401
|
Abstract
Toxin-antitoxin (TA) modules are pairs of genes in which one member encodes a toxin that is neutralized or whose synthesis is prevented by the action of the product of the second gene, an antitoxin, which is either protein or RNA. We now report the identification of a TA module in the chromosome of Bacillus subtilis in which the antitoxin is an antisense RNA. The antitoxin, which is called RatA (for RNA antitoxin A), is a small (222 nucleotides), untranslated RNA that blocks the accumulation of the mRNA for a toxic peptide TxpA (for toxic peptide A; formerly YqdB). The txpA and ratA genes are in convergent orientation and overlap by ca. 75 nucleotides, such that the 3' region of ratA is complementary to the 3' region of txpA. Deletion of ratA led to increased levels of txpA mRNA and lysis of the cells. Overexpression of txpA also caused cell lysis and death, a phenotype that was prevented by simultaneous overexpression of ratA. We propose that the ratA transcript is an antisense RNA that anneals to the 3' end of the txpA mRNA, thereby triggering its degradation.
Collapse
Affiliation(s)
- Jessica M Silvaggi
- Department of Molecular and Cellular Biology, The Biological Laboratories, 16 Divinity Ave., Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
402
|
Lemos JAC, Brown TA, Abranches J, Burne RA. Characteristics of Streptococcus mutans strains lacking the MazEF and RelBE toxin-antitoxin modules. FEMS Microbiol Lett 2005; 253:251-7. [PMID: 16243456 DOI: 10.1016/j.femsle.2005.09.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 09/26/2005] [Accepted: 09/27/2005] [Indexed: 11/23/2022] Open
Abstract
Two pairs of genes were identified in Streptococcus mutans with similarity to relBE and mazEF toxin-antitoxin (TA) modules of Escherichia coli. Transcription of mazEF and relBE was repressed by amino acid starvation, and relBE expression was repressed by low pH. Mutants lacking MazF, RelE, or both toxins (MRT1) grew in broth media and formed biofilms as well as the parent. Biofilm populations of MRT1 were more resistant to acid killing than the parent or single mutants. MRT1 also exhibited a longer diauxie during growth on glucose and inulin and displayed decreased phosphoenolpyruvate:sugar phosphotransferase activity. This is the first report that demonstrates a physiological role for TA modules in Gram-positive bacteria.
Collapse
Affiliation(s)
- José A C Lemos
- Department of Oral Biology, University of Florida College of Dentistry, 1600 SW Archer Road, Gainesville, FL 32610-0424, USA
| | | | | | | |
Collapse
|
403
|
Bobay BG, Andreeva A, Mueller GA, Cavanagh J, Murzin AG. Revised structure of the AbrB N-terminal domain unifies a diverse superfamily of putative DNA-binding proteins. FEBS Lett 2005; 579:5669-74. [PMID: 16223496 DOI: 10.1016/j.febslet.2005.09.045] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 09/14/2005] [Accepted: 09/19/2005] [Indexed: 10/25/2022]
Abstract
New relationships found in the process of updating the structural classification of proteins (SCOP) database resulted in the revision of the structure of the N-terminal, DNA-binding domain of the transition state regulator AbrB. The dimeric AbrB domain shares a common fold with the addiction antidote MazE and the subunit of uncharacterized protein MraZ implicated in cell division and cell envelope formation. It has a detectable sequence similarity to both MazE and MraZ thus providing an evolutionary link between the two proteins. The putative DNA-binding site of AbrB is found on the same face as the DNA-binding site of MazE and appears similar, both in structure and sequence, to the exposed conserved region of MraZ. This strongly suggests that MraZ also binds DNA and allows for a consensus model of DNA recognition by the members of this novel protein superfamily.
Collapse
Affiliation(s)
- Benjamin G Bobay
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, 27695, USA
| | | | | | | | | |
Collapse
|
404
|
Engelberg-Kulka H, Hazan R, Amitai S. mazEF: a chromosomal toxin-antitoxin module that triggers programmed cell death in bacteria. J Cell Sci 2005; 118:4327-32. [PMID: 16179604 DOI: 10.1242/jcs.02619] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
mazEF is a toxin-antitoxin module located on the Escherichia coli chromosome and that of some other bacteria, including pathogens. mazF specifies for a stable toxin, MazF, and mazE specifies for a labile antitoxin, MazE, that antagonizes MazF. MazF is a sequence-specific mRNA endoribonuclease that initiates a programmed cell death pathway in response to various stresses. The mazEF-mediated death pathway can act as a defense mechanism that prevents the spread of bacterial phage infection, allowing bacterial populations to behave like multicellular organisms.
Collapse
Affiliation(s)
- Hanna Engelberg-Kulka
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | | | | |
Collapse
|
405
|
Arcus VL, Rainey PB, Turner SJ. The PIN-domain toxin-antitoxin array in mycobacteria. Trends Microbiol 2005; 13:360-5. [PMID: 15993073 DOI: 10.1016/j.tim.2005.06.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 05/31/2005] [Accepted: 06/20/2005] [Indexed: 11/22/2022]
Abstract
PIN-domains (homologues of the pilT N-terminal domain) are small protein domains of approximately 140 amino acids. They are found in a diverse range of organisms and recent evidence from bioinformatics, biochemistry, structural biology and microbiology suggest that the majority of the prokaryotic PIN-domain proteins are the toxic components of toxin-antitoxin (TA) operons. Several microorganisms have a large cohort of these operons. For example, the genome of Mycobacterium tuberculosis encodes 48 PIN-domain proteins, of which 38 are thought to be involved in TA interactions. This large array of PIN-domain TA operons raises questions as to their evolutionary origin and contemporary functional significance. We suggest that the evolutionary origin of genes encoding mycobacterial PIN-domain TA operons is linked to the mobile gene pool, but that TA operons can become resident within the chromosome of host cells from where they might be recruited to fulfil a variety of roles associated with retardation of cell growth and persistence in stressful environments.
Collapse
Affiliation(s)
- Vickery L Arcus
- AgResearch Structural Biology Laboratory, University of Auckland, Private Bag 92-019, Auckland, New Zealand.
| | | | | |
Collapse
|
406
|
Pimentel B, Madine MA, de la Cueva-Méndez G. Kid cleaves specific mRNAs at UUACU sites to rescue the copy number of plasmid R1. EMBO J 2005; 24:3459-69. [PMID: 16163387 PMCID: PMC1276173 DOI: 10.1038/sj.emboj.7600815] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 08/23/2005] [Indexed: 11/09/2022] Open
Abstract
Stability and copy number of extra-chromosomal elements are tightly regulated in prokaryotes and eukaryotes. Toxin Kid and antitoxin Kis are the components of the parD stability system of prokaryotic plasmid R1 and they can also function in eukaryotes. In bacteria, Kid was thought to become active only in cells that lose plasmid R1 and to cleave exclusively host mRNAs at UA(A/C/U) trinucleotide sites to eliminate plasmid-free cells. Instead, we demonstrate here that Kid becomes active in plasmid-containing cells when plasmid copy number decreases, cleaving not only host- but also a specific plasmid-encoded mRNA at the longer and more specific target sequence UUACU. This specific cleavage by Kid inhibits bacterial growth and, at the same time, helps to restore the plasmid copy number. Kid targets a plasmid RNA that encodes a repressor of the synthesis of an R1 replication protein, resulting in increased plasmid DNA replication. This mechanism resembles that employed by some human herpesviruses to regulate viral amplification during infection.
Collapse
Affiliation(s)
- Belén Pimentel
- MRC, Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge, UK
| | - Mark A Madine
- MRC, Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge, UK
| | - Guillermo de la Cueva-Méndez
- MRC, Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge, UK
- MRC, Cancer Cell Unit. Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 2XZ, UK. Tel.: +44 1223 763286; Fax: +44 1223 763241; E-mail:
| |
Collapse
|
407
|
Kamada K, Hanaoka F. Conformational Change in the Catalytic Site of the Ribonuclease YoeB Toxin by YefM Antitoxin. Mol Cell 2005; 19:497-509. [PMID: 16109374 DOI: 10.1016/j.molcel.2005.07.004] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 06/29/2005] [Accepted: 07/07/2005] [Indexed: 10/25/2022]
Abstract
The eubacterial chromosome encodes various addiction modules that control global levels of translation through RNA degradation. Crystal structures of the Escherichia coli YefM2 (antitoxin)-YoeB (toxin) complex and the free YoeB toxin have been determined. The structure of the heterotrimeric complex reveals an asymmetric disorder-to-order recognition strategy, in which one C terminus of the YefM homodimer exclusively interacts with an atypical microbial ribonuclease (RNase) fold of YoeB. Comparison with the YefM-free YoeB structure indicates a conformational rearrangement of the RNase catalytic site of YoeB, induced by interaction with YefM. Complementary biochemical experiments demonstrate that the YoeB toxin has an in vitro RNase activity that preferentially cleaves at the 3' end of purine ribonucleotides.
Collapse
Affiliation(s)
- Katsuhiko Kamada
- Cellular Physiology Laboratory, RIKEN Discovery Research Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | |
Collapse
|
408
|
Cherny I, Rockah L, Gazit E. The YoeB Toxin Is a Folded Protein That Forms a Physical Complex with the Unfolded YefM Antitoxin. J Biol Chem 2005; 280:30063-72. [PMID: 15980067 DOI: 10.1074/jbc.m506220200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chromosomal YoeB-YefM toxin-antitoxin module common to numerous strains of bacteria is presumed to have a significant role in survival under stringent conditions. Recently we showed that the purified YefM antitoxin is a natively unfolded protein, as we previously reported for the Phd antitoxin in the P1 phage Doc-Phd toxin-antitoxin system. Here we report the purification and structural properties of the YoeB toxin and present physical evidence for the existence of a tight YoeB. YefM polypeptide complex in solution. YoeB and YefM proteins co-eluted as single peaks in sequential Ni-affinity FPLC and Q-Sepharose ion-exchange chromatography implying the formation of a YoeB. YefM complex. The unstable antitoxin was removed from the mixture by natural proteolysis, and the residual YoeB protein was purified using ion exchange chromatography. Fluorescence anisotropy studies of the purified YoeB and YefM proteins showed a 2:1 stoichiometry of the complex, providing direct evidence for a physical complex between the proteins. Near- and far-UV circular dichroism spectroscopy of the purified toxin revealed that, similar to the Doc toxin, YoeB is a well-folded protein. Thermal denaturation experiments confirmed the conformational stability of the YoeB toxin, which underwent reversible thermal unfolding at temperatures up to 56 degrees C. The thermodynamic features of the toxin-antitoxin complex were similar. Taken together, our results support the notion of a correlation between differential physiological and structural stability in toxin-antitoxin modules.
Collapse
Affiliation(s)
- Izhack Cherny
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
409
|
Rawlings DE. The evolution of pTF-FC2 and pTC-F14, two related plasmids of the IncQ-family. Plasmid 2005; 53:137-47. [PMID: 15737401 DOI: 10.1016/j.plasmid.2005.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Revised: 12/09/2004] [Accepted: 01/04/2005] [Indexed: 11/16/2022]
Abstract
Two plasmids, pTF-FC2 and pTC-F14, that belong to the IncQ-like plasmid family were isolated from two related bacteria, Acidithiobacillus ferrooxidans and Acidithiobacillus caldus, respectively. The backbone regions of the two plasmids share a sufficiently high amount of homology to indicate that they must have originated from the same ancestral plasmid. Although some of their replication proteins could complement each other, the plasmids have evolved sufficiently for their replicons to have become compatible. This compatibility has occurred by changes in the iteron sequence, RepC (iteron binding protein) specificity and the regulation properties of the RepB primase. Two of the five mobilization genes have remained highly conserved, whereas the other three genes appear to have evolved such that each plasmid is mobilized most efficiently by a different self-transmissible plasmid. Plasmids pTF-FC2 and pTC-F14 do not appear to compete at the level of mobilization. The antitoxins of the toxin-antitoxin (TA) plasmid stability systems were partly able to neutralize the toxins of the other plasmid and also to partly cross-regulate the TA systems of the other plasmid with the antitoxin of pTF-FC2 being the most effective cross-regulator. Other aspects of the evolution of the two plasmids are described and the danger of making the assumption that incompatibly of IncQ-like plasmids is a reflection of the degree of relatedness of two plasmids is discussed.
Collapse
Affiliation(s)
- Douglas E Rawlings
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
410
|
Wijngaarden PJ, van den Bosch F, Jeger MJ, Hoekstra RF. Adaptation to the cost of resistance: a model of compensation, recombination, and selection in a haploid organism. Proc Biol Sci 2005; 272:85-9. [PMID: 15875574 PMCID: PMC1634938 DOI: 10.1098/rspb.2004.2910] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Populations of pathogenic organisms often evolve resistance in response to the use of pesticides or antibiotics. This rise of resistance may be followed by a fall when chemical control is suspended and resistance alleles carry a fitness cost. Another possibility is that mutations at secondary loci compensate for the cost, usually without loss of resistance. This enables resistant types to withstand invasion by the susceptible wild-type; resistance then persists in the population, which reduces the efficacy of future pesticide or antibiotic use. We examined a two-locus model of a haploid organism that adapts to the cost of resistance by a single compensatory mutation. We addressed the question how different combinations of cost and compensation and different levels of recombination affect the consequences of a single pesticide application. Resistance will become fixed in the population when the fraction of the population exposed to pesticide exceeds the cost of resistance. Compensatory mutations reduce the cost of resistance and therefore this threshold level of pesticide use. In the absence of pesticide, recombination promotes stability of equilibria. In the presence of pesticide, recombination accelerates the fixation of resistance and compensating alleles; recombination may also enable the persistence of compensated resistant types after pesticide use.
Collapse
Affiliation(s)
- Pieter J Wijngaarden
- Laboratory of Genetics, Wageningen University, Arboretumlaan 4, NL-6703 BD Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
411
|
Vogel J, Argaman L, Wagner EGH, Altuvia S. The small RNA IstR inhibits synthesis of an SOS-induced toxic peptide. Curr Biol 2005; 14:2271-6. [PMID: 15620655 DOI: 10.1016/j.cub.2004.12.003] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 10/20/2004] [Accepted: 10/22/2004] [Indexed: 11/23/2022]
Abstract
More than 60 small RNAs (sRNA) have been identified in E. coli. The functions of the majority of these sRNAs are still unclear. For the few sRNAs characterized, expression and functional studies indicate that they act under stress conditions. Here, we describe a novel E. coli chromosome locus that is part of the SOS response to DNA damage. This locus encodes two sRNAs, IstR-1 and IstR-2, and a toxic peptide, TisB, encoded by tisAB mRNA. Transcription of tisAB and istR-2 is SOS regulated, whereas IstR-1 is present throughout growth. IstR-1 inhibits toxicity by base-pairing to a short region in the tisAB mRNA. This antisense interaction entails RNase III-dependent cleavage, thereby inactivating the mRNA for translation. In the absence of the SOS response, IstR-1 is present in high excess over its target. However, SOS induction leads to depletion of the IstR-1 pool, concomitant with accumulation of tisAB mRNA. Under such conditions, TisB exerts its toxic effect, slowing down growth. We propose that the inhibitory sRNA prevents inadvertent TisB synthesis during normal growth and, possibly, also limits SOS-induced toxicity. Our study adds the SOS regulon to the growing list of global regulatory circuits controlled by sRNA genes.
Collapse
Affiliation(s)
- Jörg Vogel
- Department of Molecular Genetics and Biotechnology, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel.
| | | | | | | |
Collapse
|
412
|
Muñoz-Gómez AJ, Lemonnier M, Santos-Sierra S, Berzal-Herranz A, Díaz-Orejas R. RNase/anti-RNase activities of the bacterial parD toxin-antitoxin system. J Bacteriol 2005; 187:3151-3157. [PMID: 15838042 PMCID: PMC1082843 DOI: 10.1128/jb.187.9.3151-3157.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 01/25/2005] [Indexed: 02/08/2023] Open
Abstract
The bacterial parD toxin-antitoxin system of plasmid R1 encodes two proteins, the Kid toxin and its cognate antitoxin, Kis. Kid cleaves RNA and inhibits protein synthesis and cell growth in Escherichia coli. Here, we show that Kid promotes RNA degradation and inhibition of protein synthesis in rabbit reticulocyte lysates. These new activities of the Kid toxin were counteracted by the Kis antitoxin and were not displayed by the KidR85W variant, which is nontoxic in E. coli. Moreover, while Kid cleaved single- and double-stranded RNA with a preference for UAA or UAC triplets, KidR85W maintained this sequence preference but hardly cleaved double-stranded RNA. Kid was formerly shown to inhibit DNA replication of the ColE1 plasmid. Here we provide in vitro evidence that Kid cleaves the ColE1 RNA II primer, which is required for the initiation of ColE1 replication. In contrast, KidR85W did not affect the stability of RNA II, nor did it inhibit the in vitro replication of ColE1. Thus, the endoribonuclease and the cytotoxic and DNA replication-inhibitory activities of Kid seem tightly correlated. We propose that the spectrum of action of this toxin extends beyond the sole inhibition of protein synthesis to control a broad range of RNA-regulated cellular processes.
Collapse
Affiliation(s)
- Ana J Muñoz-Gómez
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
413
|
Abstract
Transcription of the P1 plasmid addiction operon, a prototypical toxin-antitoxin system, is negatively autoregulated by the products of the operon. The Phd repressor-antitoxin protein binds to 8-bp palindromic Phd-binding sites in the promoter region and thereby represses transcription. The toxin, Doc, mediates cooperative interactions between adjacent Phd-binding sites and thereby enhances repression. Here, we describe a homologous operon from Salmonella enterica serovar Typhimurium which has the same pattern of regulation but an altered repressor-operator specificity. This difference in specificity maps to the seventh amino acid of the repressor and to the symmetric first and eighth positions of the corresponding palindromic repressor-binding sites. Thus, the repressor-operator interface has coevolved so as to retain the interaction while altering the specificity. Within an alignment of homologous repressors, the seventh amino acid of the repressor is highly variable, indicating that evolutionary changes in repressor specificity may be common in this protein family. We suggest that the robust properties of the negative feedback loop, the fuzzy recognition in the operator-repressor interface, and the duplication and divergence of the repressor-binding sites have facilitated the speciation of this repressor-operator interface. These three features may allow the repressor-operator system to percolate within a nearly neutral network of single-step mutations without the necessity of invoking simultaneous mutations, low-fitness intermediates, or other improbable or rate-limiting mechanisms.
Collapse
Affiliation(s)
- Xueyan Zhao
- Department of Biological Sciences, University of Alabama, Huntsville, AL 35758, USA
| | | |
Collapse
|
414
|
Lah J, Simic M, Vesnaver G, Marianovsky I, Glaser G, Engelberg-Kulka H, Loris R. Energetics of Structural Transitions of the Addiction Antitoxin MazE. J Biol Chem 2005; 280:17397-407. [PMID: 15735309 DOI: 10.1074/jbc.m501128200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli mazEF addiction module plays a crucial role in the cell death program that is triggered under various stress conditions. It codes for the toxin MazF and the antitoxin MazE, which interferes with the lethal action of the toxin. To better understand the role of various conformations of MazE in bacterial life, its order-disorder transitions were monitored by differential scanning calorimetry, spectropolarimetry, and fluorimetry. The changes in spectral and thermodynamic properties accompanying MazE dimer denaturation can be described in terms of a compensating reversible process of the partial folding of the unstructured C-terminal half (high mean net charge, low mean hydrophobicity) and monomerization coupled with the partial unfolding of the structured N-terminal half (low mean net charge, high mean hydrophobicity). At pH<or=4.5 and T<50 degrees C, the unstructured polypeptide chains of the MazE dimer fold into (pre)molten globule-like conformations that thermally stabilize the dimeric form of the protein. The simulation based on the thermodynamic and structural information on various addiction modules suggests that both the conformational adaptability of the dimeric antitoxin form (binding to the toxins and DNA) and the reversible transformation to the more flexible monomeric form are essential for the regulation of bacterial cell life and death.
Collapse
Affiliation(s)
- Jurij Lah
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Askerceva 5, 1000 Ljubljana, Slovenia.
| | | | | | | | | | | | | |
Collapse
|
415
|
Maier TM, Havig A, Casey M, Nano FE, Frank DW, Zahrt TC. Construction and characterization of a highly efficient Francisella shuttle plasmid. Appl Environ Microbiol 2005; 70:7511-9. [PMID: 15574954 PMCID: PMC535190 DOI: 10.1128/aem.70.12.7511-7519.2004] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis is a facultative intracellular pathogen that infects a wide variety of mammals and causes tularemia in humans. It is recognized as a potential agent of bioterrorism due to its low infectious dose and multiple routes of transmission. To date, genetic manipulation in Francisella spp. has been limited due to the inefficiency of DNA transformation, the relative lack of useful selective markers, and the lack of stably replicating plasmids. Therefore, the goal of this study was to develop an enhanced shuttle plasmid that could be utilized for a variety of genetic procedures in both Francisella and Escherichia coli. A hybrid plasmid, pFNLTP1, was isolated that was transformed by electroporation at frequencies of >1 x 10(7) CFU mug of DNA(-1) in F. tularensis LVS, Francisella novicida U112, and E. coli DH5alpha. Furthermore, this plasmid was stably maintained in F. tularensis LVS after passage in the absence of antibiotic selection in vitro and after 3 days of growth in J774A.1 macrophages. Importantly, F. tularensis LVS derivatives carrying pFNLTP1 were unaltered in their growth characteristics in laboratory medium and macrophages compared to wild-type LVS. We also constructed derivatives of pFNLTP1 containing expanded multiple cloning sites or temperature-sensitive mutations that failed to allow plasmid replication in F. tularensis LVS at the nonpermissive temperature. In addition, the utility of pFNLTP1 as a vehicle for gene expression, as well as complementation, was demonstrated. In summary, we describe construction of a Francisella shuttle plasmid that is transformed at high efficiency, is stably maintained, and does not alter the growth of Francisella in macrophages. This new tool should significantly enhance genetic manipulation and characterization of F. tularensis and other Francisella biotypes.
Collapse
Affiliation(s)
- Tamara M Maier
- Department of Microbiology and Molecular Genetics, The Medical College of Wisconsin, 8701 Watertown Plank Rd., P.O. Box 26509, Milwaukee, WI 53226-0509, USA
| | | | | | | | | | | |
Collapse
|
416
|
Zhang Y, Zhang J, Hara H, Kato I, Inouye M. Insights into the mRNA Cleavage Mechanism by MazF, an mRNA Interferase. J Biol Chem 2005; 280:3143-50. [PMID: 15537630 DOI: 10.1074/jbc.m411811200] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MazF is an Escherichia coli toxin that is highly conserved among the prokaryotes and plays an important role in growth regulation. When MazF is induced, protein synthesis is effectively inhibited. However, the mechanism of MazF action has been controversial. Here we unequivocally demonstrate that MazF is an endoribonuclease that specifically cleaves mRNAs at ACA sequences. We then demonstrate its enzymatic specificity using short RNA substrates. MazF cleaves RNA at the 5'-end of ACA sequences, yielding a 2',3'-cyclic phosphate at one side and a free 5'-OH group at the other. Using DNA-RNA chimeric substrates containing XACA, the 2'-OH group of residue X was found absolutely essential for MazF cleavage, whereas all the other residues may be deoxyriboses. Therefore, MazF exhibits exquisite site specificity and has utility as an RNA-restriction enzyme for RNA structural studies or as an mRNA interferase to regulate cell growth in prokaryotic and eukaryotic cells.
Collapse
Affiliation(s)
- Yonglong Zhang
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854 and Takara Bio Inc., Seta 3-4-1, Otsu, Shiga, 520-2193, Japan
| | | | | | | | | |
Collapse
|
417
|
Abstract
This review addresses a long-standing puzzle in the life and death of bacterial populations--the existence of a small fraction of essentially invulnerable cells. Bacterial populations produce persisters, cells that neither grow nor die in the presence of bactericidal agents, and thus exhibit multidrug tolerance (MDT). The mechanism of MDT and the nature of persisters, which were discovered in 1944, have remained elusive. Our research has shown that persisters are largely responsible for the recalcitrance of infections caused by bacterial biofilms. The majority of infections in the developed world are caused by biofilms, which sparked a renewed interest in persisters. We developed a method to isolate persister cells, and obtained a gene expression profile of Escherichia coli persisters. The profile indicated an elevated expression of toxin-antitoxin modules and other genes that can block important cellular functions such as translation. Bactericidal antibiotics kill cells by corrupting the target function, such as translation. For example, aminoglycosides interrupt translation, producing toxic peptides. Inhibition of translation leads to a shutdown of other cellular functions as well, preventing antibiotics from corrupting their targets, which will give rise to tolerant persister cells. Overproduction of chromosomally-encoded "toxins" such as RelE, an inhibitor of translation, or HipA, causes a sharp increase in persisters. Deletion of the hipBA module produces a sharp decrease in persisters in both stationary and biofilm cells. HipA is thus the first validated persister/MDT gene. We conclude that the function of "toxins" is the exact opposite of the term, namely, to protect the cell from lethal damage. It appears that stochastic fluctuations in the levels of MDT proteins lead to formation of rare persister cells. Persisters are essentially altruistic cells that forfeit propagation in order to ensure survival of kin cells in the presence of lethal factors.
Collapse
Affiliation(s)
- K Lewis
- Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
418
|
Keren I, Shah D, Spoering A, Kaldalu N, Lewis K. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 2005; 186:8172-80. [PMID: 15576765 PMCID: PMC532439 DOI: 10.1128/jb.186.24.8172-8180.2004] [Citation(s) in RCA: 623] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bacterial populations produce persisters, cells that neither grow nor die in the presence of bactericidal agents, and thus exhibit multidrug tolerance (MDT). The mechanisms of MDT and the nature of persisters have remained elusive. Our previous research has shown that persisters are largely responsible for the recalcitrance of biofilm infections. A general method for isolating persisters was developed, based on lysis of regular cells by ampicillin. A gene expression profile of persisters contained toxin-antitoxin (TA) modules and other genes that can block important cellular functions such as translation. Bactericidal antibiotics kill cells by corrupting the target function (for example, aminoglycosides interrupt translation, producing toxic peptides). We reasoned that inhibition of translation will lead to a shutdown of cellular functions, preventing antibiotics from corrupting their targets, giving rise to MDT persister cells. Overproduction of the RelE toxin, an inhibitor of translation, caused a sharp increase in persisters. Functional expression of a putative HipA toxin also increased persisters, while deletion of the hipBA module caused a sharp decrease in persisters in both stationary and biofilm populations. HipA is thus the first validated persister-MDT gene. We suggest that random fluctuation in the levels of MDT proteins leads to the formation of rare persister cells. The function of these specialized dormant cells is to ensure the survival of the population in the presence of lethal factors.
Collapse
Affiliation(s)
- Iris Keren
- Department of Biology, Northeastern University, 134 Mugar Hall, 360 Huntington Ave., Boston, MA 02115.
| | | | | | | | | |
Collapse
|
419
|
Amitai S, Yassin Y, Engelberg-Kulka H. MazF-mediated cell death in Escherichia coli: a point of no return. J Bacteriol 2005; 186:8295-300. [PMID: 15576778 PMCID: PMC532418 DOI: 10.1128/jb.186.24.8295-8300.2004] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
mazEF is a stress-induced toxin-antitoxin module, located on the chromosome of Escherichia coli, that we have previously described to be responsible for programmed cell death in E. coli. mazF specifies a stable toxin, and mazE specifies a labile antitoxin. Recently, it was reported that inhibition of translation and cell growth by ectopic overexpression of the toxin MazF can be reversed by the action of the antitoxin MazE ectopically overexpressed at a later time. Based on these results, it was suggested that rather than inducing cell death, mazF induces a state of reversible bacteriostasis (K. Pederson, S. K. Christensen, and K. Gerdes, Mol. Microbiol. 45:501-510, 2002). Using a similar ectopic overexpression system, we show here that overexpression of MazE could reverse MazF lethality only over a short window of time. The size of that window depended on the nature of the medium in which MazF was overexpressed. Thus, we found "a point of no return," which occurred sooner in minimal M9 medium than it did in the rich Luria-Bertani medium. We also describe a state in which the effect of MazF on translation could be separated from its effect on cell death: MazE overproduction could completely reverse the inhibitory effect of MazF on translation, while not affecting the bacteriocidic effect of MazF at all. Our results reported here support our view that the mazEF module mediates cell death and is part of a programmed cell death network.
Collapse
Affiliation(s)
- Shahar Amitai
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | | | | |
Collapse
|
420
|
DeNap JCB, Hergenrother PJ. Bacterial death comes full circle: targeting plasmid replication in drug-resistant bacteria. Org Biomol Chem 2005; 3:959-66. [PMID: 15750634 DOI: 10.1039/b500182j] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is now common for bacterial infections to resist the preferred antibiotic treatment. In particular, hospital-acquired infections that are refractory to multiple antibiotics and ultimately result in death of the patient are prevalent. Many of the bacteria causing these infections have become resistant to antibiotics through the process of lateral gene transfer, with the newly acquired genes encoding a variety of resistance-mediating proteins. These foreign genes often enter the bacteria on plasmids, which are small, circular, extrachromosomal pieces of DNA. This plasmid-encoded resistance has been observed for virtually all classes of antibiotics and in a wide variety of Gram-positive and Gram-negative organisms; many antibiotics are no longer effective due to such plasmid-encoded resistance. The systematic removal of these resistance-mediating plasmids from the bacteria would re-sensitize bacteria to standard antibiotics. As such, plasmids offer novel targets that have heretofore been unexploited clinically. This Perspective details the role of plasmids in multi-drug resistant bacteria, the mechanisms used by plasmids to control their replication, and the potential for small molecules to disrupt plasmid replication and re-sensitize bacteria to antibiotics. An emphasis is placed on plasmid replication that is mediated by small counter-transcript RNAs, and the "plasmid addiction" systems that employ toxins and antitoxins.
Collapse
Affiliation(s)
- Johna C B DeNap
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
421
|
Abstract
Prokaryotes are the major source of biological diversity on earth. This is not simply because of the large number of species present, or because of their diverse growth conditions and environmental niches populated by them, but because of the wealth of genes, metabolic pathways and molecular processes that are only found in prokaryotic cells. Therefore, Bacteria and Archaea (and their phages) cannot be considered any longer as miniaturized models of Eukaryotes, but as a genuine source of unique biological processes that are mediated by unique sets of genes and molecular devices. A true understanding of complex biological phenomena will require a deeper knowledge of this vast prokaryotic world. The second European Molecular Biology Organization (EMBO) conference on Molecular Microbiology entitled 'Exploring Prokaryotic Diversity' explored many aspects of this newly emerging interest in the prokaryotic world.
Collapse
Affiliation(s)
- Luis Angel Fernández
- Centro Nacional de Biotecnología del Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
422
|
Rabus R, Kube M, Heider J, Beck A, Heitmann K, Widdel F, Reinhardt R. The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Arch Microbiol 2004; 183:27-36. [PMID: 15551059 DOI: 10.1007/s00203-004-0742-9] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 10/05/2004] [Accepted: 10/08/2004] [Indexed: 10/26/2022]
Abstract
Recent research on microbial degradation of aromatic and other refractory compounds in anoxic waters and soils has revealed that nitrate-reducing bacteria belonging to the Betaproteobacteria contribute substantially to this process. Here we present the first complete genome of a metabolically versatile representative, strain EbN1, which metabolizes various aromatic compounds, including hydrocarbons. A circular chromosome (4.3 Mb) and two plasmids (0.21 and 0.22 Mb) encode 4603 predicted proteins. Ten anaerobic and four aerobic aromatic degradation pathways were recognized, with the encoding genes mostly forming clusters. The presence of paralogous gene clusters (e.g., for anaerobic phenylacetate oxidation), high sequence similarities to orthologs from other strains (e.g., for anaerobic phenol metabolism) and frequent mobile genetic elements (e.g., more than 200 genes for transposases) suggest high genome plasticity and extensive lateral gene transfer during metabolic evolution of strain EbN1. Metabolic versatility is also reflected by the presence of multiple respiratory complexes. A large number of regulators, including more than 30 two-component and several FNR-type regulators, indicate a finely tuned regulatory network able to respond to the fluctuating availability of organic substrates and electron acceptors in the environment. The absence of genes required for nitrogen fixation and specific interaction with plants separates strain EbN1 ecophysiologically from the closely related nitrogen-fixing plant symbionts of the Azoarcus cluster. Supplementary material on sequence and annotation are provided at the Web page http://www.micro-genomes.mpg.de/ebn1/.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Aerobiosis
- Anaerobiosis
- Azoarcus/genetics
- Bacterial Proteins/genetics
- Betaproteobacteria/classification
- Betaproteobacteria/genetics
- Betaproteobacteria/metabolism
- Biodegradation, Environmental
- Chromosomes, Bacterial/genetics
- DNA, Bacterial/chemistry
- Evolution, Molecular
- Gene Expression Regulation, Bacterial
- Gene Transfer, Horizontal
- Genes, Bacterial
- Genome, Bacterial
- Hydrocarbons, Aromatic/metabolism
- Interspersed Repetitive Sequences
- Molecular Sequence Data
- Multigene Family
- Nitrogen Fixation/genetics
- Open Reading Frames
- Plasmids/genetics
- Sequence Analysis, DNA
- Sequence Homology
Collapse
Affiliation(s)
- Ralf Rabus
- Max Planck Institut für Marine Mikrobiologie, Celsiusstrasse 1, 28359, Bremen, Germany.
| | | | | | | | | | | | | |
Collapse
|
423
|
Weaver KE, Ehli EA, Nelson JS, Patel S. Antisense RNA regulation by stable complex formation in the Enterococcus faecalis plasmid pAD1 par addiction system. J Bacteriol 2004; 186:6400-8. [PMID: 15375120 PMCID: PMC516608 DOI: 10.1128/jb.186.19.6400-6408.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The par stability determinant, encoded by the Enterococcus faecalis plasmid pAD1, is the only antisense RNA regulated postsegregational killing system identified in gram-positive bacteria. Because of the unique organization of the par locus, the par antisense RNA, RNA II, binds to its target, RNA I, at relatively small, interspersed regions of complementarity. The results of this study suggest that, rather than targeting the antisense bound message for rapid degradation, as occurs in most other antisense RNA regulated systems, RNA I and RNA II form a relatively stable, presumably translationally inactive complex. The stability of the RNA I-RNA II complex would allow RNA I to persist in an untranslated state unless or until the encoding plasmid was lost. After plasmid loss, RNA II would be removed from the complex, allowing translational activation of RNA I. The mechanism of RNA I activation in vivo is unknown, but in vitro dissociation experiments suggest that active removal of RNA II, for example by a cellular RNase, may be required.
Collapse
Affiliation(s)
- Keith E Weaver
- Division of Basic Biomedical Sciences, School of Medicine, University of South Dakota, Vermillion, South Dakota 57069, USA.
| | | | | | | |
Collapse
|
424
|
Hazan R, Engelberg-Kulka H. Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1. Mol Genet Genomics 2004; 272:227-34. [PMID: 15316771 DOI: 10.1007/s00438-004-1048-y] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Accepted: 07/20/2004] [Indexed: 01/02/2023]
Abstract
The Escherichia coli gene pair mazEF is a regulatable chromosomal toxin-antitoxin module: mazF encodes a stable toxin and mazE encodes for a labile antitoxin that overcomes the lethal effect of MazF. Because MazE is labile, inhibition of mazE expression results in cell death. We studied the effect of mazEF on the development of bacteriophage P1 upon thermoinduction of the prophage P1CM c1ts and upon infection with virulent phage particles (P1vir). In several E. coli strains, we showed that the Delta mazEF derivative strains produced significantly more phages than did the parent strain. In addition, upon induction of K38(P1CM c1ts), nearly all of the Delta mazEF mutant cells lysed; in contrast, very few of the parental mazEF + K38 cells underwent lysis. However, most of these cells did not remain viable. Thus, while the Delta mazEF cells die as a result of the lytic action of the phage, most of the mazEF+ cells are killed by a different mechanism, apparently through the action of the chromosomal mazEF system itself. Furthermore, the introduction of lysogens into a growing non-lysogenic culture is lethal to Delta mazEF but not for mazEF+ cultures. Thus, although mazEF action causes individual cells to die, upon phage growth this is generally beneficial to the bacterial culture because it causes P1 phage exclusion from the bacterial population. These results provide additional support for the view that bacterial cultures may share some of the characteristics of multicellular organisms.
Collapse
Affiliation(s)
- R Hazan
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | | |
Collapse
|
425
|
Hunt TA, Kooi C, Sokol PA, Valvano MA. Identification of Burkholderia cenocepacia genes required for bacterial survival in vivo. Infect Immun 2004; 72:4010-22. [PMID: 15213146 PMCID: PMC427415 DOI: 10.1128/iai.72.7.4010-4022.2004] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cenocepacia (formerly Burkholderia cepacia complex genomovar III) causes chronic lung infections in patients with cystic fibrosis. In this work, we used a modified signature-tagged mutagenesis (STM) strategy for the isolation of B. cenocepacia mutants that cannot survive in vivo. Thirty-seven specialized plasposons, each carrying a unique oligonucleotide tag signature, were constructed and used to examine the survival of 2,627 B. cenocepacia transposon mutants, arranged in pools of 37 unique mutants, after a 10-day lung infection in rats by using the agar bead model. The recovered mutants were screened by real-time PCR, resulting in the identification of 260 mutants which presumably did not survive within the lungs. These mutants were repooled into smaller pools, and the infections were repeated. After a second screen, we isolated 102 mutants unable to survive in the rat model. The location of the transposon in each of these mutants was mapped within the B. cenocepacia chromosomes. We identified mutations in genes involved in cellular metabolism, global regulation, DNA replication and repair, and those encoding bacterial surface structures, including transmembrane proteins and cell surface polysaccharides. Also, we found 18 genes of unknown function, which are conserved in other bacteria. A subset of 12 representative mutants that were individually examined using the rat model in competition with the wild-type strain displayed reduced survival, confirming the predictive value of our STM screen. This study provides a blueprint to investigate at the molecular level the basis for survival and persistence of B. cenocepacia within the airways.
Collapse
Affiliation(s)
- Tracey A Hunt
- Department of Microbiology and Immunology, Dental Sciences Building, Rm. 3014, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | |
Collapse
|
426
|
|
427
|
Brendler T, Reaves L, Austin S. Interplay between plasmid partition and postsegregational killing systems. J Bacteriol 2004; 186:2504-7. [PMID: 15060057 PMCID: PMC412179 DOI: 10.1128/jb.186.8.2504-2507.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Active partition systems and postsegregational killing (PSK) systems are present together in naturally occurring low-copy-number plasmids. Theory suggests that PSK may act as the ultimate determinant of plasmid retention, whereas the partition system may minimize the growth penalty to the host, resulting in a near-ideal symbiosis when the systems combine. Here, we prove the validity of this principle for a specific case involving the P1par system and the mvp PSK system.
Collapse
Affiliation(s)
- Therese Brendler
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Center for Cancer Research, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702-1201, USA
| | | | | |
Collapse
|
428
|
Strauss B, Kelly K, Dincman T, Ekiert D, Biesieda T, Song R. Cell death in Escherichia coli dnaE(Ts) mutants incubated at a nonpermissive temperature is prevented by mutation in the cydA gene. J Bacteriol 2004; 186:2147-55. [PMID: 15028700 PMCID: PMC374420 DOI: 10.1128/jb.186.7.2147-2155.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells of the Escherichia coli dnaE(Ts) dnaE74 and dnaE486 mutants die after 4 h of incubation at 40 degrees C in Luria-Bertani medium. Cell death is preceded by elongation, is inhibited by chloramphenicol, tetracycline, or rifampin, and is dependent on cell density. Cells survive at 40 degrees C when they are incubated at a high population density or at a low density in conditioned medium, but they die when the medium is supplemented with glucose and amino acids. Deletion of recA or sulA has no effect. We isolated suppressors which survived for long periods at 40 degrees C but did not form colonies. The suppressors protected against hydroxyurea-induced killing. Sequence and complementation analysis indicated that suppression was due to mutation in the cydA gene. The DNA content of dnaE mutants increased about eightfold in 4 h at 40 degrees C, as did the DNA content of the suppressed strains. The amount of plasmid pBR322 in a dnaE74 strain increased about fourfold, as measured on gels, and the electrophoretic pattern appeared to be normal even though the viability of the parent cells decreased 2 logs. Transformation activity also increased. 4',6'-diamidino-2-phenylindole staining demonstrated that there were nucleoids distributed throughout the dnaE filaments formed at 40 degrees C, indicating that there was segregation of the newly formed DNA. We concluded that the DNA synthesized was physiologically competent, particularly since the number of viable cells of the suppressed strain increased during the first few hours of incubation. These observations support the view that E. coli senses the rate of DNA synthesis and inhibits septation when the rate of DNA synthesis falls below a critical level relative to the level of RNA and protein synthesis.
Collapse
Affiliation(s)
- Bernard Strauss
- Center for Molecular Oncology, Department of Molecular Genetics and Cell Biology, Biological Sciences Collegiate Division, The University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | |
Collapse
|
429
|
|