401
|
Qiao M, Zhao Z, Song Y, Liu Z, Cao L, Yu Y, Li S, Xiang F. Proper regeneration from in vitro cultured Arabidopsis thaliana requires the microRNA-directed action of an auxin response factor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:14-22. [PMID: 22335436 DOI: 10.1111/j.1365-313x.2012.04944.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
MicroRNAs (miRNAs) are important for the regulation of gene expression, and are involved in many developmental processes. A set of miRNAs which were differentially expressed between cells of totipotent (C1) and non-totipotent (C2) Arabidopsis thaliana calli was identified, some of which were affected during callus formation or shoot regeneration. One of those down-regulated after 10 days' incubation in shoot induction medium (SIM) was MIR160a, for which transcript abundance was lower in C1 than in C2. Over-expression of MIR160 compromised shoot regeneration from in vitro cultured A. thaliana cells, while the transgenic expression of a miR160-resistant form of ARF10 was associated with a high level of shoot regeneration. The latter transgenic line also showed an elevated expression level of shoot meristem-specific genes CLAVATA3, CUP-SHAPEDCOTYLEDON1 and -2, and WUSCHEL. ARF10 expression was concentrated at the initiation sites of shoots or leaves, while during the early phase of shoot regeneration, the accumulation of the ARF10 mRNA was lower in the wild type than in the mARF10 transgenics, in contrast to the pattern of miR160 expression. Thus, miR160 and ARF10 both appear to be components of the regulation of shoot regeneration in vitro.
Collapse
Affiliation(s)
- Meng Qiao
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | | | | | | | | | | | | | | |
Collapse
|
402
|
Liu Z, Kumari S, Zhang L, Zheng Y, Ware D. Characterization of miRNAs in response to short-term waterlogging in three inbred lines of Zea mays. PLoS One 2012; 7:e39786. [PMID: 22768123 PMCID: PMC3387268 DOI: 10.1371/journal.pone.0039786] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 05/31/2012] [Indexed: 01/22/2023] Open
Abstract
Waterlogging of plants leads to low oxygen levels (hypoxia) in the roots and causes a metabolic switch from aerobic respiration to anaerobic fermentation that results in rapid changes in gene transcription and protein synthesis. Our research seeks to characterize the microRNA-mediated gene regulatory networks associated with short-term waterlogging. MicroRNAs (miRNAs) are small non-coding RNAs that regulate many genes involved in growth, development and various biotic and abiotic stress responses. To characterize the involvement of miRNAs and their targets in response to short-term hypoxia conditions, a quantitative real time PCR (qRT-PCR) assay was used to quantify the expression of the 24 candidate mature miRNA signatures (22 known and 2 novel mature miRNAs, representing 66 miRNA loci) and their 92 predicted targets in three inbred Zea mays lines (waterlogging tolerant Hz32, mid-tolerant B73, and sensitive Mo17). Based on our studies, miR159, miR164, miR167, miR393, miR408 and miR528, which are mainly involved in root development and stress responses, were found to be key regulators in the post-transcriptional regulatory mechanisms under short-term waterlogging conditions in three inbred lines. Further, computational approaches were used to predict the stress and development related cis-regulatory elements on the promoters of these miRNAs; and a probable miRNA-mediated gene regulatory network in response to short-term waterlogging stress was constructed. The differential expression patterns of miRNAs and their targets in these three inbred lines suggest that the miRNAs are active participants in the signal transduction at the early stage of hypoxia conditions via a gene regulatory network; and crosstalk occurs between different biochemical pathways.
Collapse
Affiliation(s)
- Zhijie Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Sunita Kumari
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Lifang Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Yonglian Zheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- * E-mail: (YZ); (DW)
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- United States Department of Agriculture – Agriculture Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
- * E-mail: (YZ); (DW)
| |
Collapse
|
403
|
Tang Z, Zhang L, Xu C, Yuan S, Zhang F, Zheng Y, Zhao C. Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic male-sterile line by deep sequencing. PLANT PHYSIOLOGY 2012; 159:721-38. [PMID: 22508932 PMCID: PMC3375937 DOI: 10.1104/pp.112.196048] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/15/2012] [Indexed: 05/18/2023]
Abstract
The male sterility of thermosensitive genic male sterile (TGMS) lines of wheat (Triticum aestivum) is strictly controlled by temperature. The early phase of anther development is especially susceptible to cold stress. MicroRNAs (miRNAs) play an important role in plant development and in responses to environmental stress. In this study, deep sequencing of small RNA (smRNA) libraries obtained from spike tissues of the TGMS line under cold and control conditions identified a total of 78 unique miRNA sequences from 30 families and trans-acting small interfering RNAs (tasiRNAs) derived from two TAS3 genes. To identify smRNA targets in the wheat TGMS line, we applied the degradome sequencing method, which globally and directly identifies the remnants of smRNA-directed target cleavage. We identified 26 targets of 16 miRNA families and three targets of tasiRNAs. Comparing smRNA sequencing data sets and TaqMan quantitative polymerase chain reaction results, we identified six miRNAs and one tasiRNA (tasiRNA-ARF [for Auxin-Responsive Factor]) as cold stress-responsive smRNAs in spike tissues of the TGMS line. We also determined the expression profiles of target genes that encode transcription factors in response to cold stress. Interestingly, the expression of cold stress-responsive smRNAs integrated in the auxin-signaling pathway and their target genes was largely noncorrelated. We investigated the tissue-specific expression of smRNAs using a tissue microarray approach. Our data indicated that miR167 and tasiRNA-ARF play roles in regulating the auxin-signaling pathway and possibly in the developmental response to cold stress. These data provide evidence that smRNA regulatory pathways are linked with male sterility in the TGMS line during cold stress.
Collapse
MESH Headings
- Adaptation, Physiological
- Cold Temperature
- Computational Biology
- Flowers/genetics
- Flowers/physiology
- Gene Expression Profiling
- Gene Expression Regulation, Plant
- Genes, Plant
- Indoleacetic Acids/metabolism
- MicroRNAs/metabolism
- Plant Infertility
- Plant Proteins/genetics
- Plant Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Real-Time Polymerase Chain Reaction
- Sequence Analysis, RNA/methods
- Signal Transduction
- Stress, Physiological
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Triticum/genetics
- Triticum/physiology
Collapse
|
404
|
Hayashi KI. The interaction and integration of auxin signaling components. PLANT & CELL PHYSIOLOGY 2012; 53:965-75. [PMID: 22433459 DOI: 10.1093/pcp/pcs035] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
IAA, a naturally occurring auxin, is a simple signaling molecule that regulates many diverse steps of plant development. Auxin essentially coordinates plant development through transcriptional regulation. Auxin binds to TIR1/AFB nuclear receptors, which are F-box subunits of the SCF ubiquitin ligase complex. The auxin signal is then modulated by the quantitative and qualitative responses of the Aux/IAA repressors and the auxin response factor (ARF) transcription factors. The specificity of the auxin-regulated gene expression profile is defined by several factors, such as the expression of these regulatory proteins, their post-transcriptional regulation, their stability and the affinity between these regulatory proteins. Auxin-binding protein 1 (ABP1) is a candidate protein for an auxin receptor that is implicated in non-transcriptional auxin signaling. ABP1 also affects TIR1/AFB-mediated auxin-responsive gene expression, implying that both the ABP1 and TIR1/AFB signaling machineries coordinately control auxin-mediated physiological events. Systematic approaches using the comprehensive mapping of the expression and interaction of signaling modules and computational modeling would be valuable for integrating our knowledge of auxin signals and responses.
Collapse
Affiliation(s)
- Ken-ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama, 700-0005 Japan.
| |
Collapse
|
405
|
Burklew CE, Ashlock J, Winfrey WB, Zhang B. Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PLoS One 2012; 7:e34783. [PMID: 22606225 PMCID: PMC3350507 DOI: 10.1371/journal.pone.0034783] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 03/09/2012] [Indexed: 12/31/2022] Open
Abstract
Nanoparticles are a class of newly emerging environmental pollutions. To date, few experiments have been conducted to investigate the effect nanoparticles may have on plant growth and development. It is important to study the effects nanoparticles have on plants because they are stationary organisms that cannot move away from environmental stresses like animals can, therefore they must overcome these stresses by molecular routes such as altering gene expression. microRNAs (miRNA) are a newly discovered, endogenous class of post-transcriptional gene regulators that function to alter gene expression by either targeting mRNAs for degradation or inhibiting mRNAs translating into proteins. miRNAs have been shown to mediate abiotic stress responses such as drought and salinity in plants by altering gene expression, however no study has been performed on the effect of nanoparticles on the miRNA expression profile; therefore our aim in this study was to classify if certain miRNAs play a role in plant response to Al(2)O(3) nanoparticle stress. In this study, we exposed tobacco (Nicotiana tabacum) plants (an important cash crop as well as a model organism) to 0%, 0.1%, 0.5%, and 1% Al(2)O(3) nanoparticles and found that as exposure to the nanoparticles increased, the average root length, the average biomass, and the leaf count of the seedlings significantly decreased. We also found that miR395, miR397, miR398, and miR399 showed an extreme increase in expression during exposure to 1% Al(2)O(3) nanoparticles as compared to the other treatments and the control, therefore these miRNAs may play a key role in mediating plant stress responses to nanoparticle stress in the environment. The results of this study show that Al(2)O(3) nanoparticles have a negative effect on the growth and development of tobacco seedlings and that miRNAs may play a role in the ability of plants to withstand stress to Al(2)O(3) nanoparticles in the environment.
Collapse
Affiliation(s)
- Caitlin E. Burklew
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America
| | - Jordan Ashlock
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America
| | - William B. Winfrey
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America
| |
Collapse
|
406
|
Chen X. Small RNAs in development - insights from plants. Curr Opin Genet Dev 2012; 22:361-7. [PMID: 22578318 DOI: 10.1016/j.gde.2012.04.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 03/30/2012] [Accepted: 04/11/2012] [Indexed: 10/28/2022]
Abstract
microRNAs (miRNAs) and small interfering RNAs (siRNAs), which constitute two major classes of endogenous small RNAs in plants, impact a multitude of developmental and physiological processes by imparting sequence specificity to gene and genome regulation. Although lacking the third major class of small RNAs found in animals, Piwi-interacting RNAs (piRNAs), plants have expanded their repertoire of endogenous siRNAs, some of which fulfill similar molecular and developmental functions as piRNAs in animals. Research on plant miRNAs and siRNAs has contributed invaluable insights into small RNA biology, thanks to the highly conserved molecular logic behind the biogenesis and actions of small RNAs. Here, I review progress in the plant small RNA field in the past two years, with an emphasis on recent findings related to plant development. I do not recount the numerous developmental processes regulated by small RNAs; instead, I focus on major principles that have been derived from recent studies and draw parallels, when applicable, between plants and animals.
Collapse
Affiliation(s)
- Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, United States.
| |
Collapse
|
407
|
Tucker MR, Okada T, Johnson SD, Takaiwa F, Koltunow AMG. Sporophytic ovule tissues modulate the initiation and progression of apomixis in Hieracium. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3229-41. [PMID: 22378948 PMCID: PMC3350933 DOI: 10.1093/jxb/ers047] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 05/21/2023]
Abstract
Apomixis in Hieracium subgenus Pilosella initiates in ovules when sporophytic cells termed aposporous initial (AI) cells enlarge near sexual cells undergoing meiosis. AI cells displace the sexual structures and divide by mitosis to form unreduced embryo sac(s) without meiosis (apomeiosis) that initiate fertilization-independent embryo and endosperm development. In some Hieracium subgenus Pilosella species, these events are controlled by the dominant LOSS OF APOMEIOSIS (LOA) and LOSS OF PARTHENOGENESIS (LOP) loci. In H. praealtum and H. piloselloides, which both contain the same core LOA locus, the timing and frequency of AI cell formation is altered in derived mutants exhibiting abnormal funiculus growth and in transgenic plants expressing rolB which alters cellular sensitivity to auxin. The impact on apomictic and sexual reproduction was examined here when a chimeric RNAse gene was targeted to the funiculus and basal portions of the ovule, and also when polar auxin transport was inhibited during ovule development following N-1-naphthylphthalamic acid (NPA) application. Both treatments led to ovule deformity in the funiculus and distal parts of the ovule and LOA-dependent alterations in the timing, position, and frequency of AI cell formation. In the case of NPA treatment, this correlated with increased expression of DR5:GFP in the ovule, which marks the accumulation of the plant hormone auxin. Our results show that sporophytic information potentiated by funiculus growth and polar auxin transport influences ovule development, the initiation of apomixis, and the progression of embryo sac development in Hieracium. Signals associated with ovule pattern formation and auxin distribution or perception may influence the capacity of sporophytic ovule cells to respond to LOA.
Collapse
Affiliation(s)
- Matthew R. Tucker
- CSIRO Plant Industry, Waite Campus, Hartley Grove, Urrbrae SA 5064, Australia
| | - Takashi Okada
- CSIRO Plant Industry, Waite Campus, Hartley Grove, Urrbrae SA 5064, Australia
| | - Susan D. Johnson
- CSIRO Plant Industry, Waite Campus, Hartley Grove, Urrbrae SA 5064, Australia
| | - Fumio Takaiwa
- Transgenic Crop Research and Development Centre, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Anna M. G. Koltunow
- CSIRO Plant Industry, Waite Campus, Hartley Grove, Urrbrae SA 5064, Australia
| |
Collapse
|
408
|
Hendelman A, Buxdorf K, Stav R, Kravchik M, Arazi T. Inhibition of lamina outgrowth following Solanum lycopersicum AUXIN RESPONSE FACTOR 10 (SlARF10) derepression. PLANT MOLECULAR BIOLOGY 2012; 78:561-76. [PMID: 22287097 DOI: 10.1007/s11103-012-9883-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 01/12/2012] [Indexed: 05/04/2023]
Abstract
Auxin response factors (ARFs) are plant transcription factors that activate or repress the expression of auxin-responsive genes and accordingly, play key roles in auxin-mediated developmental processes. Here we identified and characterized the Solanum lycopersicum (tomato) ARF10 homolog (SlARF10), demonstrated that it is posttranscriptionally regulated by Sl-miR160, and investigated the significance of this regulation for tomato development. In wild-type tomato, SlARF10 is primarily expressed in the pericarp of mature and ripened fruit, showing an expression profile complementary to that of Sl-miR160. Constitutive expression of wild-type SlARF10 did not alter tomato development. However, transgenic tomato plants that constitutively expressed the Sl-miR160a-resistant version (mSlARF10) developed narrow leaflet blades, sepals and petals, and abnormally shaped fruit. During compound leaf development, mSlARF10 accumulation specifically inhibited leaflet blade outgrowth without affecting other auxin-driven processes such as leaflet initiation and lobe formation. Moreover, blade size was inversely correlated with mSlARF10 transcript levels, strongly implying that the SlARF10 protein, which was localized to the nucleus, can function as a transcriptional repressor of leaflet lamina outgrowth. Accordingly, known auxin-responsive genes, which promote cell growth, were downregulated in shoot apices that accumulated increased mSlARF10 levels. Taken together, we propose that repression of SlARF10 by Sl-miR160 is essential for auxin-mediated blade outgrowth and early fruit development.
Collapse
Affiliation(s)
- A Hendelman
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, P.O. Box 6, 50250 Bet Dagan, Israel
| | | | | | | | | |
Collapse
|
409
|
Iyer NJ, Jia X, Sunkar R, Tang G, Mahalingam R. microRNAs responsive to ozone-induced oxidative stress in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2012; 7:484-91. [PMID: 22499183 PMCID: PMC3419038 DOI: 10.4161/psb.19337] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ozone is a model abiotic elicitor of reactive oxygen species (ROS). ROS are important oxidative signaling molecules coordinating plant development and responses to biotic and abiotic stresses. Recently, microRNAs have been described as important players in regulating stress responses in plants. In this research we examined the miRNAs that are differentially expressed early in response to ozone in the Arabidopsis thaliana ecotype Col-0 that is tolerant to this oxidant. We used a plant miRNA array to identify 22 miRNA families that are differentially expressed within one hour of ozone fumigation. Majority of these miRNAs were also reported in response to UV-B stress. Analysis of the miRNA target genes showed a strong negative correlation to the miRNA expression. In silico promoter analysis of miRNA genes identified several stress responsive cis-elements that were enriched in the promoters of ozone responsive genes. Majority of the target genes of ozone responsive miRNAs were associated with developmental processes. Based on these results we suggest that post-transcriptional gene regulation via miRNAs may aid in resource allocation by downregulating developmental processes to cater to the oxidative stress demands on plants.
Collapse
Affiliation(s)
- Niranjani J. Iyer
- Department of Biochemistry and Molecular Biology; Oklahoma State University; Stillwater, OK USA
- Current address: Monsanto; Chesterfield, MO USA
| | - Xiaoyun Jia
- Gene Suppression Laboratory; Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center; University of Kentucky; Lexington, KY USA
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology; Oklahoma State University; Stillwater, OK USA
| | - Guiliang Tang
- Gene Suppression Laboratory; Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center; University of Kentucky; Lexington, KY USA
| | - Ramamurthy Mahalingam
- Department of Biochemistry and Molecular Biology; Oklahoma State University; Stillwater, OK USA
| |
Collapse
|
410
|
Ståldal V, Cierlik I, Chen S, Landberg K, Baylis T, Myrenås M, Sundström JF, Eklund DM, Ljung K, Sundberg E. The Arabidopsis thaliana transcriptional activator STYLISH1 regulates genes affecting stamen development, cell expansion and timing of flowering. PLANT MOLECULAR BIOLOGY 2012; 78:545-59. [PMID: 22318676 DOI: 10.1007/s11103-012-9888-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/10/2012] [Indexed: 05/09/2023]
Abstract
SHORT-INTERNODES/STYLISH (SHI/STY)-family proteins redundantly regulate development of lateral organs in Arabidopsis thaliana. We have previously shown that STY1 interacts with the promoter of the auxin biosynthesis gene YUCCA (YUC)4 and activates transcription of the genes YUC4, YUC8 and OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF (ORA)59 independently of protein translation. STY1 also affects auxin levels and auxin biosynthesis rates. Here we show that STY1 induces the transcription of 16 additional genes independently of protein translation. Several of these genes are tightly co-expressed with SHI/STY-family genes and/or down-regulated in SHI/STY-family multiple mutant lines, suggesting them to be regulated by SHI/STY proteins during plant development. The majority of the identified genes encode transcription factors or cell expansion-related enzymes and functional studies suggest their involvement in stamen and leaf development or flowering time regulation.
Collapse
Affiliation(s)
- Veronika Ståldal
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO-Box 7080, 75007 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
411
|
Abstract
An important aspect of studies on auxin is auxin response factors (ARFs), which activate or repress the auxin response genes by binding to auxin response elements (AuxREs) on their promoters. In this review, we focused on molecular biological advances of plant ARF families, and discussed ARF structures, regulation of ARF gene expression, the roles of ARFs in regulating the development of plants and in signal transduction and the mechanisms involved in the target gene regulation by ARFs. The phylogenetic relationships of ARFs in plants are close and most of them have 4 domains. ARFs are expressed in various tissues. Their expressions are regulated at both transcriptional and post-transcriptional levels. They play important roles in the interactions between auxin and other hormones.
Collapse
|
412
|
Systematic analysis of plant-specific B3 domain-containing proteins based on the genome resources of 11 sequenced species. Mol Biol Rep 2012; 39:6267-82. [DOI: 10.1007/s11033-012-1448-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/23/2012] [Indexed: 10/14/2022]
|
413
|
Zhang B, Xie D, Jin Z. Global analysis of non-coding small RNAs in Arabidopsis in response to jasmonate treatment by deep sequencing technology. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:73-86. [PMID: 22221297 DOI: 10.1111/j.1744-7909.2012.01098.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In plants, non-coding small RNAs play a vital role in plant development and stress responses. To explore the possible role of non-coding small RNAs in the regulation of the jasmonate (JA) pathway, we compared the non-coding small RNAs between the JA-deficient aos mutant and the JA-treated wild type Arabidopsis via high-throughput sequencing. Thirty new miRNAs and 27 new miRNA candidates were identified through bioinformatics approach. Forty-nine known miRNAs (belonging to 24 families), 15 new miRNAs and new miRNA candidates (belonging to 11 families) and 3 tasiRNA families were induced by JA, whereas 1 new miRNA, 1 tasiRNA family and 22 known miRNAs (belonging to 9 families) were repressed by JA.
Collapse
Affiliation(s)
- Bosen Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | |
Collapse
|
414
|
Reeves PH, Ellis CM, Ploense SE, Wu MF, Yadav V, Tholl D, Chételat A, Haupt I, Kennerley BJ, Hodgens C, Farmer EE, Nagpal P, Reed JW. A regulatory network for coordinated flower maturation. PLoS Genet 2012; 8:e1002506. [PMID: 22346763 PMCID: PMC3276552 DOI: 10.1371/journal.pgen.1002506] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/11/2011] [Indexed: 11/19/2022] Open
Abstract
For self-pollinating plants to reproduce, male and female organ development must be coordinated as flowers mature. The Arabidopsis transcription factors AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8 regulate this complex process by promoting petal expansion, stamen filament elongation, anther dehiscence, and gynoecium maturation, thereby ensuring that pollen released from the anthers is deposited on the stigma of a receptive gynoecium. ARF6 and ARF8 induce jasmonate production, which in turn triggers expression of MYB21 and MYB24, encoding R2R3 MYB transcription factors that promote petal and stamen growth. To understand the dynamics of this flower maturation regulatory network, we have characterized morphological, chemical, and global gene expression phenotypes of arf, myb, and jasmonate pathway mutant flowers. We found that MYB21 and MYB24 promoted not only petal and stamen development but also gynoecium growth. As well as regulating reproductive competence, both the ARF and MYB factors promoted nectary development or function and volatile sesquiterpene production, which may attract insect pollinators and/or repel pathogens. Mutants lacking jasmonate synthesis or response had decreased MYB21 expression and stamen and petal growth at the stage when flowers normally open, but had increased MYB21 expression in petals of older flowers, resulting in renewed and persistent petal expansion at later stages. Both auxin response and jasmonate synthesis promoted positive feedbacks that may ensure rapid petal and stamen growth as flowers open. MYB21 also fed back negatively on expression of jasmonate biosynthesis pathway genes to decrease flower jasmonate level, which correlated with termination of growth after flowers have opened. These dynamic feedbacks may promote timely, coordinated, and transient growth of flower organs.
Collapse
Affiliation(s)
- Paul H. Reeves
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Christine M. Ellis
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sara E. Ploense
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Miin-Feng Wu
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Vandana Yadav
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dorothea Tholl
- Department of Biological Sciences, Virginia Tech University, Blacksburg, Virginia, United States of America
| | - Aurore Chételat
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Ina Haupt
- Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Brian J. Kennerley
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Charles Hodgens
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Edward E. Farmer
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Punita Nagpal
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jason W. Reed
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
415
|
DePaoli H, Goldman G, Goldman MH. SCI1, the first member of the tissue-specific inhibitors of CDK (TIC) class, is probably connected to the auxin signaling pathway. PLANT SIGNALING & BEHAVIOR 2012; 7:53-8. [PMID: 22301969 PMCID: PMC3357369 DOI: 10.4161/psb.7.1.18525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The recent finding of a tissue-specific cell cycle regulator (SCI1) that inhibits cell proliferation/differentiation in the upper pistil points to an unanticipated way of controlling plant morphogenesis. The similarity between the SCI1 RNAi-silenced plants and some auxin-related phenotypes suggested that SCI1 could be involved in the auxin signaling pathway. To address this hypothesis, we analyzed the expression of three auxin-related genes in transgenic plants in which SCI1 was silenced and overexpressed. The results showed that the expression levels of the auxin-related genes largely correlated with the SCI1 expression level. Additionally, we analyzed the Arabidopsis SCI1 upstream regulatory region and found putative cis-acting elements also present in the AtCYCB1;1 AtYUC1, AtYUC2 and AtYUC4 URRs, suggesting a cell cycle- and auxin-related transcriptional regulation. Based on our previous and the current studies, we propose SCI1 as a signal transducer engaging auxin signaling and cell division/differentiation.
Collapse
Affiliation(s)
- Henrique DePaoli
- Departamento de Biologia; Faculdade de Filosofia; Ciências e Letras de Ribeirão Preto; Universidade de São Paulo; São Paulo, Brazil
- Departamento de Genética; Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; São Paulo, Brazil
| | - Gustavo Goldman
- Departamento de Ciências Farmacêuticas; Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; São Paulo, Brazil
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); Brazil
| | - Maria-Helena Goldman
- Departamento de Biologia; Faculdade de Filosofia; Ciências e Letras de Ribeirão Preto; Universidade de São Paulo; São Paulo, Brazil
- Departamento de Genética; Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; São Paulo, Brazil
- Correspondence to: Maria-Helena Goldman,
| |
Collapse
|
416
|
|
417
|
Root branching: mechanisms, robustness, and plasticity. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:329-43. [DOI: 10.1002/wdev.17] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
418
|
Meng Y, Shao C, Wang H, Chen M. The regulatory activities of plant microRNAs: a more dynamic perspective. PLANT PHYSIOLOGY 2011; 157:1583-95. [PMID: 22003084 PMCID: PMC3327222 DOI: 10.1104/pp.111.187088] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/13/2011] [Indexed: 05/19/2023]
Affiliation(s)
- Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, People's Republic of China.
| | | | | | | |
Collapse
|
419
|
Abstract
MicroRNAs (miRNAs) are an extensive class of endogenous, non-coding, short (21~25 nt) RNA molecules, which regulate expression of target genes through miRNA-guided cleavage or translational repression of mRNAs. Plant miRNAs are involved in all aspects of regulation of plant growth and development. The miR319 was shown to regulate TCPs transcription factor controlling the fate of plant organ growth such as leaves and flowers and was involved in regulating part of hormone biosynthesis and signal transduction pathways. Thus, they play a key biochemical function in plant organs development. This review focused on the key roles of miR319 in regulation of the morphogenesis, development, and senescence of plant organs such as leaves and flowers.
Collapse
|
420
|
Palanivelu R, Tsukamoto T. Pathfinding in angiosperm reproduction: pollen tube guidance by pistils ensures successful double fertilization. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:96-113. [PMID: 23801670 DOI: 10.1002/wdev.6] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sexual reproduction in flowering plants is unique in multiple ways. Distinct multicellular gametophytes contain either a pair of immotile, haploid male gametes (sperm cells) or a pair of female gametes (haploid egg cell and homodiploid central cell). After pollination, the pollen tube, a cellular extension of the male gametophyte, transports both male gametes at its growing tip and delivers them to the female gametes to affect double fertilization. The pollen tube travels a long path and sustains its growth over a considerable amount of time in the female reproductive organ (pistil) before it reaches the ovule, which houses the female gametophyte. The pistil facilitates the pollen tube's journey by providing multiple, stage-specific, nutritional, and guidance cues along its path. The pollen tube interacts with seven different pistil cell types prior to completing its journey. Consequently, the pollen tube has a dynamic gene expression program allowing it to continuously reset and be receptive to multiple pistil signals as it migrates through the pistil. Here, we review the studies, including several significant recent advances, that led to a better understanding of the multitude of cues generated by the pistil tissues to assist the pollen tube in delivering the sperm cells to the female gametophyte. We also highlight the outstanding questions, draw attention to opportunities created by recent advances and point to approaches that could be undertaken to unravel the molecular mechanisms underlying pollen tube-pistil interactions.
Collapse
|
421
|
Rademacher EH, Möller B, Lokerse AS, Llavata-Peris CI, van den Berg W, Weijers D. A cellular expression map of the Arabidopsis AUXIN RESPONSE FACTOR gene family. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:597-606. [PMID: 21831209 DOI: 10.1111/j.1365-313x.2011.04710.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The plant hormone auxin triggers a wide range of developmental and growth responses throughout a plant's life. Most well-known auxin responses involve changes in gene expression that are mediated by a short pathway involving an auxin-receptor/ubiquitin-ligase, DNA-binding auxin response factor (ARF) transcription factors and their interacting auxin/indole-3-acetic acid (Aux/IAA) transcriptional inhibitors. Auxin promotes the degradation of Aux/IAA proteins through the auxin receptor and hence releases the inhibition of ARF transcription factors. Although this generic mechanism is now well understood, it is still unclear how developmental specificity is generated and how individual gene family members of response components contribute to local auxin responses. We have established a collection of transcriptional reporters for the ARF gene family and used these to generate a map of expression during embryogenesis and in the primary root meristem. Our results demonstrate that transcriptional regulation of ARF genes generates a complex pattern of overlapping activities. Genetic analysis shows that functions of co-expressed ARFs converge on the same biological processes, but can act either antagonistically or synergistically. Importantly, the existence of an 'ARF pre-pattern' could explain how cell-type-specific auxin responses are generated. Furthermore, this resource can now be used to probe the functions of ARF in other auxin-dependent processes.
Collapse
Affiliation(s)
- Eike H Rademacher
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
422
|
Crawford BCW, Yanofsky MF. HALF FILLED promotes reproductive tract development and fertilization efficiency in Arabidopsis thaliana. Development 2011; 138:2999-3009. [PMID: 21693516 DOI: 10.1242/dev.067793] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Successful fertilization in angiosperms requires the growth of pollen tubes through the female reproductive tract as they seek out unfertilized ovules. In Arabidopsis, the reproductive tract begins with the stigma, where pollen grains initially adhere, and extends through the transmitting tract of the style and ovary. In wild-type plants, cells within the transmitting tract produce a rich extracellular matrix and undergo programmed cell death to facilitate pollen movement. Here, we show that the HAF, BEE1 and BEE3 genes encode closely related bHLH transcription factors that act redundantly to specify reproductive tract tissues. These three genes are expressed in distinct but overlapping patterns within the reproductive tract, and in haf bee1 bee3 triple mutants extracellular matrix formation and cell death fail to occur within the transmitting tract. We used a minimal pollination assay to show that HAF is necessary and sufficient to promote fertilization efficiency. Our studies further show that HAF expression depends on the NTT gene and on an auxin signaling pathway mediated by the ARF6, ARF8 and HEC genes.
Collapse
Affiliation(s)
- Brian C W Crawford
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
423
|
Huang MD, Hsing YIC, Huang AHC. Transcriptomes of the anther sporophyte: availability and uses. PLANT & CELL PHYSIOLOGY 2011; 52:1459-66. [PMID: 21743085 PMCID: PMC3172567 DOI: 10.1093/pcp/pcr088] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/30/2011] [Indexed: 05/22/2023]
Abstract
An anther includes sporophytic tissues of three outer cell layers and an innermost layer, the tapetum, which encloses a locule where the gametophytic microspores mature to become pollen. The sporophytic tissues also comprise some vascular cells and specialized cells of the stomium aligning the long anther axis for anther dehiscence. Studies of the anther sporophytic cells, especially the tapetum, have recently expanded from the use of microscopy to molecular biology and transcriptomes. The available sequencing technologies, plus the use of laser microdissection and in silico subtraction, have produced high-quality anther sporophyte transcriptomes of rice, Arabidopsis and maize. These transcriptomes have been used for research discoveries and have potential for future discoveries in diverse areas, including developmental gene activity networking and changes in enzyme and metabolic domains, prediction of protein functions by quantity, secretion, antisense transcript regulation, small RNAs and promoters for generating male sterility. We anticipate that these studies with rice and other transcriptomes will expand to encompass other plants, whose genomes will be sequenced soon, with ever-advancing sequencing technologies. In comprehensive gene activity profiling of the anther sporophyte, studies involving transcriptomes will spearhead investigation of the downstream gene activity with proteomics and metabolomics.
Collapse
Affiliation(s)
- Ming-Der Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- *Corresponding authors: Ming-Der Huang; E-mail, ; Fax, +886-2-27827954. Anthony H. C. Huang; E-mail, ; Fax, +886-2-27827954
| | | | - Anthony H. C. Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- *Corresponding authors: Ming-Der Huang; E-mail, ; Fax, +886-2-27827954. Anthony H. C. Huang; E-mail, ; Fax, +886-2-27827954
| |
Collapse
|
424
|
Cloning plants by seeds: Inheritance models and candidate genes to increase fundamental knowledge for engineering apomixis in sexual crops. J Biotechnol 2011; 159:291-311. [PMID: 21906637 DOI: 10.1016/j.jbiotec.2011.08.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 08/16/2011] [Accepted: 08/17/2011] [Indexed: 01/02/2023]
Abstract
Apomixis is desirable in agriculture as a reproductive strategy for cloning plants by seeds. Because embryos derive from the parthenogenic development of apomeiotic egg cells, apomixis excludes fertilization in addition to meiotic segregation and recombination, resulting in offspring that are exact replicas of the parent. Introgression of apomixis from wild relatives to crop species and transformation of sexual genotypes into apomictically reproducing ones are long-held goals of plant breeding. In fact, it is generally accepted that the introduction of apomixis into agronomically important crops will have revolutionary implications for agriculture. This review deals with the current genetic and molecular findings that have been collected from model species to elucidate the mechanisms of apomeiosis, parthenogenesis and apomixis as a whole. Our goal is to critically determine whether biotechnology can combine key genes known to control the expression of the processes miming the main components of apomixis in plants. Two natural apomicts, as the eudicot Hypericum perforatum L. (St. John's wort) and the monocot Paspalum spp. (crowngrass), and the sexual model species Arabidopsis thaliana are ideally suited for such investigations at the genomic and biotechnological levels. Some novel views and original concepts have been faced on this review, including (i) the parallel between Y-chromosome and apomixis-bearing chromosome (e.g., comparative genomic analyses revealed common features as repression of recombination events, accumulation of transposable elements and degeneration of genes) from the most primitive (Hypericum-type) to the most advanced (Paspalum-type) in evolutionary terms, and (ii) the link between apomixis and gene-specific silencing mechanisms (i.e., likely based on chromatin remodelling factors), with merging lines of evidence regarding the role of auxin in cell fate specification of embryo sac and egg cell development in Arabidopsis. The production of engineered plants exhibiting apomictic-like phenotypes is critically reviewed and discussed.
Collapse
|
425
|
Fruit improvement using intragenesis and artificial microRNA. Trends Biotechnol 2011; 30:80-8. [PMID: 21871680 DOI: 10.1016/j.tibtech.2011.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/20/2011] [Accepted: 07/28/2011] [Indexed: 11/21/2022]
Abstract
Genetic engineering methods based on the use of transgenes have been successfully adopted to improve crops. A novel all-native DNA gene technology consists of the creation of intragenic constructs by isolating genetic elements from a crop, rearranging them in vitro, and inserting them back into the plant. The ever-increasing genomic information and the elucidation of the molecular mechanisms that control fruit development could be exploited to confer the desired fruit phenotypes using endogenous DNA. The spatial/temporal regulation of genes can be modified by using appropriate endogenous regulatory elements, such as fruit-specific promoters. In addition, intragenic silencing can be employed to downregulate fruit-related genes. Here, we describe the available tools for intragenic manipulation of early phases of fleshy fruit initiation.
Collapse
|
426
|
Vernoux T, Brunoud G, Farcot E, Morin V, Van den Daele H, Legrand J, Oliva M, Das P, Larrieu A, Wells D, Guédon Y, Armitage L, Picard F, Guyomarc'h S, Cellier C, Parry G, Koumproglou R, Doonan JH, Estelle M, Godin C, Kepinski S, Bennett M, De Veylder L, Traas J. The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol 2011; 7:508. [PMID: 21734647 PMCID: PMC3167386 DOI: 10.1038/msb.2011.39] [Citation(s) in RCA: 439] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 05/18/2011] [Indexed: 02/07/2023] Open
Abstract
The plant hormone auxin is thought to provide positional information for patterning during development. It is still unclear, however, precisely how auxin is distributed across tissues and how the hormone is sensed in space and time. The control of gene expression in response to auxin involves a complex network of over 50 potentially interacting transcriptional activators and repressors, the auxin response factors (ARFs) and Aux/IAAs. Here, we perform a large-scale analysis of the Aux/IAA-ARF pathway in the shoot apex of Arabidopsis, where dynamic auxin-based patterning controls organogenesis. A comprehensive expression map and full interactome uncovered an unexpectedly simple distribution and structure of this pathway in the shoot apex. A mathematical model of the Aux/IAA-ARF network predicted a strong buffering capacity along with spatial differences in auxin sensitivity. We then tested and confirmed these predictions using a novel auxin signalling sensor that reports input into the signalling pathway, in conjunction with the published DR5 transcriptional output reporter. Our results provide evidence that the auxin signalling network is essential to create robust patterns at the shoot apex.
Collapse
Affiliation(s)
- Teva Vernoux
- Laboratoire de Reproduction et Développement des Plantes, CNRS, INRA, ENS Lyon, UCBL, Université de Lyon, Lyon, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
427
|
Wei LQ, Yan LF, Wang T. Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa. Genome Biol 2011; 12:R53. [PMID: 21679406 PMCID: PMC3218841 DOI: 10.1186/gb-2011-12-6-r53] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 04/01/2011] [Accepted: 06/16/2011] [Indexed: 12/30/2022] Open
Abstract
Background Pollen development in flowering plants requires strict control of the gene expression program and genetic information stability by mechanisms possibly including the miRNA pathway. However, our understanding of the miRNA pathway in pollen development remains limited, and the dynamic profile of miRNAs in developing pollen is unknown. Results Using next-generation sequencing technology, we pyrosequenced small RNA populations from rice uninucleate microspores to tricellular pollen and control sporophytic tissues at the genome-wide level. We identified 292 known miRNAs, including members of all 20 families conserved in plants, and 75 novel miRNAs. Of the 292 known miRNAs, 202 were expressed, with 103 enriched, in developing pollen. More than half of these novel miRNAs displayed pollen-or stage-specific expression. Furthermore, analyzing the 367 miRNAs and their predicted targets indicated that correlation in expression profiles of pollen-enriched known miRNAs and their targets significantly differs from that of sporophyte-enriched known miRNAs and their targets in some functional terms, while novel miRNAs appeared to negatively regulate their targets. Importantly, gene ontology abundance analysis demonstrated chromatin assembly and disassembly was important in the targets of bicellular pollen-expressed novel miRNAs. Principal component analysis revealed pollen of all three stages was discriminated from sporophytes, largely because of the novel and non-conserved known miRNAs. Conclusions Our study, for the first time, revealed the differences in composition and expression profiles of miRNAs between developing pollen and sporophytes, with novel and non-conserved known miRNAs the main contributors. Our results suggest the important roles of the miRNA pathway in pollen development.
Collapse
Affiliation(s)
- Li Qin Wei
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, China
| | | | | |
Collapse
|
428
|
Wang Y, Deng D, Shi Y, Miao N, Bian Y, Yin Z. Diversification, phylogeny and evolution of auxin response factor (ARF) family: insights gained from analyzing maize ARF genes. Mol Biol Rep 2011; 39:2401-15. [PMID: 21667107 DOI: 10.1007/s11033-011-0991-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 05/28/2011] [Indexed: 01/01/2023]
Abstract
Auxin response factors (ARFs), member of the plant-specific B3 DNA binding superfamily, target specifically to auxin response elements (AuxREs) in promoters of primary auxin-responsive genes and heterodimerize with Aux/IAA proteins in auxin signaling transduction cascade. In previous research, we have isolated and characterized maize Aux/IAA genes in whole-genome scale. Here, we report the comprehensive analysis of ARF genes in maize. A total of 36 ARF genes were identified and validated from the B73 maize genome through an iterative strategy. Thirty-six maize ARF genes are distributed in all maize chromosomes except chromosome 7. Maize ARF genes expansion is mainly due to recent segmental duplications. Maize ARF proteins share one B3 DNA binding domain which consists of seven-stranded β sheets and two short α helixes. Twelve maize ARFs with glutamine-rich middle regions could be as activators in modulating expression of auxin-responsive genes. Eleven maize ARF proteins are lack of homo- and heterodimerization domains. Putative cis-elements involved in phytohormones and light signaling responses, biotic and abiotic stress adaption locate in promoters of maize ARF genes. Expression patterns vary greatly between clades and sister pairs of maize ARF genes. The B3 DNA binding and auxin response factor domains of maize ARF proteins are primarily subjected to negative selection during selective sweep. The mixed selective forces drive the diversification and evolution of genomic regions outside of B3 and ARF domains. Additionally, the dicot-specific proliferation of ARF genes was detected. Comparative genomics analysis indicated that maize, sorghum and rice duplicate chromosomal blocks containing ARF homologs are highly syntenic. This study provides insights into the distribution, phylogeny and evolution of ARF gene family.
Collapse
Affiliation(s)
- Yijun Wang
- Key Laboratory of Jiangsu Province for Crop Genetics and Physiology, Key Laboratory of Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
| | | | | | | | | | | |
Collapse
|
429
|
Jay F, Wang Y, Yu A, Taconnat L, Pelletier S, Colot V, Renou JP, Voinnet O. Misregulation of AUXIN RESPONSE FACTOR 8 underlies the developmental abnormalities caused by three distinct viral silencing suppressors in Arabidopsis. PLoS Pathog 2011; 7:e1002035. [PMID: 21589905 PMCID: PMC3093370 DOI: 10.1371/journal.ppat.1002035] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 03/01/2011] [Indexed: 12/21/2022] Open
Abstract
In Arabidopsis, micro (mi)RNAs and trans-acting (ta-si)RNAs synthesized directly or indirectly through the DICER-LIKE-1 (DCL1) ribonuclease have roles in patterning and hormonal responses, while DCL2,3,4-dependent small-interfering (si)RNAs are mainly involved in silencing of transposable elements and antiviral defense. Viral suppressors of RNA silencing (VSRs) produced by phytoviruses to counter plant defense may perturb plant developmental programs because of the collision of their inhibitory effects with the regulatory action of endogenous miRNAs and ta-siRNAs. This could explain the similar developmental aberrations displayed by Arabidopsis miRNA/ta-siRNA pathway mutants, including dcl1, and by some VSR-expressing plants. Nonetheless, the molecular bases for these morphological aberrations have remained mysterious, and their contribution to viral disease symptoms/virulence unexplored. The extent of VSR inhibitory actions to other types of endogenous small RNAs remains also unclear. Here, we present an in-depth analysis of transgenic Arabidopsis expressing constitutively HcPro, P19 and P15, three unrelated VSRs. We show that VSR expression has comparable, yet modest effects on known miRNA and ta-siRNA target RNA levels, similar to those observed using an hypomorphic dcl1 mutation. However, by combining results of transcriptome studies with deep-sequencing data from immuno-precipitated small RNAs, additional, novel endogenous targets of miRNA and ta-siRNA were identified, unraveling an unsuspected complexity in the origin and scope-of-action of these molecules. Other stringent analyses pinpointed misregulation of the miR167 target AUXIN RESPONSE FACTOR 8 (ARF8) as a major cause for the developmental aberrations exhibited by VSR transgenic plants, but also for the phenotypes induced during normal viral infection caused by the HcPro-encoding Turnip mosaic virus (TuMV). Neither RNA silencing, its suppression by VSRs, nor the virulence/accumulation of TuMV was altered by mutations in ARF8. These findings have important implications for our understanding of viral disease symptoms and small RNA-directed regulation of plant growth/development. In the plant and animal RNA silencing pathways, small RNA molecules known as micro (mi)RNA and short-interfering (si)RNAs have key roles in development and antiviral defense, respectively. In turn, viruses counteract this defense by deploying specific virulence factors, referred to as Viral Suppressors of RNA silencing (VSRs), which target distinct steps of the host silencing machinery. In the model plant species Arabidopsis thaliana, transgenic expression of distinct VSRs often incurs a set of strikingly recurrent developmental anomalies that resemble those triggered by viral infections. While these defects have been assumed to result from a general interference of VSRs with silencing-based mechanisms controlling cellular growth, their exact molecular basis has remained largely elusive. Here, we address this issue by demonstrating that misregulation of a single transcript encoding the AUXIN RESPONSE FACTOR 8, a target of miR167, underlies most, if not all, of the defects caused by VSR expression, both in transgenic and in an authentic infection context. Our study also highlights the value of VSRs as generic tools for the discovery or validation of endogenous RNA silencing targets. These results also have implications for our understanding of small RNA-based regulations in plants, and shed light on the possible origin of some of the symptoms elicited by viral diseases.
Collapse
Affiliation(s)
- Florence Jay
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg Cedex, France
- Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Yu Wang
- Institute for Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Agnès Yu
- Unité de Recherche en Génomique Végétale, Evry Cedex, France
| | | | | | - Vincent Colot
- Unité de Recherche en Génomique Végétale, Evry Cedex, France
| | | | - Olivier Voinnet
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg Cedex, France
- Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
- * E-mail:
| |
Collapse
|
430
|
Wong CE, Zhao YT, Wang XJ, Croft L, Wang ZH, Haerizadeh F, Mattick JS, Singh MB, Carroll BJ, Bhalla PL. MicroRNAs in the shoot apical meristem of soybean. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2495-506. [PMID: 21504877 DOI: 10.1093/jxb/erq437] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant microRNAs (miRNAs) play crucial regulatory roles in various developmental processes. In this study, we characterize the miRNA profile of the shoot apical meristem (SAM) of an important legume crop, soybean, by integrating high-throughput sequencing data with miRNA microarray analysis. A total of 8423 non-redundant sRNAs were obtained from two libraries derived from micro-dissected SAM or mature leaf tissue. Sequence analysis allowed the identification of 32 conserved miRNA families as well as 8 putative novel miRNAs. Subsequent miRNA profiling with microarrays verified the expression of the majority of these conserved and novel miRNAs. It is noteworthy that several miRNAs* were expressed at a level similar to or higher than their corresponding mature miRNAs in SAM or mature leaf, suggesting a possible biological function for the star species. In situ hybridization analysis revealed a distinct spatial localization pattern for a conserved miRNA, miR166, and its star speciessuggesting that they serve different roles in regulating leaf development. Furthermore, localization studies showed that a novel soybean miRNA, miR4422a, was nuclear-localized. This study also indicated a novel expression pattern of miR390 in soybean. Our approach identified potential key regulators and provided vital spatial information towards understanding the regulatory circuits in the SAM of soybean during shoot development.
Collapse
Affiliation(s)
- Chui E Wong
- ARC Centre of Excellence for Integrative Legume Research, Faculty of Land and Food Resources, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
431
|
Armenta-Medina A, Demesa-Arévalo E, Vielle-Calzada JP. Epigenetic control of cell specification during female gametogenesis. ACTA ACUST UNITED AC 2011; 24:137-47. [PMID: 21484604 DOI: 10.1007/s00497-011-0166-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 03/17/2011] [Indexed: 11/29/2022]
Abstract
In flowering plants, the formation of gametes depends on the differentiation of cellular precursors that divide meiotically before giving rise to a multicellular gametophyte. The establishment of this gametophytic phase presents an opportunity for natural selection to act on the haploid plant genome by means of epigenetic mechanisms that ensure a tight regulation of plant reproductive development. Despite this early acting selective pressure, there are numerous examples of naturally occurring developmental alternatives that suggest a flexible regulatory control of cell specification and subsequent gamete formation in flowering plants. In this review, we discuss recent findings indicating that epigenetic mechanisms related to the activity of small RNA pathways prevailing during ovule formation play an essential role in cell specification and genome integrity. We also compare these findings to small RNA pathways acting during gametogenesis in animals and discuss their implications for the understanding of the mechanisms that control the establishment of the female gametophytic lineage during both sexual reproduction and apomixis.
Collapse
Affiliation(s)
- Alma Armenta-Medina
- Grupo de Desarrollo Reproductivo y Apomixis, Laboratorio Nacional de Genómica para la Biodiversidad y Departamento de Ingeniería Genética de Plantas, CINVESTAV, Irapuato, Mexico
| | | | | |
Collapse
|
432
|
Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation. PLoS Genet 2011; 7:e1002040. [PMID: 21490956 PMCID: PMC3072373 DOI: 10.1371/journal.pgen.1002040] [Citation(s) in RCA: 264] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 02/16/2011] [Indexed: 11/19/2022] Open
Abstract
During growth of multicellular organisms, identities of stem cells and differentiated cells need to be maintained. Cell fate is epigenetically controlled by the conserved Polycomb-group (Pc-G) proteins that repress their target genes by catalyzing histone H3 lysine 27 trimethylation (H3K27me3). Although H3K27me3 is associated with mitotically stable gene repression, a large fraction of H3K27me3 target genes are tissue-specifically activated during differentiation processes. However, in plants it is currently unclear whether H3K27me3 is already present in undifferentiated cells and dynamically regulated to permit tissue-specific gene repression or activation. We used whole-genome tiling arrays to identify the H3K27me3 target genes in undifferentiated cells of the shoot apical meristem and in differentiated leaf cells. Hundreds of genes gain or lose H3K27me3 upon differentiation, demonstrating dynamic regulation of an epigenetic modification in plants. H3K27me3 is correlated with gene repression, and its release preferentially results in tissue-specific gene activation, both during differentiation and in Pc-G mutants. We further reveal meristem- and leaf-specific targeting of individual gene families including known but also likely novel regulators of differentiation and stem cell regulation. Interestingly, H3K27me3 directly represses only specific transcription factor families, but indirectly activates others through H3K27me3-mediated silencing of microRNA genes. Furthermore, H3K27me3 targeting of genes involved in biosynthesis, transport, perception, and signal transduction of the phytohormone auxin demonstrates control of an entire signaling pathway. Based on these and previous analyses, we propose that H3K27me3 is one of the major determinants of tissue-specific expression patterns in plants, which restricts expression of its direct targets and promotes gene expression indirectly by repressing miRNA genes. All organs and differentiated tissues in multicellular organisms are derived from undifferentiated pluripotent stem cells. The evolutionarily conserved Polycomb-group (Pc-G) proteins control stem cell identity and maintenance, likely by repressing genes involved in differentiation processes. Pc-G proteins are epigenetic regulators, thus they maintain stable expression states of their target genes through cell divisions that are not accompanied by changes in their DNA sequence. In this study, we asked whether Pc-G–mediated gene regulation is also dynamically regulated in plant development to confer stable, but flexible gene expression states that may switch in response to developmental or environmental cues. We therefore generated genome-wide maps of Pc-G activity of undifferentiated stem cell and differentiated leaf cell tissues which revealed dynamic regulation of Pc-G activity in plants. Pc-G activity is correlated with gene repression and its tissue-specific release results in local gene activation. Pc-G proteins target specific gene families in the two analyzed tissues, indicating a role for Pc-G proteins in balancing pluripotency and differentiation in plants. Based on our analyses, we propose that Pc-G activity not only permits long-term gene regulation but also has a more basic gene regulatory function in fine-tuning expression patterns of specific gene families during differentiation.
Collapse
|
433
|
Xing H, Pudake RN, Guo G, Xing G, Hu Z, Zhang Y, Sun Q, Ni Z. Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize. BMC Genomics 2011; 12:178. [PMID: 21473768 PMCID: PMC3082248 DOI: 10.1186/1471-2164-12-178] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 04/07/2011] [Indexed: 02/06/2023] Open
Abstract
Background Auxin signaling is vital for plant growth and development, and plays important role in apical dominance, tropic response, lateral root formation, vascular differentiation, embryo patterning and shoot elongation. Auxin Response Factors (ARFs) are the transcription factors that regulate the expression of auxin responsive genes. The ARF genes are represented by a large multigene family in plants. The first draft of full maize genome assembly has recently been released, however, to our knowledge, the ARF gene family from maize (ZmARF genes) has not been characterized in detail. Results In this study, 31 maize (Zea mays L.) genes that encode ARF proteins were identified in maize genome. It was shown that maize ARF genes fall into related sister pairs and chromosomal mapping revealed that duplication of ZmARFs was associated with the chromosomal block duplications. As expected, duplication of some ZmARFs showed a conserved intron/exon structure, whereas some others were more divergent, suggesting the possibility of functional diversification for these genes. Out of these 31 ZmARF genes, 14 possess auxin-responsive element in their promoter region, among which 7 appear to show small or negligible response to exogenous auxin. The 18 ZmARF genes were predicted to be the potential targets of small RNAs. Transgenic analysis revealed that increased miR167 level could cause degradation of transcripts of six potential targets (ZmARF3, 9, 16, 18, 22 and 30). The expressions of maize ARF genes are responsive to exogenous auxin treatment. Dynamic expression patterns of ZmARF genes were observed in different stages of embryo development. Conclusions Maize ARF gene family is expanded (31 genes) as compared to Arabidopsis (23 genes) and rice (25 genes). The expression of these genes in maize is regulated by auxin and small RNAs. Dynamic expression patterns of ZmARF genes in embryo at different stages were detected which suggest that maize ARF genes may be involved in seed development and germination.
Collapse
Affiliation(s)
- Hongyan Xing
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
434
|
Varaud E, Brioudes F, Szécsi J, Leroux J, Brown S, Perrot-Rechenmann C, Bendahmane M. AUXIN RESPONSE FACTOR8 regulates Arabidopsis petal growth by interacting with the bHLH transcription factor BIGPETALp. THE PLANT CELL 2011; 23:973-83. [PMID: 21421811 PMCID: PMC3082276 DOI: 10.1105/tpc.110.081653] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/13/2011] [Accepted: 02/10/2011] [Indexed: 05/18/2023]
Abstract
Plant organ growth and final size are determined by coordinated cell proliferation and expansion. The BIGPETALp (BPEp) basic helix-loop-helix (bHLH) transcription factor was shown to limit Arabidopsis thaliana petal growth by influencing cell expansion. We demonstrate here that BPEp interacts with AUXIN RESPONSE FACTOR8 (ARF8) to affect petal growth. This interaction is mediated through the BPEp C-terminal domain (SD(BPEp)) and the C-terminal domain of ARF8. Site-directed mutagenesis identified an amino acid consensus motif in SD(BPEp) that is critical for mediating BPEp-ARF8 interaction. This motif shares sequence similarity with motif III of ARF and AUXIN/INDOLE-3-ACETIC ACID proteins. Petals of arf8 mutants are significantly larger than those of the wild type due to increased cell number and increased cell expansion. bpe arf8 double mutant analyses show that during early petal development stages, ARF8 and BPEp work synergistically to limit mitotic growth. During late stages, ARF8 and BPEp interact to limit cell expansion. The alterations in cell division and cell expansion observed in arf8 and/or bpe mutants are associated with a change in expression of early auxin-responsive genes. The data provide evidence of an interaction between an ARF and a bHLH transcription factor and of its biological significance in regulating petal growth, with local auxin levels likely influencing such a biological function.
Collapse
Affiliation(s)
- Emilie Varaud
- Reproduction et Développement des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Lyon 1, Ecole Normale Supérieure, 69364 Lyon Cedex, France
| | - Florian Brioudes
- Reproduction et Développement des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Lyon 1, Ecole Normale Supérieure, 69364 Lyon Cedex, France
| | - Judit Szécsi
- Reproduction et Développement des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Lyon 1, Ecole Normale Supérieure, 69364 Lyon Cedex, France
| | - Julie Leroux
- Reproduction et Développement des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Lyon 1, Ecole Normale Supérieure, 69364 Lyon Cedex, France
| | - Spencer Brown
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France
| | - Catherine Perrot-Rechenmann
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France
| | - Mohammed Bendahmane
- Reproduction et Développement des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Lyon 1, Ecole Normale Supérieure, 69364 Lyon Cedex, France
- Address correspondence to
| |
Collapse
|
435
|
Thines B, Harmon FG. Four easy pieces: mechanisms underlying circadian regulation of growth and development. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:31-7. [PMID: 20943429 DOI: 10.1016/j.pbi.2010.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/08/2010] [Accepted: 09/10/2010] [Indexed: 05/08/2023]
Abstract
The circadian clock confers rhythms of approximately 24 hours to biological events. It elevates plant fitness by allowing plants to anticipate predictable environmental changes and organize life process to coincide with the most favorable environmental conditions. Many developmental events are circadian regulated to ensure that growth occurs at the ideal time or season relative to available resources. Circadian clock control over growth and development is often achieved through regulation of key phytohormone action. Circadian influence over the genome is widespread and the clock modulates genes involved in phytohormone synthesis and signaling, in addition to other pathways shaping growth and development. This review presents four nonmutually exclusive mechanisms by which temporal information is gleaned from the core oscillator and passed to pathways regulating plant growth and development.
Collapse
Affiliation(s)
- Bryan Thines
- Plant Gene Expression Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
| | | |
Collapse
|
436
|
Kim YJ, Zheng B, Yu Y, Won SY, Mo B, Chen X. The role of Mediator in small and long noncoding RNA production in Arabidopsis thaliana. EMBO J 2011; 30:814-22. [PMID: 21252857 DOI: 10.1038/emboj.2011.3] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 12/22/2010] [Indexed: 12/23/2022] Open
Abstract
Mediator is a conserved multi-subunit complex known to promote the transcription of protein-coding genes by RNA polymerase II (Pol II) in eukaryotes. It has been increasingly realized that Pol II transcribes a large number of intergenic loci to generate noncoding RNAs, but the role of Mediator in Pol II-mediated noncoding RNA production has been largely unexplored. The role of Mediator in noncoding RNA production in plants is particularly intriguing given that plants have evolved from Pol II two additional polymerases, Pol IV and Pol V, to specialize in noncoding RNA production and transcriptional gene silencing at heterochromatic loci. Here, we show that Mediator is required for microRNA (miRNA) biogenesis by recruiting Pol II to promoters of miRNA genes. We also show that several well-characterized heterochromatic loci are de-repressed in Mediator mutants and that Mediator promotes Pol II-mediated production of long noncoding scaffold RNAs, which serve to recruit Pol V to these loci. This study expands the function of Mediator to include Pol II-mediated intergenic transcription and implicates a role of Mediator in genome stability.
Collapse
Affiliation(s)
- Yun Ju Kim
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
| | | | | | | | | | | |
Collapse
|
437
|
Durán-Figueroa N, Vielle-Calzada JP. ARGONAUTE9-dependent silencing of transposable elements in pericentromeric regions of Arabidopsis. PLANT SIGNALING & BEHAVIOR 2010; 5:1476-1479. [PMID: 21057207 PMCID: PMC3115260 DOI: 10.4161/psb.5.11.13548] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Recent evidence indicates that the establishment of the haploid phase of the plant life cycle requires epigenetic mechanisms that control reproductive cell fate. We previously showed that in Arabidopsis thaliana (Arabidopsis) mutations in ARGONAUTE9 (AGO9) result in defective cell specification during megasporogenesis. AGO9 preferentially interacts with 24 nucleotide (nt) small RNAs (sRNAs) derived from transposable elements (TEs), and its sporophytic activity is required to silence TEs in the female gametophyte. Here we show that AGO9 can bind in vitro to 24 nt sRNAs corresponding to Athila retrotransposons expressed in the ovule prior to pollination. We also show that AGO9 is necessary to inactivate a significant proportion of long terminal repeat retrotransposons (LTRs) in the ovule, and that its predominant TE targets are located in the pericentromeric regions of all 5 chromosomes, suggesting a link between the AGO9-dependent sRNA pathway and heterochromatin formation. Our extended results point towards the existence of a tissue-specific mechanism of sRNA-dependent TE silencing in the ovule.
Collapse
Affiliation(s)
- Noé Durán-Figueroa
- Grupo de Desarrollo Reproductivo y Apomixis, Laboratorio Nacional de Genómica para la Biodiversidad y Departamento de Ingeniería Genética de Plantas, Cinvestav Irapuato, México
| | | |
Collapse
|
438
|
|
439
|
A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet 2010; 6:e1001031. [PMID: 20661442 PMCID: PMC2908682 DOI: 10.1371/journal.pgen.1001031] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 06/17/2010] [Indexed: 01/04/2023] Open
Abstract
Many targets of plant microRNAs (miRNAs) are thought to play important roles in plant physiology and development. However, because plant miRNAs are typically encoded by medium-size gene families, it has often been difficult to assess their precise function. We report the generation of a large-scale collection of knockdowns for Arabidopsis thaliana miRNA families; this has been achieved using artificial miRNA target mimics, a recently developed technique fashioned on an endogenous mechanism of miRNA regulation. Morphological defects in the aerial part were observed for ∼20% of analyzed families, all of which are deeply conserved in land plants. In addition, we find that non-cleavable mimic sites can confer translational regulation in cis. Phenotypes of plants expressing target mimics directed against miRNAs involved in development were in several cases consistent with previous reports on plants expressing miRNA–resistant forms of individual target genes, indicating that a limited number of targets mediates most effects of these miRNAs. That less conserved miRNAs rarely had obvious effects on plant morphology suggests that most of them do not affect fundamental aspects of development. In addition to insight into modes of miRNA action, this study provides an important resource for the study of miRNA function in plants. MiRNAs are small RNA molecules that play an important role in regulating gene function, both in animals and in plants. In plants, miRNA target mimicry is an endogenous mechanism used to negatively regulate the activity of a specific miRNA family, through the production of a false target transcript that cannot be cleaved. This mechanism can be engineered to target different miRNA families. Using this technique, we have generated artificial target mimics predicted to reduce the activity of most of the miRNA families in Arabidopsis thaliana and have observed their effects on plant development. We found that deeply conserved miRNAs tend to have a strong impact on plant growth, while more recently evolved ones had generally less obvious effects, suggesting either that they primarily affect processes other than development, or else that they have more subtle or conditional functions or are even dispensable. In several cases, the effects on plant development that we observed closely resembled those seen in plants expressing miRNA–resistant versions of the major predicted targets, indicating that a limited number of targets mediates most effects of these miRNAs. Analyses of mimic expressing plants also support that plant miRNAs affect both transcript stability and protein accumulation. The artificial target mimic collection will be a useful resource to further investigate the function of individual miRNA families.
Collapse
|
440
|
Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1231-43. [PMID: 20619301 DOI: 10.1016/j.bbamcr.2010.06.013] [Citation(s) in RCA: 605] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 06/30/2010] [Accepted: 06/30/2010] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are a class of small, endogenous RNAs of 21-25 nucleotides (nts) in length. They play an important regulatory role in animals and plants by targeting specific mRNAs for degradation or translation repression. Recent scientific advances have revealed the synthesis pathways and the regulatory mechanisms of miRNAs in animals and plants. miRNA-based regulation is implicated in disease etiology and has been studied for treatment. Furthermore, several preclinical and clinical trials have been initiated for miRNA-based therapeutics. In this review, the existing knowledge about miRNAs synthesis, mechanisms for regulation of the genome, and their widespread functions in animals and plants is summarized. The current status of preclinical and clinical trials regarding miRNA therapeutics is also reviewed. The recent findings in miRNA studies, summarized in this review, may add new dimensions to small RNA biology and miRNA therapeutics.
Collapse
Affiliation(s)
- Fazli Wahid
- School of life Sciences and Biotechnology, College of Natural sciences, Kyungpook National University, Buk-ku, Taegu, Korea
| | | | | | | |
Collapse
|
441
|
Song L, Axtell MJ, Fedoroff NV. RNA secondary structural determinants of miRNA precursor processing in Arabidopsis. Curr Biol 2010; 20:37-41. [PMID: 20015653 DOI: 10.1016/j.cub.2009.10.076] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Revised: 10/03/2009] [Accepted: 10/29/2009] [Indexed: 11/30/2022]
Abstract
MicroRNAs (miRNAs) are excised from hairpin structures within primary miRNAs (pri-miRNAs). Most animal pri-miRNAs are processed by two cleavages, the first at a loop-distal site approximately 11 nucleotides (nt) from the end of the hairpin and the second approximately 22 nt beyond the first. To identify RNA structural determinants of miRNA processing in plants, we analyzed the functional consequences of changing the secondary structure of the lower (loop-distal), middle (miRNA:miRNA(*)), and upper (loop-proximal) stems of the hairpin in two different pri-miRNAs. Closing bulges immediately below the loop-distal cleavage sites increased the accumulation of accurately cleaved precursor miRNAs but decreased the abundance of the mature miRNAs. A pri-miRNA variant with an unpaired lower stem was not processed, and variants with a perfectly paired middle or upper stem were processed normally. Bioinformatic analysis of pri-miRNA structures, together with physical mapping of initial cleavage sites and in vitro processing of pri-miRNA, reveals that the first, loop-distal cleavage is often at a distance of approximately 15 nt from an unpaired region. Hence, a common determinant of the rate and location of the initial pri-miRNA cleavage is an imperfectly base-paired duplex of approximately 15 nt between the miRNA:miRNA(*) duplex and either a less structured region of the lower stem or its end.
Collapse
Affiliation(s)
- Liang Song
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
442
|
A new mechanism in plant engineering: The potential roles of microRNAs in molecular breeding for crop improvement. Biotechnol Adv 2010; 28:301-7. [DOI: 10.1016/j.biotechadv.2010.01.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 12/30/2009] [Accepted: 01/01/2010] [Indexed: 11/19/2022]
|
443
|
Jung JH, Lee M, Park CM. A transcriptional feedback loop modulating signaling crosstalks between auxin and brassinosteroid in Arabidopsis. Mol Cells 2010; 29:449-56. [PMID: 20396969 DOI: 10.1007/s10059-010-0055-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 01/09/2010] [Accepted: 01/20/2010] [Indexed: 12/26/2022] Open
Abstract
Auxin and brassinosteroid (BR) play essential roles in diverse aspects of growth and developmental processes in plants mainly through coordinate regulation of cell division, elongation, and differentiation. Consistent with the overlapped roles, accumulating evidence indicates that the two growth hormones act in a synergistic as well as in an interdependent manner in many cases, although the underlying molecular mechanisms are not fully understood. Here, we demonstrate that auxin and BR signaling pathways are interconnected at the transcriptional level via a negative feedback loop. An Arabidopsis activating tagging mutant dlf-1D exhibited dwarfed growth with small, dark-green leaves and reduced fertility. Hormone feeding assays revealed that the mutant phenotype is caused by the reduction of endogenous BR level. Consistent with this, a gene encoding the CYP72C1 enzyme that catabolizes BR was up-regulated. Notably, the transcript level of the ARF8 transcription factor gene, which modulates the expression of auxin-responsive genes, was significantly elevated in the mutant. In addition, the ARF8 gene expression was significantly reduced by BR but induced by brassinazole, a BR biosynthetic inhibitor. On the other hand, two BR catabolic pathway genes, DLF (CYP72C1) and BAS1, were induced by auxin. Our observations indicate that at least part of auxin and BR signaling pathways are unified through a transcriptional feedback control of the DLF and ARF8 genes.
Collapse
Affiliation(s)
- Jae-Hoon Jung
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea
| | | | | |
Collapse
|
444
|
Chen M, Meng Y, Mao C, Chen D, Wu P. Methodological framework for functional characterization of plant microRNAs. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2271-2280. [PMID: 20388745 DOI: 10.1093/jxb/erq087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Since the beginning of this century, microRNAs (miRNAs), which are tiny RNA molecules, have become one of the major research topics on gene expression regulation in both animals and plants. The major task of miRNA study is to elucidate how the miRNAs are expressed in vivo, how they exert regulatory effects on their targets, and how they can be qualitatively or quantitatively cloned. For these purposes, the methodology of miRNA study has been developed and significantly improved in recent years. The focus here is on a number of powerful methods for plant miRNA research including bioinformatics tools and experimental approaches being used for upstream or downstream analysis of miRNAs or miRNA cloning. Some discrepancies exist in the miRNA research methodology between plants and animals, for example, 5' modified RACE (Rapid Amplification of cDNA Ends) can be used for cleavage target validation only in plants. However, numerous common methods are shared by these two miRNA research areas. Thus, this review will enhance our understanding of miRNA research methodology in organisms.
Collapse
Affiliation(s)
- Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Zijingang Campus, Yu Hang Tang Road 388, Hangzhou 310058, PR China.
| | | | | | | | | |
Collapse
|
445
|
Liu X, Huang J, Wang Y, Khanna K, Xie Z, Owen HA, Zhao D. The role of floral organs in carpels, an Arabidopsis loss-of-function mutation in MicroRNA160a, in organogenesis and the mechanism regulating its expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:416-28. [PMID: 20136729 DOI: 10.1111/j.1365-313x.2010.04164.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
MicroRNAs (miRNAs) have emerged as key regulators of gene expression at the post-transcriptional level in both plants and animals. However, the specific functions of MIRNAs (MIRs) and the mechanisms regulating their expression are not fully understood. Previous studies showed that miR160 negatively regulates three genes that encode AUXIN RESPONSE FACTORs (ARF10, -16, and -17). Here, we characterized floral organs in carpels (foc), an Arabidopsis mutant with a Ds transposon insertion in the 3' regulatory region of MIR160a. foc plants exhibit a variety of intriguing phenotypes, including serrated rosette leaves, irregular flowers, floral organs inside siliques, reduced fertility, aberrant seeds, and viviparous seedlings. Detailed phenotypic analysis showed that abnormal cell divisions in the basal embryo domain and suspensor led to diverse defects during embryogenesis in foc plants. Further analysis showed that the 3' region was required for the expression of MIR160a. The accumulation of mature miR160 was greatly reduced in foc inflorescences. In addition, the expression pattern of ARF16 and -17 was altered during embryo development in foc plants. foc plants were also deficient in auxin responses. Moreover, auxin was involved in regulating the expression of MIR160a through its 3' regulatory region. Our study not only provides insight into the molecular mechanism of embryo development via MIR160a-regulated ARFs, but also reveals the mechanism regulating MIR160a expression.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | | | | | | | | | | | | |
Collapse
|
446
|
Lv DK, Bai X, Li Y, Ding XD, Ge Y, Cai H, Ji W, Wu N, Zhu YM. Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene 2010; 459:39-47. [PMID: 20350593 DOI: 10.1016/j.gene.2010.03.011] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/08/2010] [Accepted: 03/22/2010] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs) are small single-stranded RNAs with a length of about 21 nt; these non-coding RNAs regulate developmental and stress responses in plants by cleaving mRNAs. Cold stress is one of the most severe abiotic stresses and adversely affects rice yields by restraining sowing time, causing tissue damage, and stunting growth. Although many miRNAs have been identified in rice, little is known about the role of miRNAs in the response to cold stress. In this study, we identified 18 cold-responsive rice miRNAs using microarrays. Most were down-regulated. Members of the miR-167 and miR-319 families showed similar profiles. Intriguingly, members of miR-171 family showed diverse expression patterns. Three miRNAs derived from transposable element sequence were clustered within an intron and proved to be co-transcribed with the host gene only under cold stress. The existence of hormone-responsive elements in the upstream regions of the cold-responsive miRNAs indicates the importance of hormones in this defense system mediated by miRNAs. Two miRNA target pairs validated by 5' RACE showed opposite expression profiles under cold stress. Finally, the predicted stress-related targets of these miRNAs provided further evidence supporting our results. These findings confirm the role of miRNAs as ubiquitous regulators in rice.
Collapse
Affiliation(s)
- De-Kang Lv
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, 150030, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
447
|
Olmedo-Monfil V, Durán-Figueroa N, Arteaga-Vázquez M, Demesa-Arévalo E, Autran D, Grimanelli D, Slotkin RK, Martienssen RA, Vielle-Calzada JP. Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 2010; 5:1476-9. [PMID: 20208518 DOI: 10.1038/nature08828] [Citation(s) in RCA: 431] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 01/11/2010] [Indexed: 11/09/2022]
Abstract
In the ovules of most sexual flowering plants female gametogenesis is initiated from a single surviving gametic cell, the functional megaspore, formed after meiosis of the somatically derived megaspore mother cell (MMC). Because some mutants and certain sexual species exhibit more than one MMC, and many others are able to form gametes without meiosis (by apomixis), it has been suggested that somatic cells in the ovule are competent to respond to a local signal likely to have an important function in determination. Here we show that the Arabidopsis protein ARGONAUTE 9 (AGO9) controls female gamete formation by restricting the specification of gametophyte precursors in a dosage-dependent, non-cell-autonomous manner. Mutations in AGO9 lead to the differentiation of multiple gametic cells that are able to initiate gametogenesis. The AGO9 protein is not expressed in the gamete lineage; instead, it is expressed in cytoplasmic foci of somatic companion cells. Mutations in SUPPRESSOR OF GENE SILENCING 3 and RNA-DEPENDENT RNA POLYMERASE 6 exhibit an identical defect to ago9 mutants, indicating that the movement of small RNA (sRNAs) silencing out of somatic companion cells is necessary for controlling the specification of gametic cells. AGO9 preferentially interacts with 24-nucleotide sRNAs derived from transposable elements (TEs), and its activity is necessary to silence TEs in female gametes and their accessory cells. Our results show that AGO9-dependent sRNA silencing is crucial to specify cell fate in the Arabidopsis ovule, and that epigenetic reprogramming in companion cells is necessary for sRNA-dependent silencing in plant gametes.
Collapse
Affiliation(s)
- Vianey Olmedo-Monfil
- Grupo de Desarrollo Reproductivo y Apomixis, Laboratorio Nacional de Genómica para la Biodiversidad y Departamento de Ingeniería Genética de Plantas, Cinvestav Irapuato CP36500 Guanajuato, México
| | | | | | | | | | | | | | | | | |
Collapse
|
448
|
Meng Y, Chen D, Ma X, Mao C, Cao J, Wu P, Chen M. Mechanisms of microRNA-mediated auxin signaling inferred from the rice mutant osaxr. PLANT SIGNALING & BEHAVIOR 2010; 5:252-4. [PMID: 20023405 PMCID: PMC2881269 DOI: 10.4161/psb.5.3.10549] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Accepted: 09/11/2009] [Indexed: 05/20/2023]
Abstract
Auxin, known as the central hormone, plays essential roles in plant growth and development. In auxin signaling pathways, the tiny RNA molecules, i.e., microRNAs (miRNAs), show their strong potential in modulating the auxin signal transduction. Recently, we isolated a novel auxin resistant rice mutant osaxr (Oryza sativa auxin resistant) that exhibited plethoric root defects. Microarray experiments were carried out to investigate the expression patterns of both the miRNAs and the protein-coding genes in osaxr. A number of miRNAs showed reduced auxin sensitivity in osaxr compared with the wild type (WT), which may contribute to the auxin-resistant phenotype of the mutant. Auxin response elements (AuxREs) were demonstrated to be more frequently present in the promoters of auxin-related miRNAs. In our previous report, a comparative analysis of miRNA and protein-coding gene expression datasets uncovered a number of reciprocally expressed miRNA-target pairs. A feedback circuit between miRNA and auxin response factor (ARF) was then proposed. Here, we will discuss in-depth some points raised in the previous report, in particular, the organ-specific expression patterns of miR164, the feedback regulatory model between miR167 and certain ARFs, and the potential signal interactions between auxin and nutrition or stress that are mediated by miRNAs in rice roots.
Collapse
Affiliation(s)
- Yijun Meng
- Department of Bioinformatics; Hangzhou, China
- State Key Laboratory of Plant Physiology and Biochemistry; College of Life Sciences; Zhejiang University; Hangzhou, China
| | - Dijun Chen
- Department of Bioinformatics; Hangzhou, China
- State Key Laboratory of Plant Physiology and Biochemistry; College of Life Sciences; Zhejiang University; Hangzhou, China
| | - Xiaoxia Ma
- State Key Laboratory of Plant Physiology and Biochemistry; College of Life Sciences; Zhejiang University; Hangzhou, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry; College of Life Sciences; Zhejiang University; Hangzhou, China
| | - Junjie Cao
- Department of Bioinformatics; Hangzhou, China
| | - Ping Wu
- State Key Laboratory of Plant Physiology and Biochemistry; College of Life Sciences; Zhejiang University; Hangzhou, China
| | - Ming Chen
- Department of Bioinformatics; Hangzhou, China
- State Key Laboratory of Plant Physiology and Biochemistry; College of Life Sciences; Zhejiang University; Hangzhou, China
| |
Collapse
|
449
|
Meng Y, Ma X, Chen D, Wu P, Chen M. MicroRNA-mediated signaling involved in plant root development. Biochem Biophys Res Commun 2010; 393:345-9. [DOI: 10.1016/j.bbrc.2010.01.129] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 01/30/2010] [Indexed: 10/19/2022]
|
450
|
Zhou M, Gu L, Li P, Song X, Wei L, Chen Z, Cao X. Degradome sequencing reveals endogenous small RNA targets in rice (Oryza sativa L. ssp. indica). ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11515-010-0007-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|