401
|
Regional Conservation Status of Scleractinian Coral Biodiversity in the Republic of the Marshall Islands. DIVERSITY-BASEL 2013. [DOI: 10.3390/d5030522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
402
|
Brown T, Bourne D, Rodriguez-Lanetty M. Transcriptional activation of c3 and hsp70 as part of the immune response of Acropora millepora to bacterial challenges. PLoS One 2013; 8:e67246. [PMID: 23861754 PMCID: PMC3701546 DOI: 10.1371/journal.pone.0067246] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 05/14/2013] [Indexed: 12/16/2022] Open
Abstract
The impact of disease outbreaks on coral physiology represents an increasing concern for the fitness and resilience of reef ecosystems. Predicting the tolerance of corals to disease relies on an understanding of the coral immune response to pathogenic interactions. This study explored the transcriptional response of two putative immune genes (c3 and c-type lectin) and one stress response gene (hsp70) in the reef building coral, Acropora millepora challenged for 48 hours with bacterial strains, Vibrio coralliilyticus and Alteromonas sp. at concentrations of 10(6) cells ml(-1). Coral fragments challenged with V. coralliilyticus appeared healthy while fragments challenged with Alteromonas sp. showed signs of tissue lesions after 48 hr. Coral-associated bacterial community profiles assessed using denaturing gradient gel electrophoresis changed after challenge by both bacterial strains with the Alteromonas sp. treatment demonstrating the greatest community shift. Transcriptional profiles of c3 and hsp70 increased at 24 hours and correlated with disease signs in the Alteromonas sp. treatment. The expression of hsp70 also showed a significant increase in V. coralliilyticus inoculated corals at 24 h suggesting that even in the absence of disease signs, the microbial inoculum activated a stress response in the coral. C-type lectin did not show a response to any of the bacterial treatments. Increase in gene expression of c3 and hsp70 in corals showing signs of disease indicates their potential involvement in immune and stress response to microbial challenges.
Collapse
Affiliation(s)
- Tanya Brown
- Department of Biological Sciences, Florida International University, Miami, Florida, United States of America
| | - David Bourne
- Australia Institute of Marine Sciences, Townsville, Queensland, Australia
| | - Mauricio Rodriguez-Lanetty
- Department of Biological Sciences, Florida International University, Miami, Florida, United States of America
| |
Collapse
|
403
|
Steinacher M, Joos F, Stocker TF. Allowable carbon emissions lowered by multiple climate targets. Nature 2013; 499:197-201. [DOI: 10.1038/nature12269] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 05/03/2013] [Indexed: 11/09/2022]
|
404
|
Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification. Proc Natl Acad Sci U S A 2013; 110:11044-9. [PMID: 23776217 DOI: 10.1073/pnas.1301589110] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As the surface ocean equilibrates with rising atmospheric CO2, the pH of surface seawater is decreasing with potentially negative impacts on coral calcification. A critical question is whether corals will be able to adapt or acclimate to these changes in seawater chemistry. We use high precision CT scanning of skeletal cores of Porites astreoides, an important Caribbean reef-building coral, to show that calcification rates decrease significantly along a natural gradient in pH and aragonite saturation (Ωarag). This decrease is accompanied by an increase in skeletal erosion and predation by boring organisms. The degree of sensitivity to reduced Ωarag measured on our field corals is consistent with that exhibited by the same species in laboratory CO2 manipulation experiments. We conclude that the Porites corals at our field site were not able to acclimatize enough to prevent the impacts of local ocean acidification on their skeletal growth and development, despite spending their entire lifespan in low pH, low Ωarag seawater.
Collapse
|
405
|
Ramos-Silva P, Kaandorp J, Huisman L, Marie B, Zanella-Cléon I, Guichard N, Miller DJ, Marin F. The skeletal proteome of the coral Acropora millepora: the evolution of calcification by co-option and domain shuffling. Mol Biol Evol 2013; 30:2099-112. [PMID: 23765379 PMCID: PMC3748352 DOI: 10.1093/molbev/mst109] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In corals, biocalcification is a major function that may be drastically affected by ocean acidification (OA). Scleractinian corals grow by building up aragonitic exoskeletons that provide support and protection for soft tissues. Although this process has been extensively studied, the molecular basis of biocalcification is poorly understood. Notably lacking is a comprehensive catalog of the skeleton-occluded proteins—the skeletal organic matrix proteins (SOMPs) that are thought to regulate the mineral deposition. Using a combination of proteomics and transcriptomics, we report the first survey of such proteins in the staghorn coral Acropora millepora. The organic matrix (OM) extracted from the coral skeleton was analyzed by mass spectrometry and bioinformatics, enabling the identification of 36 SOMPs. These results provide novel insights into the molecular basis of coral calcification and the macroevolution of metazoan calcifying systems, whereas establishing a platform for studying the impact of OA at molecular level. Besides secreted proteins, extracellular regions of transmembrane proteins are also present, suggesting a close control of aragonite deposition by the calicoblastic epithelium. In addition to the expected SOMPs (Asp/Glu-rich, galaxins), the skeletal repertoire included several proteins containing known extracellular matrix domains. From an evolutionary perspective, the number of coral-specific proteins is low, many SOMPs having counterparts in the noncalcifying cnidarians. Extending the comparison with the skeletal OM proteomes of other metazoans allowed the identification of a pool of functional domains shared between phyla. These data suggest that co-option and domain shuffling may be general mechanisms by which the trait of calcification has evolved.
Collapse
Affiliation(s)
- Paula Ramos-Silva
- UMR 6282 CNRS, Biogéosciences, Université de Bourgogne, Dijon, France
| | | | | | | | | | | | | | | |
Collapse
|
406
|
Ocean acidification reduces growth and calcification in a marine dinoflagellate. PLoS One 2013; 8:e65987. [PMID: 23776586 PMCID: PMC3679017 DOI: 10.1371/journal.pone.0065987] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 04/30/2013] [Indexed: 12/02/2022] Open
Abstract
Ocean acidification is considered a major threat to marine ecosystems and may particularly affect calcifying organisms such as corals, foraminifera and coccolithophores. Here we investigate the impact of elevated pCO2 and lowered pH on growth and calcification in the common calcareous dinoflagellate Thoracosphaera heimii. We observe a substantial reduction in growth rate, calcification and cyst stability of T. heimii under elevated pCO2. Furthermore, transcriptomic analyses reveal CO2 sensitive regulation of many genes, particularly those being associated to inorganic carbon acquisition and calcification. Stable carbon isotope fractionation for organic carbon production increased with increasing pCO2 whereas it decreased for calcification, which suggests interdependence between both processes. We also found a strong effect of pCO2 on the stable oxygen isotopic composition of calcite, in line with earlier observations concerning another T. heimii strain. The observed changes in stable oxygen and carbon isotope composition of T. heimii cysts may provide an ideal tool for reconstructing past seawater carbonate chemistry, and ultimately past pCO2. Although the function of calcification in T. heimii remains unresolved, this trait likely plays an important role in the ecological and evolutionary success of this species. Acting on calcification as well as growth, ocean acidification may therefore impose a great threat for T. heimii.
Collapse
|
407
|
Affiliation(s)
- Lisa M. Campbell
- Nicholas School of the Environment; Duke University; 135 Duke Marine Lab Road Beaufort NC 28516 USA
| | - Noella J. Gray
- Department of Geography; University of Guelph; 50 Stone Road East Guelph ON N1G 2W1 Canada
| | - Luke W. Fairbanks
- Nicholas School of the Environment; Duke University; 135 Duke Marine Lab Road Beaufort NC 28516 USA
| | - Jennifer J. Silver
- Department of Geography; University of Guelph; 50 Stone Road East Guelph ON N1G 2W1 Canada
| | - Rebecca L. Gruby
- Nicholas School of the Environment; Duke University; 135 Duke Marine Lab Road Beaufort NC 28516 USA
| |
Collapse
|
408
|
Medina-Rosas P, Szmant AM, Whitehead RF. CO2enrichment and reduced seawater pH had no effect on the embryonic development ofAcropora palmata(Anthozoa, Scleractinia). INVERTEBR REPROD DEV 2013. [DOI: 10.1080/07924259.2012.704407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
409
|
Weijerman M, Fulton EA, Parrish FA. Comparison of coral reef ecosystems along a fishing pressure gradient. PLoS One 2013; 8:e63797. [PMID: 23737951 PMCID: PMC3667803 DOI: 10.1371/journal.pone.0063797] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 04/05/2013] [Indexed: 11/18/2022] Open
Abstract
Three trophic mass-balance models representing coral reef ecosystems along a fishery gradient were compared to evaluate ecosystem effects of fishing. The majority of the biomass estimates came directly from a large-scale visual survey program; therefore, data were collected in the same way for all three models, enhancing comparability. Model outputs–such as net system production, size structure of the community, total throughput, production, consumption, production-to-respiration ratio, and Finn’s cycling index and mean path length–indicate that the systems around the unpopulated French Frigate Shoals and along the relatively lightly populated Kona Coast of Hawai’i Island are mature, stable systems with a high efficiency in recycling of biomass. In contrast, model results show that the reef system around the most populated island in the State of Hawai’i, O’ahu, is in a transitional state with reduced ecosystem resilience and appears to be shifting to an algal-dominated system. Evaluation of the candidate indicators for fishing pressure showed that indicators at the community level (e.g., total biomass, community size structure, trophic level of the community) were most robust (i.e., showed the clearest trend) and that multiple indicators are necessary to identify fishing perturbations. These indicators could be used as performance indicators when compared to a baseline for management purposes. This study shows that ecosystem models can be valuable tools in identification of the system state in terms of complexity, stability, and resilience and, therefore, can complement biological metrics currently used by monitoring programs as indicators for coral reef status. Moreover, ecosystem models can improve our understanding of a system’s internal structure that can be used to support management in identification of approaches to reverse unfavorable states.
Collapse
Affiliation(s)
- Mariska Weijerman
- Joint Institute for Marine and Atmospheric Research, University of Hawai'i at Manoa, Honolulu, Hawaii, USA.
| | | | | |
Collapse
|
410
|
Pawlik JR, Loh TL, McMurray SE, Finelli CM. Sponge communities on Caribbean coral reefs are structured by factors that are top-down, not bottom-up. PLoS One 2013; 8:e62573. [PMID: 23667492 PMCID: PMC3648561 DOI: 10.1371/journal.pone.0062573] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/22/2013] [Indexed: 11/30/2022] Open
Abstract
Caribbean coral reefs have been transformed in the past few decades with the demise of reef-building corals, and sponges are now the dominant habitat-forming organisms on most reefs. Competing hypotheses propose that sponge communities are controlled primarily by predatory fishes (top-down) or by the availability of picoplankton to suspension-feeding sponges (bottom-up). We tested these hypotheses on Conch Reef, off Key Largo, Florida, by placing sponges inside and outside predator-excluding cages at sites with less and more planktonic food availability (15 m vs. 30 m depth). There was no evidence of a bottom-up effect on the growth of any of 5 sponge species, and 2 of 5 species grew more when caged at the shallow site with lower food abundance. There was, however, a strong effect of predation by fishes on sponge species that lacked chemical defenses. Sponges with chemical defenses grew slower than undefended species, demonstrating a resource trade-off between growth and the production of secondary metabolites. Surveys of the benthic community on Conch Reef similarly did not support a bottom-up effect, with higher sponge cover at the shallower depth. We conclude that the structure of sponge communities on Caribbean coral reefs is primarily top-down, and predict that removal of sponge predators by overfishing will shift communities toward faster-growing, undefended species that better compete for space with threatened reef-building corals.
Collapse
Affiliation(s)
- Joseph R Pawlik
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, North Carolina, United States of America.
| | | | | | | |
Collapse
|
411
|
Kennedy E, Perry C, Halloran P, Iglesias-Prieto R, Schönberg C, Wisshak M, Form A, Carricart-Ganivet J, Fine M, Eakin C, Mumby P. Avoiding Coral Reef Functional Collapse Requires Local and Global Action. Curr Biol 2013; 23:912-8. [DOI: 10.1016/j.cub.2013.04.020] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/28/2013] [Accepted: 04/09/2013] [Indexed: 10/26/2022]
|
412
|
Howells EJ, Berkelmans R, van Oppen MJH, Willis BL, Bay LK. Historical thermal regimes define limits to coral acclimatization. Ecology 2013; 94:1078-88. [DOI: 10.1890/12-1257.1] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
413
|
Garcia GD, Gregoracci GB, Santos EDO, Meirelles PM, Silva GGZ, Edwards R, Sawabe T, Gotoh K, Nakamura S, Iida T, de Moura RL, Thompson FL. Metagenomic analysis of healthy and white plague-affected Mussismilia braziliensis corals. MICROBIAL ECOLOGY 2013; 65:1076-86. [PMID: 23314124 DOI: 10.1007/s00248-012-0161-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/11/2012] [Indexed: 05/20/2023]
Abstract
Coral health is under threat throughout the world due to regional and global stressors. White plague disease (WP) is one of the most important threats affecting the major reef builder of the Abrolhos Bank in Brazil, the endemic coral Mussismilia braziliensis. We performed a metagenomic analysis of healthy and WP-affected M. braziliensis in order to determine the types of microbes associated with this coral species. We also optimized a protocol for DNA extraction from coral tissues. Our taxonomic analysis revealed Proteobacteria, Bacteroidetes, Firmicutes, Cyanobacteria, and Actinomycetes as the main groups in all healthy and WP-affected corals. Vibrionales, members of the Cytophaga-Flavobacterium-Bacteroides complex, Rickettsiales, and Neisseriales were more abundant in the WP-affected corals. Diseased corals also had more eukaryotic metagenomic sequences identified as Alveolata and Apicomplexa. Our results suggest that WP disease in M. braziliensis is caused by a polymicrobial consortium.
Collapse
Affiliation(s)
- Gizele D Garcia
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
414
|
Huang D, Roy K. Anthropogenic extinction threats and future loss of evolutionary history in reef corals. Ecol Evol 2013; 3:1184-93. [PMID: 23762506 PMCID: PMC3678474 DOI: 10.1002/ece3.527] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 02/08/2013] [Accepted: 02/14/2013] [Indexed: 11/11/2022] Open
Abstract
Extinction always results in loss of phylogenetic diversity (PD), but phylogenetically selective extinctions have long been thought to disproportionately reduce PD. Recent simulations show that tree shapes also play an important role in determining the magnitude of PD loss, potentially offsetting the effects of clustered extinctions. While patterns of PD loss under different extinction scenarios are becoming well characterized in model phylogenies, analyses of real clades that often have unbalanced tree shapes remain scarce, particularly for marine organisms. Here, we use a fossil-calibrated phylogeny of all living scleractinian reef corals in conjunction with IUCN data on extinction vulnerabilities to quantify how loss of species in different threat categories will affect the PD of this group. Our analyses reveal that predicted PD loss in corals varies substantially among different threats, with extinctions due to bleaching and disease having the largest negative effects on PD. In general, more phylogenetically clustered extinctions lead to larger losses of PD in corals, but there are notable exceptions; extinction of rare corals from distantly-related old and unique lineages can also result in substantial PD loss. Thus our results show that loss of PD in reef corals is dependent on both tree shape and the nature of extinction threats.
Collapse
Affiliation(s)
- Danwei Huang
- Department of Biological Sciences, National University of SingaporeSingapore, 117543
- Scripps Institution of Oceanography, University of California San DiegoLa Jolla, California, 92093
| | - Kaustuv Roy
- Section of Ecology, Behavior and Evolution, University of California San DiegoLa Jolla, California, 92093
| |
Collapse
|
415
|
Affiliation(s)
- Beth Polidoro
- IUCN Species Survival Commission, Gland, Switzerland.
| | | |
Collapse
|
416
|
Granados-Cifuentes C, Bellantuono AJ, Ridgway T, Hoegh-Guldberg O, Rodriguez-Lanetty M. High natural gene expression variation in the reef-building coral Acropora millepora: potential for acclimative and adaptive plasticity. BMC Genomics 2013; 14:228. [PMID: 23565725 PMCID: PMC3630057 DOI: 10.1186/1471-2164-14-228] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 02/27/2013] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Ecosystems worldwide are suffering the consequences of anthropogenic impact. The diverse ecosystem of coral reefs, for example, are globally threatened by increases in sea surface temperatures due to global warming. Studies to date have focused on determining genetic diversity, the sequence variability of genes in a species, as a proxy to estimate and predict the potential adaptive response of coral populations to environmental changes linked to climate changes. However, the examination of natural gene expression variation has received less attention. This variation has been implicated as an important factor in evolutionary processes, upon which natural selection can act. RESULTS We acclimatized coral nubbins from six colonies of the reef-building coral Acropora millepora to a common garden in Heron Island (Great Barrier Reef, GBR) for a period of four weeks to remove any site-specific environmental effects on the physiology of the coral nubbins. By using a cDNA microarray platform, we detected a high level of gene expression variation, with 17% (488) of the unigenes differentially expressed across coral nubbins of the six colonies (jsFDR-corrected, p < 0.01). Among the main categories of biological processes found differentially expressed were transport, translation, response to stimulus, oxidation-reduction processes, and apoptosis. We found that the transcriptional profiles did not correspond to the genotype of the colony characterized using either an intron of the carbonic anhydrase gene or microsatellite loci markers. CONCLUSION Our results provide evidence of the high inter-colony variation in A. millepora at the transcriptomic level grown under a common garden and without a correspondence with genotypic identity. This finding brings to our attention the importance of taking into account natural variation between reef corals when assessing experimental gene expression differences. The high transcriptional variation detected in this study is interpreted and discussed within the context of adaptive potential and phenotypic plasticity of reef corals. Whether this variation will allow coral reefs to survive to current challenges remains unknown.
Collapse
Affiliation(s)
- Camila Granados-Cifuentes
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Anthony J Bellantuono
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Tyrone Ridgway
- Oceanica Consulting Pty Ltd, PO Box 462, Wembley, WA, 6913, Australia
- The Oceans Institute, University of Western Australia, Crawley, WA, 6009, Australia
| | - Ove Hoegh-Guldberg
- ARC Centre of Excellence for Coral Reef Studies and Coral Genomics Group, School of Pharmacy and Molecular Sciences, James Cook University, Townsville, QLD, Australia
- Global Change Institute, The University of Queensland, St Lucia, QLD, Australia
| | | |
Collapse
|
417
|
Bertucci A, Moya A, Tambutté S, Allemand D, Supuran CT, Zoccola D. Carbonic anhydrases in anthozoan corals—A review. Bioorg Med Chem 2013. [DOI: 10.1016/j.bmc.2012.10.024] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
418
|
Impacts of ocean acidification on marine seafood. Trends Ecol Evol 2013; 28:178-86. [DOI: 10.1016/j.tree.2012.10.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
|
419
|
Abstract
Irrefutable evidence of coral reef degradation worldwide and increasing pressure from rising seawater temperatures and ocean acidification associated with climate change have led to a focus on reef resilience and a call to “manage” coral reefs for resilience. Ideally, global action to reduce emission of carbon dioxide and other greenhouse gases will be accompanied by local action. Effective management requires reduction of local stressors, identification of the characteristics of resilient reefs, and design of marine protected area networks that include potentially resilient reefs. Future research is needed on how stressors interact, on how climate change will affect corals, fish, and other reef organisms as well as overall biodiversity, and on basic ecological processes such as connectivity. Not all reef species and reefs will respond similarly to local and global stressors. Because reef-building corals and other organisms have some potential to adapt to environmental changes, coral reefs will likely persist in spite of the unprecedented combination of stressors currently affecting them. The biodiversity of coral reefs is the basis for their remarkable beauty and for the benefits they provide to society. The extraordinary complexity of these ecosystems makes it both more difficult to predict their future and more likely they will have a future.
Collapse
Affiliation(s)
- Caroline S. Rogers
- US Geological Survey, Southeast Ecological Science Center, Caribbean Field Station, St. John, VI 00830, USA
| |
Collapse
|
420
|
Albright R, Mason B. Projected near-future levels of temperature and pCO2 reduce coral fertilization success. PLoS One 2013; 8:e56468. [PMID: 23457572 PMCID: PMC3572969 DOI: 10.1371/journal.pone.0056468] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/13/2013] [Indexed: 11/23/2022] Open
Abstract
Increases in atmospheric carbon dioxide (pCO2) are projected to contribute to a 1.1–6.4°C rise in global average surface temperatures and a 0.14–0.35 reduction in the average pH of the global surface ocean by 2100. If realized, these changes are expected to have negative consequences for reef-building corals including increased frequency and severity of coral bleaching and reduced rates of calcification and reef accretion. Much less is known regarding the independent and combined effects of temperature and pCO2 on critical early life history processes such as fertilization. Here we show that increases in temperature (+3°C) and pCO2 (+400 µatm) projected for this century negatively impact fertilization success of a common Indo-Pacific coral species, Acropora tenuis. While maximum fertilization did not differ among treatments, the sperm concentration required to obtain 50% of maximum fertilization increased 6- to 8- fold with the addition of a single factor (temperature or CO2) and nearly 50- fold when both factors interact. Our results indicate that near-future changes in temperature and pCO2 narrow the range of sperm concentrations that are capable of yielding high fertilization success in A. tenuis. Increased sperm limitation, in conjunction with adult population decline, may have severe consequences for coral reproductive success. Impaired sexual reproduction will further challenge corals by inhibiting population recovery and adaptation potential.
Collapse
Affiliation(s)
- Rebecca Albright
- Climate Change and Ocean Acidification, Australian Institute of Marine Science, Townsville, Queensland, Australia.
| | | |
Collapse
|
421
|
Langer MR, Weinmann AE, Lötters S, Bernhard JM, Rödder D. Climate-driven range extension of Amphistegina (protista, foraminiferida): models of current and predicted future ranges. PLoS One 2013; 8:e54443. [PMID: 23405081 PMCID: PMC3566174 DOI: 10.1371/journal.pone.0054443] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 12/11/2012] [Indexed: 12/03/2022] Open
Abstract
Species-range expansions are a predicted and realized consequence of global climate change. Climate warming and the poleward widening of the tropical belt have induced range shifts in a variety of marine and terrestrial species. Range expansions may have broad implications on native biota and ecosystem functioning as shifting species may perturb recipient communities. Larger symbiont-bearing foraminifera constitute ubiquitous and prominent components of shallow water ecosystems, and range shifts of these important protists are likely to trigger changes in ecosystem functioning. We have used historical and newly acquired occurrence records to compute current range shifts of Amphistegina spp., a larger symbiont-bearing foraminifera, along the eastern coastline of Africa and compare them to analogous range shifts currently observed in the Mediterranean Sea. The study provides new evidence that amphisteginid foraminifera are rapidly progressing southwestward, closely approaching Port Edward (South Africa) at 31°S. To project future species distributions, we applied a species distribution model (SDM) based on ecological niche constraints of current distribution ranges. Our model indicates that further warming is likely to cause a continued range extension, and predicts dispersal along nearly the entire southeastern coast of Africa. The average rates of amphisteginid range shift were computed between 8 and 2.7 km year−1, and are projected to lead to a total southward range expansion of 267 km, or 2.4° latitude, in the year 2100. Our results corroborate findings from the fossil record that some larger symbiont-bearing foraminifera cope well with rising water temperatures and are beneficiaries of global climate change.
Collapse
Affiliation(s)
- Martin R Langer
- Steinmann Institut für Geologie, Mineralogie und Paläontologie, Rheinische Friedrich-Wilhelms Universität, Bonn, Germany.
| | | | | | | | | |
Collapse
|
422
|
Nikinmaa M. Climate change and ocean acidification-interactions with aquatic toxicology. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 126:365-72. [PMID: 23063067 DOI: 10.1016/j.aquatox.2012.09.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/12/2012] [Accepted: 09/12/2012] [Indexed: 05/16/2023]
Abstract
The possibilities for interactions between toxicants and ocean acidification are reviewed from two angles. First, it is considered how toxicant responses may affect ocean acidification by influencing the carbon dioxide balance. Second, it is introduced, how the possible changes in environmental conditions (temperature, pH and oxygenation), expected to be associated with climate change and ocean acidification, may interact with the toxicant responses of organisms, especially fish. One significant weakness in available data is that toxicological research has seldom been connected with ecological and physiological/biochemical research evaluating the responses of organisms to temperature, pH or oxygenation changes occurring in the natural environment. As a result, although there are significant potential interactions between toxicants and natural environmental responses pertaining to climate change and ocean acidification, it is very poorly known if such interactions actually occur, and can be behind the observed disturbances in the function and distribution of organisms in our seas.
Collapse
|
423
|
Denis V, Mezaki T, Tanaka K, Kuo CY, De Palmas S, Keshavmurthy S, Chen CA. Coverage, diversity, and functionality of a high-latitude coral community (Tatsukushi, Shikoku Island, Japan). PLoS One 2013; 8:e54330. [PMID: 23342135 PMCID: PMC3544760 DOI: 10.1371/journal.pone.0054330] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 12/11/2012] [Indexed: 12/02/2022] Open
Abstract
Background Seawater temperature is the main factor restricting shallow-water zooxanthellate coral reefs to low latitudes. As temperatures increase, coral species and perhaps reefs may move into higher-latitude waters, increasing the chances of coral reef ecosystems surviving despite global warming. However, there is a growing need to understand the structure of these high-latitude coral communities in order to analyze their future dynamics and to detect any potential changes. Methodology/Principal Findings The high-latitude (32.75°N) community surveyed was located at Tatsukushi, Shikoku Island, Japan. Coral cover was 60±2% and was composed of 73 scleractinian species partitioned into 7 functional groups. Although only 6% of species belonged to the ‘plate-like’ functional group, it was the major contributor to species coverage. This was explained by the dominance of plate-like species such as Acropora hyacinthus and A. solitaryensis. Comparison with historical data suggests a relatively recent colonization/development of A. hyacinthus in this region and a potential increase in coral diversity over the last century. Low coverage of macroalgae (2% of the benthic cover) contrasted with the low abundance of herbivorous fishes, but may be reasonably explained by the high density of sea urchins (12.9±3.3 individuals m−2). Conclusions/Significance The structure and composition of this benthic community are relatively remarkable for a site where winter temperature can durably fall below the accepted limit for coral reef development. Despite limited functionalities and functional redundancy, the current benthic structure might provide a base upon which a reef could eventually develop, as characterized by opportunistic and pioneer frame-building species. In addition to increasing seawater temperatures, on-going management actions and sea urchin density might also explain the observed state of this community. A focus on such ‘marginal’ communities should be a priority, as they can provide important insights into how tropical corals might cope with environmental changes.
Collapse
Affiliation(s)
- Vianney Denis
- Biodiversity Research Center, Academia Sinica, Nangang, Taipei, Taiwan
| | - Takuma Mezaki
- Kuroshio Biological Research Foundation, Nishidomari, Otsuki-cho, Kochi, Japan
| | - Kouki Tanaka
- Kuroshio Biological Research Foundation, Nishidomari, Otsuki-cho, Kochi, Japan
| | - Chao-Yang Kuo
- Biodiversity Research Center, Academia Sinica, Nangang, Taipei, Taiwan
| | | | | | - Chaolun Allen Chen
- Biodiversity Research Center, Academia Sinica, Nangang, Taipei, Taiwan
- Taiwan International Graduate Program-Biodiversity, Academia Sinica, Nangang, Taipei, Taiwan
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
424
|
Abstract
Recent advances in DNA-sequencing technologies now allow for in-depth characterization of the genomic stress responses of many organisms beyond model taxa. They are especially appropriate for organisms such as reef-building corals, for which dramatic declines in abundance are expected to worsen as anthropogenic climate change intensifies. Different corals differ substantially in physiological resilience to environmental stress, but the molecular mechanisms behind enhanced coral resilience remain unclear. Here, we compare transcriptome-wide gene expression (via RNA-Seq using Illumina sequencing) among conspecific thermally sensitive and thermally resilient corals to identify the molecular pathways contributing to coral resilience. Under simulated bleaching stress, sensitive and resilient corals change expression of hundreds of genes, but the resilient corals had higher expression under control conditions across 60 of these genes. These "frontloaded" transcripts were less up-regulated in resilient corals during heat stress and included thermal tolerance genes such as heat shock proteins and antioxidant enzymes, as well as a broad array of genes involved in apoptosis regulation, tumor suppression, innate immune response, and cell adhesion. We propose that constitutive frontloading enables an individual to maintain physiological resilience during frequently encountered environmental stress, an idea that has strong parallels in model systems such as yeast. Our study provides broad insight into the fundamental cellular processes responsible for enhanced stress tolerances that may enable some organisms to better persist into the future in an era of global climate change.
Collapse
|
425
|
Bernhardt JR, Leslie HM. Resilience to climate change in coastal marine ecosystems. ANNUAL REVIEW OF MARINE SCIENCE 2013; 5:371-92. [PMID: 22809195 DOI: 10.1146/annurev-marine-121211-172411] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ecological resilience to climate change is a combination of resistance to increasingly frequent and severe disturbances, capacity for recovery and self-organization, and ability to adapt to new conditions. Here, we focus on three broad categories of ecological properties that underlie resilience: diversity, connectivity, and adaptive capacity. Diversity increases the variety of responses to disturbance and the likelihood that species can compensate for one another. Connectivity among species, populations, and ecosystems enhances capacity for recovery by providing sources of propagules, nutrients, and biological legacies. Adaptive capacity includes a combination of phenotypic plasticity, species range shifts, and microevolution. We discuss empirical evidence for how these ecological and evolutionary mechanisms contribute to the resilience of coastal marine ecosystems following climate change-related disturbances, and how resource managers can apply this information to sustain these systems and the ecosystem services they provide.
Collapse
Affiliation(s)
- Joanna R Bernhardt
- Department of Ecology and Evolutionary Biology, Brown University, RI, USA.
| | | |
Collapse
|
426
|
The Status of Coral Reef Fish Assemblages in the Chagos Archipelago, with Implications for Protected Area Management and Climate Change. CORAL REEFS OF THE WORLD 2013. [DOI: 10.1007/978-94-007-5965-7_19] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
427
|
Andersson AJ, Gledhill D. Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. ANNUAL REVIEW OF MARINE SCIENCE 2013; 5:321-48. [PMID: 22881351 DOI: 10.1146/annurev-marine-121211-172241] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The persistence of carbonate structures on coral reefs is essential in providing habitats for a large number of species and maintaining the extraordinary biodiversity associated with these ecosystems. As a consequence of ocean acidification (OA), the ability of marine calcifiers to produce calcium carbonate (CaCO(3)) and their rate of CaCO(3) production could decrease while rates of bioerosion and CaCO(3) dissolution could increase, resulting in a transition from a condition of net accretion to one of net erosion. This would have negative consequences for the role and function of coral reefs and the eco-services they provide to dependent human communities. In this article, we review estimates of bioerosion, CaCO(3) dissolution, and net ecosystem calcification (NEC) and how these processes will change in response to OA. Furthermore, we critically evaluate the observed relationships between NEC and seawater aragonite saturation state (Ω(a)). Finally, we propose that standardized NEC rates combined with observed changes in the ratios of dissolved inorganic carbon to total alkalinity owing to net reef metabolism may provide a biogeochemical tool to monitor the effects of OA in coral reef environments.
Collapse
Affiliation(s)
- Andreas J Andersson
- Scripps Institution of Oceanography, University of California, La Jolla, CA, USA.
| | | |
Collapse
|
428
|
Evans LS, Hicks CC, Fidelman P, Tobin RC, Perry AL. Future Scenarios as a Research Tool: Investigating Climate Change Impacts, Adaptation Options and Outcomes for the Great Barrier Reef, Australia. HUMAN ECOLOGY: AN INTERDISCIPLINARY JOURNAL 2013; 41:841-857. [PMID: 24347800 PMCID: PMC3859889 DOI: 10.1007/s10745-013-9601-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Climate change is a significant future driver of change in coastal social-ecological systems. Our knowledge of impacts, adaptation options, and possible outcomes for marine environments and coastal industries is expanding, but remains limited and uncertain. Alternative scenarios are a way to explore potential futures under a range of conditions. We developed four alternative future scenarios for the Great Barrier Reef and its fishing and tourism industries positing moderate and more extreme (2-3 °C above pre-industrial temperatures) warming for 2050 and contrasting 'limited' and 'ideal' ecological and social adaptation. We presented these scenarios to representatives of key stakeholder groups to assess the perceived viability of different social adaptation options to deliver desirable outcomes under varied contexts.
Collapse
Affiliation(s)
- Louisa S. Evans
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Christina C. Hicks
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- School of Business, James Cook University, Queensland, Australia
| | - Pedro Fidelman
- Sustainability Research Centre, University of the Sunshine Coast, Queensland, Australia
| | - Renae C. Tobin
- Centre for Sustainable Tropical Fisheries and Aquaculture, School of Earth of Environmental Sciences, James Cook University, Townsville, Queensland, Australia
| | | |
Collapse
|
429
|
Chan NCS, Connolly SR. Sensitivity of coral calcification to ocean acidification: a meta-analysis. GLOBAL CHANGE BIOLOGY 2013; 19:282-90. [PMID: 23504739 DOI: 10.1111/gcb.12011] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/06/2012] [Accepted: 08/08/2012] [Indexed: 05/11/2023]
Abstract
To date, meta-analyses of effects of acidification have focused on the overall strength of evidence for statistically significant responses; however, to anticipate likely consequences of ocean acidification, quantitative estimates of the magnitude of likely responses are also needed. Herein, we use random effects meta-analysis to produce a systematically integrated measure of the distribution of magnitudes of the response of coral calcification to decreasing ΩArag . We also tested whether methodological and biological factors that have been hypothesized to drive variation in response magnitude explain a significant proportion of the among-study variation. We found that the overall mean response of coral calcification is ~15% per unit decrease in ΩArag over the range 2 < ΩArag < 4. Among-study variation is large (standard deviation of 8% per unit decrease in ΩArag ). Neither differences in carbonate chemistry manipulation method, study duration, irradiance level, nor study species growth rate explained a significant proportion of the among-study variation. However, studies employing buoyant weighting found significantly smaller decreases in calcification per unit ΩArag (~10%), compared with studies using the alkalinity anomaly technique (~25%). These differences may be due to the greater tendency for the former to integrate over light and dark calcification. If the existing body of experimental work is indeed representative of likely responses of corals in nature, our results imply that, under business as usual conditions, declines in coral calcification by end-of-century will be ~22%, on average, or ~15% if only studies integrating light and dark calcification are considered. These values are near the low end of published projections, but support the emerging view that variability due to local environmental conditions and species composition is likely to be substantial.
Collapse
Affiliation(s)
- Neil C S Chan
- School of Marine and Tropical Biology, James Cook University, Townsville, Qld, 4811, Australia.
| | | |
Collapse
|
430
|
Impact of seawater acidification on pH at the tissue-skeleton interface and calcification in reef corals. Proc Natl Acad Sci U S A 2012; 110:1634-9. [PMID: 23277567 DOI: 10.1073/pnas.1216153110] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insight into the response of reef corals and other major marine calcifiers to ocean acidification is limited by a lack of knowledge about how seawater pH and carbonate chemistry impact the physiological processes that drive biomineralization. Ocean acidification is proposed to reduce calcification rates in corals by causing declines in internal pH at the calcifying tissue-skeleton interface where biomineralization takes place. Here, we performed an in vivo study on how partial-pressure CO(2)-driven seawater acidification impacts intracellular pH in coral calcifying cells and extracellular pH in the fluid at the tissue-skeleton interface [subcalicoblastic medium (SCM)] in the coral Stylophora pistillata. We also measured calcification in corals grown under the same conditions of seawater acidification by measuring lateral growth of colonies and growth of aragonite crystals under the calcifying tissue. Our findings confirm that seawater acidification decreases pH of the SCM, but this decrease is gradual relative to the surrounding seawater, leading to an increasing pH gradient between the SCM and seawater. Reductions in calcification rate, both at the level of crystals and whole colonies, were only observed in our lowest pH treatment when pH was significantly depressed in the calcifying cells in addition to the SCM. Overall, our findings suggest that reef corals may mitigate the effects of seawater acidification by regulating pH in the SCM, but they also highlight the role of calcifying cell pH homeostasis in determining the response of reef corals to changes in external seawater pH and carbonate chemistry.
Collapse
|
431
|
Simister R, Taylor MW, Tsai P, Webster N. Sponge-microbe associations survive high nutrients and temperatures. PLoS One 2012; 7:e52220. [PMID: 23284943 PMCID: PMC3527390 DOI: 10.1371/journal.pone.0052220] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/12/2012] [Indexed: 11/18/2022] Open
Abstract
Coral reefs are under considerable pressure from global stressors such as elevated sea surface temperature and ocean acidification, as well as local factors including eutrophication and poor water quality. Marine sponges are diverse, abundant and ecologically important components of coral reefs in both coastal and offshore environments. Due to their exceptionally high filtration rates, sponges also form a crucial coupling point between benthic and pelagic habitats. Sponges harbor extensive microbial communities, with many microbial phylotypes found exclusively in sponges and thought to contribute to the health and survival of their hosts. Manipulative experiments were undertaken to ascertain the impact of elevated nutrients and seawater temperature on health and microbial community dynamics in the Great Barrier Reef sponge Rhopaloeides odorabile. R. odorabile exposed to elevated nutrient levels including 10 µmol/L total nitrogen at 31°C appeared visually similar to those maintained under ambient seawater conditions after 7 days. The symbiotic microbial community, analyzed by 16S rRNA gene pyrotag sequencing, was highly conserved for the duration of the experiment at both phylum and operational taxonomic unit (OTU) (97% sequence similarity) levels with 19 bacterial phyla and 1743 OTUs identified across all samples. Additionally, elevated nutrients and temperatures did not alter the archaeal associations in R. odorabile, with sequencing of 16S rRNA gene libraries revealing similar Thaumarchaeota diversity and denaturing gradient gel electrophoresis (DGGE) revealing consistent amoA gene patterns, across all experimental treatments. A conserved eukaryotic community was also identified across all nutrient and temperature treatments by DGGE. The highly stable microbial associations indicate that R. odorabile symbionts are capable of withstanding short-term exposure to elevated nutrient concentrations and sub-lethal temperatures.
Collapse
Affiliation(s)
- Rachel Simister
- Centre for Microbial Innovation, The University of Auckland, Auckland, New Zealand
| | - Michael W. Taylor
- Centre for Microbial Innovation, The University of Auckland, Auckland, New Zealand
| | - Peter Tsai
- Bioinformatics Institute, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Nicole Webster
- Australian Institute of Marine Science, Townsville Mail Centre, Qld 4810, Australia
- * E-mail:
| |
Collapse
|
432
|
Comeau S, Carpenter RC, Edmunds PJ. Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate. Proc Biol Sci 2012; 280:20122374. [PMID: 23256193 DOI: 10.1098/rspb.2012.2374] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Central to evaluating the effects of ocean acidification (OA) on coral reefs is understanding how calcification is affected by the dissolution of CO(2) in sea water, which causes declines in carbonate ion concentration [CO(3)(2-)] and increases in bicarbonate ion concentration [HCO(3)(-)]. To address this topic, we manipulated [CO(3)(2-)] and [HCO(3)(-)] to test the effects on calcification of the coral Porites rus and the alga Hydrolithon onkodes, measured from the start to the end of a 15-day incubation, as well as in the day and night. [CO(3)(2-)] played a significant role in light and dark calcification of P. rus, whereas [HCO(3)(-)] mainly affected calcification in the light. Both [CO(3)(2-)] and [HCO(3)(-)] had a significant effect on the calcification of H. onkodes, but the strongest relationship was found with [CO(3)(2-)]. Our results show that the negative effect of declining [CO(3)(2-)] on the calcification of corals and algae can be partly mitigated by the use of HCO(3)(-) for calcification and perhaps photosynthesis. These results add empirical support to two conceptual models that can form a template for further research to account for the calcification response of corals and crustose coralline algae to OA.
Collapse
Affiliation(s)
- S Comeau
- Department of Biology, California State University, 18111 Nordhoff Street, Northridge, CA 91330-8303, USA.
| | | | | |
Collapse
|
433
|
Bellantuono AJ, Granados-Cifuentes C, Miller DJ, Hoegh-Guldberg O, Rodriguez-Lanetty M. Coral thermal tolerance: tuning gene expression to resist thermal stress. PLoS One 2012; 7:e50685. [PMID: 23226355 PMCID: PMC3511300 DOI: 10.1371/journal.pone.0050685] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/26/2012] [Indexed: 11/18/2022] Open
Abstract
The acclimatization capacity of corals is a critical consideration in the persistence of coral reefs under stresses imposed by global climate change. The stress history of corals plays a role in subsequent response to heat stress, but the transcriptomic changes associated with these plastic changes have not been previously explored. In order to identify host transcriptomic changes associated with acquired thermal tolerance in the scleractinian coral Acropora millepora, corals preconditioned to a sub-lethal temperature of 3°C below bleaching threshold temperature were compared to both non-preconditioned corals and untreated controls using a cDNA microarray platform. After eight days of hyperthermal challenge, conditions under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant) maintained Symbiodinium density, a clear differentiation in the transcriptional profiles was revealed among the condition examined. Among these changes, nine differentially expressed genes separated preconditioned corals from non-preconditioned corals, with 42 genes differentially expressed between control and preconditioned treatments, and 70 genes between non-preconditioned corals and controls. Differentially expressed genes included components of an apoptotic signaling cascade, which suggest the inhibition of apoptosis in preconditioned corals. Additionally, lectins and genes involved in response to oxidative stress were also detected. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments; that is, differences in expression magnitude were more apparent than differences in the identity of genes differentially expressed. Our work revealed a transcriptomic signature underlying the tolerance associated with coral thermal history, and suggests that understanding the molecular mechanisms behind physiological acclimatization would be critical for the modeling of reefs in impending climate change scenarios.
Collapse
Affiliation(s)
- Anthony J Bellantuono
- Department of Biological Sciences, Florida International University, Miami, Florida, United States of America
| | | | | | | | | |
Collapse
|
434
|
Yasuhara M, Hunt G, Breitburg D, Tsujimoto A, Katsuki K. Human-induced marine ecological degradation: micropaleontological perspectives. Ecol Evol 2012; 2:3242-68. [PMID: 23301187 PMCID: PMC3539015 DOI: 10.1002/ece3.425] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 10/08/2012] [Accepted: 10/13/2012] [Indexed: 11/11/2022] Open
Abstract
We analyzed published downcore microfossil records from 150 studies and reinterpreted them from an ecological degradation perspective to address the following critical but still imperfectly answered questions: (1) How is the timing of human-induced degradation of marine ecosystems different among regions? (2) What are the dominant causes of human-induced marine ecological degradation? (3) How can we better document natural variability and thereby avoid the problem of shifting baselines of comparison as degradation progresses over time? The results indicated that: (1) ecological degradation in marine systems began significantly earlier in Europe and North America (∼1800s) compared with Asia (post-1900) due to earlier industrialization in European and North American countries, (2) ecological degradation accelerated globally in the late 20th century due to post-World War II economic growth, (3) recovery from the degraded state in late 20th century following various restoration efforts and environmental regulations occurred only in limited localities. Although complex in detail, typical signs of ecological degradation were diversity decline, dramatic changes in total abundance, decrease in benthic and/or sensitive species, and increase in planktic, resistant, toxic, and/or introduced species. The predominant cause of degradation detected in these microfossil records was nutrient enrichment and the resulting symptoms of eutrophication, including hypoxia. Other causes also played considerable roles in some areas, including severe metal pollution around mining sites, water acidification by acidic wastewater, and salinity changes from construction of causeways, dikes, and channels, deforestation, and land clearance. Microfossils enable reconstruction of the ecological history of the past 10(2)-10(3) years or even more, and, in conjunction with statistical modeling approaches using independent proxy records of climate and human-induced environmental changes, future research will enable workers to better address Shifting Baseline Syndrome and separate anthropogenic impacts from background natural variability.
Collapse
Affiliation(s)
- Moriaki Yasuhara
- School of Biological Sciences, University of Hong Kong Hong Kong SAR, China ; Swire Institute of Marine Science, University of Hong Kong Hong Kong SAR, China ; Department of Earth Sciences, University of Hong Kong Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
435
|
Hawkins TD, Davy SK. Nitric oxide production and tolerance differ among Symbiodinium types exposed to heat stress. PLANT & CELL PHYSIOLOGY 2012; 53:1889-1898. [PMID: 22992385 DOI: 10.1093/pcp/pcs127] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Nitric oxide (NO) is a ubiquitous molecule and its involvement in metazoan-microbe symbiosis is well known. Evidence suggests that it plays a role in the temperature-induced breakdown ('bleaching') of the ecologically important cnidarian-dinoflagellate association, and this can often lead to widespread mortality of affected hosts. This study confirms that dinoflagellates of the genus Symbiodinium can produce NO and that production of the compound is differentially regulated in different types when exposed to elevated temperature. Temperature-sensitive type B1 cells under heat stress (8°C above ambient) exhibited significant increases in NO synthesis, which occurred alongside pronounced photoinhibition and cell mortality. Tolerant type A1 cells also displayed increases in NO production, yet maintained photosynthetic yields at levels similar to those of untreated cells and displayed less dramatic increases in cell death. Type C1 cells displayed a down-regulation of NO synthesis at high temperature, and no significant mortality increases were observed in this type. Temperature-induced mortality in types A1 and B1 was affected by the prevailing level of NO and, furthermore, photosynthetic yields of these temperature-tolerant and -sensitive types appeared differentially susceptible to NO donated by pharmacological agents. Taken together, these differences in NO synthesis and tolerance could potentially influence the varying bleaching responses seen among hosts harboring different Symbiodinium types.
Collapse
Affiliation(s)
- Thomas D Hawkins
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | | |
Collapse
|
436
|
Cahill AE, Aiello-Lammens ME, Fisher-Reid MC, Hua X, Karanewsky CJ, Ryu HY, Sbeglia GC, Spagnolo F, Waldron JB, Warsi O, Wiens JJ. How does climate change cause extinction? Proc Biol Sci 2012; 280:20121890. [PMID: 23075836 DOI: 10.1098/rspb.2012.1890] [Citation(s) in RCA: 385] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Anthropogenic climate change is predicted to be a major cause of species extinctions in the next 100 years. But what will actually cause these extinctions? For example, will it be limited physiological tolerance to high temperatures, changing biotic interactions or other factors? Here, we systematically review the proximate causes of climate-change related extinctions and their empirical support. We find 136 case studies of climatic impacts that are potentially relevant to this topic. However, only seven identified proximate causes of demonstrated local extinctions due to anthropogenic climate change. Among these seven studies, the proximate causes vary widely. Surprisingly, none show a straightforward relationship between local extinction and limited tolerances to high temperature. Instead, many studies implicate species interactions as an important proximate cause, especially decreases in food availability. We find very similar patterns in studies showing decreases in abundance associated with climate change, and in those studies showing impacts of climatic oscillations. Collectively, these results highlight our disturbingly limited knowledge of this crucial issue but also support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change. Finally, we briefly outline general research strategies for identifying these proximate causes in future studies.
Collapse
Affiliation(s)
- Abigail E Cahill
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
437
|
|
438
|
Affiliation(s)
- Morgan W. Kelly
- Department of Ecology, Evolution and Marine Biology; University of California Santa Barbara; Santa Barbara; California; 93106-9620; USA
| | - Gretchen E. Hofmann
- Department of Ecology, Evolution and Marine Biology; University of California Santa Barbara; Santa Barbara; California; 93106-9620; USA
| |
Collapse
|
439
|
McCormick MI. Lethal effects of habitat degradation on fishes through changing competitive advantage. Proc Biol Sci 2012; 279:3899-904. [PMID: 22810432 PMCID: PMC3427570 DOI: 10.1098/rspb.2012.0854] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 06/26/2012] [Indexed: 11/12/2022] Open
Abstract
Coral bleaching has caused catastrophic changes to coral reef ecosystems around the world with profound ecological, social and economic repercussions. While its occurrence is predicted to increase in the future, we have little understanding of mechanisms that underlie changes in the fish community associated with coral degradation. The present study uses a field-based experiment to examine how the intensity of interference competition between juveniles of two species of damselfish changes as healthy corals degrade through thermal bleaching. The mortality of a damselfish that is a live coral specialist (Pomacentrus moluccensis) increased on bleached and dead coral in the presence of the habitat generalist (Pomacentrus amboinensis). Increased mortality of the specialist was indirectly owing to enhanced aggression by the generalist forcing the specialist higher up and further away from shelter on bleached and dead coral. Evidence from this study stresses the importance of changing interspecific interactions to community dynamics as habitats change.
Collapse
Affiliation(s)
- Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia.
| |
Collapse
|
440
|
Madin JS, Hughes TP, Connolly SR. Calcification, storm damage and population resilience of tabular corals under climate change. PLoS One 2012; 7:e46637. [PMID: 23056379 PMCID: PMC3464260 DOI: 10.1371/journal.pone.0046637] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/03/2012] [Indexed: 11/18/2022] Open
Abstract
Two facets of climate change--increased tropical storm intensity and ocean acidification--are expected to detrimentally affect reef-building organisms by increasing their mortality rates and decreasing their calcification rates. Our current understanding of these effects is largely based on individual organisms' short-term responses to experimental manipulations. However, predicting the ecologically-relevant effects of climate change requires understanding the long-term demographic implications of these organism-level responses. In this study, we investigate how storm intensity and calcification rate interact to affect population dynamics of the table coral Acropora hyacinthus, a dominant and geographically widespread ecosystem engineer on wave-exposed Indo-Pacific reefs. We develop a mechanistic framework based on the responses of individual-level demographic rates to changes in the physical and chemical environment, using a size-structured population model that enables us to rigorously incorporate uncertainty. We find that table coral populations are vulnerable to future collapse, placing in jeopardy many other reef organisms that are dependent upon them for shelter and food. Resistance to collapse is largely insensitive to predicted changes in storm intensity, but is highly dependent on the extent to which calcification influences both the mechanical properties of reef substrate and the colony-level trade-off between growth rate and skeletal strength. This study provides the first rigorous quantitative accounting of the demographic implications of the effects of ocean acidification and changes in storm intensity, and provides a template for further studies of climate-induced shifts in ecosystems, including coral reefs.
Collapse
Affiliation(s)
- Joshua S Madin
- Department of Biological Sciences, Macquarie University, Sydney, Australia.
| | | | | |
Collapse
|
441
|
Maina J, de Moel H, Vermaat JE, Bruggemann JH, Guillaume MMM, Grove CA, Madin JS, Mertz-Kraus R, Zinke J. Linking coral river runoff proxies with climate variability, hydrology and land-use in Madagascar catchments. MARINE POLLUTION BULLETIN 2012; 64:2047-59. [PMID: 22853989 DOI: 10.1016/j.marpolbul.2012.06.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 06/25/2012] [Accepted: 06/27/2012] [Indexed: 05/21/2023]
Abstract
Understanding the linkages between coastal watersheds and adjacent coral reefs is expected to lead to better coral reef conservation strategies. Our study aims to examine the main predictors of environmental proxies recorded in near shore corals and therefore how linked near shore reefs are to the catchment physical processes. To achieve these, we developed models to simulate hydrology of two watersheds in Madagascar. We examined relationships between environmental proxies derived from massive Porites spp. coral cores (spectral luminescence and barium/calcium ratios), and corresponding time-series (1950-2006) data of hydrology, climate, land use and human population growth. Results suggest regional differences in the main environmental drivers of reef sedimentation: on annual time-scales, precipitation, river flow and sediment load explained the variability in coral proxies of river discharge for the northeast region, while El Niño-Southern Oscillation (ENSO) and temperature (air and sea surface) were the best predictors in the southwest region.
Collapse
Affiliation(s)
- Joseph Maina
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
442
|
Wisshak M, Schönberg CHL, Form A, Freiwald A. Ocean acidification accelerates reef bioerosion. PLoS One 2012; 7:e45124. [PMID: 23028797 PMCID: PMC3445580 DOI: 10.1371/journal.pone.0045124] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 08/14/2012] [Indexed: 11/21/2022] Open
Abstract
In the recent discussion how biotic systems may react to ocean acidification caused by the rapid rise in carbon dioxide partial pressure (pCO2) in the marine realm, substantial research is devoted to calcifiers such as stony corals. The antagonistic process – biologically induced carbonate dissolution via bioerosion – has largely been neglected. Unlike skeletal growth, we expect bioerosion by chemical means to be facilitated in a high-CO2 world. This study focuses on one of the most detrimental bioeroders, the sponge Cliona orientalis, which attacks and kills live corals on Australia’s Great Barrier Reef. Experimental exposure to lowered and elevated levels of pCO2 confirms a significant enforcement of the sponges’ bioerosion capacity with increasing pCO2 under more acidic conditions. Considering the substantial contribution of sponges to carbonate bioerosion, this finding implies that tropical reef ecosystems are facing the combined effects of weakened coral calcification and accelerated bioerosion, resulting in critical pressure on the dynamic balance between biogenic carbonate build-up and degradation.
Collapse
Affiliation(s)
- Max Wisshak
- Marine Research Department, SENCKENBERG am Meer, Wilhelmshaven, Germany.
| | | | | | | |
Collapse
|
443
|
Abdo DA, Bellchambers LM, Evans SN. Turning up the heat: increasing temperature and coral bleaching at the high latitude coral reefs of the Houtman Abrolhos Islands. PLoS One 2012; 7:e43878. [PMID: 22952797 PMCID: PMC3430629 DOI: 10.1371/journal.pone.0043878] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/30/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Coral reefs face increasing pressures particularly when on the edge of their distributions. The Houtman Abrolhos Islands (Abrolhos) are the southernmost coral reef system in the Indian Ocean, and one of the highest latitude reefs in the world. These reefs have a unique mix of tropical and temperate marine fauna and flora and support 184 species of coral, dominated by Acropora species. A significant La Niña event during 2011 produced anomalous conditions of increased temperature along the whole Western Australian coastline, producing the first-recorded widespread bleaching of corals at the Abrolhos. METHODOLOGY/ PRINCIPAL FINDINGS We examined long term trends in the marine climate at the Abrolhos using historical sea surface temperature data (HadISST data set) from 1900-2011. In addition in situ water temperature data for the Abrolhos (from data loggers installed in 2008, across four island groups) were used to determine temperature exposure profiles. Coupled with the results of coral cover surveys conducted annually since 2007; we calculated bleaching thresholds for monitoring sites across the four Abrolhos groups. CONCLUSIONS/ SIGNIFICANCE In situ temperature data revealed maximum daily water temperatures reached 29.54°C in March 2011 which is 4.2°C above mean maximum daily temperatures (2008-2010). The level of bleaching varied across sites with an average of ∼12% of corals bleached. Mortality was high, with a mean ∼50% following the 2011 bleaching event. Prior to 2011, summer temperatures reached a mean (across all monitoring sites) of 25.1°C for 2.5 days. However, in 2011 temperatures reached a mean of 28.1°C for 3.3 days. Longer term trends (1900-2011) showed mean annual sea surface temperatures increase by 0.01°C per annum. Long-term temperature data along with short-term peaks in 2011, outline the potential for corals to be exposed to more frequent bleaching risk with consequences for this high latitude coral reef system at the edge of its distribution.
Collapse
Affiliation(s)
- David A Abdo
- Marine Ecology and Monitoring Section, Biodiversity and Biosecurity Branch, Department of Fisheries, Government of Western Australia, Hillarys, Western Australia, Australia.
| | | | | |
Collapse
|
444
|
Putnam HM, Stat M, Pochon X, Gates RD. Endosymbiotic flexibility associates with environmental sensitivity in scleractinian corals. Proc Biol Sci 2012; 279:4352-61. [PMID: 22933373 DOI: 10.1098/rspb.2012.1454] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Flexibility in biological systems is seen as an important driver of macro-ecosystem function and stability. Spatially constrained endosymbiotic settings, however, are less studied, although environmental thresholds of symbiotic corals are linked to the function of their endosymbiotic dinoflagellate communities. Symbiotic flexibility is a hypothesized mechanism that corals may exploit to adapt to climate change. This study explores the flexibility of the coral-Symbiodinium symbiosis through quantification of Symbiodinium ITS2 sequence assemblages in a range of coral species and genera. Sequence assemblages are expressed as an index of flexibility incorporating phylogenetic divergence and relative abundance of Symbiodinium sequences recovered from the host. This comparative analysis reveals profound differences in the flexibility of corals for Symbiodinium, thereby classifying corals as generalists or specifists. Generalists such as Acropora and Pocillopora exhibit high intra- and inter-species flexibility in their Symbiodinium assemblages and are some of the most environmentally sensitive corals. Conversely, specifists such as massive Porites colonies exhibit low flexibility, harbour taxonomically narrow Symbiodinium assemblages, and are environmentally resistant corals. Collectively, these findings challenge the paradigm that symbiotic flexibility enhances holobiont resilience. This underscores the need for a deeper examination of the extent and duration of the functional benefits associated with endosymbiotic diversity and flexibility under environmental stress.
Collapse
Affiliation(s)
- Hollie M Putnam
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA.
| | | | | | | |
Collapse
|
445
|
Harnik PG, Lotze HK, Anderson SC, Finkel ZV, Finnegan S, Lindberg DR, Liow LH, Lockwood R, McClain CR, McGuire JL, O'Dea A, Pandolfi JM, Simpson C, Tittensor DP. Extinctions in ancient and modern seas. Trends Ecol Evol 2012; 27:608-17. [PMID: 22889500 DOI: 10.1016/j.tree.2012.07.010] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/16/2012] [Accepted: 07/18/2012] [Indexed: 01/07/2023]
Abstract
In the coming century, life in the ocean will be confronted with a suite of environmental conditions that have no analog in human history. Thus, there is an urgent need to determine which marine species will adapt and which will go extinct. Here, we review the growing literature on marine extinctions and extinction risk in the fossil, historical, and modern records to compare the patterns, drivers, and biological correlates of marine extinctions at different times in the past. Characterized by markedly different environmental states, some past periods share common features with predicted future scenarios. We highlight how the different records can be integrated to better understand and predict the impact of current and projected future environmental changes on extinction risk in the ocean.
Collapse
Affiliation(s)
- Paul G Harnik
- National Evolutionary Synthesis Center, Durham, NC 27705, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
446
|
Foo SA, Dworjanyn SA, Poore AGB, Byrne M. Adaptive capacity of the habitat modifying sea urchin Centrostephanus rodgersii to ocean warming and ocean acidification: performance of early embryos. PLoS One 2012; 7:e42497. [PMID: 22880005 PMCID: PMC3411790 DOI: 10.1371/journal.pone.0042497] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/09/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Predicting effects of rapid climate change on populations depends on measuring the effects of climate stressors on performance, and potential for adaptation. Adaptation to stressful climatic conditions requires heritable genetic variance for stress tolerance present in populations. METHODOLOGY/PRINCIPAL FINDINGS We quantified genetic variation in tolerance of early development of the ecologically important sea urchin Centrostephanus rodgersii to near-future (2100) ocean conditions projected for the southeast Australian global change hot spot. Multiple dam-sire crosses were used to quantify the interactive effects of warming (+2-4 °C) and acidification (-0.3-0.5 pH units) across twenty-seven family lines. Acidification, but not temperature, decreased the percentage of cleavage stage embryos. In contrast, temperature, but not acidification decreased the percentage of gastrulation. Cleavage success in response to both stressors was strongly affected by sire identity. Sire and dam identity significantly affected gastrulation and both interacted with temperature to determine developmental success. Positive genetic correlations for gastrulation indicated that genotypes that did well at lower pH also did well in higher temperatures. CONCLUSIONS/SIGNIFICANCE Significant genotype (sire) by environment interactions for both stressors at gastrulation indicated the presence of heritable variation in thermal tolerance and the ability of embryos to respond to changing environments. The significant influence of dam may be due to maternal provisioning (maternal genotype or environment) and/or offspring genotype. It appears that early development in this ecologically important sea urchin is not constrained in adapting to the multiple stressors of ocean warming and acidification. The presence of tolerant genotypes indicates the potential to adapt to concurrent warming and acidification, contributing to the resilience of C. rodgersii in a changing ocean.
Collapse
Affiliation(s)
- Shawna A. Foo
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| | - Symon A. Dworjanyn
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Alistair G. B. Poore
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Maria Byrne
- Schools of Medical and Biological Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
447
|
Toth LT, Aronson RB, Vollmer SV, Hobbs JW, Urrego DH, Cheng H, Enochs IC, Combosch DJ, van Woesik R, Macintyre IG. ENSO drove 2500-year collapse of eastern Pacific coral reefs. Science 2012; 337:81-4. [PMID: 22767927 DOI: 10.1126/science.1221168] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cores of coral reef frameworks along an upwelling gradient in Panamá show that reef ecosystems in the tropical eastern Pacific collapsed for 2500 years, representing as much as 40% of their history, beginning about 4000 years ago. The principal cause of this millennial-scale hiatus in reef growth was increased variability of the El Niño-Southern Oscillation (ENSO) and its coupling with the Intertropical Convergence Zone. The hiatus was a Pacific-wide phenomenon with an underlying climatology similar to probable scenarios for the next century. Global climate change is probably driving eastern Pacific reefs toward another regional collapse.
Collapse
Affiliation(s)
- Lauren T Toth
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
448
|
Hoffmann AA, Chown SL, Clusella-Trullas S. Upper thermal limits in terrestrial ectotherms: how constrained are they? Funct Ecol 2012. [DOI: 10.1111/j.1365-2435.2012.02036.x] [Citation(s) in RCA: 447] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ary A. Hoffmann
- Departments of Zoology and Genetics; Bio21 Institute; The University of Melbourne; 30 Flemington Road; Parkville; Victoria; 3052; Australia
| | | | - Susana Clusella-Trullas
- Department of Botany and Zoology; Centre for Invasion Biology; Stellenbosch University; Private Bag X1; Matieland; 7602; South Africa
| |
Collapse
|
449
|
Luter HM, Whalan S, Webster NS. Thermal and sedimentation stress are unlikely causes of brown spot syndrome in the coral reef sponge, Ianthella basta. PLoS One 2012; 7:e39779. [PMID: 22745827 PMCID: PMC3382149 DOI: 10.1371/journal.pone.0039779] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 05/25/2012] [Indexed: 02/01/2023] Open
Abstract
Background Marine diseases are being increasingly linked to anthropogenic factors including global and local stressors. On the Great Barrier Reef, up to 66% of the Ianthella basta population was recently found to be afflicted by a syndrome characterized by brown spot lesions and necrotic tissue. Methodology/Principal Findings Manipulative experiments were undertaken to ascertain the role of environmental stressors in this syndrome. Specifically, the effects of elevated temperature and sedimentation on sponge health and symbiont stability in I. basta were examined. Neither elevated temperature nor increased sedimentation were responsible for the brown spot lesions, but sponges exposed to 32°C developed substantial discoloration and deterioration of their tissues, resulting in death after eight days and a higher microbial diversity in those samples. No shifts in the microbial community of I. basta were observed across a latitudinal gradient or with increased sedimentation, with three previously described symbionts dominating the community of all sponges (Alphaproteobacteria, Gammaproteobacteria and Thaumarchaea). Conclusions/Significance Results from this study highlight the stable microbial community of I. basta and indicate that thermal and sedimentation stress are not responsible for the brown spot lesions currently affecting this abundant and ecologically important sponge species.
Collapse
Affiliation(s)
- Heidi M Luter
- Australian Institute of Marine Science at James Cook University, James Cook University, Townsville, Queensland, Australia.
| | | | | |
Collapse
|
450
|
Evans TG, Hofmann GE. Defining the limits of physiological plasticity: how gene expression can assess and predict the consequences of ocean change. Philos Trans R Soc Lond B Biol Sci 2012; 367:1733-45. [PMID: 22566679 PMCID: PMC3350660 DOI: 10.1098/rstb.2012.0019] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Anthropogenic stressors, such as climate change, are driving fundamental shifts in the abiotic characteristics of marine ecosystems. As the environmental aspects of our world's oceans deviate from evolved norms, of major concern is whether extant marine species possess the capacity to cope with such rapid change. In what many scientists consider the post-genomic era, tools that exploit the availability of DNA sequence information are being increasingly recognized as relevant to questions surrounding ocean change and marine conservation. In this review, we highlight the application of high-throughput gene-expression profiling, primarily transcriptomics, to the field of marine conservation physiology. Through the use of case studies, we illustrate how gene expression can be used to standardize metrics of sub-lethal stress, track organism condition in natural environments and bypass phylogenetic barriers that hinder the application of other physiological techniques to conservation. When coupled with fine-scale monitoring of environmental variables, gene-expression profiling provides a powerful approach to conservation capable of informing diverse issues related to ocean change, from coral bleaching to the spread of invasive species. Integrating novel approaches capable of improving existing conservation strategies, including gene-expression profiling, will be critical to ensuring the ecological and economic health of the global ocean.
Collapse
Affiliation(s)
- Tyler G Evans
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9620, USA.
| | | |
Collapse
|