401
|
|
402
|
Los DA, Murata N. Regulation of enzymatic activity and gene expression by membrane fluidity. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2000; 2000:pe1. [PMID: 11752626 DOI: 10.1126/stke.2000.62.pe1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Changes in the cellular environment can lead to alterations in the fluidity of the membranes of prokaryotes and eukaryotes. Changes in temperature and osmotic conditions are two of the best-studied stresses that can affect membrane fluidity. Los and Murata discuss the types of sensors that detect these changes in membrane fluidity and the types of signals that are generated.
Collapse
Affiliation(s)
- D A Los
- Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
403
|
Toguchi A, Siano M, Burkart M, Harshey RM. Genetics of swarming motility in Salmonella enterica serovar typhimurium: critical role for lipopolysaccharide. J Bacteriol 2000; 182:6308-21. [PMID: 11053374 PMCID: PMC94776 DOI: 10.1128/jb.182.22.6308-6321.2000] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium can differentiate into hyperflagellated swarmer cells on agar of an appropriate consistency (0.5 to 0.8%), allowing efficient colonization of the growth surface. Flagella are essential for this form of motility. In order to identify genes involved in swarming, we carried out extensive transposon mutagenesis of serovar Typhimurium, screening for those that had functional flagella yet were unable to swarm. A majority of these mutants were defective in lipopolysaccharide (LPS) synthesis, a large number were defective in chemotaxis, and some had defects in putative two-component signaling components. While the latter two classes were defective in swarmer cell differentiation, representative LPS mutants were not and could be rescued for swarming by external addition of a biosurfactant. A mutation in waaG (LPS core modification) secreted copious amounts of slime and showed a precocious swarming phenotype. We suggest that the O antigen improves surface "wettability" required for swarm colony expansion, that the LPS core could play a role in slime generation, and that multiple two-component systems cooperate to promote swarmer cell differentiation. The failure to identify specific swarming signals such as amino acids, pH changes, oxygen, iron starvation, increased viscosity, flagellar rotation, or autoinducers leads us to consider a model in which the external slime is itself both the signal and the milieu for swarming motility. The model explains the cell density dependence of the swarming phenomenon.
Collapse
Affiliation(s)
- A Toguchi
- Section of Molecular Genetics and Microbiology and Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
404
|
Schiller D, Kruse D, Kneifel H, Krämer R, Burkovski A. Polyamine transport and role of potE in response to osmotic stress in Escherichia coli. J Bacteriol 2000; 182:6247-9. [PMID: 11029450 PMCID: PMC94764 DOI: 10.1128/jb.182.21.6247-6249.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When transport of polyamines in Escherichia coli was examined, putrescine excretion was observed under two different physiological conditions: (i) strictly correlated to growth and (ii) following a hyperosmotic shock. Spermidine was not excreted. Characterization of a deletion mutant showed that PotE is not involved in these transport processes.
Collapse
Affiliation(s)
- D Schiller
- Institut für Biochemie, Universität Köln, D-50674 Cologne, Germany
| | | | | | | | | |
Collapse
|
405
|
White GF, Racher KI, Lipski A, Hallett FR, Wood JM. Physical properties of liposomes and proteoliposomes prepared from Escherichia coli polar lipids. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1468:175-86. [PMID: 11018662 DOI: 10.1016/s0005-2736(00)00255-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Reconstituted proteoliposomes serve as experimental systems for the study of membrane enzymes. Osmotic shifts and other changes in the solution environment may influence the structures and membrane properties of phospholipid vesicles (including liposomes, proteoliposomes and biological membrane vesicles) and hence the activities of membrane-associated proteins. Polar lipid extracts from Escherichia coli are commonly used in membrane protein reconstitution. The solution environment influenced the phase transition temperature and the diameter of liposomes and proteoliposomes prepared from E. coli polar lipid by extrusion. Liposomes prepared from E. coli polar lipids differed from dioleoylphosphatidylglycerol liposomes in Young's elastic modulus, yield point for solute leakage and structural response to osmotic shifts, the latter indicated by static light scattering spectroscopy. At high concentrations, NaCl caused aggregation of E. coli lipid liposomes that precluded detailed interpretation of light scattering data. Proteoliposomes and liposomes prepared from E. coli polar lipids were similar in size, yield point for solute leakage and structural response to osmotic shifts imposed with sucrose as osmolyte. These results will facilitate studies of bacterial enzymes implicated in osmosensing and of other enzymes that are reconstituted in E. coli lipid vesicles.
Collapse
Affiliation(s)
- G F White
- Department of Physics, University of Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | |
Collapse
|
406
|
Tisa LS, Sekelsky JJ, Adler J. Effects of organic antagonists of Ca(2+), Na(+), and K(+) on chemotaxis and motility of escherichia coli. J Bacteriol 2000; 182:4856-61. [PMID: 10940028 PMCID: PMC111364 DOI: 10.1128/jb.182.17.4856-4861.2000] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Various Ca(2+) antagonists used in animal research, many of them known to be Ca(2+) channel blockers, inhibited Escherichia coli chemotaxis (measured as entry of cells into a capillary containing attractant). The most effective of these, acting in the nanomolar range, was omega-conotoxin GVIA. The next most effective were gallopamil and verapamil. At concentrations around 100-fold higher than that needed for inhibition of chemotaxis, each of these antagonists inhibited motility (measured as entry of cells into a capillary lacking attractant). Various other Ca(2+) antagonists were less effective, though chemotaxis was almost always more sensitive to inhibition than was motility. Cells treated with each of these Ca(2+) antagonists swam with a running bias, i.e., tumbling was inhibited. Similarly, some Na(+) antagonists used in animal research inhibited bacterial chemotaxis. E. coli chemotaxis was inhibited by saxitoxin at concentrations above 10(-7) M, while more than 10(-4) M was needed to inhibit motility. Cells treated with saxitoxin swam with a tumbling bias. In the case of other Na(+) antagonists in animals, aconitine inhibited bacterial chemotaxis 10 times more effectively than it inhibited motility, and two others inhibited chemotaxis and motility at about the same concentration. In the case of K(+) antagonists used in animal research, 4-aminopyridine blocked E. coli chemotaxis between 10(-3) M and, totally, 10(-2) M, while motility was not affected at 10(-2) M; on the other hand, tetraethylammonium chloride failed to inhibit either chemotaxis or motility at 10(-2) M.
Collapse
Affiliation(s)
- L S Tisa
- Departments of Biochemistry and Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
407
|
Culham DE, Tripet B, Racher KI, Voegele RT, Hodges RS, Wood JM. The role of the carboxyl terminal alpha-helical coiled-coil domain in osmosensing by transporter ProP of Escherichia coli. J Mol Recognit 2000; 13:309-22. [PMID: 10992293 DOI: 10.1002/1099-1352(200009/10)13:5<309::aid-jmr505>3.0.co;2-r] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Concentrative uptake of osmoprotectants via transporter ProP contributes to the rehydration of Escherichia coli cells that encounter high osmolality media. A member of the major facilitator superfamily, ProP is activated by osmotic upshifts in whole bacteria, in cytoplasmic membrane vesicles and in proteoliposomes prepared with the purified protein. Soluble protein ProQ is also required for full osmotic activation of ProP in vivo. ProP is differentiated from structural and functional homologues by its osmotic activation and its C-terminal extension, which is predicted to form an alpha-helical coiled-coil. A synthetic polypeptide corresponding to the C-terminus of ProP (ProP-p) formed a dimeric alpha-helical coiled-coil. A derivative of transporter ProP lacking 26 C-terminal amino acids was expressed but inactive. A derivative harbouring amino acid changes K460I, Y467I and H495I (each at the core, coiled-coil 'a' position) required a larger osmotic upshift for activation than did the wild type transporter. The same changes extended, stabilized and altered the oligomeric state of the coiled-coil formed by ProP-p. Amino acid change R488I (also at the 'a' position) further increased the magnitude of the osmotic upshift required to activate ProP, reduced the activity attained and rendered ProP activation transient. Unexpectedly, replacement R488I destabilized the coiled-coil formed by ProP-p. The activity and osmotic activation of ProP were even more strongly attenuated by helix-destabilizing change I474P. These data demonstrate that the carboxyl terminal domain of ProP can form a homodimeric alpha-helical coiled-coil with unusual properties. They implicate the C-terminal domain in the osmotic activation of ProP.
Collapse
Affiliation(s)
- D E Culham
- Department of Microbiology and Guelph-Waterloo Centre for Graduate Work in Chemistry, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
408
|
|
409
|
van der Heide T, Poolman B. Osmoregulated ABC-transport system of Lactococcus lactis senses water stress via changes in the physical state of the membrane. Proc Natl Acad Sci U S A 2000; 97:7102-6. [PMID: 10860977 PMCID: PMC16506 DOI: 10.1073/pnas.97.13.7102] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An osmoregulated ABC transporter (OpuA) with novel structural features has been identified that responds to water stress. This glycine betaine transport system consists of an ATP-binding/hydrolyzing subunit (OpuAA) and a protein (OpuABC) that contains both the translocator and the substrate-binding domain. The components of OpuA have been overexpressed, purified, and functionally incorporated into liposomes with an ATP-regenerating system in the vesicle lumen. A transmembrane osmotic gradient (outside hyperosmotic relative to the inside) of both ionic and nonionic compounds was able to osmotically activate OpuA in the proteoliposomal system. Hypoosmotic medium conditions inhibited the basal activity of the system. The data show that OpuAA and OpuABC are sufficient for osmoregulated transport, indicating that OpuA can act both as osmosensor and osmoregulator. Strikingly, OpuA could also be activated by low concentrations of cationic and anionic amphipaths, which interact with the membrane. This result indicates that activation by a transmembrane osmotic gradient is mediated by changes in membrane properties/protein-lipid interactions.
Collapse
Affiliation(s)
- T van der Heide
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, and University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | |
Collapse
|
410
|
Guillot A, Obis D, Mistou MY. Fatty acid membrane composition and activation of glycine-betaine transport in Lactococcus lactis subjected to osmotic stress. Int J Food Microbiol 2000; 55:47-51. [PMID: 10791716 DOI: 10.1016/s0168-1605(00)00193-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lactococcus lactis subsp. cremoris NCDO763 accumulates glycine-betaine (betaine) when submitted to an osmotic stress with NaCl. Betaine transport activity increases with the extent of the osmotic upshock but also with growth temperature, and supplementation of the medium by Tween-80. Fatty acid analysis of the lipid fraction of L. lactis NCDO763 reveals significant modifications of the fatty acid composition of the membrane when cells are submitted to osmotic stress, high temperature or Tween-80 medium supplementation. The main modification in L. lactis membrane fatty acid composition in response to high osmolality is the increase of Cyclopropane Fatty Acid (CFA) deltaC19:0, whereas Unsaturated/Saturated ratio remains unchanged.
Collapse
Affiliation(s)
- A Guillot
- Unité de Recherche de Biochimie et Structure des Protéines, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | |
Collapse
|
411
|
Cayley DS, Guttman HJ, Record MT. Biophysical characterization of changes in amounts and activity of Escherichia coli cell and compartment water and turgor pressure in response to osmotic stress. Biophys J 2000; 78:1748-64. [PMID: 10733957 PMCID: PMC1300771 DOI: 10.1016/s0006-3495(00)76726-9] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
To obtain turgor pressure, intracellular osmolalities, and cytoplasmic water activity of Escherichia coli as a function of osmolality of growth, we have quantified and analyzed amounts of cell, cytoplasmic, and periplasmic water as functions of osmolality of growth and osmolality of plasmolysis of nongrowing cells with NaCl. The effects are large; NaCl (plasmolysis) titrations of cells grown in minimal medium at 0.03 Osm reduce cytoplasmic and cell water to approximately 20% and approximately 50% of their original values, and increase periplasmic water by approximately 300%. Independent analysis of amounts of cytoplasmic and cell water demonstrate that turgor pressure decreases with increasing osmolality of growth, from approximately 3.1 atm at 0.03 Osm to approximately 1.5 at 0.1 Osm and to less than 0.5 atm above 0.5 Osm. Analysis of periplasmic membrane-derived oligosaccharide (MDO) concentrations as a function of osmolality, calculated from literature analytical data and measured periplasmic volumes, provides independent evidence that turgor pressure decreases with increasing osmolality, and verifies that cytoplasmic and periplasmic osmolalities are equal. We propose that MDO play a key role in periplasmic volume regulation at low-to-moderate osmolality. At high growth osmolalities, where only a small amount of cytoplasmic water is observed, the small turgor pressure of E. coli demonstrates that cytoplasmic water activity is only slightly less than extracellular water activity. From these findings, we deduce that the activity of cytoplasmic water exceeds its mole fraction at high osmolality, and, therefore, conclude that the activity coefficient of cytoplasmic water increases with increasing growth osmolality and exceeds unity at high osmolality, presumably as a consequence of macromolecular crowding. These novel findings are significant for thermodynamic analyses of effects of changes in growth osmolality on biopolymer processes in general and osmoregulatory processes in particular in the E. coli cytoplasm.
Collapse
Affiliation(s)
- D S Cayley
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
412
|
Loo CY, Corliss DA, Ganeshkumar N. Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J Bacteriol 2000; 182:1374-82. [PMID: 10671461 PMCID: PMC94426 DOI: 10.1128/jb.182.5.1374-1382.2000] [Citation(s) in RCA: 372] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Viridans streptococci, which include Streptococcus gordonii, are pioneer oral bacteria that initiate dental plaque formation. Sessile bacteria in a biofilm exhibit a mode of growth that is distinct from that of planktonic bacteria. Biofilm formation of S. gordonii Challis was characterized using an in vitro biofilm formation assay on polystyrene surfaces. The same assay was used as a nonbiased method to screen isogenic mutants generated by Tn916 transposon mutagenesis for defective biofilm formation. Biofilms formed optimally when bacteria were grown in a minimal medium under anaerobic conditions. Biofilm formation was affected by changes in pH, osmolarity, and carbohydrate content of the growth media. Eighteen biofilm-defective mutants of S. gordonii Challis were identified based on Southern hybridization with a Tn916-based probe and DNA sequences of the Tn916-flanking regions. Molecular analyses of these mutants showed that some of the genes required for biofilm formation are involved in signal transduction, peptidoglycan biosynthesis, and adhesion. These characteristics are associated with quorum sensing, osmoadaptation, and adhesion functions in oral streptococci. Only nine of the biofilm-defective mutants had defects in genes of known function, suggesting that novel aspects of bacterial physiology may play a part in biofilm formation. Further identification and characterization of biofilm-associated genes will provide insight into the molecular mechanisms of biofilm formation of oral streptococci.
Collapse
Affiliation(s)
- C Y Loo
- Department of Molecular Genetics, The Forsyth Institute, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
413
|
Rübenhagen R, Rönsch H, Jung H, Krämer R, Morbach S. Osmosensor and osmoregulator properties of the betaine carrier BetP from Corynebacterium glutamicum in proteoliposomes. J Biol Chem 2000; 275:735-41. [PMID: 10625602 DOI: 10.1074/jbc.275.2.735] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The secondary glycine betaine uptake system BetP of Corynebacterium glutamicum was purified from Escherichia coli membranes in strep-tagged form after heterologous expression of the betP gene and was reconstituted in E. coli lipids. BetP retained its kinetic properties (V(max) and K(m) for betaine and Na(+)) as compared with intact cells. The influence of driving forces (Na(+) gradient and/or electrical potential) on betaine uptake was quantified in proteoliposomes. BetP was effectively regulated by the external osmolality and was stimulated by the local anesthetic tetracaine. A shift of the optimum of osmotic stimulation to higher osmolalities was linearly correlated with an increasing share of phosphatidyl glycerol, the major lipid of the C. glutamicum plasma membrane in the E. coli lipid proteoliposomes. This finding correlates with results demonstrating an identical shift when betP was expressed in E. coli instead of C. glutamicum. These data indicate that (i) BetP comprises all elements of osmosensing and osmoregulatory mechanisms of betaine uptake, (ii) osmoregulation of BetP is directly related to protein/membrane interactions, (iii) the turgor pressure presumably plays no major role in osmoregulation of BetP, and (iv) the regulatory properties of BetP may be related to the physical state of the surrounding membrane.
Collapse
Affiliation(s)
- R Rübenhagen
- Institut für Biochemie, Universität zu Köln, Zülpicher Strabetae 47, 50674 Köln, Germany
| | | | | | | | | |
Collapse
|
414
|
Landis L, Xu J, Johnson RC. The cAMP receptor protein CRP can function as an osmoregulator of transcription in Escherichia coli. Genes Dev 1999; 13:3081-91. [PMID: 10601034 PMCID: PMC317180 DOI: 10.1101/gad.13.23.3081] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transcription of the P1 promoter of the Escherichia coli proP gene, which encodes a transporter of osmoprotectants, is strongly induced by a shift to hyperosmotic media. Unlike most other osmotically regulated promoters, the induction occurs for a brief period of time, corresponding to the replacement of intracellular K(+) glutamate with osmoprotecting compounds. This burst of proP transcription is correlated with the osmolarity-dependent binding of the cAMP receptor protein CRP to a site within the proP P1 promoter. We show that CRP-cAMP functions as an osmotically sensitive repressor of proP P1 transcription in vitro. Binding of CRP to the proP promoter in vivo is transiently destabilized after a hyperosmotic shift with kinetics that correspond to the derepression of transcription, whereas Fis and Lac repressor binding is not osmotically sensitive. Similar osmotic regulation of proP P1 transcription by the CRP* mutant implies that binding of cAMP is not responsible for the unusual osmotic sensitivity of CRP activity. Osmotic regulation of CRP activity is not limited to proP. Activation of the lac promoter by CRP is also transiently inhibited after an osmotic upshift, as is the binding of CRP to the galdelta4P1 promoter. These findings suggest that CRP functions in certain contexts to regulate gene expression in response to osmotic changes, in addition to its role in catabolite control.
Collapse
Affiliation(s)
- L Landis
- Department of Biological Chemistry, School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1737, USA
| | | | | |
Collapse
|
415
|
Blount P, Moe PC. Bacterial mechanosensitive channels: integrating physiology, structure and function. Trends Microbiol 1999; 7:420-4. [PMID: 10498951 DOI: 10.1016/s0966-842x(99)01594-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
When confronted with hypo-osmotic stress, many bacterial species are able rapidly to adapt to the increase in cell turgor pressure by jettisoning cytoplasmic solutes into the medium through membrane-tension-gated channels. Physiological studies have confirmed the importance of these channels in osmoregulation. Mutagenesis of one of these channels, combined with structural information derived from X-ray crystallography, has given the first clues of how a mechanosensitive channel senses and responds to membrane tension.
Collapse
Affiliation(s)
- P Blount
- Dept of Physiology, University of Texas Southwestern Medical Centre, Dallas, TX 75235-9040, USA.
| | | |
Collapse
|
416
|
Obis D, Guillot A, Gripon JC, Renault P, Bolotin A, Mistou MY. Genetic and biochemical characterization of a high-affinity betaine uptake system (BusA) in Lactococcus lactis reveals a new functional organization within bacterial ABC transporters. J Bacteriol 1999; 181:6238-46. [PMID: 10515910 PMCID: PMC103755 DOI: 10.1128/jb.181.20.6238-6246.1999] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoplasmic accumulation of exogenous betaine stimulates the growth of Lactococcus lactis cultivated under hyperosmotic conditions. We report that L. lactis possesses a single betaine transport system that belongs to the ATP-binding cassette (ABC) superfamily of transporters. Through transposon mutagenesis, a mutant deficient in betaine transport was isolated. We identified two genes, busAA and busAB, grouped in an operon, busA (betaine uptake system). The transcription of busA is strongly regulated by the external osmolality of the medium. The busAA gene codes for the ATP-binding protein. busAB encodes a 573-residue polypeptide which presents two striking features: (i) a fusion between the regions encoding the transmembrane domain (TMD) and the substrate-binding domain (SBD) and (ii) a swapping of the SBD subdomains when compared to the Bacillus subtilis betaine-binding protein, OpuAC. BusA of L. lactis displays a high affinity towards betaine (K(m) = 1.7 microM) and is an osmosensor whose activity is tightly regulated by external osmolality, leading the betaine uptake capacity of L. lactis to be under dual control at the biochemical and genetic levels. A protein presenting the characteristics predicted for BusAB was detected in the membrane fraction of L. lactis. The fusion between the TMD and the SBD is the first example of a new organization within prokaryotic ABC transporters.
Collapse
Affiliation(s)
- D Obis
- Unité de Biochimie et Structure des Protéines, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas Cedex, France
| | | | | | | | | | | |
Collapse
|
417
|
Waukau J, Forst S. Identification of a conserved N-terminal sequence involved in transmembrane signal transduction in EnvZ. J Bacteriol 1999; 181:5534-8. [PMID: 10464234 PMCID: PMC94069 DOI: 10.1128/jb.181.17.5534-5538.1999] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/1999] [Accepted: 06/17/1999] [Indexed: 11/20/2022] Open
Abstract
To determine whether N-terminal sequences are involved in the transmembrane signaling mechanism of EnvZ, the nucleotide sequences of envZ genes from several enteric bacteria were determined. Comparative analysis revealed that the amino acid sequence between Pro41 and Glu53 was highly conserved. To further analyze the role of the conserved sequence, envZ of Escherichia coli was subjected to random PCR mutagenesis and mutant alleles that produced a high-osmolarity phenotype, in which ompF was repressed, were isolated. The mutations identified clustered within, as well as adjacent to, the Pro41-to-Glu53 sequence. These findings suggest that the conserved Pro41-to-Glu53 sequence is involved in the signal transduction mechanism of EnvZ.
Collapse
Affiliation(s)
- J Waukau
- Department of Biological Sciences, University of Wisconsin, Milwaukee, Wisconsin 53201, USA
| | | |
Collapse
|
418
|
MacMillan SV, Alexander DA, Culham DE, Kunte HJ, Marshall EV, Rochon D, Wood JM. The ion coupling and organic substrate specificities of osmoregulatory transporter ProP in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1420:30-44. [PMID: 10446288 DOI: 10.1016/s0005-2736(99)00085-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transporter ProP of Escherichia coli, a member of the major facilitator superfamily, mediates osmoprotective proline or glycine betaine accumulation by bacteria exposed to high osmolality environments. Morpholinopropane sulfonic acid, a common constituent of microbiological media, accumulates in osmoadapting E. coli cells but it is not osmoprotective and it did not influence proP transcription or ProP activity. The apparent K(m) for proline uptake via ProP increased with decreasing pH in the range 7.5-4. ProP-dependent proline uptake by de-energized bacteria was associated with alkalinization of the external medium. Thus ProP mediates cotransport of H(+) and zwitterionic proline and a transporter functional group with a pK(a) of 5-6 is implicated in catalysis. Exogenous proline or glycine betaine elicits K(+) release from osmoadapting E. coli cells and ProP activity is stimulated by exogenous K(+). However, uptake of proline or glycine betaine stimulated K(+) efflux from K(+)-loaded bacteria which expressed either ProP or alternative, osmoregulatory transporter ProU. This indicated that ProP was unlikely to mediate K(+) efflux. Zwitterions ectoine, pipecolate, proline betaine, N,N-dimethylglycine, carnitine and 1-carboxymethylpyridinium were identified as alternative ProP substrates. Choline, a cation and a structural analogue of glycine betaine, was a low affinity inhibitor but not a substrate of ProP.
Collapse
Affiliation(s)
- S V MacMillan
- Department of Microbiology, University of Guelph, Guelph, Ont. N1G 2W1, Canada
| | | | | | | | | | | | | |
Collapse
|
419
|
Kunte HJ, Crane RA, Culham DE, Richmond D, Wood JM. Protein ProQ influences osmotic activation of compatible solute transporter ProP in Escherichia coli K-12. J Bacteriol 1999; 181:1537-43. [PMID: 10049386 PMCID: PMC93544 DOI: 10.1128/jb.181.5.1537-1543.1999] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/1998] [Accepted: 12/09/1998] [Indexed: 11/20/2022] Open
Abstract
ProP is an osmoregulatory compatible solute transporter in Escherichia coli K-12. Mutation proQ220::Tn5 decreased the rate constant for and the extent of ProP activation by an osmotic upshift but did not alter proP transcription or the ProP protein level. Allele proQ220::Tn5 was isolated, and the proQ sequence was determined. Locus proQ is upstream from prc (tsp) at 41.2 centisomes on the genetic map. The proQ220::Tn5 and prc phenotypes were different, however. Gene proQ is predicted to encode a 232-amino-acid, basic, hydrophilic protein (molecular mass, 25,876 Da; calculated isoelectric point, 9.66; 32% D, E, R, or K; 54.5% polar amino acids). The insertion of PCR-amplified proQ into vector pBAD24 produced a plasmid containing the wild-type proQ open reading frame, the expression of which yielded a soluble protein with an apparent molecular mass of 30 kDa. Antibodies raised against the overexpressed ProQ protein detected cross-reactive material in proQ+ bacteria but not in proQ220::Tn5 bacteria. ProQ may be a structural element that influences the osmotic activation of ProP at a posttranslational level.
Collapse
Affiliation(s)
- H J Kunte
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | |
Collapse
|