401
|
Nito K, Kajiyama T, Unten-Kobayashi J, Fujii A, Mochizuki N, Kambara H, Nagatani A. Spatial Regulation of the Gene Expression Response to Shade in Arabidopsis Seedlings. PLANT & CELL PHYSIOLOGY 2015; 56:1306-19. [PMID: 25907567 DOI: 10.1093/pcp/pcv057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/01/2015] [Indexed: 05/04/2023]
Abstract
The shade avoidance response, which allows plants to escape from nearby competitors, is triggered by a reduction in the PFR form of phytochrome in response to shade. Classic physiological experiments have demonstrated that the shade signal perceived by the leaves is transmitted to the other parts of the plant. Recently, a simple method was developed to analyze the transcriptome in a single microgram tissue sample. In the present study, we adopted this method to conduct organ-specific transcriptomic analysis of the shade avoidance response in Arabidopsis seedlings. The shoot apical samples, which contained the meristem, basal parts of leaf primordia and short fragments of vasculature, were collected from the topmost part of the hypocotyl and subjected to RNA sequencing analysis. Unexpectedly, many more genes were up-regulated in the shoot apical region than in the cotyledons. Spotlight irradiation demonstrated that the apex-responsive genes were mainly controlled by phytochrome in the cotyledons. In accordance with the involvement of many auxin-responsive genes in this category, auxin biosynthesis was genetically shown to be essential for this response. In contrast, organ-autonomous regulation was more important for the genes that were up-regulated preferentially either in the cotyledons or in both the cotyledons and the apical region. Their responses to shade depended variously on auxin and PIFs (phytochrome-interacting factors), indicating the mechanistic diversity of the organ-autonomous response. Finally, we examined the expression of the auxin synthesis genes, the YUC genes, and found that three YUC genes, which were differently spatially regulated, co-ordinately elevated the auxin level within the shoot apical region.
Collapse
Affiliation(s)
- Kazumasa Nito
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| | | | - Junko Unten-Kobayashi
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| | - Akihiko Fujii
- Central Research Laboratory, Hitachi, Ltd., Tokyo, 185-8601 Japan
| | - Nobuyoshi Mochizuki
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| | - Hideki Kambara
- Central Research Laboratory, Hitachi, Ltd., Tokyo, 185-8601 Japan
| | - Akira Nagatani
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
402
|
Horvath DP, Hansen SA, Moriles-Miller JP, Pierik R, Yan C, Clay DE, Scheffler B, Clay SA. RNAseq reveals weed-induced PIF3-like as a candidate target to manipulate weed stress response in soybean. THE NEW PHYTOLOGIST 2015; 207:196-210. [PMID: 25711503 DOI: 10.1111/nph.13351] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/30/2015] [Indexed: 05/20/2023]
Abstract
Weeds reduce yield in soybeans (Glycine max) through incompletely defined mechanisms. The effects of weeds on the soybean transcriptome were evaluated in field conditions during four separate growing seasons. RNASeq data were collected from six biological samples of soybeans growing with or without weeds. Weed species and the methods to maintain weed-free controls varied between years to mitigate treatment effects, and to allow detection of general soybean weed responses. Soybean plants were not visibly nutrient- or water-stressed. We identified 55 consistently downregulated genes in weedy plots. Many of the downregulated genes were heat shock genes. Fourteen genes were consistently upregulated. Several transcription factors including a PHYTOCHROME INTERACTING FACTOR 3-like gene (PIF3) were included among the upregulated genes. Gene set enrichment analysis indicated roles for increased oxidative stress and jasmonic acid signaling responses during weed stress. The relationship of this weed-induced PIF3 gene to genes involved in shade avoidance responses in Arabidopsis provide evidence that this gene may be important in the response of soybean to weeds. These results suggest that the weed-induced PIF3 gene will be a target for manipulating weed tolerance in soybean.
Collapse
Affiliation(s)
- David P Horvath
- Sunflower and Plant Biology Research Unit, USDA-ARS, Fargo, ND, 58102, USA
| | - Stephanie A Hansen
- Plant Biology Department, South Dakota State University, Brookings, SD, 57006, USA
| | | | - Ronald Pierik
- Graduate School of Life Sciences, Universiteit Utrecht, Utrecht, the Netherlands
| | - Changhui Yan
- Computer Science Department, North Dakota State University, Fargo, ND, 58105, USA
| | - David E Clay
- Plant Biology Department, South Dakota State University, Brookings, SD, 57006, USA
| | - Brian Scheffler
- MSA Genomics Laboratory, USDA-ARS, Stoneville, MS, 38776, USA
| | - Sharon A Clay
- Plant Biology Department, South Dakota State University, Brookings, SD, 57006, USA
| |
Collapse
|
403
|
Rockwell NC, Martin SS, Lim S, Lagarias JC, Ames JB. Characterization of Red/Green Cyanobacteriochrome NpR6012g4 by Solution Nuclear Magnetic Resonance Spectroscopy: A Hydrophobic Pocket for the C15-E,anti Chromophore in the Photoproduct. Biochemistry 2015; 54:3772-83. [DOI: 10.1021/acs.biochem.5b00438] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nathan C. Rockwell
- Department of Molecular
and Cellular Biology and ‡Department of Chemistry, University of California, Davis, California 95616, United States
| | - Shelley S. Martin
- Department of Molecular
and Cellular Biology and ‡Department of Chemistry, University of California, Davis, California 95616, United States
| | - Sunghyuk Lim
- Department of Molecular
and Cellular Biology and ‡Department of Chemistry, University of California, Davis, California 95616, United States
| | - J. Clark Lagarias
- Department of Molecular
and Cellular Biology and ‡Department of Chemistry, University of California, Davis, California 95616, United States
| | - James B. Ames
- Department of Molecular
and Cellular Biology and ‡Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
404
|
Sun Y, Zerges W. Translational regulation in chloroplasts for development and homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:809-20. [PMID: 25988717 DOI: 10.1016/j.bbabio.2015.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/13/2015] [Accepted: 05/10/2015] [Indexed: 11/16/2022]
Abstract
Chloroplast genomes encode 100-200 proteins which function in photosynthesis, the organellar genetic system, and other pathways and processes. These proteins are synthesized by a complete translation system within the chloroplast, with bacterial-type ribosomes and translation factors. Here, we review translational regulation in chloroplasts, focusing on changes in translation rates which occur in response to requirements for proteins encoded by the chloroplast genome for development and homeostasis. In addition, we delineate the developmental and physiological contexts and model organisms in which translational regulation in chloroplasts has been studied. This article is part of a Special Issue entitled: Chloroplast biogenesis.
Collapse
Affiliation(s)
- Yi Sun
- Biology Department and Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W., Montreal, Quebec H4B 1R6, Canada
| | - William Zerges
- Biology Department and Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W., Montreal, Quebec H4B 1R6, Canada.
| |
Collapse
|
405
|
Light signaling controls nuclear architecture reorganization during seedling establishment. Proc Natl Acad Sci U S A 2015; 112:E2836-44. [PMID: 25964332 DOI: 10.1073/pnas.1503512112] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The spatial organization of chromatin can be subject to extensive remodeling in plant somatic cells in response to developmental and environmental signals. However, the mechanisms controlling these dynamic changes and their functional impact on nuclear activity are poorly understood. Here, we determined that light perception triggers a switch between two different nuclear architectural schemes during Arabidopsis postembryonic development. Whereas progressive nucleus expansion and heterochromatin rearrangements in cotyledon cells are achieved similarly under light and dark conditions during germination, the later steps that lead to mature nuclear phenotypes are intimately associated with the photomorphogenic transition in an organ-specific manner. The light signaling integrators DE-ETIOLATED 1 and CONSTITUTIVE PHOTOMORPHOGENIC 1 maintain heterochromatin in a decondensed state in etiolated cotyledons. In contrast, under light conditions cryptochrome-mediated photoperception releases nuclear expansion and heterochromatin compaction within conspicuous chromocenters. For all tested loci, chromatin condensation during photomorphogenesis does not detectably rely on DNA methylation-based processes. Notwithstanding, the efficiency of transcriptional gene silencing may be impacted during the transition, as based on the reactivation of transposable element-driven reporter genes. Finally, we report that global engagement of RNA polymerase II in transcription is highly increased under light conditions, suggesting that cotyledon photomorphogenesis involves a transition from globally quiescent to more active transcriptional states. Given these findings, we propose that light-triggered changes in nuclear architecture underlie interplays between heterochromatin reorganization and transcriptional reprogramming associated with the establishment of photosynthesis.
Collapse
|
406
|
Zhu W, Ausin I, Seleznev A, Méndez-Vigo B, Picó FX, Sureshkumar S, Sundaramoorthi V, Bulach D, Powell D, Seemann T, Alonso-Blanco C, Balasubramanian S. Natural Variation Identifies ICARUS1, a Universal Gene Required for Cell Proliferation and Growth at High Temperatures in Arabidopsis thaliana. PLoS Genet 2015; 11:e1005085. [PMID: 25951176 PMCID: PMC4423873 DOI: 10.1371/journal.pgen.1005085] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/20/2015] [Indexed: 12/17/2022] Open
Abstract
Plants are highly sensitive to environmental changes and even small variations in ambient temperature have severe consequences on their growth and development. Temperature affects multiple aspects of plant development, but the processes and mechanisms underlying thermo-sensitive growth responses are mostly unknown. Here we exploit natural variation in Arabidopsis thaliana to identify and characterize novel components and processes mediating thermo-sensitive growth responses in plants. Phenotypic screening of wild accessions identified several strains displaying pleiotropic growth defects, at cellular and organism levels, specifically at high ambient temperatures. Positional cloning and characterization of the underlying gene revealed that ICARUS1 (ICA1), which encodes a protein of the tRNAHis guanylyl transferase (Thg1) superfamily, is required for plant growth at high temperatures. Transcriptome and gene marker analyses together with DNA content measurements show that ICA1 loss-of-function results in down regulation of cell cycle associated genes at high temperatures, which is linked with a block in G2/M transition and endoreduplication. In addition, plants with mutations in ICA1 show enhanced sensitivity to DNA damage. Characterization of additional strains that carry lesions in ICA1, but display normal growth, shows that alternative splicing is likely to alleviate the deleterious effects of some natural mutations. Furthermore, analyses of worldwide and regional collections of natural accessions indicate that ICA1 loss-of-function has arisen several times independently, and that these occur at high frequency in some local populations. Overall our results suggest that ICA1-mediated-modulation of fundamental processes such as tRNAHis maturation, modify plant growth responses to temperature changes in a quantitative and reversible manner, in natural populations. The increase in average temperatures across the globe has been predicted to have negative impacts on agricultural productivity. Therefore, there is a need to understand the molecular mechanisms that underlie plant growth responses to varying temperature regimes. At present, very little is known about the genes and pathways that modulate thermo-sensory growth responses in plants. In this article, the authors exploit natural variation in the commonly occurring weed thale cress (Arabidopsis thaliana) and identify a gene referred to as ICARUS1 to be required for plant growth at higher ambient temperatures. Plants carrying lesions in this gene stop growing at high temperatures and revert to growth when temperatures reduce. Using a combination of computational, molecular and cell biological approaches, the authors demonstrate that allelic variation at ICARUS1, which encodes an enzyme required for the fundamental biochemical process of tRNAHis maturation, underlies variation in thermo-sensory growth responses of A. thaliana. Furthermore, the authors discover that the deleterious impact of a natural mutation in ICARUS1 is suppressed through alternative splicing, thus suggesting the potential for alternative splicing to buffer the impacts of some natural mutations. These results support that modulation of fundamental processes, in addition to transcriptional regulation, mediate thermo-sensory growth responses in plants.
Collapse
Affiliation(s)
- Wangsheng Zhu
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Israel Ausin
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Andrei Seleznev
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Belén Méndez-Vigo
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - F. Xavier Picó
- Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | | | | | - Dieter Bulach
- Victorian Bioinformatics Consortium, Monash University, Victoria, Australia
| | - David Powell
- Victorian Bioinformatics Consortium, Monash University, Victoria, Australia
| | - Torsten Seemann
- Victorian Bioinformatics Consortium, Monash University, Victoria, Australia
| | - Carlos Alonso-Blanco
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- * E-mail: (CAB); (SB)
| | | |
Collapse
|
407
|
Nishihama R, Ishizaki K, Hosaka M, Matsuda Y, Kubota A, Kohchi T. Phytochrome-mediated regulation of cell division and growth during regeneration and sporeling development in the liverwort Marchantia polymorpha. JOURNAL OF PLANT RESEARCH 2015; 128:407-21. [PMID: 25841334 DOI: 10.1007/s10265-015-0724-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 02/26/2015] [Indexed: 05/18/2023]
Abstract
Light regulates various aspects of development throughout the life cycle of sessile land plants. Photoreceptors, such as the red (R) and far-red (FR) light receptors phytochromes, play pivotal roles in modulating developmental programs. Reflecting high developmental plasticity, plants can regenerate tissues, organs, and whole bodies from varieties of cells. Among land plants, bryophytes exhibit extraordinary competency of regeneration under hormone-free conditions. As an environmental factor, light plays critical roles in regeneration of bryophytes. However, how light regulates regeneration remains unknown. Here we show that using the liverwort Marchantia polymorpha, which contains a single phytochrome gene, the phytochrome regulates re-entry into the cell cycle and cell shape in newly regenerating tissues. Our morphological and cytological observations revealed that S-phase entry of G1-arrested epidermal cells around the midrib on the ventral surface of thallus explants was greatly retarded in the dark or under phytochrome-inactive R/FR cycle irradiation conditions, where, nevertheless, small, laterally narrow regenerants were eventually formed. Thus, consistent with earlier descriptions published over a century ago, light is not essential for, but exerts profound effects on regeneration in M. polymorpha. Ventral cells in regenerants grown under R/FR cycle conditions were longer and narrower than those under R cycle. Expression of a constitutively active mutant of M. polymorpha phytochrome allowed regeneration of well grown, widely expanded thalli even in the dark when sugar was supplied, further demonstrating that the phytochrome signal promotes cell proliferation, which is rate-limited by sucrose availability. Similar effects of R and FR irradiation on cell division and elongation were observed in sporelings as well. Thus, besides activation of photosynthesis, major roles of R in regeneration of M. polymorpha are to facilitate proliferation of rounder cells through the phytochrome by mechanisms that are likely to operate in the sporeling.
Collapse
Affiliation(s)
- Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan,
| | | | | | | | | | | |
Collapse
|
408
|
Kegge W, Ninkovic V, Glinwood R, Welschen RAM, Voesenek LACJ, Pierik R. Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants. ANNALS OF BOTANY 2015; 115:961-70. [PMID: 25851141 PMCID: PMC4407068 DOI: 10.1093/aob/mcv036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/07/2014] [Accepted: 02/19/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Volatile organic compounds (VOCs) play various roles in plant-plant interactions, and constitutively produced VOCs might act as a cue to sense neighbouring plants. Previous studies have shown that VOCs emitted from the barley (Hordeum vulgare) cultivar 'Alva' cause changes in biomass allocation in plants of the cultivar 'Kara'. Other studies have shown that shading and the low red:far-red (R:FR) conditions that prevail at high plant densities can reduce the quantity and alter the composition of the VOCs emitted by Arabidopsis thaliana, but whether this affects plant-plant signalling remains unknown. This study therefore examines the effects of far-red light enrichment on VOC emissions and plant-plant signalling between 'Alva' and 'Kara'. METHODS The proximity of neighbouring plants was mimicked by supplemental far-red light treatment of VOC emitter plants of barley grown in growth chambers. Volatiles emitted by 'Alva' under control and far-red light-enriched conditions were analysed using gas chromatography-mass spectrometry (GC-MS). 'Kara' plants were exposed to the VOC blend emitted by the 'Alva' plants that were subjected to either of the light treatments. Dry matter partitioning, leaf area, stem and total root length were determined for 'Kara' plants exposed to 'Alva' VOCs, and also for 'Alva' plants exposed to either control or far-red-enriched light treatments. KEY RESULTS Total VOC emissions by 'Alva' were reduced under low R:FR conditions compared with control light conditions, although individual volatile compounds were found to be either suppressed, induced or not affected by R:FR. The altered composition of the VOC blend emitted by 'Alva' plants exposed to low R:FR was found to affect carbon allocation in receiver plants of 'Kara'. CONCLUSIONS The results indicate that changes in R:FR light conditions influence the emissions of VOCs in barley, and that these altered emissions affect VOC-mediated plant-plant interactions.
Collapse
Affiliation(s)
- Wouter Kegge
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands and Swedish University of Agricultural Sciences, Department of Crop Production Ecology, PO Box 7043, S-750 07 Uppsala, Sweden
| | - Velemir Ninkovic
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands and Swedish University of Agricultural Sciences, Department of Crop Production Ecology, PO Box 7043, S-750 07 Uppsala, Sweden
| | - Robert Glinwood
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands and Swedish University of Agricultural Sciences, Department of Crop Production Ecology, PO Box 7043, S-750 07 Uppsala, Sweden
| | - Rob A M Welschen
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands and Swedish University of Agricultural Sciences, Department of Crop Production Ecology, PO Box 7043, S-750 07 Uppsala, Sweden
| | - Laurentius A C J Voesenek
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands and Swedish University of Agricultural Sciences, Department of Crop Production Ecology, PO Box 7043, S-750 07 Uppsala, Sweden
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands and Swedish University of Agricultural Sciences, Department of Crop Production Ecology, PO Box 7043, S-750 07 Uppsala, Sweden
| |
Collapse
|
409
|
Siipola SM, Kotilainen T, Sipari N, Morales LO, Lindfors AV, Robson TM, Aphalo PJ. Epidermal UV-A absorbance and whole-leaf flavonoid composition in pea respond more to solar blue light than to solar UV radiation. PLANT, CELL & ENVIRONMENT 2015; 38:941-52. [PMID: 25040832 DOI: 10.1111/pce.12403] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 06/26/2014] [Accepted: 06/29/2014] [Indexed: 05/20/2023]
Abstract
Plants synthesize phenolic compounds in response to certain environmental signals or stresses. One large group of phenolics, flavonoids, is considered particularly responsive to ultraviolet (UV) radiation. However, here we demonstrate that solar blue light stimulates flavonoid biosynthesis in the absence of UV-A and UV-B radiation. We grew pea plants (Pisum sativum cv. Meteor) outdoors, in Finland during the summer, under five types of filters differing in their spectral transmittance. These filters were used to (1) attenuate UV-B; (2) attenuate UV-B and UV-A < 370 nm; (3) attenuate UV-B and UV-A; (4) attenuate UV-B, UV-A and blue light; and (5) as a control not attenuating these wavebands. Attenuation of blue light significantly reduced the flavonoid content in leaf adaxial epidermis and reduced the whole-leaf concentrations of quercetin derivatives relative to kaempferol derivatives. In contrast, UV-B responses were not significant. These results show that pea plants regulate epidermal UV-A absorbance and accumulation of individual flavonoids by perceiving complex radiation signals that extend into the visible region of the solar spectrum. Furthermore, solar blue light instead of solar UV-B radiation can be the main regulator of phenolic compound accumulation in plants that germinate and develop outdoors.
Collapse
Affiliation(s)
- Sari M Siipola
- Plant Biology Division, Department of Biosciences, University of Helsinki, PO Box 56, Helsinki, 00014, Finland
| | | | | | | | | | | | | |
Collapse
|
410
|
Wang H, Wang H. The miR156/SPL Module, a Regulatory Hub and Versatile Toolbox, Gears up Crops for Enhanced Agronomic Traits. MOLECULAR PLANT 2015; 8:677-88. [PMID: 25617719 DOI: 10.1016/j.molp.2015.01.008] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/26/2014] [Accepted: 01/05/2015] [Indexed: 05/18/2023]
Abstract
In the past two decades, members of the SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) family of transcription factors, first identified in Antirrhinum majus, have emerged as pivotal regulators of diverse biological processes in plants, including the timing of vegetative and reproductive phase change, leaf development, tillering/branching, plastochron, panicle/tassel architecture, fruit ripening, fertility, and response to stresses. Transcripts of a subset of SPLs are targeted for cleavage and/or translational repression by microRNA156s (miR156s). The levels of miR156s are regulated by both endogenous developmental cues and various external stimuli. Accumulating evidence shows that the regulatory circuit around the miR156/SPL module is highly conserved among phylogenetically distinct plant species, and plays important roles in regulating plant fitness, biomass, and yield. With the expanding knowledge and a mechanistic understanding of their roles and regulatory relationship, we can now harness the miR156/SPL module as a plethora of tools to genetically manipulate crops for optimal parameters in growth and development, and ultimately to maximize yield by intelligent design of crops.
Collapse
Affiliation(s)
- Hai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
411
|
Wang H, Wang H. Phytochrome signaling: time to tighten up the loose ends. MOLECULAR PLANT 2015; 8:540-51. [PMID: 25670340 DOI: 10.1016/j.molp.2014.11.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 05/18/2023]
Abstract
Phytochromes are red and far-red light photoreceptors that play fundamental roles in controlling many aspects of plant growth and development in response to light. The past two decades have witnessed the mechanistic elucidation of the action mode of phytochromes, including their regulation by external and endogenous factors and how they exert their function as transcriptional regulators. More importantly, recent advances have substantially deepened our understanding on the integration of the phytochrome-mediated signal into other cellular and developmental processes, such as elongation of hypocotyls, shoot branching, circadian clock, and flowering time, which often involves complex intercellular and interorgan signaling. Based on these advances, this review illustrates a blueprint of our current understanding of phytochrome signaling and its crosstalk with other signaling pathways, and also points out still open questions that need to be addressed in the future.
Collapse
Affiliation(s)
- Hai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
412
|
Nozue K, Tat AV, Kumar Devisetty U, Robinson M, Mumbach MR, Ichihashi Y, Lekkala S, Maloof JN. Shade avoidance components and pathways in adult plants revealed by phenotypic profiling. PLoS Genet 2015; 11:e1004953. [PMID: 25874869 PMCID: PMC4398415 DOI: 10.1371/journal.pgen.1004953] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 12/11/2014] [Indexed: 01/01/2023] Open
Abstract
Shade from neighboring plants limits light for photosynthesis; as a consequence, plants have a variety of strategies to avoid canopy shade and compete with their neighbors for light. Collectively the response to foliar shade is called the shade avoidance syndrome (SAS). The SAS includes elongation of a variety of organs, acceleration of flowering time, and additional physiological responses, which are seen throughout the plant life cycle. However, current mechanistic knowledge is mainly limited to shade-induced elongation of seedlings. Here we use phenotypic profiling of seedling, leaf, and flowering time traits to untangle complex SAS networks. We used over-representation analysis (ORA) of shade-responsive genes, combined with previous annotation, to logically select 59 known and candidate novel mutants for phenotyping. Our analysis reveals shared and separate pathways for each shade avoidance response. In particular, auxin pathway components were required for shade avoidance responses in hypocotyl, petiole, and flowering time, whereas jasmonic acid pathway components were only required for petiole and flowering time responses. Our phenotypic profiling allowed discovery of seventeen novel shade avoidance mutants. Our results demonstrate that logical selection of mutants increased success of phenotypic profiling to dissect complex traits and discover novel components.
Collapse
Affiliation(s)
- Kazunari Nozue
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - An V. Tat
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - Upendra Kumar Devisetty
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - Matthew Robinson
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - Maxwell R. Mumbach
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - Yasunori Ichihashi
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - Saradadevi Lekkala
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - Julin N. Maloof
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
413
|
Crocco CD, Locascio A, Escudero CM, Alabadí D, Blázquez MA, Botto JF. The transcriptional regulator BBX24 impairs DELLA activity to promote shade avoidance in Arabidopsis thaliana. Nat Commun 2015; 6:6202. [PMID: 25656233 DOI: 10.1038/ncomms7202] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 01/05/2015] [Indexed: 11/08/2022] Open
Abstract
In response to canopy shade, plant vegetative structures elongate to gain access to light. However, the mechanism that allows a plastic transcriptional response to canopy shade light is not fully elucidated. Here we propose that the activity of PIF4, a key transcription factor in the shade signalling network, is modulated by the interplay between the BBX24 transcriptional regulator and DELLA proteins, which are negative regulators of the gibberellin (GA) signalling pathway. We show that GA-related targets are enriched among genes responsive to BBX24 under shade and that the shade-response defect in bbx24 mutants is rescued by a GA treatment that promotes DELLA degradation. BBX24 physically interacts with DELLA proteins and alleviates DELLA-mediated repression of PIF4 activity. The proposed molecular mechanism provides reversible regulation of the activity of a key transcription factor that may prove especially relevant under fluctuating light conditions.
Collapse
Affiliation(s)
- Carlos D Crocco
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Avenue San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - Antonella Locascio
- 1] Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain [2] Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), Padova University, Viale dell'Universitá 16, Legnaro 35020, Italy
| | - Cristian M Escudero
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Avenue San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - Javier F Botto
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Avenue San Martín 4453, Buenos Aires C1417DSE, Argentina
| |
Collapse
|
414
|
González CV, Fanzone ML, Cortés LE, Bottini R, Lijavetzky DC, Ballaré CL, Boccalandro HE. Fruit-localized photoreceptors increase phenolic compounds in berry skins of field-grown Vitis vinifera L. cv. Malbec. PHYTOCHEMISTRY 2015; 110:46-57. [PMID: 25514818 DOI: 10.1016/j.phytochem.2014.11.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 10/14/2014] [Accepted: 10/16/2014] [Indexed: 05/02/2023]
Abstract
Sunlight exposure has multiple effect on fruits, as it affects the light climate perceived by fruit photoreceptors and fruit tissue temperature. In grapes (Vitis vinifera L.), light exposure can have a strong effect on fruit quality and commercial value; however, the mechanisms of light action are not well understood. The role of fruit-localized photoreceptors in the control of berry quality traits was evaluated under field conditions in a commercial vineyard in Mendoza (Argentina). Characterization of the diurnal dynamics of the fruit light environment in a vertical trellis system indicated that clusters were shaded by leaves during most of the photoperiod. Supplementation of the fruit light environment from 20 days before veraison until technological harvest showed that red (R, 660 nm) and blue (B, 470 nm) light strongly increased total phenolic compound levels at harvest in the berry skins without affecting sugar content, acidity or berry size. Far-red (FR, 730 nm) and green (G, 560 nm) light supplementation had relatively small effects. The stimulation of berry phytochromes and cryptochromes favored accumulation of flavonoid and non-flavonoid compounds, including anthocyanins, flavonols, flavanols, phenolic acids and stilbenes. These results demonstrate that the chemical composition of grape berries is modulated by the light quality received by the clusters under field conditions, and that fruit photoreceptors are not saturated even in areas of high insolation and under management systems that are considered to result in a relatively high exposure of fruits to solar radiation. Therefore, manipulation of the light environment or the light sensitivity of fruits could have significant effects on critical grape quality traits.
Collapse
Affiliation(s)
- Carina Verónica González
- Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Almirante Brown 500, 5505 Chacras de Coria, Luján de Cuyo, Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Ciudad Universitaria, Parque General San Martín, 5500 Mendoza, Argentina.
| | - Martín Leandro Fanzone
- Laboratorio de Aromas y Sustancias Naturales, Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martin 3853, 5507, Mayor Drummond, Luján de Cuyo, Mendoza, Argentina.
| | - Leandro Emanuel Cortés
- Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Almirante Brown 500, 5505 Chacras de Coria, Luján de Cuyo, Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Ciudad Universitaria, Parque General San Martín, 5500 Mendoza, Argentina.
| | - Rubén Bottini
- Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Almirante Brown 500, 5505 Chacras de Coria, Luján de Cuyo, Mendoza, Argentina.
| | - Diego Claudio Lijavetzky
- Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Almirante Brown 500, 5505 Chacras de Coria, Luján de Cuyo, Mendoza, Argentina.
| | - Carlos Luis Ballaré
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Universidad de Buenos Aires, and Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas, Av. San Martín 4453, C1417DSE Buenos Aires, Argentina.
| | - Hernán Esteban Boccalandro
- Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Almirante Brown 500, 5505 Chacras de Coria, Luján de Cuyo, Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Ciudad Universitaria, Parque General San Martín, 5500 Mendoza, Argentina
| |
Collapse
|
415
|
Vogt JHM, Schippers JHM. Setting the PAS, the role of circadian PAS domain proteins during environmental adaptation in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:513. [PMID: 26217364 PMCID: PMC4496561 DOI: 10.3389/fpls.2015.00513] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The per-ARNT-sim (PAS) domain represents an ancient protein module that can be found across all kingdoms of life. The domain functions as a sensing unit for a diverse array of signals, including molecular oxygen, small metabolites, and light. In plants, several PAS domain-containing proteins form an integral part of the circadian clock and regulate responses to environmental change. Moreover, these proteins function in pathways that control development and plant stress adaptation responses. Here, we discuss the role of PAS domain-containing proteins in anticipation, and adaptation to environmental changes in plants.
Collapse
Affiliation(s)
- Julia H. M. Vogt
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Jos H. M. Schippers
- Institute for Biology I, RWTH Aachen University, Aachen, Germany
- *Correspondence: Jos H. M. Schippers, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany,
| |
Collapse
|
416
|
Rockwell NC, Martin SS, Gan F, Bryant DA, Lagarias JC. NpR3784 is the prototype for a distinctive group of red/green cyanobacteriochromes using alternative Phe residues for photoproduct tuning. Photochem Photobiol Sci 2015; 14:258-69. [DOI: 10.1039/c4pp00336e] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report chromophore–protein interactions used by cyanobacteriochrome NpR3784 and related proteins for spectral tuning of the green-absorbing photoproduct state. These interactions are distinct from those used by canonical red/green cyanobacteriochromes.
Collapse
Affiliation(s)
- Nathan C. Rockwell
- Department of Molecular and Cell Biology
- University of California at Davis
- Davis
- USA
| | - Shelley S. Martin
- Department of Molecular and Cell Biology
- University of California at Davis
- Davis
- USA
| | - Fei Gan
- Department of Biochemistry and Molecular Biology
- The Pennsylvania State University
- University Park
- USA
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology
- The Pennsylvania State University
- University Park
- USA
- Department of Chemistry and Biochemistry
| | - J. Clark Lagarias
- Department of Molecular and Cell Biology
- University of California at Davis
- Davis
- USA
| |
Collapse
|
417
|
Crepy MA, Casal JJ. Photoreceptor-mediated kin recognition in plants. THE NEW PHYTOLOGIST 2015; 205:329-38. [PMID: 25264216 DOI: 10.1111/nph.13040] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/13/2014] [Indexed: 05/05/2023]
Abstract
Although cooperative interactions among kin have been established in a variety of biological systems, their occurrence in plants remains controversial. Plants of Arabidopsis thaliana were grown in rows of either a single or multiple accessions. Plants recognized kin neighbours and horizontally reoriented leaf growth, a response not observed when plants were grown with nonkin. Plant kin recognition involved the perception of the vertical red/far-red light and blue light profiles. Disruption of the light profiles, mutations at the PHYTOCHROME B, CRYPTOCHROME 1 or 2, or PHOTOTROPIN 1 or 2 photoreceptor genes or mutations at the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1 gene required for auxin (growth hormone) synthesis impaired the response. The leaf-position response increases plant self-shading, decreases mutual shading between neighbours and increases fitness. Light signals from neighbours are known to shape a more competitive plant body. Here we show that photosensory receptors mediate cooperative rather than competitive interactions among kin neighbours by reducing the competition for local pools of resources.
Collapse
Affiliation(s)
- María A Crepy
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and CONICET, Av. San Martín 4453, 1417, Buenos Aires, Argentina
| | | |
Collapse
|
418
|
Affiliation(s)
- Harsh P Bais
- Delaware Biotechnology Institute, Newark, DE, 19711, USA; Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
419
|
Fortunato AE, Annunziata R, Jaubert M, Bouly JP, Falciatore A. Dealing with light: the widespread and multitasking cryptochrome/photolyase family in photosynthetic organisms. JOURNAL OF PLANT PHYSIOLOGY 2015; 172:42-54. [PMID: 25087009 DOI: 10.1016/j.jplph.2014.06.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 05/19/2023]
Abstract
Light is essential for the life of photosynthetic organisms as it is a source of energy and information from the environment. Light excess or limitation can be a cause of stress however. Photosynthetic organisms exhibit sophisticated mechanisms to adjust their physiology and growth to the local environmental light conditions. The cryptochrome/photolyase family (CPF) is composed of flavoproteins with similar structures that display a variety of light-dependent functions. This family encompasses photolyases, blue-light activated enzymes that repair ultraviolet-light induced DNA damage, and cryptochromes, known for their photoreceptor functions in terrestrial plants. For this review, we searched extensively for CPFs in the available genome databases to trace the distribution and evolution of this protein family in photosynthetic organisms. By merging molecular data with current knowledge from the functional characterization of CPFs from terrestrial and aquatic organisms, we discuss their roles in (i) photoperception, (ii) biological rhythm regulation and (iii) light-induced stress responses. We also explore their possible implication in light-related physiological acclimation and their distribution in phototrophs living in different environments. The outcome of this structure-function analysis reconstructs the complex scenarios in which CPFs have evolved, as highlighted by the novel functions and biochemical properties of the most recently described family members in algae.
Collapse
Affiliation(s)
- Antonio Emidio Fortunato
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France
| | - Rossella Annunziata
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France
| | - Marianne Jaubert
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France
| | - Jean-Pierre Bouly
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France.
| | - Angela Falciatore
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France.
| |
Collapse
|
420
|
Rockwell NC, Martin SS, Lagarias JC. Identification of DXCF cyanobacteriochrome lineages with predictable photocycles. Photochem Photobiol Sci 2015; 14:929-41. [DOI: 10.1039/c4pp00486h] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two specialized subgroups of cyanobacteriochromes with predictable green/blue and blue/orange photocycles are defined by these studies.
Collapse
Affiliation(s)
- Nathan C. Rockwell
- Department of Molecular and Cellular Biology
- University of California at Davis
- Davis
- USA
| | - Shelley S. Martin
- Department of Molecular and Cellular Biology
- University of California at Davis
- Davis
- USA
| | - J. Clark Lagarias
- Department of Molecular and Cellular Biology
- University of California at Davis
- Davis
- USA
| |
Collapse
|
421
|
Teichmann T, Muhr M. Shaping plant architecture. FRONTIERS IN PLANT SCIENCE 2015; 6:233. [PMID: 25914710 PMCID: PMC4390985 DOI: 10.3389/fpls.2015.00233] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/23/2015] [Indexed: 05/18/2023]
Abstract
Plants exhibit phenotypical plasticity. Their general body plan is genetically determined, but plant architecture and branching patterns are variable and can be adjusted to the prevailing environmental conditions. The modular design of the plant facilitates such morphological adaptations. The prerequisite for the formation of a branch is the initiation of an axillary meristem. Here, we review the current knowledge about this process. After its establishment, the meristem can develop into a bud which can either become dormant or grow out and form a branch. Many endogenous factors, such as photoassimilate availability, and exogenous factors like nutrient availability or shading, have to be integrated in the decision whether a branch is formed. The underlying regulatory network is complex and involves phytohormones and transcription factors. The hormone auxin is derived from the shoot apex and inhibits bud outgrowth indirectly in a process termed apical dominance. Strigolactones appear to modulate apical dominance by modification of auxin fluxes. Furthermore, the transcription factor BRANCHED1 plays a central role. The exact interplay of all these factors still remains obscure and there are alternative models. We discuss recent findings in the field along with the major models. Plant architecture is economically significant because it affects important traits of crop and ornamental plants, as well as trees cultivated in forestry or on short rotation coppices. As a consequence, plant architecture has been modified during plant domestication. Research revealed that only few key genes have been the target of selection during plant domestication and in breeding programs. Here, we discuss such findings on the basis of various examples. Architectural ideotypes that provide advantages for crop plant management and yield are described. We also outline the potential of breeding and biotechnological approaches to further modify and improve plant architecture for economic needs.
Collapse
Affiliation(s)
- Thomas Teichmann
- *Correspondence: Thomas Teichmann, Plant Cell Biology, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, Göttingen, Germany
| | | |
Collapse
|
422
|
Kurepin LV, Pharis RP. Light signaling and the phytohormonal regulation of shoot growth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:280-289. [PMID: 25443853 DOI: 10.1016/j.plantsci.2014.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/11/2014] [Accepted: 10/14/2014] [Indexed: 05/23/2023]
Abstract
Shoot growth of dicot plants is rigorously controlled by the interactions of environmental cues with several groups of phytohormones. The signaling effects of light on shoot growth are of special interest, as both light irradiance and light quality change rapidly throughout the day, causing profound changes in stem elongation and leaf area growth. Among the several dicot species examined, we have focused on sunflower (Helianthus annuus L.) because its shoots are robust and their growth is highly plastic. Sunflower shoots thus constitute an ideal tissue for assessing responses to both light irradiance and light quality signals. Herein, we discuss the possible roles of gibberellins, auxin, ethylene, cytokinins and brassinosteroids in mediating the stem elongation and leaf area growth that is induced by shade light. To do this we uncoupled the plant's responses to changes in the red to far-red [R/FR] light ratio from its responses to changes in irradiance of photosynthetically active radiation [PAR]. Reducing each of R/FR light ratio and PAR irradiance results in increased sunflower stem elongation. However, the plant's response for leaf area growth differs considerably, with a low R/FR ratio generally promoting leaf area growth, whereas low irradiance PAR inhibits it. The increased stem elongation that occurs in response to lowering R/FR ratio and PAR irradiance is accomplished at the expense of leaf area growth. In effect, the low PAR irradiance signal overrides the low R/FR ratio signal in shade light's control of leaf growth and development. Three hormone groups, gibberellins, auxin and ethylene are directly involved in regulating these light-mediated shoot growth changes. Gibberellins and auxin function as growth promoters, with auxin likely acting as an up-regulator of gibberellin biosynthesis. Ethylene functions as a growth-inhibitor and probably interacts with gibberellins in regulating both stem and leaf growth of the sunflower shoot.
Collapse
Affiliation(s)
- Leonid V Kurepin
- Department of Biology, Western University, London, Ontario, Canada N6A 5B7.
| | - Richard P Pharis
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
423
|
Martínez-García JF, Gallemí M, Molina-Contreras MJ, Llorente B, Bevilaqua MRR, Quail PH. The shade avoidance syndrome in Arabidopsis: the antagonistic role of phytochrome a and B differentiates vegetation proximity and canopy shade. PLoS One 2014; 9:e109275. [PMID: 25333270 PMCID: PMC4204825 DOI: 10.1371/journal.pone.0109275] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/02/2014] [Indexed: 11/18/2022] Open
Abstract
Light limitation caused by dense vegetation is one of the greatest threats to plant survival in natural environments. Plants detect such neighboring vegetation as a reduction in the red to far-red ratio (R:FR) of the incoming light. The low R:FR signal, perceived by phytochromes, initiates a set of responses collectively known as the shade avoidance syndrome, intended to reduce the degree of current or future shade from neighbors by overtopping such competitors or inducing flowering to ensure seed production. At the seedling stage these responses include increased hypocotyl elongation. We have systematically analyzed the Arabidopsis seedling response and the contribution of phyA and phyB to perception of decreased R:FR, at three different levels of photosynthetically active radiation. Our results show that the shade avoidance syndrome, induced by phyB deactivation, is gradually antagonized by phyA, operating through the so-called FR-High Irradiance Response, in response to high FR levels in a range that simulates plant canopy shade. The data indicate that the R:FR signal distinguishes between the presence of proximal, but non-shading, neighbors and direct foliar shade, via a intrafamily photosensory attenuation mechanism that acts to suppress excessive reversion toward skotomorphogenic development under prolonged direct vegetation shade.
Collapse
Affiliation(s)
- Jaime F. Martínez-García
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Barcelona, Spain
- * E-mail:
| | - Marçal Gallemí
- Centre for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Barcelona, Spain
| | | | - Briardo Llorente
- Centre for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Maycon R. R. Bevilaqua
- Centre for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Barcelona, Spain
- CAPES foundation, Ministry of Education of Brazil, Brasilia - DF, Brazil
| | - Peter H. Quail
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- US Department of Agriculture/Agriculture Research Service, Plant Gene Expression Center, Albany, California, United States of America
| |
Collapse
|
424
|
Rockwell NC, Lagarias JC, Bhattacharya D. Primary endosymbiosis and the evolution of light and oxygen sensing in photosynthetic eukaryotes. Front Ecol Evol 2014; 2. [PMID: 25729749 DOI: 10.3389/fevo.2014.00066] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The origin of the photosynthetic organelle in eukaryotes, the plastid, changed forever the evolutionary trajectory of life on our planet. Plastids are highly specialized compartments derived from a putative single cyanobacterial primary endosymbiosis that occurred in the common ancestor of the supergroup Archaeplastida that comprises the Viridiplantae (green algae and plants), red algae, and glaucophyte algae. These lineages include critical primary producers of freshwater and terrestrial ecosystems, progenitors of which provided plastids through secondary endosymbiosis to other algae such as diatoms and dinoflagellates that are critical to marine ecosystems. Despite its broad importance and the success of algal and plant lineages, the phagotrophic origin of the plastid imposed an interesting challenge on the predatory eukaryotic ancestor of the Archaeplastida. By engulfing an oxygenic photosynthetic cell, the host lineage imposed an oxidative stress upon itself in the presence of light. Adaptations to meet this challenge were thus likely to have occurred early on during the transition from a predatory phagotroph to an obligate phototroph (or mixotroph). Modern algae have recently been shown to employ linear tetrapyrroles (bilins) to respond to oxidative stress under high light. Here we explore the early events in plastid evolution and the possible ancient roles of bilins in responding to light and oxygen.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Debashish Bhattacharya
- Department of Ecology, Evolution, and Natural Resources; Institute of Marine and Coastal Science, Rutgers University, New Brunswick, NJ 08903
| |
Collapse
|
425
|
Bongers FJ, Evers JB, Anten NPR, Pierik R. From shade avoidance responses to plant performance at vegetation level: using virtual plant modelling as a tool. THE NEW PHYTOLOGIST 2014; 204:268-72. [PMID: 25236169 DOI: 10.1111/nph.13041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Franca J Bongers
- Centre for Crop Systems Analysis, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands; Plant Ecophysiology, Institute for Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | | | | | | |
Collapse
|
426
|
|
427
|
Marine algae and land plants share conserved phytochrome signaling systems. Proc Natl Acad Sci U S A 2014; 111:15827-32. [PMID: 25267653 DOI: 10.1073/pnas.1416751111] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence of phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. Expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.
Collapse
|
428
|
Procko C, Crenshaw CM, Ljung K, Noel JP, Chory J. Cotyledon-Generated Auxin Is Required for Shade-Induced Hypocotyl Growth in Brassica rapa. PLANT PHYSIOLOGY 2014; 165:1285-1301. [PMID: 24891610 PMCID: PMC4081337 DOI: 10.1104/pp.114.241844] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/01/2014] [Indexed: 05/20/2023]
Abstract
Plant architecture is optimized for the local light environment. In response to foliar shade or neighbor proximity (low red to far-red light), some plant species exhibit shade-avoiding phenotypes, including increased stem and hypocotyl growth, which increases the likelihood of outgrowing competitor plants. If shade persists, early flowering and the reallocation of growth resources to stem elongation ultimately affect the yield of harvestable tissues in crop species. Previous studies have shown that hypocotyl growth in low red to far-red shade is largely dependent on the photoreceptor phytochrome B and the phytohormone auxin. However, where shade is perceived in the plant and how auxin regulates growth spatially are less well understood. Using the oilseed and vegetable crop species Brassica rapa, we show that the perception of low red to far-red shade by the cotyledons triggers hypocotyl cell elongation and auxin target gene expression. Furthermore, we find that following shade perception, elevated auxin levels occur in a basipetal gradient away from the cotyledons and that this is coincident with a gradient of auxin target gene induction. These results show that cotyledon-generated auxin regulates hypocotyl elongation. In addition, we find in mature B. rapa plants that simulated shade does not affect seed oil composition but may affect seed yield. This suggests that in field settings where mutual shading between plants may occur, a balance between plant density and seed yield per plant needs to be achieved for maximum oil yield, while oil composition might remain constant.
Collapse
Affiliation(s)
- Carl Procko
- Plant Biology Laboratory (C.P., J.C.), Jack H. Skirball Center for Chemical Biology and Proteomics (C.M.C., J.P.N.), and Howard Hughes Medical Institute (C.M.C., J.P.N., J.C.), Salk Institute for Biological Studies, La Jolla, California 92037; andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden (K.L.)
| | - Charisse Michelle Crenshaw
- Plant Biology Laboratory (C.P., J.C.), Jack H. Skirball Center for Chemical Biology and Proteomics (C.M.C., J.P.N.), and Howard Hughes Medical Institute (C.M.C., J.P.N., J.C.), Salk Institute for Biological Studies, La Jolla, California 92037; andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden (K.L.)
| | - Karin Ljung
- Plant Biology Laboratory (C.P., J.C.), Jack H. Skirball Center for Chemical Biology and Proteomics (C.M.C., J.P.N.), and Howard Hughes Medical Institute (C.M.C., J.P.N., J.C.), Salk Institute for Biological Studies, La Jolla, California 92037; andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden (K.L.)
| | - Joseph Patrick Noel
- Plant Biology Laboratory (C.P., J.C.), Jack H. Skirball Center for Chemical Biology and Proteomics (C.M.C., J.P.N.), and Howard Hughes Medical Institute (C.M.C., J.P.N., J.C.), Salk Institute for Biological Studies, La Jolla, California 92037; andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden (K.L.)
| | - Joanne Chory
- Plant Biology Laboratory (C.P., J.C.), Jack H. Skirball Center for Chemical Biology and Proteomics (C.M.C., J.P.N.), and Howard Hughes Medical Institute (C.M.C., J.P.N., J.C.), Salk Institute for Biological Studies, La Jolla, California 92037; andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden (K.L.)
| |
Collapse
|
429
|
Brouwer B, Gardeström P, Keech O. In response to partial plant shading, the lack of phytochrome A does not directly induce leaf senescence but alters the fine-tuning of chlorophyll biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4037-49. [PMID: 24604733 PMCID: PMC4106438 DOI: 10.1093/jxb/eru060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phytochrome is thought to control the induction of leaf senescence directly, however, the signalling and molecular mechanisms remain unclear. In the present study, an ecophysiological approach was used to establish a functional connection between phytochrome signalling and the physiological processes underlying the induction of leaf senescence in response to shade. With shade it is important to distinguish between complete and partial shading, during which either the whole or only a part of the plant is shaded, respectively. It is first shown here that, while PHYB is required to maintain chlorophyll content in a completely shaded plant, only PHYA is involved in maintaining the leaf chlorophyll content in response to partial plant shading. Second, it is shown that leaf yellowing associated with strong partial shading in phyA-mutant plants actually correlates to a decreased biosynthesis of chlorophyll rather than to an increase of its degradation. Third, it is shown that the physiological impact of this decreased biosynthesis of chlorophyll in strongly shaded phyA-mutant leaves is accompanied by a decreased capacity to adjust the Light Compensation Point. However, the increased leaf yellowing in phyA-mutant plants is not accompanied by an increase of senescence-specific molecular markers, which argues against a direct role of PHYA in inducing leaf senescence in response to partial shade. In conclusion, it is proposed that PHYA, but not PHYB, is essential for fine-tuning the chlorophyll biosynthetic pathway in response to partial shading. In turn, this mechanism allows the shaded leaf to adjust its photosynthetic machinery to very low irradiances, thus maintaining a positive carbon balance and repressing the induction of leaf senescence, which can occur under prolonged periods of shade.
Collapse
Affiliation(s)
- Bastiaan Brouwer
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-90187 Umeå, Sweden
| | - Per Gardeström
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-90187 Umeå, Sweden
| | - Olivier Keech
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
430
|
Gangappa SN, Botto JF. The BBX family of plant transcription factors. TRENDS IN PLANT SCIENCE 2014; 19:460-70. [PMID: 24582145 DOI: 10.1016/j.tplants.2014.01.010] [Citation(s) in RCA: 309] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 05/04/2023]
Abstract
The B-box (BBX) proteins are a class of zinc-finger transcription factors containing a B-box domain with one or two B-box motifs, and sometimes also feature a CCT (CONSTANS, CO-like, and TOC1) domain. BBX proteins are key factors in regulatory networks controlling growth and developmental processes that include seedling photomorphogenesis, photoperiodic regulation of flowering, shade avoidance, and responses to biotic and abiotic stresses. In this review we discuss the functions of BBX proteins and the role of B-box motif in mediating transcriptional regulation and protein-protein interaction in plant signaling. In addition, we provide novel insights into the molecular mechanisms of their action and the evolutionary significance of their functional divergence.
Collapse
Affiliation(s)
- Sreeramaiah N Gangappa
- Department of Biological and Environmental Sciences, Gothenburg University, Gothenburg 40530, Sweden
| | - Javier F Botto
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1417, Argentina.
| |
Collapse
|
431
|
Phytochrome C plays a major role in the acceleration of wheat flowering under long-day photoperiod. Proc Natl Acad Sci U S A 2014; 111:10037-44. [PMID: 24961368 DOI: 10.1073/pnas.1409795111] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Phytochromes are dimeric proteins that function as red and far-red light sensors influencing nearly every phase of the plant life cycle. Of the three major phytochrome families found in flowering plants, phytochrome C (PHYC) is the least understood. In Arabidopsis and rice, PHYC is unstable and functionally inactive unless it heterodimerizes with another phytochrome. However, when expressed in an Arabidopsis phy-null mutant, wheat PHYC forms signaling active homodimers that translocate into the nucleus in red light to mediate photomorphogenic responses. Tetraploid wheat plants homozygous for loss-of-function mutations in all PHYC copies (phyC(AB)) flower on average 108 d later than wild-type plants under long days but only 19 d later under short days, indicating a strong interaction between PHYC and photoperiod. This interaction is further supported by the drastic down-regulation in the phyC(AB) mutant of the central photoperiod gene photoperiod 1 (PPD1) and its downstream target flowering locus T1, which are required for the promotion of flowering under long days. These results implicate light-dependent, PHYC-mediated activation of PPD1 expression in the acceleration of wheat flowering under inductive long days. Plants homozygous for the phyC(AB) mutations also show altered profiles of circadian clock and clock-output genes, which may also contribute to the observed differences in heading time. Our results highlight important differences in the photoperiod pathways of the temperate grasses with those of well-studied model plant species.
Collapse
|
432
|
Gundel PE, Pierik R, Mommer L, Ballaré CL. Competing neighbors: light perception and root function. Oecologia 2014; 176:1-10. [DOI: 10.1007/s00442-014-2983-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/24/2014] [Indexed: 11/24/2022]
|
433
|
Gong W, Qi P, Du J, Sun X, Wu X, Song C, Liu W, Wu Y, Yu X, Yong T, Wang X, Yang F, Yan Y, Yang W. Transcriptome analysis of shade-induced inhibition on leaf size in relay intercropped soybean. PLoS One 2014; 9:e98465. [PMID: 24886785 PMCID: PMC4041726 DOI: 10.1371/journal.pone.0098465] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/02/2014] [Indexed: 11/25/2022] Open
Abstract
Multi-species intercropping is a sustainable agricultural practice worldwide used to utilize resources more efficiently. In intercropping systems, short crops often grow under vegetative shade of tall crops. Soybean, one important legume, is often planted in intercropping. However, little is known about the mechanisms of shade inhibition effect on leaf size in soybean leaves at the transcriptome level. We analyzed the transcriptome of shaded soybean leaves via RNA-Seq technology. We found that transcription 1085 genes in mature leaves and 1847 genes in young leaves were significantly affected by shade. Gene ontology analyses showed that expression of genes enriched in polysaccharide metabolism was down-regulated, but genes enriched in auxin stimulus were up-regulated in mature leaves; and genes enriched in cell cycling, DNA-replication were down-regulated in young leaves. These results suggest that the inhibition of higher auxin content and shortage of sugar supply on cell division and cell expansion contribute to smaller and thinner leaf morphology, which highlights potential research targets such as auxin and sugar regulation on leaves for crop adaptation to shade in intercropping.
Collapse
Affiliation(s)
- Wanzhuo Gong
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Pengfei Qi
- Triticeae Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Junbo Du
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Xin Sun
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Xiaoling Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Chun Song
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu, China
- College of Resource and Environment, Sichuan Agricultural University, Chengdu, China
| | - Weiguo Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Yushan Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Xiaobo Yu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Taiwen Yong
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Xiaochun Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Feng Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Yanhong Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, China
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu, China
| |
Collapse
|
434
|
Franklin KA, Toledo-Ortiz G, Pyott DE, Halliday KJ. Interaction of light and temperature signalling. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2859-71. [PMID: 24569036 DOI: 10.1093/jxb/eru059] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Light and temperature are arguably two of the most important signals regulating the growth and development of plants. In addition to their direct energetic effects on plant growth, light and temperature provide vital immediate and predictive cues for plants to ensure optimal development both spatially and temporally. While the majority of research to date has focused on the contribution of either light or temperature signals in isolation, it is becoming apparent that an understanding of how the two interact is essential to appreciate fully the complex and elegant ways in which plants utilize these environmental cues. This review will outline the diverse mechanisms by which light and temperature signals are integrated and will consider why such interconnected systems (as opposed to entirely separate light and temperature pathways) may be evolutionarily favourable.
Collapse
Affiliation(s)
- Keara A Franklin
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
| | - Gabriela Toledo-Ortiz
- SynthSys, University of Edinburgh, C.H. Waddington Building, King's Buildings, Edinburgh EH9 3JD, UK
| | - Douglas E Pyott
- SynthSys, University of Edinburgh, C.H. Waddington Building, King's Buildings, Edinburgh EH9 3JD, UK
| | - Karen J Halliday
- SynthSys, University of Edinburgh, C.H. Waddington Building, King's Buildings, Edinburgh EH9 3JD, UK
| |
Collapse
|
435
|
Soy J, Leivar P, Monte E. PIF1 promotes phytochrome-regulated growth under photoperiodic conditions in Arabidopsis together with PIF3, PIF4, and PIF5. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2925-36. [PMID: 24420574 PMCID: PMC4056538 DOI: 10.1093/jxb/ert465] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Seedlings growing under diurnal conditions display maximal growth at the end of the night in short-day (SD) photoperiods. Current evidence indicates that this behaviour involves the action of PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) together with PIF4 and PIF5, through direct regulation of growth-related genes at dawn coinciding with a PIF3 accumulation peak generated by phytochrome-imposed oscillations in protein abundance. Here, to assess how alterations in PIF3 levels impact seedling growth, the night-specific accumulation of PIF3 was modulated by releasing SD-grown seedlings into continuous light, or by exposing them to a phytochrome-inactivating end-of-day far-red pulse (EOD-FRp). The data show a strong direct correlation between PIF3 accumulation, PIF3-regulated induction of growth-related genes, and hypocotyl elongation, and suggest that growth promotion in SD conditions involves factors other than PIF3, PIF4, and PIF5. Using a pif1 mutant, evidence is provided that PIF1 also contributes to inducing hypocotyl elongation during the dark period under diurnal conditions. PIF1 displayed constitutive transcript levels in SD conditions, suggesting that phytochrome-imposed oscillations in PIF1 protein abundance determine its accumulation and action during the night, similar to PIF3 and in contrast to PIF4 and PIF5, which oscillate diurnally due to a combination of circadian clock-regulated transcription and light control of protein accumulation. Furthermore, using single and higher order pif mutants, the relative contribution of each member of the PIF quartet to the regulation of morphogenesis and the expression of selected growth marker genes under SD conditions, or under SD conditions supplemented with an EOD-FRp, is defined. Collectively, the data indicate that PIF1, PIF3, PIF4, and PIF5 act together to promote and optimize growth under photoperiodic conditions.
Collapse
Affiliation(s)
- Judit Soy
- Departament de Genètica Molecular, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Univ. Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Pablo Leivar
- Departament de Genètica Molecular, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Univ. Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Elena Monte
- Departament de Genètica Molecular, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Univ. Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
436
|
Barneche F, Malapeira J, Mas P. The impact of chromatin dynamics on plant light responses and circadian clock function. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2895-913. [PMID: 24520020 DOI: 10.1093/jxb/eru011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Research on the functional properties of nucleosome structure and composition dynamics has revealed that chromatin-level regulation is an essential component of light signalling and clock function in plants, two processes that rely extensively on transcriptional controls. In particular, several types of histone post-translational modifications and chromatin-bound factors act sequentially or in combination to establish transcriptional patterns and to fine-tune the transcript abundance of a large repertoire of light-responsive genes and clock components. Cytogenetic approaches have also identified light-induced higher-order chromatin changes that dynamically organize the condensation of chromosomal domains into sub-nuclear foci containing silenced repeat elements. In this review, we report recently identified molecular actors that establish chromatin state dynamics in response to light signals such as photoperiod, intensity, and spectral quality. We also highlight the chromatin-dependent mechanisms that contribute to the 24-h circadian gene expression and its impact on plant physiology and development. The commonalities and contrasts of light- and clock-associated chromatin-based mechanisms are discussed, with particular emphasis on their impact on the selective regulation and rapid modulation of responsive genes.
Collapse
Affiliation(s)
- Fredy Barneche
- Environmental and Evolutionary Genomics Section, Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Paris, F-75005 France Inserm, U1024, Paris, F-75005 France CNRS, UMR 8197, Paris, F-75005 France
| | - Jordi Malapeira
- Center for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Parc de Recerca UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Paloma Mas
- Center for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Parc de Recerca UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| |
Collapse
|
437
|
Hsieh HL, Okamoto H. Molecular interaction of jasmonate and phytochrome A signalling. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2847-57. [PMID: 24868039 DOI: 10.1093/jxb/eru230] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The phytochrome family of red (R) and far-red (FR) light receptors (phyA-phyE in Arabidopsis) play important roles throughout plant development and regulate elongation growth during de-etiolation and under light. Phytochromes regulate growth through interaction with the phytohormones gibberellin, auxin, and brassinosteroid. Recently it has been established that jasmonic acid (JA), a phytohormone for stress responses, namely wounding and defence, is also important in inhibition of hypocotyl growth regulated by phyA and phyB. This review focuses on recent advances in our understanding of the molecular basis of the interaction between JA and phytochrome signalling particularly during seedling development in Arabidopsis. Significantly, JA biosynthesis genes are induced by phyA. The protein abundance of JAR1/FIN219, an enzyme for the final synthesis step to give JA-Ile, an active form of JA, is also determined by phyA. In addition, JAR1/FIN219 directly interacts with an E3-ligase, COP1, a master regulator for transcription factors regulating hypocotyl growth, suggesting a more direct role in growth regulation. There are a number of points of interaction in the molecular signalling of JA and phytochrome during seedling development in Arabidopsis, and we propose a model for how they work together to regulate hypocotyl growth.
Collapse
Affiliation(s)
- Hsu-Liang Hsieh
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Haruko Okamoto
- Centre for Biological Sciences, University of Southampton, Southampton, UK Department of Biochemistry, Faculty of Pharmaceutical Sciences, Iwate Medical University, Iwate, Japan
| |
Collapse
|
438
|
Casal JJ, Candia AN, Sellaro R. Light perception and signalling by phytochrome A. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2835-45. [PMID: 24220656 DOI: 10.1093/jxb/ert379] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In etiolated seedlings, phytochrome A (phyA) mediates very-low-fluence responses (VLFRs), which initiate de-etiolation at the interphase between the soil and above-ground environments, and high-irradiance responses (HIR), which complete de-etiolation under dense canopies and require more sustained activation with far-red light. Light-activated phyA is transported to the nucleus by FAR-RED ELONGATED HYPOCOTYL1 (FHY1). The nuclear pool of active phyA increases under prolonged far-red light of relatively high fluence rates. This condition maximizes the rate of FHY1-phyA complex assembly and disassembly, allowing FHY1 to return to the cytoplasm to translocate further phyA to the nucleus, to replace phyA degraded in the proteasome. The core signalling pathways downstream of nuclear phyA involve the negative regulation of CONSTITUTIVE PHOTOMORPHOGENIC 1, which targets for degradation transcription factors required for photomorphogenesis, and PHYTOCHROME-INTERACTING FACTORs, which are transcription factors that repress photomorphogenesis. Under sustained far-red light activation, released FHY1 can also be recruited with active phyA to target gene promoters as a transcriptional activator, and nuclear phyA signalling activates a positive regulatory loop involving BELL-LIKE HOMEODOMAIN 1 that reinforces the HIR.
Collapse
Affiliation(s)
- J J Casal
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and CONICET, 1417 Buenos Aires, Argentina Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, C1405BWE Buenos Aires, Argentina
| | - A N Candia
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and CONICET, 1417 Buenos Aires, Argentina
| | - R Sellaro
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and CONICET, 1417 Buenos Aires, Argentina
| |
Collapse
|
439
|
Warnasooriya SN, Brutnell TP. Enhancing the productivity of grasses under high-density planting by engineering light responses: from model systems to feedstocks. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2825-34. [PMID: 24868036 DOI: 10.1093/jxb/eru221] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The successful commercialization of bioenergy grasses as lignocellulosic feedstocks requires that they be produced, processed, and transported efficiently. Intensive breeding for higher yields in food crops has resulted in varieties that perform optimally under high-density planting but often with high input costs. This is particularly true of maize, where most yield gains in the past have come through increased planting densities and an abundance of fertilizer. For lignocellulosic feedstocks, biomass rather than grain yield and digestibility of cell walls are two of the major targets for improvement. Breeding for high-density performance of lignocellulosic crops has been much less intense and thus provides an opportunity for improving the feedstock potential of these grasses. In this review, we discuss the role of vegetative shade on growth and development and suggest targets for manipulating this response to increase harvestable biomass under high-density planting. To engineer grass architecture and modify biomass properties at increasing planting densities, we argue that new model systems are needed and recommend Setaria viridis, a panicoid grass, closely related to major fuel and bioenergy grasses as a model genetic system.
Collapse
|
440
|
de Lucas M, Prat S. PIFs get BRright: PHYTOCHROME INTERACTING FACTORs as integrators of light and hormonal signals. THE NEW PHYTOLOGIST 2014; 202:1126-1141. [PMID: 24571056 DOI: 10.1111/nph.12725] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 01/08/2014] [Indexed: 05/19/2023]
Abstract
Light and temperature, in coordination with the endogenous clock and the hormones gibberellin (GA) and brassinosteroids (BRs), modulate plant growth and development by affecting the expression of multiple cell wall- and auxin-related genes. PHYTOCHROME INTERACTING FACTORS (PIFs) play a central role in the activation of these genes, the activity of these factors being regulated by the circadian clock and phytochrome-mediated protein destabilization. GA signaling is also integrated at the level of PIFs; the DELLA repressors are found to bind these factors and impair their DNA-binding ability. The recent finding that PIFs are co-activated by BES1 and BZR1 highlights a further role of these regulators in BR signal integration, and reveals that PIFs act in a concerted manner with the BR-related BES1/BZR1 factors to activate auxin synthesis and transport at the gene expression level, and synergistically activate several genes with a role in cell expansion. Auxins feed back into this growth regulatory module by inducing GA biosynthesis and BES1/BZR1 gene expression, in addition to directly regulating several of these growth pathway gene targets. An exciting challenge in the future will be to understand how this growth program is dynamically regulated in time and space to orchestrate differential organ expansion and to provide plants with adaptation flexibility.
Collapse
Affiliation(s)
- Miguel de Lucas
- Departamento Genética Molecular de Plantas, Centro Nacional de Biotecnología- CSIC, Darwin 3, 28049, Madrid, Spain
| | - Salomé Prat
- Departamento Genética Molecular de Plantas, Centro Nacional de Biotecnología- CSIC, Darwin 3, 28049, Madrid, Spain
| |
Collapse
|
441
|
Rockwell NC, Martin SS, Gulevich AG, Lagarias JC. Conserved Phenylalanine Residues Are Required for Blue-Shifting of Cyanobacteriochrome Photoproducts. Biochemistry 2014; 53:3118-30. [DOI: 10.1021/bi500037a] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nathan C. Rockwell
- Department of Molecular and
Cellular Biology, University of California, Davis, California 95616, United States
| | - Shelley S. Martin
- Department of Molecular and
Cellular Biology, University of California, Davis, California 95616, United States
| | - Alexander G. Gulevich
- Department of Molecular and
Cellular Biology, University of California, Davis, California 95616, United States
| | - J. Clark Lagarias
- Department of Molecular and
Cellular Biology, University of California, Davis, California 95616, United States
| |
Collapse
|
442
|
Boron AK, Vissenberg K. The Arabidopsis thaliana hypocotyl, a model to identify and study control mechanisms of cellular expansion. PLANT CELL REPORTS 2014; 33:697-706. [PMID: 24633990 DOI: 10.1007/s00299-014-1591-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/21/2014] [Accepted: 02/21/2014] [Indexed: 05/24/2023]
Abstract
Developmental biology studies in general benefit from model organisms that are well characterized. Arabidopsis thaliana fulfills this criterion and represents one of the best experimental systems to study developmental processes in higher plants. Light is a crucial factor that drives photosynthesis, but that also regulates plant morphogenesis. As the hypocotyl is completely embryonic of origin, its growth occurs solely by expansion of the cells and this process is strongly dependent on the light conditions. In this review, we provide evidence that the hypocotyl serves as ideal model object to study cell expansion mechanisms and its regulation. We focus on the regulation of hypocotyl development by light and highlight the key modulating proteins in this signaling cascade. Downstream of light-signaling, cellular expansion is greatly dependent on specific cell wall depositions, which is related to cortical microtubular (re)arrangements and on composition and/or extensibility of the cell wall. We discuss possible further experimental approaches to broaden our knowledge on hypocotyl development, which will give an outlook on the probable evolution of the field.
Collapse
Affiliation(s)
- Agnieszka Karolina Boron
- Plant Growth and Development, Biology Department, University of Antwerp, Groenenborgerlaan 122, 2020, Antwerp, Belgium
| | | |
Collapse
|
443
|
Hersch M, Lorrain S, de Wit M, Trevisan M, Ljung K, Bergmann S, Fankhauser C. Light intensity modulates the regulatory network of the shade avoidance response in Arabidopsis. Proc Natl Acad Sci U S A 2014; 111:6515-20. [PMID: 24733935 PMCID: PMC4035961 DOI: 10.1073/pnas.1320355111] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants such as Arabidopsis thaliana respond to foliar shade and neighbors who may become competitors for light resources by elongation growth to secure access to unfiltered sunlight. Challenges faced during this shade avoidance response (SAR) are different under a light-absorbing canopy and during neighbor detection where light remains abundant. In both situations, elongation growth depends on auxin and transcription factors of the phytochrome interacting factor (PIF) class. Using a computational modeling approach to study the SAR regulatory network, we identify and experimentally validate a previously unidentified role for long hypocotyl in far red 1, a negative regulator of the PIFs. Moreover, we find that during neighbor detection, growth is promoted primarily by the production of auxin. In contrast, in true shade, the system operates with less auxin but with an increased sensitivity to the hormonal signal. Our data suggest that this latter signal is less robust, which may reflect a cost-to-robustness tradeoff, a system trait long recognized by engineers and forming the basis of information theory.
Collapse
Affiliation(s)
- Micha Hersch
- Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
- Department of Medical Genetics and
| | - Séverine Lorrain
- Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland; and
| | - Mieke de Wit
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland; and
| | - Martine Trevisan
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland; and
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Sven Bergmann
- Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
- Department of Medical Genetics and
| | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland; and
| |
Collapse
|
444
|
Leduc N, Roman H, Barbier F, Péron T, Huché-Thélier L, Lothier J, Demotes-Mainard S, Sakr S. Light Signaling in Bud Outgrowth and Branching in Plants. PLANTS (BASEL, SWITZERLAND) 2014; 3:223-50. [PMID: 27135502 PMCID: PMC4844300 DOI: 10.3390/plants3020223] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 02/07/2023]
Abstract
Branching determines the final shape of plants, which influences adaptation, survival and the visual quality of many species. It is an intricate process that includes bud outgrowth and shoot extension, and these in turn respond to environmental cues and light conditions. Light is a powerful environmental factor that impacts multiple processes throughout plant life. The molecular basis of the perception and transduction of the light signal within buds is poorly understood and undoubtedly requires to be further unravelled. This review is based on current knowledge on bud outgrowth-related mechanisms and light-mediated regulation of many physiological processes. It provides an extensive, though not exhaustive, overview of the findings related to this field. In parallel, it points to issues to be addressed in the near future.
Collapse
Affiliation(s)
- Nathalie Leduc
- Université d’Angers, L’Université Nantes Angers Le Mans, Unité Mixte de Recherche 1345 IRHS, Angers F-49000, France; E-Mails: (H.R.); (J.L.)
- SFR 4207 Qualité et Santé du Végétal, Angers F-49000, France; E-Mails: (F.B.); (T.P.); (L.H.-T.); (S.D.-M.); (S.S.)
| | - Hanaé Roman
- Université d’Angers, L’Université Nantes Angers Le Mans, Unité Mixte de Recherche 1345 IRHS, Angers F-49000, France; E-Mails: (H.R.); (J.L.)
- SFR 4207 Qualité et Santé du Végétal, Angers F-49000, France; E-Mails: (F.B.); (T.P.); (L.H.-T.); (S.D.-M.); (S.S.)
| | - François Barbier
- SFR 4207 Qualité et Santé du Végétal, Angers F-49000, France; E-Mails: (F.B.); (T.P.); (L.H.-T.); (S.D.-M.); (S.S.)
- Agrocampus-Ouest, Unité Mixte de Recherche 1345 IRHS, Angers F-49000, France
| | - Thomas Péron
- SFR 4207 Qualité et Santé du Végétal, Angers F-49000, France; E-Mails: (F.B.); (T.P.); (L.H.-T.); (S.D.-M.); (S.S.)
- Agrocampus-Ouest, Unité Mixte de Recherche 1345 IRHS, Angers F-49000, France
| | - Lydie Huché-Thélier
- SFR 4207 Qualité et Santé du Végétal, Angers F-49000, France; E-Mails: (F.B.); (T.P.); (L.H.-T.); (S.D.-M.); (S.S.)
- INRA, Unité Mixte de Recherche 1345 IRHS, Beaucouzé F-49070, France
| | - Jérémy Lothier
- Université d’Angers, L’Université Nantes Angers Le Mans, Unité Mixte de Recherche 1345 IRHS, Angers F-49000, France; E-Mails: (H.R.); (J.L.)
- SFR 4207 Qualité et Santé du Végétal, Angers F-49000, France; E-Mails: (F.B.); (T.P.); (L.H.-T.); (S.D.-M.); (S.S.)
| | - Sabine Demotes-Mainard
- SFR 4207 Qualité et Santé du Végétal, Angers F-49000, France; E-Mails: (F.B.); (T.P.); (L.H.-T.); (S.D.-M.); (S.S.)
- INRA, Unité Mixte de Recherche 1345 IRHS, Beaucouzé F-49070, France
| | - Soulaiman Sakr
- SFR 4207 Qualité et Santé du Végétal, Angers F-49000, France; E-Mails: (F.B.); (T.P.); (L.H.-T.); (S.D.-M.); (S.S.)
- Agrocampus-Ouest, Unité Mixte de Recherche 1345 IRHS, Angers F-49000, France
| |
Collapse
|
445
|
Chater CCC, Oliver J, Casson S, Gray JE. Putting the brakes on: abscisic acid as a central environmental regulator of stomatal development. THE NEW PHYTOLOGIST 2014; 202:376-391. [PMID: 24611444 DOI: 10.1111/nph.12713] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/13/2013] [Indexed: 05/07/2023]
Abstract
Stomata are produced by a controlled series of epidermal cell divisions. The molecular underpinnings of this process are becoming well understood, but mechanisms that determine plasticity of stomatal patterning to many exogenous and environmental cues remain less clear. Light quantity and quality, vapour pressure deficit, soil water content, and CO2 concentration are detected by the plant, and new leaves adapt their stomatal densities accordingly. Mature leaves detect these environmental signals and relay messages to immature leaves to tell them how to adapt and grow. Stomata on mature leaves may act as stress signal-sensing and transduction centres, locally by aperture adjustment, and at long distance by optimizing stomatal density to maximize future carbon gain while minimizing water loss. Although mechanisms of stomatal aperture responses are well characterized, the pathways by which mature stomata integrate environmental signals to control immature epidermal cell fate, and ultimately stomatal density, are not. Here we evaluate current understanding of the latter through the influence of the former. We argue that mature stomata, as key portals by which plants coordinate their carbon and water relations, are controlled by abscisic acid (ABA), both metabolically and hydraulically, and that ABA is also a core regulator of environmentally determined stomatal development.
Collapse
Affiliation(s)
- Caspar C C Chater
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - James Oliver
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Stuart Casson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Julie E Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
446
|
Soyk S, Simková K, Zürcher E, Luginbühl L, Brand LH, Vaughan CK, Wanke D, Zeeman SC. The Enzyme-Like Domain of Arabidopsis Nuclear β-Amylases Is Critical for DNA Sequence Recognition and Transcriptional Activation. THE PLANT CELL 2014; 26:1746-1763. [PMID: 24748042 PMCID: PMC4036583 DOI: 10.1105/tpc.114.123703] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/05/2014] [Accepted: 03/18/2014] [Indexed: 05/19/2023]
Abstract
Plant BZR1-BAM transcription factors contain a β-amylase (BAM)-like domain, characteristic of proteins involved in starch breakdown. The enzyme-derived domains appear to be noncatalytic, but they determine the function of the two Arabidopsis thaliana BZR1-BAM isoforms (BAM7 and BAM8) during transcriptional initiation. Removal or swapping of the BAM domains demonstrates that the BAM7 BAM domain restricts DNA binding and transcriptional activation, while the BAM8 BAM domain allows both activities. Furthermore, we demonstrate that BAM7 and BAM8 interact on the protein level and cooperate during transcriptional regulation. Site-directed mutagenesis of residues in the BAM domain of BAM8 shows that its function as a transcriptional activator is independent of catalysis but requires an intact substrate binding site, suggesting it may bind a ligand. Microarray experiments with plants overexpressing truncated versions lacking the BAM domain indicate that the pseudo-enzymatic domain increases selectivity for the preferred cis-regulatory element BBRE (BZR1-BAM Responsive Element). Side specificity toward the G-box may allow crosstalk to other signaling networks. This work highlights the importance of the enzyme-derived domain of BZR1-BAMs, supporting their potential role as metabolic sensors.
Collapse
Affiliation(s)
- Sebastian Soyk
- Department of Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Klára Simková
- Department of Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Evelyne Zürcher
- Department of Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | | | - Luise H Brand
- Zentrum für Molekularbiologie der Pflanzen, Universität Tübingen, D-72076 Tübingen, Germany
| | - Cara K Vaughan
- School of Crystallography, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| | - Dierk Wanke
- Zentrum für Molekularbiologie der Pflanzen, Universität Tübingen, D-72076 Tübingen, Germany
| | - Samuel C Zeeman
- Department of Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
447
|
Possart A, Fleck C, Hiltbrunner A. Shedding (far-red) light on phytochrome mechanisms and responses in land plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 217-218:36-46. [PMID: 24467894 DOI: 10.1016/j.plantsci.2013.11.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 05/20/2023]
Abstract
In order to monitor ambient light conditions, plants rely on functionally diversified photoreceptors. Among these, phytochromes perceive red (R) and far-red (FR) light. FR light does not constitute a photosynthetic energy source; it however influences adaptive and developmental processes. In seed plants, phytochrome A (phyA) acts as FR receptor and mediates FR high irradiance responses (FR-HIRs). It exerts a dual role by promoting e.g. germination and seedling de-etiolation in canopy shade and by antagonising shade avoidance growth. Even though cryptogam plants such as mosses and ferns do not have phyA, they show FR-induced responses. In the present review we discuss the mechanistic basis of phyA-dependent FR-HIRs as well as their dual role in seed plants. We compare FR responses in seed plants and cryptogam plants and conclude on different potential concepts for the detection of canopy shade. Scenarios for the evolution of FR perception and responses are discussed.
Collapse
Affiliation(s)
- Anja Possart
- Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Christian Fleck
- Laboratory for Systems and Synthetic Biology, Wageningen University, 6703 HB Wageningen, The Netherlands.
| | - Andreas Hiltbrunner
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
448
|
Abstract
Plant phytochromes are photoswitchable red/far-red photoreceptors that allow competition with neighboring plants for photosynthetically active red light. In aquatic environments, red and far-red light are rapidly attenuated with depth; therefore, photosynthetic species must use shorter wavelengths of light. Nevertheless, phytochrome-related proteins are found in recently sequenced genomes of many eukaryotic algae from aquatic environments. We examined the photosensory properties of seven phytochromes from diverse algae: four prasinophyte (green algal) species, the heterokont (brown algal) Ectocarpus siliculosus, and two glaucophyte species. We demonstrate that algal phytochromes are not limited to red and far-red responses. Instead, different algal phytochromes can sense orange, green, and even blue light. Characterization of these previously undescribed photosensors using CD spectroscopy supports a structurally heterogeneous chromophore in the far-red-absorbing photostate. Our study thus demonstrates that extensive spectral tuning of phytochromes has evolved in phylogenetically distinct lineages of aquatic photosynthetic eukaryotes.
Collapse
|
449
|
Zoratti L, Karppinen K, Luengo Escobar A, Häggman H, Jaakola L. Light-controlled flavonoid biosynthesis in fruits. FRONTIERS IN PLANT SCIENCE 2014; 5:534. [PMID: 25346743 PMCID: PMC4191440 DOI: 10.3389/fpls.2014.00534] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 09/19/2014] [Indexed: 05/18/2023]
Abstract
Light is one of the most important environmental factors affecting flavonoid biosynthesis in plants. The absolute dependency of light to the plant development has driven evolvement of sophisticated mechanisms to sense and transduce multiple aspects of the light signal. Light effects can be categorized in photoperiod (duration), intensity (quantity), direction and quality (wavelength) including UV-light. Recently, new information has been achieved on the regulation of light-controlled flavonoid biosynthesis in fruits, in which flavonoids have a major contribution on quality. This review focuses on the effects of the different light conditions on the control of flavonoid biosynthesis in fruit producing plants. An overview of the currently known mechanisms of the light-controlled flavonoid accumulation is provided. R2R3 MYB transcription factors are known to regulate by differential expression the biosynthesis of distinct flavonoids in response to specific light wavelengths. Despite recent advances, many gaps remain to be understood in the mechanisms of the transduction pathway of light-controlled flavonoid biosynthesis. A better knowledge on these regulatory mechanisms is likely to be useful for breeding programs aiming to modify fruit flavonoid pattern.
Collapse
Affiliation(s)
- Laura Zoratti
- Department of Biology, University of OuluOulu, Finland
| | | | - Ana Luengo Escobar
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de la FronteraTemuco, Chile
| | - Hely Häggman
- Department of Biology, University of OuluOulu, Finland
| | - Laura Jaakola
- Climate laboratory Holt, Department of Arctic and Marine Biology, UiT The Arctic University of NorwayTromsø, Norway
- Norwegian Institute for Agricultural and Environmental Research, Bioforsk Nord HoltTromsø, Norway
- *Correspondence: Laura Jaakola, Climate laboratory Holt, Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Holtveien 62, NO-9037 Tromsø, Norway e-mail:
| |
Collapse
|
450
|
Bebawi FF, Campbell SD, Mayer RJ. Effects of light conditions and plant density on growth and reproductive biology of Cascabela thevetia (L.) Lippold. RANGELAND JOURNAL 2014. [DOI: 10.1071/rj14038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cascabela thevetia (L.) Lippold (Apocynaceae) is an invasive woody weed that has formed large infestations at several locations in northern Australia. Understanding the reproductive biology of C. thevetia is vital to its management. This paper reports results of a shade house experiment that determined the effects of light conditions (100% or 30% of natural light) and plant densities (one, two, four or eight plants per plot) on the growth, time to flowering and seed formation, and monthly pod production of two C. thevetia biotypes (peach and yellow). Shaded plants were significantly larger when they reached reproductive maturity than plants grown under natural light. However, plants grown under natural light flowered earlier (268 days compared with 369 days) and produced 488 more pods per pot (a 5-fold increase) over 3 years. The yellow biotype was slightly taller at reproductive maturity but significantly taller and with significantly greater aboveground biomass at the end of the study. Both biotypes flowered at a similar time under natural light and low plant densities but the yellow biotype was quicker to seed (478 versus 498 days), produced significantly more pods (364 versus 203 pods) and more shoot growth (577 g versus 550 g) than the peach biotype over 3 years. Higher densities of C. thevetia tended to significantly reduce the shoot and root growth by 981 g and 714 g per plant across all light conditions and biotypes over 3 years and increase the time taken to flower by 140 days and produce seeds by 184 days. For land managers trying to prevent establishment of C. thevetia or to control seedling regrowth once initial infestations have been treated, this study indicates that young plants have the potential to flower and produce seeds within 268 and 353 days, respectively. However, with plant growth and reproduction most likely to be slower under field conditions, annual surveillance and control activities should be sufficient to find and treat plants before they produce seeds and replenish soil seed banks. The most at-risk part of the landscape may be open areas that receive maximum sunlight, particularly within riparian habitats where plants would consistently have more favourable soil moisture conditions.
Collapse
|