401
|
Abstract
Over the past 10 years, the development and convergence of microbial opsin engineering, modular genetic methods for cell-type targeting and optical strategies for guiding light through tissue have enabled versatile optical control of defined cells in living systems, defining modern optogenetics. Despite widespread recognition of the importance of spatiotemporally precise causal control over cellular signaling, for nearly the first half (2005-2009) of this 10-year period, as optogenetics was being created, there were difficulties in implementation, few publications and limited biological findings. In contrast, the ensuing years have witnessed a substantial acceleration in the application domain, with the publication of thousands of discoveries and insights into the function of nervous systems and beyond. This Historical Commentary reflects on the scientific landscape of this decade-long transition.
Collapse
Affiliation(s)
- Karl Deisseroth
- Departments of Bioengineering and of Psychiatry and Behavioral Sciences and the Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| |
Collapse
|
402
|
Autobiographical Memory Disturbances in Depression: A Novel Therapeutic Target? Neural Plast 2015; 2015:759139. [PMID: 26380121 PMCID: PMC4561987 DOI: 10.1155/2015/759139] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/30/2015] [Indexed: 11/23/2022] Open
Abstract
Major depressive disorder (MDD) is characterized by a dysfunctional processing of autobiographical memories. We review the following core domains of deficit: systematic biases favoring materials of negative emotional valence; diminished access and response to positive memories; a recollection of overgeneral memories in detriment of specific autobiographical memories; and the role of ruminative processes and avoidance when dealing with autobiographical memories. Furthermore, we review evidence from functional neuroimaging studies of neural circuits activated by the recollection of autobiographical memories in both healthy and depressive individuals. Disruptions in autobiographical memories predispose and portend onset and maintenance of depression. Thus, we discuss emerging therapeutics that target memory difficulties in those with depression. We review strategies for this clinical domain, including memory specificity training, method-of-loci, memory rescripting, and real-time fMRI neurofeedback training of amygdala activity in depression. We propose that the manipulation of the reconsolidation of autobiographical memories in depression might represent a novel yet largely unexplored, domain-specific, therapeutic opportunity for depression treatment.
Collapse
|
403
|
Wang D, Zhao J, Gao Z, Chen N, Wen B, Lu W, Lei Z, Chen C, Liu Y, Feng J, Wang JH. Neurons in the barrel cortex turn into processing whisker and odor signals: a cellular mechanism for the storage and retrieval of associative signals. Front Cell Neurosci 2015; 9:320. [PMID: 26347609 PMCID: PMC4543922 DOI: 10.3389/fncel.2015.00320] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/03/2015] [Indexed: 12/28/2022] Open
Abstract
Associative learning and memory are essential to logical thinking and cognition. How the neurons are recruited as associative memory cells to encode multiple input signals for their associated storage and distinguishable retrieval remains unclear. We studied this issue in the barrel cortex by in vivo two-photon calcium imaging, electrophysiology, and neural tracing in our mouse model that the simultaneous whisker and olfaction stimulations led to odorant-induced whisker motion. After this cross-modal reflex arose, the barrel and piriform cortices connected. More than 40% of barrel cortical neurons became to encode odor signal alongside whisker signal. Some of these neurons expressed distinct activity patterns in response to acquired odor signal and innate whisker signal, and others encoded similar pattern in response to these signals. In the meantime, certain barrel cortical astrocytes encoded odorant and whisker signals. After associative learning, the neurons and astrocytes in the sensory cortices are able to store the newly learnt signal (cross-modal memory) besides the innate signal (native-modal memory). Such associative memory cells distinguish the differences of these signals by programming different codes and signify the historical associations of these signals by similar codes in information retrievals.
Collapse
Affiliation(s)
- Dangui Wang
- State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences Beijing, China
| | - Jun Zhao
- State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences Beijing, China ; Department of Biology, University of Chinese Academy of Sciences Beijing, China
| | - Zilong Gao
- State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences Beijing, China ; Department of Biology, University of Chinese Academy of Sciences Beijing, China
| | - Na Chen
- State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences Beijing, China
| | - Bo Wen
- State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences Beijing, China
| | - Wei Lu
- Department of Pharmacology and Collaborative Innovation, Center for Neurodegenerative Disorders in Shandong, Qingdao University, Medical College Dengzhou, China
| | - Zhuofan Lei
- Department of Pharmacology and Collaborative Innovation, Center for Neurodegenerative Disorders in Shandong, Qingdao University, Medical College Dengzhou, China
| | - Changfeng Chen
- Department of Physiology, Bengbu Medical College Bengbu, China
| | - Yahui Liu
- Department of Physiology, Bengbu Medical College Bengbu, China
| | - Jing Feng
- State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences Beijing, China
| | - Jin-Hui Wang
- State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences Beijing, China ; Department of Biology, University of Chinese Academy of Sciences Beijing, China ; Department of Physiology, Bengbu Medical College Bengbu, China
| |
Collapse
|
404
|
Zhan Y. Theta frequency prefrontal–hippocampal driving relationship during free exploration in mice. Neuroscience 2015; 300:554-65. [DOI: 10.1016/j.neuroscience.2015.05.063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 05/19/2015] [Accepted: 05/26/2015] [Indexed: 01/06/2023]
|
405
|
Korzus E. Prefrontal Cortex in Learning to Overcome Generalized Fear. J Exp Neurosci 2015; 9:53-6. [PMID: 26244030 PMCID: PMC4505918 DOI: 10.4137/jen.s26227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/09/2015] [Accepted: 06/22/2015] [Indexed: 11/26/2022] Open
Abstract
Normal brain functioning relies critically on the ability to control appropriate behavioral responses to fearful stimuli. Overgeneralized fear is the major symptom of anxiety disorders including posttraumatic stress disorder. This review describes recent data demonstrating that the medial prefrontal cortex (mPFC) plays a critical role in the refining of cues that drive the acquisition of fear response. Recent studies on molecular mechanisms that underlie the role of mPFC in fear discrimination learning are discussed. These studies suggest that prefrontal N-methyl-D-aspartate receptors expressed in excitatory neurons govern fear discrimination learning via a mechanism involving cAMP response element-binding protein-dependent engagement of acetyltransferase.
Collapse
Affiliation(s)
- Edward Korzus
- Department of Psychology, Neuroscience and Biomedical Sciences Programs, University of California Riverside, CA, USA
| |
Collapse
|
406
|
Nassi JJ, Cepko CL, Born RT, Beier KT. Neuroanatomy goes viral! Front Neuroanat 2015; 9:80. [PMID: 26190977 PMCID: PMC4486834 DOI: 10.3389/fnana.2015.00080] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 05/25/2015] [Indexed: 02/03/2023] Open
Abstract
The nervous system is complex not simply because of the enormous number of neurons it contains but by virtue of the specificity with which they are connected. Unraveling this specificity is the task of neuroanatomy. In this endeavor, neuroanatomists have traditionally exploited an impressive array of tools ranging from the Golgi method to electron microscopy. An ideal method for studying anatomy would label neurons that are interconnected, and, in addition, allow expression of foreign genes in these neurons. Fortuitously, nature has already partially developed such a method in the form of neurotropic viruses, which have evolved to deliver their genetic material between synaptically connected neurons while largely eluding glia and the immune system. While these characteristics make some of these viruses a threat to human health, simple modifications allow them to be used in controlled experimental settings, thus enabling neuroanatomists to trace multi-synaptic connections within and across brain regions. Wild-type neurotropic viruses, such as rabies and alpha-herpes virus, have already contributed greatly to our understanding of brain connectivity, and modern molecular techniques have enabled the construction of recombinant forms of these and other viruses. These newly engineered reagents are particularly useful, as they can target genetically defined populations of neurons, spread only one synapse to either inputs or outputs, and carry instructions by which the targeted neurons can be made to express exogenous proteins, such as calcium sensors or light-sensitive ion channels, that can be used to study neuronal function. In this review, we address these uniquely powerful features of the viruses already in the neuroanatomist's toolbox, as well as the aspects of their biology that currently limit their utility. Based on the latter, we consider strategies for improving viral tracing methods by reducing toxicity, improving control of transsynaptic spread, and extending the range of species that can be studied.
Collapse
Affiliation(s)
- Jonathan J Nassi
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies La Jolla, CA, USA
| | - Constance L Cepko
- Department of Genetics, Harvard Medical School Boston, MA, USA ; Department of Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School Boston, MA, USA
| | - Richard T Born
- Department of Neurobiology, Harvard Medical School Boston, MA, USA ; Center for Brain Science, Harvard University Cambridge, MA, USA
| | - Kevin T Beier
- Department of Psychiatry and Behavioral Sciences and Department of Biology, Stanford University Stanford, CA, USA
| |
Collapse
|
407
|
Conditional neuroligin-2 knockout in adult medial prefrontal cortex links chronic changes in synaptic inhibition to cognitive impairments. Mol Psychiatry 2015; 20:850-9. [PMID: 25824299 DOI: 10.1038/mp.2015.31] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/27/2014] [Accepted: 02/09/2015] [Indexed: 12/13/2022]
Abstract
Abnormal activity in the medial prefrontal cortex (mPFC) is consistently observed in neuropsychiatric disorders, but the mechanisms involved remain unclear. Chronic aberrant excitation and/or inhibition of mPFC neurons were proposed to cause cognitive impairments. However, direct evidence for this hypothesis is lacking because it is technically challenging to control synaptic properties in a chronic and locally restricted, yet specific, manner. Here, we generated conditional knockout (cKO) mice of neuroligin-2 (Nlgn2), a postsynaptic cell-adhesion molecule of inhibitory synapses linked to neuropsychiatric disorders. cKO of Nlgn2 in adult mPFC rendered Nlgn2 protein undetectable after already 2-3 weeks, but induced major reductions in synaptic inhibition after only 6-7 weeks, and caused parallel impairments in anxiety, fear memory and social interaction behaviors. Moreover, cKO of Nlgn2 severely impaired behavioral stimulation of immediate-early gene expression in the mPFC, suggesting that chronic reduction in synaptic inhibition uncoupled the mPFC from experience-dependent inputs. Our results indicate that Nlgn2 is required for continuous maintenance of inhibitory synapses in the adult mPFC, and that chronic impairment of local inhibition disengages the mPFC from its cognitive functions by partially uncoupling the mPFC from experience-induced inputs.
Collapse
|
408
|
Limbic thalamus and state-dependent behavior: The paraventricular nucleus of the thalamic midline as a node in circadian timing and sleep/wake-regulatory networks. Neurosci Biobehav Rev 2015; 54:3-17. [DOI: 10.1016/j.neubiorev.2014.11.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 11/09/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022]
|
409
|
Shang C, Liu Z, Chen Z, Shi Y, Wang Q, Liu S, Li D, Cao P. A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice. Science 2015; 348:1472-7. [DOI: 10.1126/science.aaa8694] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
410
|
Abstract
Advances in optical manipulation and observation of neural activity have set the stage for widespread implementation of closed-loop and activity-guided optical control of neural circuit dynamics. Closing the loop optogenetically (i.e., basing optogenetic stimulation on simultaneously observed dynamics in a principled way) is a powerful strategy for causal investigation of neural circuitry. In particular, observing and feeding back the effects of circuit interventions on physiologically relevant timescales is valuable for directly testing whether inferred models of dynamics, connectivity, and causation are accurate in vivo. Here we highlight technical and theoretical foundations as well as recent advances and opportunities in this area, and we review in detail the known caveats and limitations of optogenetic experimentation in the context of addressing these challenges with closed-loop optogenetic control in behaving animals.
Collapse
Affiliation(s)
- Logan Grosenick
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA; CNC Program, Stanford University, Stanford, CA 94305 USA; Neurosciences Program, Stanford University, Stanford, CA 94305 USA
| | - James H Marshel
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA; CNC Program, Stanford University, Stanford, CA 94305 USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA; CNC Program, Stanford University, Stanford, CA 94305 USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305 USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305 USA.
| |
Collapse
|
411
|
Delta frequency optogenetic stimulation of the thalamic nucleus reuniens is sufficient to produce working memory deficits: relevance to schizophrenia. Biol Psychiatry 2015; 77:1098-107. [PMID: 25891221 PMCID: PMC4444380 DOI: 10.1016/j.biopsych.2015.01.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 01/05/2015] [Accepted: 01/15/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Low-frequency (delta/theta) oscillations in the thalamocortical system are elevated in schizophrenia during wakefulness and are also induced in the N-methyl-D-asparate receptor hypofunction rat model. To determine whether abnormal delta oscillations might produce functional deficits, we used optogenetic methods in awake rats. We illuminated channelrhodopsin-2 in the thalamic nucleus reuniens (RE) at delta frequency and measured the effect on working memory (WM) performance (the RE is involved in WM, a process affected in schizophrenia [SZ]). METHODS We injected RE with adeno-associated virus to transduce cells with channelrhodopsin-2. An optical fiber was implanted just dorsal to the hippocampus in order to illuminate RE axon terminals. RESULTS During optogenetic delta frequency stimulation, rats displayed a strong WM deficit. On the following day, performance was normal if illumination was omitted. CONCLUSIONS The optogenetic experiments show that delta frequency stimulation of a thalamic nucleus is sufficient to produce deficits in WM. This result supports the hypothesis that delta frequency bursting in particular thalamic nuclei has a causal role in producing WM deficits in SZ. The action potentials in these bursts may "jam" communication through the thalamus, thereby interfering with behaviors dependent on WM. Studies in thalamic slices using the N-methyl-D-asparate receptor hypofunction model show that delta frequency bursting is dependent on T-type Ca(2+) channels, a result that we confirmed here in vivo. These channels, which are strongly implicated in SZ by genome-wide association studies, may thus be a therapeutic target for treatment of SZ.
Collapse
|
412
|
de Souza Silva MA, Huston JP, Wang AL, Petri D, Chao OYH. Evidence for a Specific Integrative Mechanism for Episodic Memory Mediated by AMPA/kainate Receptors in a Circuit Involving Medial Prefrontal Cortex and Hippocampal CA3 Region. Cereb Cortex 2015; 26:3000-9. [DOI: 10.1093/cercor/bhv112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
413
|
A prefrontal-thalamo-hippocampal circuit for goal-directed spatial navigation. Nature 2015; 522:50-5. [PMID: 26017312 DOI: 10.1038/nature14396] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 03/06/2015] [Indexed: 12/20/2022]
Abstract
Spatial navigation requires information about the relationship between current and future positions. The activity of hippocampal neurons appears to reflect such a relationship, representing not only instantaneous position but also the path towards a goal location. However, how the hippocampus obtains information about goal direction is poorly understood. Here we report a prefrontal-thalamic neural circuit that is required for hippocampal representation of routes or trajectories through the environment. Trajectory-dependent firing was observed in medial prefrontal cortex, the nucleus reuniens of the thalamus, and the CA1 region of the hippocampus in rats. Lesioning or optogenetic silencing of the nucleus reuniens substantially reduced trajectory-dependent CA1 firing. Trajectory-dependent activity was almost absent in CA3, which does not receive nucleus reuniens input. The data suggest that projections from medial prefrontal cortex, via the nucleus reuniens, are crucial for representation of the future path during goal-directed behaviour and point to the thalamus as a key node in networks for long-range communication between cortical regions involved in navigation.
Collapse
|
414
|
Vertes RP. Major diencephalic inputs to the hippocampus: supramammillary nucleus and nucleus reuniens. Circuitry and function. PROGRESS IN BRAIN RESEARCH 2015; 219:121-44. [PMID: 26072237 DOI: 10.1016/bs.pbr.2015.03.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hippocampus receives two major external inputs from the diencephalon, that is, from the supramammillary nucleus (SUM) and nucleus reuniens (RE) of the midline thalamus. These two afferents systems project to separate, nonoverlapping, regions of the hippocampus. Specifically, the SUM distributes to the dentate gyrus (DG) and to CA2 of the dorsal and ventral hippocampus, whereas RE projects to CA1 of the dorsal and ventral hippocampus and to the subiculum. SUM and RE fibers to the hippocampus participate in common as well as in separate functions. Both systems would appear to amplify signals from other sources to their respective hippocampal targets. SUM amplifies signals from the entorhinal cortex (EC) to DG, whereas RE may amplify them from CA3 (and EC) to CA1 of the hippocampus. This "amplification" may serve to promote the transfer, encoding, and possibly storage of information from EC to DG and from CA3 and EC to CA1. Regarding their unique actions on the hippocampus, the SUM is a vital part of an ascending brainstem to hippocampal system generating the theta rhythm of the hippocampus, whereas RE importantly routes information from the medial prefrontal cortex to the hippocampus to thereby mediate functions involving both structures. In summary, although, to date, SUM and RE afferents to the hippocampus have not been extensively explored, the SUM and RE exert a profound influence on the hippocampus in processes of learning and memory.
Collapse
Affiliation(s)
- Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, USA.
| |
Collapse
|
415
|
Hernández J, Prieto I, Segarra AB, de Gasparo M, Wangensteen R, Villarejo AB, Banegas I, Vives F, Cobo J, Ramírez-Sánchez M. Interaction of neuropeptidase activities in cortico-limbic regions after acute restraint stress. Behav Brain Res 2015; 287:42-8. [PMID: 25819424 DOI: 10.1016/j.bbr.2015.03.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/14/2015] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
Abstract
Brain enkephalin, vasopressin and oxytocin are anxiolytic agents involved in the stress response. Acute restraint stress influences certain neuropeptidase activities, such as some enkephalin-degrading peptidases and vasopressinase/oxytocinase, in the medial prefrontal cortex (mPFC), amygdala (AM) or hippocampus (HC), which are involved in this response. Because these regions form a unified circuit and cooperate in their response to stress, it is important to analyze the profile of the regional distribution of these activities as well as their inter-regional model of interaction in this circuit. Regarding the regional study, although most activities showed a marked predominance of the AM over the HC and mPFC, both in control and stressed animals, enkephalin-degrading activity, assayed as membrane-bound alanyl aminopeptidase activity, showed a change after stress, increasing in the HC and decreasing in the AM. The correlational study in controls indicated essentially a positive interaction between the mPFC and AM. In marked contrast, there was a highly significant change in the functional status of this circuit after stress, showing mainly a positive correlation between the mPFC and HC and between the AM and HC. The existence of correlations does not demonstrate a direct relationship between regions. However, reasons for such strong associations after restraint stress should be examined. The present study may indicate a connection between neuropeptidase activities and their corresponding neuropeptidergic substrates due to significant changes in the functional status of the cortico-limbic circuit after restraint stress.
Collapse
Affiliation(s)
- Joaquín Hernández
- Unit of Physiology, Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
| | - Isabel Prieto
- Unit of Physiology, Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
| | - Ana B Segarra
- Unit of Physiology, Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
| | - Marc de Gasparo
- Cardiovascular and Metabolic Syndrome Adviser, Rue es Planches 5, 2842 Rossemaison, Switzerland
| | - Rosemary Wangensteen
- Unit of Physiology, Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
| | - Ana B Villarejo
- Unit of Physiology, Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
| | - Inmaculada Banegas
- Unit of Physiology, Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
| | - Francisco Vives
- Instituto de Neurociencia 'Federico Oloriz', University of Granada, Granada, Spain
| | - Justo Cobo
- Department of Inorganic and Organic Chemistry, University of Jaen, Spain
| | - Manuel Ramírez-Sánchez
- Unit of Physiology, Department of Health Sciences, University of Jaén, 23071 Jaén, Spain.
| |
Collapse
|
416
|
Saalmann YB, Kastner S. The cognitive thalamus. Front Syst Neurosci 2015; 9:39. [PMID: 25852498 PMCID: PMC4362213 DOI: 10.3389/fnsys.2015.00039] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 02/26/2015] [Indexed: 11/29/2022] Open
Affiliation(s)
- Yuri B Saalmann
- Department of Psychology, University of Wisconsin - Madison Madison, WI, USA
| | - Sabine Kastner
- Department of Psychology and Princeton Neuroscience Institute, Princeton University Princeton, NJ, USA
| |
Collapse
|
417
|
Griffin AL. Role of the thalamic nucleus reuniens in mediating interactions between the hippocampus and medial prefrontal cortex during spatial working memory. Front Syst Neurosci 2015; 9:29. [PMID: 25805977 PMCID: PMC4354269 DOI: 10.3389/fnsys.2015.00029] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/17/2015] [Indexed: 11/13/2022] Open
Abstract
Despite decades of research, the neural mechanisms of spatial working memory remain poorly understood. Although the dorsal hippocampus is known to be critical for memory-guided behavior, experimental evidence suggests that spatial working memory depends not only on the hippocampus itself, but also on the circuit comprised of the hippocampus and the medial prefrontal cortex (mPFC). Disruption of hippocampal-mPFC interactions may result in failed transfer of spatial and contextual information processed by the hippocampus to the circuitry in mPFC responsible for decision making and goal-directed behavior. Oscillatory synchrony between the hippocampus and mPFC has been shown to increase in tasks with high spatial working memory demand. However, the mechanisms and circuitry supporting hippocampal-mPFC interactions during these tasks is unknown. The midline thalamic nucleus reuniens (RE) is reciprocally connected to both the hippocampus and the mPFC and has been shown to be critical for a variety of working memory tasks. Therefore, it is likely that hippocampal-mPFC oscillatory synchrony is modulated by RE activity. This article will review the anatomical connections between the hippocampus, mPFC and RE along with the behavioral studies that have investigated the effects of RE disruption on working memory task performance. The article will conclude with suggestions for future directions aimed at identifying the specific role of the RE in regulating functional interactions between the hippocampus and the PFC and investigating the degree to which these interactions contribute to spatial working memory.
Collapse
Affiliation(s)
- Amy L Griffin
- Department of Psychological and Brain Sciences, University of Delaware Newark, DE, USA
| |
Collapse
|
418
|
De Marco García NV, Priya R, Tuncdemir SN, Fishell G, Karayannis T. Sensory inputs control the integration of neurogliaform interneurons into cortical circuits. Nat Neurosci 2015; 18:393-401. [PMID: 25664912 PMCID: PMC4624196 DOI: 10.1038/nn.3946] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/14/2015] [Indexed: 12/12/2022]
Abstract
Neuronal microcircuits in the superficial layers of the mammalian cortex provide the substrate for associative cortical computation. Inhibitory interneurons constitute an essential component of the circuitry and are fundamental to the integration of local and long-range information. Here we report that, during early development, superficially positioned Reelin-expressing neurogliaform interneurons in the mouse somatosensory cortex receive afferent innervation from both cortical and thalamic excitatory sources. Attenuation of ascending sensory, but not intracortical, excitation leads to axo-dendritic morphological defects in these interneurons. Moreover, abrogation of the NMDA receptors through which the thalamic inputs signal results in a similar phenotype, as well as in the selective loss of thalamic and a concomitant increase in intracortical connectivity. These results suggest that thalamic inputs are critical in determining the balance between local and long-range connectivity and are fundamental to the proper integration of Reelin-expressing interneurons into nascent cortical circuits.
Collapse
Affiliation(s)
- Natalia V De Marco García
- 1] NYU Neuroscience Institute, New York Langone Medical Center, New York, New York, USA. [2] Department of Neuroscience and Physiology, New York Langone Medical Center, New York, New York, USA. [3] Department of Neural Science, New York University, New York, New York, USA
| | - Rashi Priya
- 1] NYU Neuroscience Institute, New York Langone Medical Center, New York, New York, USA. [2] Department of Neuroscience and Physiology, New York Langone Medical Center, New York, New York, USA. [3] Department of Neural Science, New York University, New York, New York, USA
| | - Sebnem N Tuncdemir
- 1] NYU Neuroscience Institute, New York Langone Medical Center, New York, New York, USA. [2] Department of Neuroscience and Physiology, New York Langone Medical Center, New York, New York, USA. [3] Department of Neural Science, New York University, New York, New York, USA
| | - Gord Fishell
- 1] NYU Neuroscience Institute, New York Langone Medical Center, New York, New York, USA. [2] Department of Neuroscience and Physiology, New York Langone Medical Center, New York, New York, USA. [3] Department of Neural Science, New York University, New York, New York, USA
| | - Theofanis Karayannis
- 1] NYU Neuroscience Institute, New York Langone Medical Center, New York, New York, USA. [2] Department of Neuroscience and Physiology, New York Langone Medical Center, New York, New York, USA. [3] Department of Neural Science, New York University, New York, New York, USA
| |
Collapse
|
419
|
Do-Monte FH, Manzano-Nieves G, Quiñones-Laracuente K, Ramos-Medina L, Quirk GJ. Revisiting the role of infralimbic cortex in fear extinction with optogenetics. J Neurosci 2015; 35:3607-15. [PMID: 25716859 PMCID: PMC4339362 DOI: 10.1523/jneurosci.3137-14.2015] [Citation(s) in RCA: 289] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 01/14/2015] [Accepted: 01/21/2015] [Indexed: 11/21/2022] Open
Abstract
Previous rodent studies have implicated the infralimbic (IL) subregion of the medial prefrontal cortex in extinction of auditory fear conditioning. However, these studies used pharmacological inactivation or electrical stimulation techniques, which lack temporal precision and neuronal specificity. Here, we used an optogenetic approach to either activate (with channelrhodopsin) or silence (with halorhodopsin) glutamatergic IL neurons during conditioned tones delivered in one of two phases: extinction training or extinction retrieval. Activating IL neurons during extinction training reduced fear expression and strengthened extinction memory the following day. Silencing IL neurons during extinction training had no effect on within-session extinction, but impaired the retrieval of extinction the following day, indicating that IL activity during extinction tones is necessary for the formation of extinction memory. Surprisingly, however, silencing IL neurons optogenetically or pharmacologically during the retrieval of extinction 1 day or 1 week following extinction training had no effect. Our findings suggest that IL activity during extinction training likely facilitates storage of extinction in target structures, but contrary to current models, IL activity does not appear to be necessary for retrieval of extinction memory.
Collapse
Affiliation(s)
- Fabricio H Do-Monte
- Departments of Psychiatry and Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico 00936
| | - Gabriela Manzano-Nieves
- Departments of Psychiatry and Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico 00936
| | - Kelvin Quiñones-Laracuente
- Departments of Psychiatry and Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico 00936
| | - Liorimar Ramos-Medina
- Departments of Psychiatry and Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico 00936
| | - Gregory J Quirk
- Departments of Psychiatry and Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico 00936
| |
Collapse
|
420
|
Padival MA, Blume SR, Vantrease JE, Rosenkranz JA. Qualitatively different effect of repeated stress during adolescence on principal neuron morphology across lateral and basal nuclei of the rat amygdala. Neuroscience 2015; 291:128-45. [PMID: 25701125 DOI: 10.1016/j.neuroscience.2015.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/21/2015] [Accepted: 02/07/2015] [Indexed: 01/04/2023]
Abstract
Repeated stress can elicit symptoms of depression and anxiety. The amygdala is a significant contributor to the expression of emotion and the basolateral amygdala (BLA) is a major target for the effects of stress on emotion. The adolescent time period may be particularly susceptible to the effects of stress on emotion. While repeated stress has been demonstrated to modify the morphology of BLA neurons in adult rats, little is known about its effects on BLA neurons during adolescence. This study tests the effects of repeated stress during adolescence on BLA neuronal morphology, and whether these are similar to the effects of stress during adulthood. The BLA includes the basal (BA) and lateral (LAT) nuclei, which are differentially responsive to stress in adults. Therefore, effects of stress during adolescence were compared between the BA and LAT nuclei. Morphological features of reconstructed BLA neurons were examined using Golgi-Cox-stained tissue from control or repeated restraint stress-exposed rats. We found subtle dendritic growth coupled with loss of spines after repeated stress during adolescence. The magnitude and dendritic location of these differences varied between the BA and LAT nuclei in strong contrast to the stress-induced increases in spine number seen in adults. These results demonstrate that repeated stress during adolescence has markedly different effects on BLA neuronal morphology, and the extent of these changes is BLA nucleus-dependent. Moreover, altered neuroanatomy was associated with age-dependent effects of repeated stress on generalization of fear, and may point to the necessity for different approaches to target stress-induced changes in adolescents.
Collapse
Affiliation(s)
- M A Padival
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States
| | - S R Blume
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States
| | - J E Vantrease
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States
| | - J A Rosenkranz
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States.
| |
Collapse
|
421
|
Abstract
The main impetus for a mini-symposium on corticothalamic interrelationships was the recent number of studies highlighting the role of the thalamus in aspects of cognition beyond sensory processing. The thalamus contributes to a range of basic cognitive behaviors that include learning and memory, inhibitory control, decision-making, and the control of visual orienting responses. Its functions are deeply intertwined with those of the better studied cortex, although the principles governing its coordination with the cortex remain opaque, particularly in higher-level aspects of cognition. How should the thalamus be viewed in the context of the rest of the brain? Although its role extends well beyond relaying of sensory information from the periphery, the main function of many of its subdivisions does appear to be that of a relay station, transmitting neural signals primarily to the cerebral cortex from a number of brain areas. In cognition, its main contribution may thus be to coordinate signals between diverse regions of the telencephalon, including the neocortex, hippocampus, amygdala, and striatum. This central coordination is further subject to considerable extrinsic control, for example, inhibition from the basal ganglia, zona incerta, and pretectal regions, and chemical modulation from ascending neurotransmitter systems. What follows is a brief review on the role of the thalamus in aspects of cognition and behavior, focusing on a summary of the topics covered in a mini-symposium held at the Society for Neuroscience meeting, 2014.
Collapse
|
422
|
Belzung C, Willner P, Philippot P. Depression: from psychopathology to pathophysiology. Curr Opin Neurobiol 2015; 30:24-30. [DOI: 10.1016/j.conb.2014.08.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/27/2014] [Indexed: 12/14/2022]
|
423
|
Fu Y, Kaneko M, Tang Y, Alvarez-Buylla A, Stryker MP. A cortical disinhibitory circuit for enhancing adult plasticity. eLife 2015; 4:e05558. [PMID: 25626167 PMCID: PMC4337686 DOI: 10.7554/elife.05558] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/22/2015] [Indexed: 12/13/2022] Open
Abstract
The adult brain continues to learn and can recover from injury, but the elements and operation of the neural circuits responsible for this plasticity are not known. In previous work, we have shown that locomotion dramatically enhances neural activity in the visual cortex (V1) of the mouse (Niell and Stryker, 2010), identified the cortical circuit responsible for this enhancement (Fu et al., 2014), and shown that locomotion also dramatically enhances adult plasticity (Kaneko and Stryker, 2014). The circuit that is responsible for enhancing neural activity in the visual cortex contains both vasoactive intestinal peptide (VIP) and somatostatin (SST) neurons (Fu et al., 2014). Here, we ask whether this VIP-SST circuit enhances plasticity directly, independent of locomotion and aerobic activity. Optogenetic activation or genetic blockade of this circuit reveals that it is both necessary and sufficient for rapidly increasing V1 cortical responses following manipulation of visual experience in adult mice. These findings reveal a disinhibitory circuit that regulates adult cortical plasticity. DOI:http://dx.doi.org/10.7554/eLife.05558.001
Collapse
Affiliation(s)
- Yu Fu
- Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Megumi Kaneko
- Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Yunshuo Tang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - Michael P Stryker
- Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
424
|
Vieira PA, Corches A, Lovelace JW, Westbrook KB, Mendoza M, Korzus E. Prefrontal NMDA receptors expressed in excitatory neurons control fear discrimination and fear extinction. Neurobiol Learn Mem 2015; 119:52-62. [PMID: 25615540 DOI: 10.1016/j.nlm.2014.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 12/29/2014] [Indexed: 12/27/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are critically involved in various learning mechanisms including modulation of fear memory, brain development and brain disorders. While NMDARs mediate opposite effects on medial prefrontal cortex (mPFC) interneurons and excitatory neurons, NMDAR antagonists trigger profound cortical activation. The objectives of the present study were to determine the involvement of NMDARs expressed specifically in excitatory neurons in mPFC-dependent adaptive behaviors, specifically fear discrimination and fear extinction. To achieve this, we tested mice with locally deleted Grin1 gene encoding the obligatory NR1 subunit of the NMDAR from prefrontal CamKIIα positive neurons for their ability to distinguish frequency modulated (FM) tones in fear discrimination test. We demonstrated that NMDAR-dependent signaling in the mPFC is critical for effective fear discrimination following initial generalization of conditioned fear. While mice with deficient NMDARs in prefrontal excitatory neurons maintain normal responses to a dangerous fear-conditioned stimulus, they exhibit abnormal generalization decrement. These studies provide evidence that NMDAR-dependent neural signaling in the mPFC is a component of a neural mechanism for disambiguating the meaning of fear signals and supports discriminative fear learning by retaining proper gating information, viz. both dangerous and harmless cues. We also found that selective deletion of NMDARs from excitatory neurons in the mPFC leads to a deficit in fear extinction of auditory conditioned stimuli. These studies suggest that prefrontal NMDARs expressed in excitatory neurons are involved in adaptive behavior.
Collapse
Affiliation(s)
- Philip A Vieira
- Department of Psychology & Neuroscience Program, University of California Riverside, CA 92521, USA
| | - Alex Corches
- Biomedical Sciences Program, University of California Riverside, CA 92521, USA
| | - Jonathan W Lovelace
- Department of Psychology & Neuroscience Program, University of California Riverside, CA 92521, USA
| | - Kevin B Westbrook
- Department of Psychology & Neuroscience Program, University of California Riverside, CA 92521, USA
| | - Michael Mendoza
- Molecular Biology and Biochemistry Program, University of California Riverside, CA 92521, USA
| | - Edward Korzus
- Department of Psychology & Neuroscience Program, University of California Riverside, CA 92521, USA; Biomedical Sciences Program, University of California Riverside, CA 92521, USA; Molecular Biology and Biochemistry Program, University of California Riverside, CA 92521, USA.
| |
Collapse
|
425
|
Aggleton JP. Looking beyond the hippocampus: old and new neurological targets for understanding memory disorders. Proc Biol Sci 2015; 281:rspb.2014.0565. [PMID: 24850926 PMCID: PMC4046414 DOI: 10.1098/rspb.2014.0565] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Although anterograde amnesia can occur after damage in various brain sites, hippocampal dysfunction is usually seen as the ultimate cause of the failure to learn new episodic information. This assumption is supported by anatomical evidence showing direct hippocampal connections with all other sites implicated in causing anterograde amnesia. Likewise, behavioural and clinical evidence would seem to strengthen the established notion of an episodic memory system emanating from the hippocampus. There is, however, growing evidence that key, interconnected sites may also regulate the hippocampus, reflecting a more balanced, integrated network that enables learning. Recent behavioural evidence strongly suggests that medial diencephalic structures have some mnemonic functions independent of the hippocampus, which can then act upon the hippocampus. Anatomical findings now reveal that nucleus reuniens and the retrosplenial cortex provide parallel, disynaptic routes for prefrontal control of hippocampal activity. There is also growing clinical evidence that retrosplenial cortex dysfunctions contribute to both anterograde amnesia and the earliest stages of Alzheimer's disease, revealing the potential significance of this area for clinical studies. This array of findings underlines the importance of redressing the balance and the value of looking beyond the hippocampus when seeking to explain failures in learning new episodic information.
Collapse
Affiliation(s)
- John P Aggleton
- School of Psychology, Cardiff University, Park Place, Cardiff, Wales CF10 3AT, UK
| |
Collapse
|
426
|
Rochereau N, Pavot V, Verrier B, Ensinas A, Genin C, Corthésy B, Paul S. Secretory IgA as a vaccine carrier for delivery of HIV antigen to M cells. Eur J Immunol 2015; 45:773-9. [DOI: 10.1002/eji.201444816] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 10/23/2014] [Accepted: 11/18/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Nicolas Rochereau
- GIMAP/EA3064; Université de Lyon; CIC CIE3 Vaccinology; Saint-Etienne France
| | - Vincent Pavot
- Institut de Biologie et Chimie des Protéines; LBTI UMR 5305 - CNRS/University of Lyon; France
| | - Bernard Verrier
- Institut de Biologie et Chimie des Protéines; LBTI UMR 5305 - CNRS/University of Lyon; France
| | - Agathe Ensinas
- GIMAP/EA3064; Université de Lyon; CIC CIE3 Vaccinology; Saint-Etienne France
| | - Christian Genin
- GIMAP/EA3064; Université de Lyon; CIC CIE3 Vaccinology; Saint-Etienne France
| | - Blaise Corthésy
- R&D Laboratory of the Division of Immunology and Allergy; CHUV; Centre des Laboratoires d'Epalinges; Epalinges Switzerland
| | - Stéphane Paul
- GIMAP/EA3064; Université de Lyon; CIC CIE3 Vaccinology; Saint-Etienne France
| |
Collapse
|
427
|
Einarsson EÖ, Pors J, Nader K. Systems reconsolidation reveals a selective role for the anterior cingulate cortex in generalized contextual fear memory expression. Neuropsychopharmacology 2015; 40:480-7. [PMID: 25091528 PMCID: PMC4443963 DOI: 10.1038/npp.2014.197] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 07/28/2014] [Accepted: 07/31/2014] [Indexed: 11/09/2022]
Abstract
After acquisition, hippocampus-dependent memories undergo a systems consolidation process, during which they become independent of the hippocampus and dependent on the anterior cingulate cortex (ACC) for memory expression. However, consolidated remote memories can become transiently hippocampus-dependent again following memory reactivation. How this systems reconsolidation affects the role of the ACC in remote memory expression is not known. Using contextual fear conditioning, we show that the expression of 30-day-old remote memory can transiently be supported by either the ACC or the dorsal hippocampus following memory reactivation, and that the ACC specifically mediates expression of remote generalized contextual fear memory. We found that suppression of neural activity in the ACC with the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) impaired the expression of remote, but not recent, contextual fear memory. Fear expression was not affected by this treatment if preceded by memory reactivation 6 h earlier, nor was it affected by suppression of neural activity in the dorsal hippocampus with the GABA-receptor agonist muscimol. However, simultaneous targeting of both the ACC and the dorsal hippocampus 6 h after memory reactivation disrupted contextual fear memory expression. Second, we observed that expression of a 30-day-old generalized contextual fear memory in a novel context was not affected by memory reactivation 6 h earlier. However, intra-ACC CNQX infusion before testing impaired contextual fear expression in the novel context, but not the original training context. Together, these data suggest that although the dorsal hippocampus may be recruited during systems reconsolidation, the ACC remains necessary for the expression of generalized contextual fear memory.
Collapse
Affiliation(s)
- Einar Ö Einarsson
- Department of Psychology, McGill University, Montreal, QC, Canada,INSERM U862, Neurocentre Magendie, 146 Rue Léo Saignat, Bordeaux cedex 33077, France, Tel: +33 557 573719, Fax: +33 557 573669, E-mail:
| | - Jennifer Pors
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Karim Nader
- Department of Psychology, McGill University, Montreal, QC, Canada,Department of Psychology, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC, Canada H3A 1B1. E-mail:
| |
Collapse
|
428
|
Cassel JC, Pereira de Vasconcelos A. Importance of the ventral midline thalamus in driving hippocampal functions. PROGRESS IN BRAIN RESEARCH 2015; 219:145-61. [DOI: 10.1016/bs.pbr.2015.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
429
|
Sweeney-Reed CM, Zaehle T, Voges J, Schmitt FC, Buentjen L, Kopitzki K, Esslinger C, Hinrichs H, Heinze HJ, Knight RT, Richardson-Klavehn A. Corticothalamic phase synchrony and cross-frequency coupling predict human memory formation. eLife 2014; 3:e05352. [PMID: 25535839 PMCID: PMC4302268 DOI: 10.7554/elife.05352] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/22/2014] [Indexed: 01/06/2023] Open
Abstract
The anterior thalamic nucleus (ATN) is thought to play an important role in a brain network involving the hippocampus and neocortex, which enables human memories to be formed. However, its small size and location deep within the brain have impeded direct investigation in humans with non-invasive techniques. Here we provide direct evidence for a functional role for the ATN in memory formation from rare simultaneous human intrathalamic and scalp electroencephalogram (EEG) recordings from eight volunteering patients receiving intrathalamic electrodes implanted for the treatment of epilepsy, demonstrating real-time communication between neocortex and ATN during successful memory encoding. Neocortical-ATN theta oscillatory phase synchrony of local field potentials and neocortical-theta-to-ATN-gamma cross-frequency coupling during presentation of complex photographic scenes predicted later memory for the scenes, demonstrating a key role for the ATN in human memory encoding.
Collapse
Affiliation(s)
- Catherine M Sweeney-Reed
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke University, Magdeburg, Germany
| | - Tino Zaehle
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke University, Magdeburg, Germany
| | - Juergen Voges
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke University, Magdeburg, Germany
| | - Friedhelm C Schmitt
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke University, Magdeburg, Germany
| | - Lars Buentjen
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke University, Magdeburg, Germany
| | - Klaus Kopitzki
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke University, Magdeburg, Germany
| | - Christine Esslinger
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke University, Magdeburg, Germany
| | - Hermann Hinrichs
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke University, Magdeburg, Germany
| | - Hans-Jochen Heinze
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke University, Magdeburg, Germany
| | - Robert T Knight
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, Berkeley, United States
| | - Alan Richardson-Klavehn
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
430
|
Resnik J, Paz R. Fear generalization in the primate amygdala. Nat Neurosci 2014; 18:188-90. [PMID: 25531573 DOI: 10.1038/nn.3900] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/16/2014] [Indexed: 12/13/2022]
Abstract
Broad generalization of negative memories is a potential etiology for anxiety disorders, yet the underlying mechanisms remain unknown. We developed a non-human primate model that replicates behavioral observations in humans and identifies specific changes in tuning properties of amygdala neurons: the width of auditory tuning increases with the distance of its center from the conditioned stimulus. This center-width relationship can account for better detection and at the same time explain the wide stimulus generalization.
Collapse
Affiliation(s)
- Jennifer Resnik
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Rony Paz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
431
|
Gazarini L, Stern CAJ, Piornedo RR, Takahashi RN, Bertoglio LJ. PTSD-like memory generated through enhanced noradrenergic activity is mitigated by a dual step pharmacological intervention targeting its reconsolidation. Int J Neuropsychopharmacol 2014; 18:pyu026. [PMID: 25539509 PMCID: PMC4368870 DOI: 10.1093/ijnp/pyu026] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Traumatic memories have been resilient to therapeutic approaches targeting their permanent attenuation. One of the potentially promising pharmacological strategies under investigation is the search for safe reconsolidation blockers. However, preclinical studies focusing on this matter have scarcely addressed abnormal aversive memories and related outcomes. METHODS By mimicking the enhanced noradrenergic activity reported after traumatic events in humans, here we sought to generate a suitable condition to establish whether some clinically approved drugs able to disrupt the reconsolidation of conditioned fear memories in rodents would still be effective. RESULTS We report that the α2-adrenoceptor antagonist yohimbine was able to induce an inability to restrict behavioral (fear) and cardiovascular (increased systolic blood pressure) responses to the paired context when administered immediately after acquisition, but not 6h later, indicating the formation of a generalized fear memory, which endured for over 29 days and was less susceptible to suppression by extinction. It was also resistant to reconsolidation disruption by the α2-adrenoceptor agonist clonidine or cannabidiol, the major non-psychotomimetic component of Cannabis sativa. Since signaling at N-methyl-D-aspartate (NMDA) receptors is important for memory labilization and because a dysfunctional memory may be less labile than is necessary to trigger reconsolidation on its brief retrieval and reactivation, we then investigated and demonstrated that pre-retrieval administration of the partial NMDA agonist D-cycloserine allowed the disrupting effects of clonidine and cannabidiol on reconsolidation. CONCLUSIONS These findings highlight the effectiveness of a dual-step pharmacological intervention to mitigate an aberrant and enduring aversive memory similar to that underlying the post-traumatic stress disorder.
Collapse
Affiliation(s)
- Lucas Gazarini
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Cristina A J Stern
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Rene R Piornedo
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Reinaldo N Takahashi
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Leandro J Bertoglio
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
432
|
Liu J, Zhao L, Xue Y, Shi J, Suo L, Luo Y, Chai B, Yang C, Fang Q, Zhang Y, Bao Y, Pickens CL, Lu L. An unconditioned stimulus retrieval extinction procedure to prevent the return of fear memory. Biol Psychiatry 2014; 76:895-901. [PMID: 24813334 PMCID: PMC4480632 DOI: 10.1016/j.biopsych.2014.03.027] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/12/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Conditioned fear memories can be updated by extinction during reconsolidation, and this effect is specific to the reactivated conditioned stimulus (CS). However, a traumatic event can be associated with several cues, and each cue can potentially trigger recollection of the event. We introduced a technique to target all diverse cues associated with an aversive event that causes fear. METHODS In human experiments, 161 subjects underwent modified fear conditioning, in which they were exposed to an unconditioned stimulus (US) or unreinforced CS to reactivate the memory and then underwent extinction, spontaneous recovery, and reinstatement. In animal experiments, 343 rats underwent contextual fear conditioning under a similar protocol as that used in the human experiments. We also explored the molecular alterations after US reactivation in rats. RESULTS Presentation of a lower intensity US before extinction disrupted the associations between the different CS and reactivated US in both humans and rats. This effect persisted for at least 6 months in humans and was selective to the reactivated US. This procedure was also effective for remote memories in both humans and rats. Compared with the CS, the US induced stronger endocytosis of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid glutamate receptors 1 and 2 and stronger activation of protein kinase A, p70S6 kinase, and cyclic adenosine monophosphate response element binding protein in the dorsal hippocampus in rats. CONCLUSIONS These findings demonstrate that a modified US retrieval extinction strategy may have a potential impact on therapeutic approaches to prevent the return of fear.
Collapse
Affiliation(s)
- Jianfeng Liu
- Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China,National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | - Liyan Zhao
- National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | - Yanxue Xue
- National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | - Jie Shi
- National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | - Lin Suo
- National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | - Yixiao Luo
- Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China,National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | - Baisheng Chai
- School of Pharmacy and Affiliated Hospital of Guiyang Medical University, Guiyang 550004, China
| | - Chang Yang
- School of Pharmacy and Affiliated Hospital of Guiyang Medical University, Guiyang 550004, China
| | - Qin Fang
- School of Pharmacy and Affiliated Hospital of Guiyang Medical University, Guiyang 550004, China
| | - Yan Zhang
- National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | - Yanping Bao
- National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | - Charles L. Pickens
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Lin Lu
- Institute of Mental Health and Key Laboratory of Mental Health, Ministry of Health, the Sixth Affiliated Hospital of Peking University, Beijing, China; National Institute on Drug Dependence, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences and Peking University-International Data Group-McGovern Institute for Brain Research, Peking University, Beijing, China.
| |
Collapse
|
433
|
Guo FF, Xu L, Gao SL, Sun XR, Li ZL, Gong YL. The effects of nesfatin-1 in the paraventricular nucleus on gastric motility and its potential regulation by the lateral hypothalamic area in rats. J Neurochem 2014; 132:266-75. [PMID: 25328037 DOI: 10.1111/jnc.12973] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 08/19/2014] [Accepted: 10/10/2014] [Indexed: 12/11/2022]
Abstract
The current study investigated the effects of nesfatin-1 in the hypothalamic paraventricular nucleus (PVN) on gastric motility and the regulation of the lateral hypothalamic area (LHA). Using single unit recordings in the PVN, we show that nesfatin-1 inhibited the majority of the gastric distention (GD)-excitatory neurons and excited more than half of the GD-inhibitory (GD-I) neurons in the PVN, which were weakened by oxytocin receptor antagonist H4928. Gastric motility experiments showed that administration of nesfatin-1 in the PVN decreased gastric motility, which was also partly prevented by H4928. The nesfatin-1 concentration producing a half-maximal response (EC50) in the PVN was lower than the value in the dorsomedial hypothalamic nucleus, while nesfatin-1 in the reuniens thalamic nucleus had no effect on gastric motility. Retrograde tracing and immunofluorescent staining showed that nucleobindin-2/nesfatin-1 and fluorogold double-labeled neurons were observed in the LHA. Electrical LHA stimulation changed the firing rate of GD-responsive neurons in the PVN. Pre-administration of an anti- nucleobindin-2/nesfatin-1 antibody in the PVN strengthened gastric motility and decreased the discharging of the GD-I neurons induced by electrical stimulation of the LHA. These results demonstrate that nesfatin-1 in the PVN could serve as an inhibitory factor to inhibit gastric motility, which might be regulated by the LHA.
Collapse
Affiliation(s)
- Fei-fei Guo
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, China
| | | | | | | | | | | |
Collapse
|
434
|
Pereira de Vasconcelos A, Cassel JC. The nonspecific thalamus: A place in a wedding bed for making memories last? Neurosci Biobehav Rev 2014; 54:175-96. [PMID: 25451763 DOI: 10.1016/j.neubiorev.2014.10.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/11/2014] [Accepted: 10/23/2014] [Indexed: 01/30/2023]
Abstract
We summarize anatomical, electrophysiological and behavioral evidence that the rostral intralaminar (ILN) and the reuniens and rhomboid (ReRh) nuclei that belong to the nonspecific thalamus, might be part of a hippocampo-cortico-thalamic network underlying consolidation of enduring declarative(-like) memories at systems level. The first part of this review describes the anatomical and functional organization of these thalamic nuclei. The second part presents the theoretical models supporting the active systems-level consolidation, a process that relies upon sleep specific field-potential oscillations occurring during both slow-wave sleep (SWS) and rapid eye movement (REM) sleep. The last part presents data in the rat showing that the lesion of the rostral ILN or of the ReRh specifically hinders the formation of remote spatial memories without affecting task acquisition or retrieval of a recent memory. These results showing a critical role of the ILN and ReRh nuclei in the transformation of a recent memory into a remote one are discussed in the context of their control of cortical arousal (ARAS) and of thalamo-cortico-thalamic synchronization.
Collapse
Affiliation(s)
- Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, Université de Strasbourg, CNRS, Faculté de Psychologie Neuropôle de Strasbourg - GDR CNRS 2905, 12 rue Goethe, F-67000 Strasbourg, France.
| | - Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, Université de Strasbourg, CNRS, Faculté de Psychologie Neuropôle de Strasbourg - GDR CNRS 2905, 12 rue Goethe, F-67000 Strasbourg, France
| |
Collapse
|
435
|
Rozeske RR, Valerio S, Chaudun F, Herry C. Prefrontal neuronal circuits of contextual fear conditioning. GENES BRAIN AND BEHAVIOR 2014; 14:22-36. [PMID: 25287656 DOI: 10.1111/gbb.12181] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/17/2014] [Accepted: 10/05/2014] [Indexed: 12/12/2022]
Abstract
Over the past years, numerous studies have provided a clear understanding of the neuronal circuits and mechanisms involved in the formation, expression and extinction phases of conditioned cued fear memories. Yet, despite a strong clinical interest, a detailed understanding of these memory phases for contextual fear memories is still missing. Besides the well-known role of the hippocampus in encoding contextual fear behavior, growing evidence indicates that specific regions of the medial prefrontal cortex differentially regulate contextual fear acquisition and storage in both animals and humans that ultimately leads to expression of contextual fear memories. In this review, we provide a detailed description of the recent literature on the role of distinct prefrontal subregions in contextual fear behavior and provide a working model of the neuronal circuits involved in the acquisition, expression and generalization of contextual fear memories.
Collapse
Affiliation(s)
- R R Rozeske
- INSERM U862, Neurocenter Magendie, Bordeaux, France
| | | | | | | |
Collapse
|
436
|
A class of GABAergic neurons in the prefrontal cortex sends long-range projections to the nucleus accumbens and elicits acute avoidance behavior. J Neurosci 2014; 34:11519-25. [PMID: 25164650 DOI: 10.1523/jneurosci.1157-14.2014] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
GABAergic projections from the neocortex to subcortical structures have been poorly characterized. Using Dlxi12b-Cre mice, we found anatomical evidence for GABAergic neurons that project from the mouse medial prefrontal cortex (mPFC) to multiple subcortical targets. We used a combination of patch-clamp electrophysiology, optogenetics, and pharmacology to confirm that Dlxi12b-labeled projections from the mPFC to the nucleus accumbens (NAcc) release GABA and do not corelease glutamate. Furthermore, optogenetic stimulation of these GABAergic projections from mPFC to NAcc induces avoidance behavior in a real-time place preference task, suggesting that these long-range projecting GABAergic neurons can transmit aversive signals. Finally, we found evidence for heterogeneous histochemical and/or electrophysiological properties of long-range projecting GABAergic neurons in the mPFC. Some of these neurons were labeled in parvalbumin-Cre and vasoactive intestinal peptide-Cre mice. We also used a novel intersectional targeting strategy to label GABAergic neurons in the mPFC that project to NAcc and found that these neurons have fast-spiking properties and express parvalbumin. These results define possible functions and properties for a class of long-range projecting GABAergic neurons in the neocortex.
Collapse
|
437
|
Watakabe A, Takaji M, Kato S, Kobayashi K, Mizukami H, Ozawa K, Ohsawa S, Matsui R, Watanabe D, Yamamori T. Simultaneous visualization of extrinsic and intrinsic axon collaterals in Golgi-like detail for mouse corticothalamic and corticocortical cells: a double viral infection method. Front Neural Circuits 2014; 8:110. [PMID: 25278843 PMCID: PMC4166322 DOI: 10.3389/fncir.2014.00110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/22/2014] [Indexed: 11/21/2022] Open
Abstract
Here we present a novel tracing technique to stain projection neurons in Golgi-like detail by double viral infection. We used retrograde lentiviral vectors and adeno-associated viral vectors (AAV) to drive “TET-ON/TET-OFF system” in neurons connecting two regions. Using this method, we successfully labeled the corticothalamic (CT) cells of the mouse somatosensory barrel field (S1BF) and motor cortex (M1) in their entirety. We also labeled contra- and ipsilaterally-projecting corticocortical (CC) cells of M1 by targeting contralateral M1 or ipsilateral S1 for retrograde infection. The strength of this method is that we can observe the morphology of specific projection neuron subtypes en masse. We found that the group of CT cells extends their dendrites and intrinsic axons extensively below but not within the thalamorecipient layer in both S1BF and M1, suggesting that the primary target of this cell type is not layer 4. We also found that both ipsi- and contralateral targeting CC cells in M1 commonly exhibit widespread collateral extensions to contralateral M1 (layers 1–6), bilateral S1 and S2 (layers 1, 5 and 6), perirhinal cortex (layers 1, 2/3, 5, and 6), striatum and claustrum. These findings not only strengthened the previous findings of single cell tracings but also extended them by enabling cross-area comparison of CT cells or comparison of CC cells of two different labeling.
Collapse
Affiliation(s)
- Akiya Watakabe
- Division of Brain Biology, National Institute for Basic Biology Okazaki, Japan
| | - Masafumi Takaji
- Division of Brain Biology, National Institute for Basic Biology Okazaki, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine Fukushima, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine Fukushima, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University Shimotsuke, Japan
| | - Keiya Ozawa
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University Shimotsuke, Japan
| | - Sonoko Ohsawa
- Division of Brain Biology, National Institute for Basic Biology Okazaki, Japan
| | - Ryosuke Matsui
- Department of Molecular and Systems Biology, Graduate School of Biostudies, Kyoto University Kyoto, Japan
| | - Dai Watanabe
- Department of Molecular and Systems Biology, Graduate School of Biostudies, Kyoto University Kyoto, Japan
| | - Tetsuo Yamamori
- Division of Brain Biology, National Institute for Basic Biology Okazaki, Japan
| |
Collapse
|
438
|
Holt DJ, Boeke EA, Wolthusen RPF, Nasr S, Milad MR, Tootell RBH. A parametric study of fear generalization to faces and non-face objects: relationship to discrimination thresholds. Front Hum Neurosci 2014; 8:624. [PMID: 25249955 PMCID: PMC4155784 DOI: 10.3389/fnhum.2014.00624] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/26/2014] [Indexed: 12/30/2022] Open
Abstract
Fear generalization is the production of fear responses to a stimulus that is similar—but not identical—to a threatening stimulus. Although prior studies have found that fear generalization magnitudes are qualitatively related to the degree of perceptual similarity to the threatening stimulus, the precise relationship between these two functions has not been measured systematically. Also, it remains unknown whether fear generalization mechanisms differ for social and non-social information. To examine these questions, we measured perceptual discrimination and fear generalization in the same subjects, using images of human faces and non-face control stimuli (“blobs”) that were perceptually matched to the faces. First, each subject’s ability to discriminate between pairs of faces or blobs was measured. Each subject then underwent a Pavlovian fear conditioning procedure, in which each of the paired conditioned stimuli (CS) were either followed (CS+) or not followed (CS−) by a shock. Skin conductance responses (SCRs) were also measured. Subjects were then presented with the CS+, CS− and five levels of a CS+-to-CS− morph continuum between the paired stimuli, which were identified based on individual discrimination thresholds. Finally, subjects rated the likelihood that each stimulus had been followed by a shock. Subjects showed both autonomic (SCR-based) and conscious (ratings-based) fear responses to morphs that they could not discriminate from the CS+ (generalization). For both faces and non-face objects, fear generalization was not found above discrimination thresholds. However, subjects exhibited greater fear generalization in the shock likelihood ratings compared to the SCRs, particularly for faces. These findings reveal that autonomic threat detection mechanisms in humans are highly sensitive to small perceptual differences between stimuli. Also, the conscious evaluation of threat shows broader generalization than autonomic responses, biased towards labeling a stimulus as threatening.
Collapse
Affiliation(s)
- Daphne J Holt
- The Department of Psychiatry, Massachusetts General Hospital Boston, MA, USA ; Harvard Medical School Boston, MA, USA ; The Athinoula A. Martinos Center for Biomedical Imaging Charlestown, MA, USA
| | - Emily A Boeke
- The Department of Psychiatry, Massachusetts General Hospital Boston, MA, USA
| | - Rick P F Wolthusen
- The Department of Psychiatry, Massachusetts General Hospital Boston, MA, USA ; Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus of the Technische Universität Dresden Dresden, Germany
| | - Shahin Nasr
- The Athinoula A. Martinos Center for Biomedical Imaging Charlestown, MA, USA ; The Department of Radiology, Massachusetts General Hospital Boston, MA, USA
| | - Mohammed R Milad
- The Department of Psychiatry, Massachusetts General Hospital Boston, MA, USA ; Harvard Medical School Boston, MA, USA
| | - Roger B H Tootell
- Harvard Medical School Boston, MA, USA ; The Athinoula A. Martinos Center for Biomedical Imaging Charlestown, MA, USA ; The Department of Radiology, Massachusetts General Hospital Boston, MA, USA
| |
Collapse
|
439
|
Ding X, Qiao Y, Piao C, Zheng X, Liu Z, Liang J. N-methyl-D-aspartate receptor-mediated glutamate transmission in nucleus accumbens plays a more important role than that in dorsal striatum in cognitive flexibility. Front Behav Neurosci 2014; 8:304. [PMID: 25249952 PMCID: PMC4155776 DOI: 10.3389/fnbeh.2014.00304] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/19/2014] [Indexed: 01/28/2023] Open
Abstract
Cognitive flexibility is a critical ability for adapting to an ever-changing environment in humans and animals. Deficits in cognitive flexibility are observed in most schizophrenia patients. Previous studies reported that the medial prefrontal cortex-to-ventral striatum and orbital frontal cortex-to-dorsal striatum circuits play important roles in extra- and intra-dimensional strategy switching, respectively. However, the precise function of striatal subregions in flexible behaviors is still unclear. N-methyl-D-aspartate receptors (NMDARs) are major glutamate receptors in the striatum that receive glutamatergic projections from the frontal cortex. The membrane insertion of Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPARs) depends on NMDAR activation and is required in learning and memory processes. In the present study, we measured set-shifting and reversal learning performance in operant chambers in rats and assessed the effects of blocking NMDARs and Ca2+-permeable AMPARs in striatal subregions on behavioral flexibility. The blockade of NMDARs in the nucleus accumbens (NAc) core by AP5 impaired set-shifting ability by causing a failure to modify prior learning. The suppression of NMDAR-mediated transmission in the NAc shell induced a deficit in set-shifting by disrupting the learning and maintenance of novel strategies. During reversal learning, infusions of AP5 into the NAc shell and core impaired the ability to learn and maintain new strategies. However, behavioral flexibility was not significantly affected by blocking NMDARs in the dorsal striatum. We also found that the blockade of Ca2+-permeable AMPARs by NASPM in any subregion of the striatum did not affect strategy switching. These findings suggest that NMDAR-mediated glutamate transmission in the NAc contributes more to cognitive execution compared with the dorsal striatum.
Collapse
Affiliation(s)
- Xuekun Ding
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences Beijing, China ; University of Chinese Academy of Sciences Beijing, China
| | - Yanhua Qiao
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences Beijing, China ; University of Chinese Academy of Sciences Beijing, China
| | - Chengji Piao
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences Beijing, China ; University of Chinese Academy of Sciences Beijing, China
| | - Xigeng Zheng
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| | - Zhengkui Liu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| | - Jing Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| |
Collapse
|
440
|
Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE, Adhikari A, Lammel S, Mirzabekov JJ, Airan RD, Zalocusky KA, Tye KM, Anikeeva P, Malenka RC, Deisseroth K. Natural neural projection dynamics underlying social behavior. Cell 2014; 157:1535-51. [PMID: 24949967 DOI: 10.1016/j.cell.2014.05.017] [Citation(s) in RCA: 980] [Impact Index Per Article: 89.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/30/2014] [Accepted: 05/12/2014] [Indexed: 01/11/2023]
Abstract
Social interaction is a complex behavior essential for many species and is impaired in major neuropsychiatric disorders. Pharmacological studies have implicated certain neurotransmitter systems in social behavior, but circuit-level understanding of endogenous neural activity during social interaction is lacking. We therefore developed and applied a new methodology, termed fiber photometry, to optically record natural neural activity in genetically and connectivity-defined projections to elucidate the real-time role of specified pathways in mammalian behavior. Fiber photometry revealed that activity dynamics of a ventral tegmental area (VTA)-to-nucleus accumbens (NAc) projection could encode and predict key features of social, but not novel object, interaction. Consistent with this observation, optogenetic control of cells specifically contributing to this projection was sufficient to modulate social behavior, which was mediated by type 1 dopamine receptor signaling downstream in the NAc. Direct observation of deep projection-specific activity in this way captures a fundamental and previously inaccessible dimension of mammalian circuit dynamics.
Collapse
Affiliation(s)
- Lisa A Gunaydin
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Logan Grosenick
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Neuroscience Program, Stanford University, Stanford, CA 94305, USA
| | - Joel C Finkelstein
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Isaac V Kauvar
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Lief E Fenno
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Neuroscience Program, Stanford University, Stanford, CA 94305, USA
| | - Avishek Adhikari
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Stephan Lammel
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Julie J Mirzabekov
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Raag D Airan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kelly A Zalocusky
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Neuroscience Program, Stanford University, Stanford, CA 94305, USA
| | - Kay M Tye
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Polina Anikeeva
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Robert C Malenka
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
441
|
Goshen I. The optogenetic revolution in memory research. Trends Neurosci 2014; 37:511-22. [DOI: 10.1016/j.tins.2014.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/02/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
|
442
|
Wu JQ, Peters GJ, Rittner P, Cleland TA, Smith DM. The hippocampus, medial prefrontal cortex, and selective memory retrieval: evidence from a rodent model of the retrieval-induced forgetting effect. Hippocampus 2014; 24:1070-80. [PMID: 24753146 PMCID: PMC4146680 DOI: 10.1002/hipo.22291] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 04/05/2014] [Accepted: 04/09/2014] [Indexed: 12/27/2022]
Abstract
Inhibition is an important component of many cognitive functions, including memory. For example, the retrieval-induced forgetting (RIF) effect occurs when extra practice with some items from a study list inhibits the retrieval of the nonpracticed items relative to a baseline condition that does not involve extra practice. Although counterintuitive, the RIF phenomenon may be important for resolving interference by inhibiting potentially competing retrieval targets. Neuroimaging studies suggest that the hippocampus and prefrontal cortex are involved in the RIF effect, but controlled lesion studies have not yet been performed. We developed a rodent model of the RIF training procedure and trained control rats and rats with temporary inactivation of the hippocampus or medial prefrontal cortex (mPFC). Rats were trained on a list of odor cues, presented in cups of digging medium with a buried reward, followed by additional practice trials with a subset of the cues. We then tested the rats' memories for the cues and their association with reward by presenting them with unbaited cups containing the test odorants and measuring how long they persisted in digging. Control rats exhibited a robust RIF effect in which memory for the nonpracticed odors was significantly inhibited. Thus, extra practice with some odor cues inhibited memory for the others, relative to a baseline condition that involved an identical amount of training. Inactivation of either the hippocampus or the mPFC blocked the RIF effect. We also constructed a computational model of a representational learning circuit to simulate the RIF effect. We show in this model that "sideband suppression" of similar memory representations can reproduce the RIF effect and that alteration of the suppression parameters and learning rate can reproduce the lesion effects seen in our rats. Our results suggest that the RIF effect is widespread and that inhibitory processes are an important feature of memory function.
Collapse
Affiliation(s)
- Jade Q Wu
- Department of Psychology, Cornell University, Ithaca, New York
| | | | | | | | | |
Collapse
|
443
|
Abstract
The well-replicated observation that many people maintain mental health despite exposure to severe psychological or physical adversity has ignited interest in the mechanisms that protect against stress-related mental illness. Focusing on resilience rather than pathophysiology in many ways represents a paradigm shift in clinical-psychological and psychiatric research that has great potential for the development of new prevention and treatment strategies. More recently, research into resilience also arrived in the neurobiological community, posing nontrivial questions about ecological validity and translatability. Drawing on concepts and findings from transdiagnostic psychiatry, emotion research, and behavioral and cognitive neuroscience, we propose a unified theoretical framework for the neuroscientific study of general resilience mechanisms. The framework is applicable to both animal and human research and supports the design and interpretation of translational studies. The theory emphasizes the causal role of stimulus appraisal (evaluation) processes in the generation of emotional responses, including responses to potential stressors. On this basis, it posits that a positive (non-negative) appraisal style is the key mechanism that protects against the detrimental effects of stress and mediates the effects of other known resilience factors. Appraisal style is shaped by three classes of cognitive processes--positive situation classification, reappraisal, and interference inhibition--that can be investigated at the neural level. Prospects for the future development of resilience research are discussed.
Collapse
|
444
|
Chronic GluN2B antagonism disrupts behavior in wild-type mice without protecting against synapse loss or memory impairment in Alzheimer's disease mouse models. J Neurosci 2014; 34:8277-88. [PMID: 24920631 DOI: 10.1523/jneurosci.5106-13.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Extensive evidence implicates GluN2B-containing NMDA receptors (GluN2B-NMDARs) in excitotoxic-insult-induced neurodegeneration and amyloid β (Aβ)-induced synaptic dysfunction. Therefore, inhibiting GluN2B-NMDARs would appear to be a potential therapeutic strategy to provide neuroprotection and improve cognitive function in Alzheimer's disease (AD). However, there are no reports of long-term in vivo treatment of AD mouse models with GluN2B antagonists. We used piperidine18 (Pip18), a potent and selective GluN2B-NMDAR antagonist with favorable pharmacokinetic properties, for long-term dosing in AD mouse models. Reduced freezing behavior in Tg2576 mice during fear conditioning was partially reversed after subchronic (17 d) Pip18 treatment. However, analysis of freezing behavior in different contexts indicated that this increased freezing likely involves elevated anxiety or excessive memory generalization in both nontransgenic (NTG) and Tg2576 mice. In PS2APP mice chronically fed with medicated food containing Pip18 for 4 months, spatial learning and memory deficits were not rescued, plaque-associated spine loss was not affected, and synaptic function was not altered. At the same time, altered open field activity consistent with increased anxiety and degraded performance in an active avoidance task were observed in NTG after chronic treatment. These results indicate that long-term treatment with a GluN2B-NMDAR antagonist does not provide a disease-modifying benefit and could cause cognitive liabilities rather than symptomatic benefit in AD mouse models. Therefore, these results challenge the expectation of the therapeutic potential for GluN2B-NMDAR antagonists in AD.
Collapse
|
445
|
Abstract
Understanding the mechanisms by which long-term memories are formed and stored in the brain represents a central aim of neuroscience. Prevailing theory suggests that long-term memory encoding involves early plasticity within hippocampal circuits, whereas reorganization of the neocortex is thought to occur weeks to months later to subserve remote memory storage. Here we report that long-term memory encoding can elicit early transcriptional, structural, and functional remodeling of the neocortex. Parallel studies using genome-wide RNA sequencing, ultrastructural imaging, and whole-cell recording in wild-type mice suggest that contextual fear conditioning initiates a transcriptional program in the medial prefrontal cortex (mPFC) that is accompanied by rapid expansion of the synaptic active zone and postsynaptic density, enhanced dendritic spine plasticity, and increased synaptic efficacy. To address the real-time contribution of the mPFC to long-term memory encoding, we performed temporally precise optogenetic inhibition of excitatory mPFC neurons during contextual fear conditioning. Using this approach, we found that real-time inhibition of the mPFC inhibited activation of the entorhinal-hippocampal circuit and impaired the formation of long-term associative memory. These findings suggest that encoding of long-term episodic memory is associated with early remodeling of neocortical circuits, identify the prefrontal cortex as a critical regulator of encoding-induced hippocampal activation and long-term memory formation, and have important implications for understanding memory processing in healthy and diseased brain states.
Collapse
|
446
|
Martínez MC, Villar ME, Ballarini F, Viola H. Retroactive interference of object-in-context long-term memory: role of dorsal hippocampus and medial prefrontal cortex. Hippocampus 2014; 24:1482-92. [PMID: 25044872 DOI: 10.1002/hipo.22328] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 12/13/2022]
Abstract
Retroactive interference (RI) is a type of amnesia in which a new learning experience can impair the expression of a previous one. It has been studied in several types of memories for over a century. Here, we aimed to study in the long-term memory (LTM) formation of an object-in-context task, defined as the recognition of a familiar object in a context different to that in which it was previously encountered. We trained rats with two sample trials, each taking place in a different context in association with different objects. Test sessions were performed 24 h later, to evaluate LTM for both object-context pairs using separate groups of trained rats. Furthermore, given the involvement of hippocampus (Hp) and medial prefrontal cortex (mPFC) in several recognition memories, we also analyzed the participation of these structures in the LTM formation of this task by the local infusion of muscimol. Our results show that object-in-context LTM formation is sensitive to RI by a different either familiar or novel object-context pair trial, experienced 1 h later. This interference occurs in a restricted temporal window and works on the LTM consolidation phase, leaving intact short-term memory expression. The second sample trial did not affect the object recognition part of the memory. Besides, muscimol treatment before the second sample trial blocks its object-in-context LTM and restores the first sample trial memory. We hypothesized that LTM-RI amnesia is probably caused by resources or cellular machinery competition in these brain regions when they are engaged in memory formation of the traces. In sum, when two different object-in-context memory traces are being processed, the second trace interferes with the consolidation of the first one requiring mPFC and CA1 dorsal Hp activation.
Collapse
Affiliation(s)
- María Cecilia Martínez
- Laboratorio de Memoria, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", Facultad de Medicina, Universidad de Buenos Aires-CONICET, Paraguay 2155 3° piso, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
447
|
Vieira PA, Lovelace JW, Corches A, Rashid AJ, Josselyn SA, Korzus E. Prefrontal consolidation supports the attainment of fear memory accuracy. ACTA ACUST UNITED AC 2014; 21:394-405. [PMID: 25031365 PMCID: PMC4105719 DOI: 10.1101/lm.036087.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The neural mechanisms underlying the attainment of fear memory accuracy for appropriate discriminative responses to aversive and nonaversive stimuli are unclear. Considerable evidence indicates that coactivator of transcription and histone acetyltransferase cAMP response element binding protein (CREB) binding protein (CBP) is critically required for normal neural function. CBP hypofunction leads to severe psychopathological symptoms in human and cognitive abnormalities in genetic mutant mice with severity dependent on the neural locus and developmental time of the gene inactivation. Here, we showed that an acute hypofunction of CBP in the medial prefrontal cortex (mPFC) results in a disruption of fear memory accuracy in mice. In addition, interruption of CREB function in the mPFC also leads to a deficit in auditory discrimination of fearful stimuli. While mice with deficient CBP/CREB signaling in the mPFC maintain normal responses to aversive stimuli, they exhibit abnormal responses to similar but nonrelevant stimuli when compared to control animals. These data indicate that improvement of fear memory accuracy involves mPFC-dependent suppression of fear responses to nonrelevant stimuli. Evidence from a context discriminatory task and a newly developed task that depends on the ability to distinguish discrete auditory cues indicated that CBP-dependent neural signaling within the mPFC circuitry is an important component of the mechanism for disambiguating the meaning of fear signals with two opposing values: aversive and nonaversive.
Collapse
Affiliation(s)
- Philip A Vieira
- Department of Psychology and Neuroscience Program, University of California Riverside, California 92521, USA
| | - Jonathan W Lovelace
- Department of Psychology and Neuroscience Program, University of California Riverside, California 92521, USA
| | - Alex Corches
- Biomedical Sciences Program, University of California Riverside, California 92521, USA
| | - Asim J Rashid
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Sheena A Josselyn
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Edward Korzus
- Department of Psychology and Neuroscience Program, University of California Riverside, California 92521, USA Biomedical Sciences Program, University of California Riverside, California 92521, USA
| |
Collapse
|
448
|
Jankowski MM, Islam MN, Wright NF, Vann SD, Erichsen JT, Aggleton JP, O'Mara SM. Nucleus reuniens of the thalamus contains head direction cells. eLife 2014; 3:e03075. [PMID: 25024427 PMCID: PMC4115655 DOI: 10.7554/elife.03075] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 07/11/2014] [Indexed: 11/13/2022] Open
Abstract
Discrete populations of brain cells signal heading direction, rather like a compass. These 'head direction' cells are largely confined to a closely-connected network of sites. We describe, for the first time, a population of head direction cells in nucleus reuniens of the thalamus in the freely-moving rat. This novel subcortical head direction signal potentially modulates the hippocampal CA fields directly and, thus, informs spatial processing and memory.
Collapse
Affiliation(s)
| | - Md Nurul Islam
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | | | - Seralynne D Vann
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Jonathan T Erichsen
- Department of Optometry and Visual Science, Cardiff University, Cardiff, United Kingdom
| | - John P Aggleton
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Shane M O'Mara
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
449
|
Li Z, Lu YF, Li CL, Wang Y, Sun W, He T, Chen XF, Wang XL, Chen J. Social interaction with a cagemate in pain facilitates subsequent spinal nociception via activation of the medial prefrontal cortex in rats. Pain 2014; 155:1253-1261. [DOI: 10.1016/j.pain.2014.03.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/26/2014] [Accepted: 03/26/2014] [Indexed: 12/30/2022]
|
450
|
Varela C. Thalamic neuromodulation and its implications for executive networks. Front Neural Circuits 2014; 8:69. [PMID: 25009467 PMCID: PMC4068295 DOI: 10.3389/fncir.2014.00069] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 06/07/2014] [Indexed: 01/25/2023] Open
Abstract
The thalamus is a key structure that controls the routing of information in the brain. Understanding modulation at the thalamic level is critical to understanding the flow of information to brain regions involved in cognitive functions, such as the neocortex, the hippocampus, and the basal ganglia. Modulators contribute the majority of synapses that thalamic cells receive, and the highest fraction of modulator synapses is found in thalamic nuclei interconnected with higher order cortical regions. In addition, disruption of modulators often translates into disabling disorders of executive behavior. However, modulation in thalamic nuclei such as the midline and intralaminar groups, which are interconnected with forebrain executive regions, has received little attention compared to sensory nuclei. Thalamic modulators are heterogeneous in regards to their origin, the neurotransmitter they use, and the effect on thalamic cells. Modulators also share some features, such as having small terminal boutons and activating metabotropic receptors on the cells they contact. I will review anatomical and physiological data on thalamic modulators with these goals: first, determine to what extent the evidence supports similar modulator functions across thalamic nuclei; and second, discuss the current evidence on modulation in the midline and intralaminar nuclei in relation to their role in executive function.
Collapse
Affiliation(s)
- Carmen Varela
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology Cambridge, MA, USA
| |
Collapse
|