only]. Although both DKPs were absent from Pseudomonas fluorescens and Pseudomonas alcaligenes, we isolated, from both pseudomonads, a third DKP, which was chemically characterized as cyclo(L-Phe-L-Pro). Dose-response curves using a LuxR-based AHL biosensor indicated that cyclo(DeltaAla-L-Val), cyclo(L-Pro-L-Tyr) and cyclo(L-Phe-L-Pro) activate the biosensor in a concentration-dependent manner, albeit at much higher concentrations than the natural activator N-(3-oxohexanoyl)-L-homoserine lactone (3-oxo-C6-HSL). Competition studies showed that cyclo(DeltaAla-L-Val), cyclo(L-Pro-L-Tyr) and cyclo(L-Phe-L-Pro) antagonize the 3-oxo-C6-HSL-mediated induction of bioluminescence, suggesting that these DKPs may compete for the same LuxR-binding site. Similarly, DKPs were found to be capable of activating or antagonizing other LuxR-based quorum-sensing systems, such as the N-butanoylhomoserine lactone-dependent swarming motility of Serratia liquefaciens. Although the physiological role of these DKPs has yet to be established, their activity suggests the existence of cross talk among bacterial signalling systems.
Collapse
Affiliation(s)
- M T Holden
- School of Pharmaceutical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
430
|
Atkinson S, Throup JP, Stewart GS, Williams P. A hierarchical quorum-sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Mol Microbiol 1999; 33:1267-77. [PMID: 10510240 DOI: 10.1046/j.1365-2958.1999.01578.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In cell-free Yersinia pseudotuberculosis culture supernatants, we have chemically characterized three N-acyl homoserine lactone (AHL) molecules, N-octanoyl homoserine lactone (C8-HSL), N-(3-oxohexanoyl)homoserine lactone (3-oxo-C6-HSL) and N-hexanoyl homoserine lactone (C6-HSL). We have identified, cloned and sequenced two pairs of LuxR/I homologues termed YpsR/I and YtbR/I. In Escherichia coli at 37 degrees C, YpsI and YtbI both synthesize C6-HSL, although YpsI is responsible for 3-oxo-C6-HSL and YtbI for C8-HSL synthesis respectively. However, in a Y. pseudotuberculosis ypsI-negative background, YtbI appears capable of adjusting the AHL profile from all three AHLs at 37 degrees C and 22 degrees C to the absence of 3-oxo-C6-HSL at 28 degrees C. Insertion deletion mutagenesis of ypsR leads to the loss of C8-HSL at 22 degrees C, which suggests that at this temperature the YpsR protein is involved in the hierarchical regulation of the ytbR/I locus. When compared with the parent strain, the ypsR and ypsI mutants exhibit a number of phenotypes, including clumping (ypsR mutant), overexpression of a major flagellin subunit (ypsR mutant) and increased motility (both ypsR and ypsI mutants). The clumping and motility phenotypes are both temperature dependent. These data are consistent with a hierarchical quorum-sensing cascade in Y. pseudotuberculosis that is involved in the regulation of clumping and motility.
Collapse
Affiliation(s)
- S Atkinson
- School of Pharmaceutical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | |
Collapse
|
431
|
Affiliation(s)
- P Hill
- School of Biological sciences (SB), University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leics, LE12 5RD, UK
| | | |
Collapse
|
432
|
Gram L, Christensen AB, Ravn L, Molin S, Givskov M. Production of acylated homoserine lactones by psychrotrophic members of the Enterobacteriaceae isolated from foods. Appl Environ Microbiol 1999; 65:3458-63. [PMID: 10427034 PMCID: PMC91519 DOI: 10.1128/aem.65.8.3458-3463.1999] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria are able to communicate and gene regulation can be mediated through the production of acylated homoserine lactone (AHL) signal molecules. These signals play important roles in several pathogenic and symbiotic bacteria. The following study was undertaken to investigate whether AHLs are produced by bacteria found in food at temperatures and NaCl conditions commercially used for food preservation and storage. A minimum of 116 of 154 psychrotrophic Enterobacteriaceae strains isolated from cold-smoked salmon or vacuum-packed chilled meat produced AHLs. Analysis by thin-layer chromatography indicated that N-3-oxo-hexanoyl homoserine lactone was the major AHL of several of the strains isolated from cold-smoked salmon and meat. AHL-positive strains cultured at 5 degrees C in medium supplemented with 4% NaCl produced detectable amounts of AHL(s) at cell densities of 10(6) CFU/ml. AHLs were detected in cold-smoked salmon inoculated with strains of Enterobacteriaceae stored at 5 degrees C under an N(2) atmosphere when mean cell densities increased to 10(6) CFU/g and above. Similarly, AHLs were detected in uninoculated samples of commercially produced cold-smoked salmon when the level of indigenous Enterobacteriaceae reached 10(6) CFU/g. This level of Enterobacteriaceae is often found in lightly preserved foods, and AHL-mediated gene regulation may play a role in bacteria associated with food spoilage or food toxicity.
Collapse
Affiliation(s)
- L Gram
- Danish Institute for Fisheries Research, Department of Seafood Research, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | | | | | | | | |
Collapse
|
433
|
Guard-Petter J. Variants of smooth Salmonella enterica serovar Enteritidis that grow to higher cell density than the wild type are more virulent. Appl Environ Microbiol 1998; 64:2166-72. [PMID: 9603830 PMCID: PMC106294 DOI: 10.1128/aem.64.6.2166-2172.1998] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/1997] [Accepted: 03/15/1998] [Indexed: 02/07/2023] Open
Abstract
Salmonella enterica serovar Enteritidis that grows to a higher cell density (SE-HCD) than wild type while retaining O-chain lipopolysaccharide was isolated by transforming wild type serovar Enteritidis with the cell density sensor plasmid pSB402 and selecting for bioluminescence. A luminescent strain, SE-HCD, that emitted light in proportion with cell density and opacity through stationary phase was isolated. After a peak cell density of 1.5 x 10(11) CFU/ml was observed, luminescence decreased, although opacity continued to increase. Scanning electron microscopy revealed that changes in luminescence and opacity past peak cell density were associated with lysis of a swarming hyperflagellated coccobacillary cell type and emergence of a 10-to-30-fold-elongated rod cell type that lacked cell surface structures. Vigorous aeration was required to induce this dramatic cellular differentiation. The virulence of two isogenic variants with different patterns of light emission at an opacity of 0.2 after the culture was diluted 10-fold (1/10 OD) was assessed in animal models. Whereas SE-HCD1 killed 70% of 6-day-old chicks challenged subcutaneously, the same dose of SE-HCD2 did not kill any chicks. Conversely, subcutaneous challenge of hens with SE-HCD2 contaminated eggs five and seven times more often, respectively, than did SE-HCD1 or wild type serovar Enteritidis. Intravenous challenge with SE-HCD2 contaminated 22% of eggs versus 0. 5% with wild type, depressed egg production for 4 weeks, and caused clinical signs of Gallinarum Disease (Fowl Typhoid) in hens. SE-HCD2 produced no contaminated eggs following oral infection, whereas wild type contaminated 1.3% of eggs. Thus, SE-HCD2 is better at contaminating eggs than wild type, but only by parenteral challenge. These results suggest that it may be possible to separate luminescent serovar Enteritidis into groups that infect different age groups and organs and contaminate eggs.
Collapse
Affiliation(s)
- J Guard-Petter
- Agricultural Research Service, United States Department of Agriculture, Athens, Georgia 30605, USA.
| |
Collapse
|