401
|
Padhi AK, Tripathi T. Can SARS-CoV-2 Accumulate Mutations in the S-Protein to Increase Pathogenicity? ACS Pharmacol Transl Sci 2020; 3:1023-1026. [PMID: 33073197 DOI: 10.1021/acsptsci.0c00113] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Indexed: 11/30/2022]
Abstract
SARS-CoV-2 has developed a substantial number of mutations, especially in the S-protein. With the advancement of the pandemic, accumulations of further mutations at the S-protein receptor-binding domain could enhance the infectivity and pathogenicity of the virus. Prediction and evaluation of such mutations are essential for understanding the potential development of more pathogenic strains and for COVID-19 management.
Collapse
Affiliation(s)
- Aditya K Padhi
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
402
|
Comparative genome analysis of novel coronavirus (SARS-CoV-2) from different geographical locations and the effect of mutations on major target proteins: An in silico insight. PLoS One 2020; 15:e0238344. [PMID: 32881907 PMCID: PMC7470274 DOI: 10.1371/journal.pone.0238344] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022] Open
Abstract
A novel severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) causing COVID-19 pandemic in humans, recently emerged and has exported in more than 200 countries as a result of rapid spread. In this study, we have made an attempt to investigate the SARS-CoV-2 genome reported from 13 different countries, identification of mutations in major coronavirus proteins of these different SARS-CoV-2 genomes and compared with SARS-CoV. These thirteen complete genome sequences of SARS-CoV-2 showed high identity (>99%) to each other, while they shared 82% identity with SARS-CoV. Here, we performed a very systematic mutational analysis of SARS-CoV-2 genomes from different geographical locations, which enabled us to identify numerous unique features of this viral genome. This includes several important country-specific unique mutations in the major proteins of SARS-CoV-2 namely, replicase polyprotein, spike glycoprotein, envelope protein and nucleocapsid protein. Indian strain showed mutation in spike glycoprotein at R408I and in replicase polyprotein at I671T, P2144S and A2798V,. While the spike protein of Spain & South Korea carried F797C and S221W mutation, respectively. Likewise, several important country specific mutations were analyzed. The effect of mutations of these major proteins were also investigated using various in silico approaches. Main protease (Mpro), the therapeutic target protein of SARS with maximum reported inhibitors, was thoroughly investigated and the effect of mutation on the binding affinity and structural dynamics of Mpro was studied. It was found that the R60C mutation in Mpro affects the protein dynamics, thereby, affecting the binding of inhibitor within its active site. The implications of mutation on structural characteristics were determined. The information provided in this manuscript holds great potential in further scientific research towards the design of potential vaccine candidates/small molecular inhibitor against COVID19.
Collapse
|
403
|
Li Q, Wu J, Nie J, Zhang L, Hao H, Liu S, Zhao C, Zhang Q, Liu H, Nie L, Qin H, Wang M, Lu Q, Li X, Sun Q, Liu J, Zhang L, Li X, Huang W, Wang Y. The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity. Cell 2020; 182:1284-1294.e9. [PMID: 32730807 PMCID: PMC7366990 DOI: 10.1016/j.cell.2020.07.012] [Citation(s) in RCA: 1140] [Impact Index Per Article: 228.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 01/08/2023]
Abstract
The spike protein of SARS-CoV-2 has been undergoing mutations and is highly glycosylated. It is critically important to investigate the biological significance of these mutations. Here, we investigated 80 variants and 26 glycosylation site modifications for the infectivity and reactivity to a panel of neutralizing antibodies and sera from convalescent patients. D614G, along with several variants containing both D614G and another amino acid change, were significantly more infectious. Most variants with amino acid change at receptor binding domain were less infectious, but variants including A475V, L452R, V483A, and F490L became resistant to some neutralizing antibodies. Moreover, the majority of glycosylation deletions were less infectious, whereas deletion of both N331 and N343 glycosylation drastically reduced infectivity, revealing the importance of glycosylation for viral infectivity. Interestingly, N234Q was markedly resistant to neutralizing antibodies, whereas N165Q became more sensitive. These findings could be of value in the development of vaccine and therapeutic antibodies.
Collapse
Affiliation(s)
- Qianqian Li
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China; Graduate School of Peking Union Medical College, No. 9 Dongdan Santiao, Dongcheng District, Beijing 100730, China
| | - Jiajing Wu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Li Zhang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Huan Hao
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Shuo Liu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Chenyan Zhao
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Qi Zhang
- Center for Global Health and Infectious Diseases, Comprehensive AIDS Research Center, and Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Huan Liu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Lingling Nie
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Haiyang Qin
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Meng Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Qiong Lu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Xiaoyu Li
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Qiyu Sun
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Junkai Liu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Linqi Zhang
- Center for Global Health and Infectious Diseases, Comprehensive AIDS Research Center, and Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xuguang Li
- Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China.
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China; Graduate School of Peking Union Medical College, No. 9 Dongdan Santiao, Dongcheng District, Beijing 100730, China.
| |
Collapse
|
404
|
Hoque MN, Chaudhury A, Akanda MAM, Hossain MA, Islam MT. Genomic diversity and evolution, diagnosis, prevention, and therapeutics of the pandemic COVID-19 disease. PeerJ 2020; 8:e9689. [PMID: 33005486 PMCID: PMC7510477 DOI: 10.7717/peerj.9689] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/19/2020] [Indexed: 12/14/2022] Open
Abstract
The coronavirus disease 19 (COVID-19) is a highly transmittable and pathogenic viral infection caused by a novel evolutionarily divergent RNA virus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The virus first emerged in Wuhan, China in December 2019, and subsequently spreaded around the world. Genomic analyses revealed that this zoonotic virus may be evolved naturally but not a purposefully manipulated laboratory construct. However, currently available data are not sufficient to precisely conclude the origin of this fearsome virus. Comprehensive annotations of the whole-genomes revealed hundreds of nucleotides, and amino acids mutations, substitutions and/or deletions at different positions of the ever changing SARS-CoV-2 genome. The spike (S) glycoprotein of SARS-CoV-2 possesses a functional polybasic (furin) cleavage site at the S1-S2 boundary through the insertion of 12 nucleotides. It leads to the predicted acquisition of 3-O-linked glycan around the cleavage site. Although real-time RT-PCR methods targeting specific gene(s) have widely been used to diagnose the COVID-19 patients, however, recently developed more convenient, cheap, rapid, and specific diagnostic tools targeting antigens or CRISPR-Cas-mediated method or a newly developed plug and play method should be available for the resource-poor developing countries. A large number of candidate drugs, vaccines and therapies have shown great promise in early trials, however, these candidates of preventive or therapeutic agents have to pass a long path of trials before being released for the practical application against COVID-19. This review updates current knowledge on origin, genomic evolution, development of the diagnostic tools, and the preventive or therapeutic remedies of the COVID-19. We also discussed the future scopes for research, effective management, and surveillance of the newly emerged COVID-19 disease.
Collapse
Affiliation(s)
- M. Nazmul Hoque
- Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | | | - Md Abdul Mannan Akanda
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - M. Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
- Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| |
Collapse
|
405
|
Abd Ellah NH, Gad SF, Muhammad K, E Batiha G, Hetta HF. Nanomedicine as a promising approach for diagnosis, treatment and prophylaxis against COVID-19. Nanomedicine (Lond) 2020; 15:2085-2102. [PMID: 32723142 PMCID: PMC7388682 DOI: 10.2217/nnm-2020-0247] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
The COVID-19 pandemic caused by the newly emerged severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) puts the world in an unprecedented crisis, leaving behind huge human losses and deep socioeconomic damages. Due to the lack of specific treatment against SARS-CoV-2, effective vaccines and antiviral agents are urgently needed to properly restrain the COVID-19 pandemic. Repositioned drugs such as remdesivir have revealed a promising clinical efficacy against COVID-19. Interestingly, nanomedicine as a promising therapeutic approach could effectively help win the battle between coronaviruses (CoVs) and host cells. This review discusses the potential therapeutic approaches, in addition to the contribution of nanomedicine against CoVs in the fields of vaccination, diagnosis and therapy.
Collapse
Affiliation(s)
- Noura H Abd Ellah
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Sheryhan F Gad
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
- Department of Industrial & Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gaber E Batiha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture & Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
- Department of Pharmacology & Therapeutics, Faculty of Veterinary Medicines, Damanhour University, Damanhour, 22511, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt
- Department of Internal Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0595, USA
| |
Collapse
|
406
|
Silverj A, Rota-Stabelli O. On the correct interpretation of similarity index in codon usage studies: Comparison with four other metrics and implications for Zika and West Nile virus. Virus Res 2020; 286:198097. [DOI: 10.1016/j.virusres.2020.198097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022]
|
407
|
Jovic TH, Ali SR, Ibrahim N, Jessop ZM, Tarassoli SP, Dobbs TD, Holford P, Thornton CA, Whitaker IS. Could Vitamins Help in the Fight Against COVID-19? Nutrients 2020; 12:E2550. [PMID: 32842513 PMCID: PMC7551685 DOI: 10.3390/nu12092550] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
There are limited proven therapeutic options for the prevention and treatment of COVID-19. The role of vitamin and mineral supplementation or "immunonutrition" has previously been explored in a number of clinical trials in intensive care settings, and there are several hypotheses to support their routine use. The aim of this narrative review was to investigate whether vitamin supplementation is beneficial in COVID-19. A systematic search strategy with a narrative literature summary was designed, using the Medline, EMBASE, Cochrane Trials Register, WHO International Clinical Trial Registry, and Nexis media databases. The immune-mediating, antioxidant and antimicrobial roles of vitamins A to E were explored and their potential role in the fight against COVID-19 was evaluated. The major topics extracted for narrative synthesis were physiological and immunological roles of each vitamin, their role in respiratory infections, acute respiratory distress syndrome (ARDS), and COVID-19. Vitamins A to E highlighted potentially beneficial roles in the fight against COVID-19 via antioxidant effects, immunomodulation, enhancing natural barriers, and local paracrine signaling. Level 1 and 2 evidence supports the use of thiamine, vitamin C, and vitamin D in COVID-like respiratory diseases, ARDS, and sepsis. Although there are currently no published clinical trials due to the novelty of SARS-CoV-2 infection, there is pathophysiologic rationale for exploring the use of vitamins in this global pandemic, supported by early anecdotal reports from international groups. The final outcomes of ongoing trials of vitamin supplementation are awaited with interest.
Collapse
Affiliation(s)
- Thomas H Jovic
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Sciences, Swansea University Medical School, Swansea University, Swansea SA28PY, UK; (N.I.); (Z.M.J.); (S.P.T.); (T.D.D.)
- Welsh Centre for Burns & Plastic Surgery, Morriston Hospital, Swansea SA66NL, UK
| | - Stephen R Ali
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Sciences, Swansea University Medical School, Swansea University, Swansea SA28PY, UK; (N.I.); (Z.M.J.); (S.P.T.); (T.D.D.)
- Welsh Centre for Burns & Plastic Surgery, Morriston Hospital, Swansea SA66NL, UK
| | - Nader Ibrahim
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Sciences, Swansea University Medical School, Swansea University, Swansea SA28PY, UK; (N.I.); (Z.M.J.); (S.P.T.); (T.D.D.)
- Welsh Centre for Burns & Plastic Surgery, Morriston Hospital, Swansea SA66NL, UK
| | - Zita M Jessop
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Sciences, Swansea University Medical School, Swansea University, Swansea SA28PY, UK; (N.I.); (Z.M.J.); (S.P.T.); (T.D.D.)
- Welsh Centre for Burns & Plastic Surgery, Morriston Hospital, Swansea SA66NL, UK
| | - Sam P Tarassoli
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Sciences, Swansea University Medical School, Swansea University, Swansea SA28PY, UK; (N.I.); (Z.M.J.); (S.P.T.); (T.D.D.)
| | - Thomas D Dobbs
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Sciences, Swansea University Medical School, Swansea University, Swansea SA28PY, UK; (N.I.); (Z.M.J.); (S.P.T.); (T.D.D.)
- Welsh Centre for Burns & Plastic Surgery, Morriston Hospital, Swansea SA66NL, UK
| | - Patrick Holford
- Institute for Optimum Nutrition, Ambassador House, Paradise Road, Richmond TW9 1SQ, UK;
| | - Catherine A Thornton
- Institute of Life Sciences 1, Swansea University Medical School, Swansea University, Swansea SA2 8PY, UK;
| | - Iain S Whitaker
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Sciences, Swansea University Medical School, Swansea University, Swansea SA28PY, UK; (N.I.); (Z.M.J.); (S.P.T.); (T.D.D.)
- Welsh Centre for Burns & Plastic Surgery, Morriston Hospital, Swansea SA66NL, UK
| |
Collapse
|
408
|
Keyhan SO, Fallahi HR, Motamedi A, Khoshkam V, Mehryar P, Moghaddas O, Cheshmi B, Firoozi P, Yousefi P, Houshmand B. Reopening of dental clinics during SARS-CoV-2 pandemic: an evidence-based review of literature for clinical interventions. Maxillofac Plast Reconstr Surg 2020; 42:25. [PMID: 32793519 PMCID: PMC7396263 DOI: 10.1186/s40902-020-00268-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes serious acute respiratory diseases including pneumonia and bronchitis with approximately 2.3% fatality occurrence. Main body This study argues the main concepts that need to be considered for the gradual reopening of dental offices include treatment planning approaches, fundamental elements needed to prevent transmission of SARS-CoV-2 virus in dental healthcare settings, personal protection equipment (PPE) for dental health care providers, environmental measures, adjunctive measures, and rapid point of care tests in dental offices. Conclusion This article seeks to provide an overview of existing scientific evidence to suggest a guideline for reopening dental offices.
Collapse
Affiliation(s)
- Seied Omid Keyhan
- CMFRC, National Advance Center for Craniomaxillofacial Reconstruction, Tehran, Iran.,Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Fallahi
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | - Omid Moghaddas
- Department of Periodontology, Islamic Azad University, Tehran, Iran
| | - Behzad Cheshmi
- Faculty of Dentistry, Boroujerd Islamic Azad University, Boroujerd, P.O 6915136111 Iran
| | - Parsa Firoozi
- Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, School of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parisa Yousefi
- Resident of prosthodontics, Isfahan University of Medical Sciences, College of Dentistry, Isfahan, Iran
| | | |
Collapse
|
409
|
Linsky TW, Vergara R, Codina N, Nelson JW, Walker MJ, Su W, Hsiang TY, Esser-Nobis K, Yu K, Hou YJ, Priya T, Mitsumoto M, Pong A, Lau UY, Mason ML, Chen J, Chen A, Berrocal T, Peng H, Clairmont NS, Castellanos J, Lin YR, Josephson-Day A, Baric R, Walkey CD, Swanson R, Gale M, Blancas-Mejia LM, Yen HL, Silva DA. De novo design of ACE2 protein decoys to neutralize SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32793910 DOI: 10.1101/2020.08.03.231340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is an urgent need for the ability to rapidly develop effective countermeasures for emerging biological threats, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes the ongoing coronavirus disease 2019 (COVID-19) pandemic. We have developed a generalized computational design strategy to rapidly engineer de novo proteins that precisely recapitulate the protein surface targeted by biological agents, like viruses, to gain entry into cells. The designed proteins act as decoys that block cellular entry and aim to be resilient to viral mutational escape. Using our novel platform, in less than ten weeks, we engineered, validated, and optimized de novo protein decoys of human angiotensin-converting enzyme 2 (hACE2), the membrane-associated protein that SARS-CoV-2 exploits to infect cells. Our optimized designs are hyperstable de novo proteins (∼18-37 kDa), have high affinity for the SARS-CoV-2 receptor binding domain (RBD) and can potently inhibit the virus infection and replication in vitro. Future refinements to our strategy can enable the rapid development of other therapeutic de novo protein decoys, not limited to neutralizing viruses, but to combat any agent that explicitly interacts with cell surface proteins to cause disease.
Collapse
|
410
|
Singh PK, Kulsum U, Rufai SB, Mudliar SR, Singh S. Mutations in SARS-CoV-2 Leading to Antigenic Variations in Spike Protein: A Challenge in Vaccine Development. J Lab Physicians 2020; 12:154-160. [PMID: 32884216 PMCID: PMC7462717 DOI: 10.1055/s-0040-1715790] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objectives The spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus has been unprecedentedly fast, spreading to more than 180 countries within 3 months with variable severity. One of the major reasons attributed to this variation is genetic mutation. Therefore, we aimed to predict the mutations in the spike protein (S) of the SARS-CoV-2 genomes available worldwide and analyze its impact on the antigenicity. Materials and Methods Several research groups have generated whole genome sequencing data which are available in the public repositories. A total of 1,604 spike proteins were extracted from 1,325 complete genome and 279 partial spike coding sequences of SARS-CoV-2 available in NCBI till May 1, 2020 and subjected to multiple sequence alignment to find the mutations corresponding to the reported single nucleotide polymorphisms (SNPs) in the genomic study. Further, the antigenicity of the predicted mutations inferred, and the epitopes were superimposed on the structure of the spike protein. Results The sequence analysis resulted in high SNPs frequency. The significant variations in the predicted epitopes showing high antigenicity were A348V, V367F and A419S in receptor binding domain (RBD). Other mutations observed within RBD exhibiting low antigenicity were T323I, A344S, R408I, G476S, V483A, H519Q, A520S, A522S and K529E. The RBD T323I, A344S, V367F, A419S, A522S and K529E are novel mutations reported first time in this study. Moreover, A930V and D936Y mutations were observed in the heptad repeat domain and one mutation D1168H was noted in heptad repeat domain 2. Conclusion S protein is the major target for vaccine development, but several mutations were predicted in the antigenic epitopes of S protein across all genomes available globally. The emergence of various mutations within a short period might result in the conformational changes of the protein structure, which suggests that developing a universal vaccine may be a challenging task.
Collapse
Affiliation(s)
- Praveen Kumar Singh
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Umay Kulsum
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Syed Beenish Rufai
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Center, and McGill International TB Center, Montreal, Quebec, Canada
| | - S. Rashmi Mudliar
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Sarman Singh
- Molecular Medicine Laboratory, Department of Microbiology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh India
| |
Collapse
|
411
|
Abdullahi IN, Emeribe AU, Ajayi OA, Oderinde BS, Amadu DO, Osuji AI. Implications of SARS-CoV-2 genetic diversity and mutations on pathogenicity of the COVID-19 and biomedical interventions. J Taibah Univ Med Sci 2020; 15:258-264. [PMID: 32837505 PMCID: PMC7351386 DOI: 10.1016/j.jtumed.2020.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Coronavirus disease 2019 (COVID-19) has caused an unprecedented global health emergency. The COVID-19 pandemic has claimed over 350,000 human lives within five months of its emergence, especially in the USA and the European continent. This study analysed the implications of the genetic diversity and mutations in SARS-CoV-2 on its virulence diversity and investigated how these factors could affect the successful development and application of antiviral chemotherapy and serodiagnostic test kits, and vaccination. METHODS All the suitable and eligible full text articles published between 31st December 2019 and 31st May 2020 were filtered and extracted from "PubMed", "Scopus", "Web of Science", and "Hinari" and were critically reviewed. We used the Medical Subject Headings (MeSH) terms "COVID-19, "Mutation", "Genetic diversity", "SARS-CoV-2", "Virulence", "Pathogenicity", "Evolution" and "SARS-CoV-2 transmission" for this search. RESULTS Our search showed that SARS-CoV-2 has persistently undergone significant mutations in various parts of its non-structural proteins (NSPs) especially NSP2 and NSP3, S protein, and RNA-dependent RNA polymerase (RdRp). In particular, the S protein was found to be the key determinant of evolution, transmission, and virulence of SARS-CoV-2, and could be a potential target for vaccine development. Additionally, RdRp could be a major target in the development of antivirals for the treatment of COVID-19. CONCLUSION Given the critical importance of mutations in the pathogenicity of SARS-CoV-2 and in the development of sero-diagnostics, antivirals, and vaccines, this study recommends continuous molecular surveillance of SARS-CoV-2. This approach would potentially prompt identification of new mutants and their impact on ongoing biomedical interventions and COVID-19 control measures.
Collapse
Affiliation(s)
- Idris N. Abdullahi
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Anthony U. Emeribe
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Onaoluwa A. Ajayi
- Department of Medical Laboratory Services, Ogun State Hospital Management Board, Abeokuta, Nigeria
| | - Bamidele S. Oderinde
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Medical Sciences, University of Maiduguri, Maiduguri, Nigeria
| | - Dele O. Amadu
- Department of Medical Microbiology and Parasitology, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Ahaneku I. Osuji
- Department of Medical Laboratory Services, University of Abuja Teaching Hospital, Gwagwalada, Abuja, Nigeria
| |
Collapse
|
412
|
Doddapaneni H, Cregeen SJ, Sucgang R, Meng Q, Qin X, Avadhanula V, Chao H, Menon V, Nicholson E, Henke D, Piedra FA, Rajan A, Momin Z, Kottapalli K, Hoffman KL, Sedlazeck FJ, Metcalf G, Piedra PA, Muzny DM, Petrosino JF, Gibbs RA. Oligonucleotide capture sequencing of the SARS-CoV-2 genome and subgenomic fragments from COVID-19 individuals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.27.223495. [PMID: 32766579 PMCID: PMC7402036 DOI: 10.1101/2020.07.27.223495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The newly emerged and rapidly spreading SARS-CoV-2 causes coronavirus disease 2019 (COVID-19). To facilitate a deeper understanding of the viral biology we developed a capture sequencing methodology to generate SARS-CoV-2 genomic and transcriptome sequences from infected patients. We utilized an oligonucleotide probe-set representing the full-length genome to obtain both genomic and transcriptome (subgenomic open reading frames [ORFs]) sequences from 45 SARS-CoV-2 clinical samples with varying viral titers. For samples with higher viral loads (cycle threshold value under 33, based on the CDC qPCR assay) complete genomes were generated. Analysis of junction reads revealed regions of differential transcriptional activity and provided evidence of expression of ORF10. Heterogeneous allelic frequencies along the 20kb ORF1ab gene suggested the presence of a defective interfering viral RNA species subpopulation in one sample. The associated workflow is straightforward, and hybridization-based capture offers an effective and scalable approach for sequencing SARS-CoV-2 from patient samples.
Collapse
Affiliation(s)
- Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Sara Javornik Cregeen
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Richard Sucgang
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Qingchang Meng
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Xiang Qin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Vasanthi Avadhanula
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Hsu Chao
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Vipin Menon
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Erin Nicholson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA, 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, 77030
| | - David Henke
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Felipe-Andres Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Zeineen Momin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Kavya Kottapalli
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Kristi L. Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Fritz J. Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Ginger Metcalf
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Pedro A. Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA, 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Joseph F. Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA, 77030
| |
Collapse
|
413
|
Teixeira SC, Borges BC, Oliveira VQ, Carregosa LS, Bastos LA, Santos IA, Jardim ACG, Melo FF, Freitas LM, Rodrigues VM, Lopes DS. Insights into the antiviral activity of phospholipases A 2 (PLA 2s) from snake venoms. Int J Biol Macromol 2020; 164:616-625. [PMID: 32698062 PMCID: PMC7368918 DOI: 10.1016/j.ijbiomac.2020.07.178] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022]
Abstract
Viruses are associated with several human diseases that infect a large number of individuals, hence directly affecting global health and economy. Owing to the lack of efficient vaccines, antiviral therapy and emerging resistance strains, many viruses are considered as a potential threat to public health. Therefore, researches have been developed to identify new drug candidates for future treatments. Among them, antiviral research based on natural molecules is a promising approach. Phospholipases A2 (PLA2s) isolated from snake venom have shown significant antiviral activity against some viruses such as Dengue virus, Human Immunodeficiency virus, Hepatitis C virus and Yellow fever virus, and have emerged as an attractive alternative strategy for the development of novel antiviral therapy. Thus, this review provides an overview of remarkable findings involving PLA2s from snake venom that possess antiviral activity, and discusses the mechanisms of action mediated by PLA2s against different stages of virus replication cycle. Additionally, molecular docking simulations were performed by interacting between phospholipids from Dengue virus envelope and PLA2s from Bothrops asper snake venom. Studies on snake venom PLA2s highlight the potential use of these proteins for the development of broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- S C Teixeira
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - B C Borges
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - V Q Oliveira
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - L S Carregosa
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - L A Bastos
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - I A Santos
- Laboratory of Virology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - A C G Jardim
- Laboratory of Virology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - F F Melo
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - L M Freitas
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - V M Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - D S Lopes
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil; Institute of Health Sciences, Department of Bio-Function, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
414
|
Benedetti F, Pachetti M, Marini B, Ippodrino R, Ciccozzi M, Zella D. SARS-CoV-2: March toward adaptation. J Med Virol 2020; 92:2274-2276. [PMID: 32598499 PMCID: PMC7361333 DOI: 10.1002/jmv.26233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Francesca Benedetti
- Department of Biochemistry and Molecular Biology, School of Medicine, Institute of Human Virology, University of Maryland, Baltimore, Maryland
| | - Maria Pachetti
- Department of Physics, Elettra Sincrotrone Trieste, University of Trieste, Trieste, Italy
| | | | | | - Massimo Ciccozzi
- Medical Statistic and Molecular Epidemiology Unit, University of Biomedical Campus, Rome, Italy
| | - Davide Zella
- Department of Biochemistry and Molecular Biology, School of Medicine, Institute of Human Virology, University of Maryland, Baltimore, Maryland.,Global Virus Network, Baltimore, Maryland
| |
Collapse
|
415
|
Matyášek R, Kovařík A. Mutation Patterns of Human SARS-CoV-2 and Bat RaTG13 Coronavirus Genomes Are Strongly Biased Towards C>U Transitions, Indicating Rapid Evolution in Their Hosts. Genes (Basel) 2020; 11:E761. [PMID: 32646049 PMCID: PMC7397057 DOI: 10.3390/genes11070761] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022] Open
Abstract
The pandemic caused by the spread of SARS-CoV-2 has led to considerable interest in its evolutionary origin and genome structure. Here, we analyzed mutation patterns in 34 human SARS-CoV-2 isolates and a closely related RaTG13 isolated from Rhinolophus affinis (a horseshoe bat). We also evaluated the CpG dinucleotide contents in SARS-CoV-2 and other human and animal coronavirus genomes. Out of 1136 single nucleotide variations (~4% divergence) between human SARS-CoV-2 and bat RaTG13, 682 (60%) can be attributed to C>U and U>C substitutions, far exceeding other types of substitutions. An accumulation of C>U mutations was also observed in SARS-CoV2 variants that arose within the human population. Globally, the C>U substitutions increased the frequency of codons for hydrophobic amino acids in SARS-CoV-2 peptides, while U>C substitutions decreased it. In contrast to most other coronaviruses, both SARS-CoV-2 and RaTG13 exhibited CpG depletion in their genomes. The data suggest that C-to-U conversion mediated by C deamination played a significant role in the evolution of the SARS-CoV-2 coronavirus. We hypothesize that the high frequency C>U transitions reflect virus adaptation processes in their hosts, and that SARS-CoV-2 could have been evolving for a relatively long period in humans following the transfer from animals before spreading worldwide.
Collapse
Affiliation(s)
| | - Aleš Kovařík
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic;
| |
Collapse
|
416
|
Chand GB, Banerjee A, Azad GK. Identification of novel mutations in RNA-dependent RNA polymerases of SARS-CoV-2 and their implications on its protein structure. PeerJ 2020; 8:e9492. [PMID: 32685291 PMCID: PMC7337032 DOI: 10.7717/peerj.9492] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/16/2020] [Indexed: 01/18/2023] Open
Abstract
The rapid development of the SARS-CoV-2 mediated COVID-19 pandemic has been the cause of significant health concern, highlighting the immediate need for effective antivirals. SARS-CoV-2 is an RNA virus that has an inherently high mutation rate. These mutations drive viral evolution and genome variability, thereby facilitating viruses to have rapid antigenic shifting to evade host immunity and to develop drug resistance. Viral RNA-dependent RNA polymerases (RdRp) perform viral genome duplication and RNA synthesis. Therefore, we compared the available RdRp sequences of SARS-CoV-2 from Indian isolates and the ‘Wuhan wet sea food market virus’ sequence to identify, if any, variation between them. Our data revealed the occurrence of seven mutations in Indian isolates of SARS-CoV-2. The secondary structure prediction analysis of these seven mutations shows that three of them cause alteration in the structure of RdRp. Furthermore, we did protein modelling studies to show that these mutations can potentially alter the stability of the RdRp protein. Therefore, we propose that RdRp mutations in Indian SARS-CoV-2 isolates might have functional consequences that can interfere with RdRp targeting pharmacological agents.
Collapse
Affiliation(s)
| | - Atanu Banerjee
- Department of Zoology, Samastipur College, Samastipur, Bihar, India
| | | |
Collapse
|
417
|
Pandey S, Yadav B, Pandey A, Tripathi T, Khawary M, Kant S, Tripathi D. Lessons from SARS-CoV-2 Pandemic: Evolution, Disease Dynamics and Future. BIOLOGY 2020; 9:E141. [PMID: 32604825 PMCID: PMC7344768 DOI: 10.3390/biology9060141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic is rising at an unprecedented rate. The surging number of deaths every day, global lockdown and travel restrictions have resulted in huge losses to society. The impact is massive and will leave a historical footprint. The Spanish Flu of 1918, which was the last pandemic that had a similar impact, was shadowed under the consequences of World War I. All the brilliance, strength and economies of countries worldwide are aimed at fighting the COVID-19 pandemic. The knowledge about coronavirus dynamics, its nature and epidemiology are expanding every day. The present review aims to summarize the structure, epidemiology, symptoms, statistical status of the disease status, intervention strategies and deliberates the lessons learnt during the pandemic. The intervention approaches, antiviral drug repurposing and vaccine trials are intensified now. Statistical interpretations of disease dynamics and their projections may help the decision-makers.
Collapse
Affiliation(s)
- Saurabh Pandey
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi-110062, India;
| | - Bharat Yadav
- Microbial Pathogenesis and Microbiome Lab, Department of Microbiology, Central University of Rajasthan, Ajmer, Rajasthan-305817, India; (B.Y.); (M.K.)
| | - Arvind Pandey
- Department of Statistics, Central University of Rajasthan, Ajmer, Rajasthan-305817, India;
| | - Takshashila Tripathi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK;
| | - Masuma Khawary
- Microbial Pathogenesis and Microbiome Lab, Department of Microbiology, Central University of Rajasthan, Ajmer, Rajasthan-305817, India; (B.Y.); (M.K.)
| | - Sashi Kant
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Deeksha Tripathi
- Microbial Pathogenesis and Microbiome Lab, Department of Microbiology, Central University of Rajasthan, Ajmer, Rajasthan-305817, India; (B.Y.); (M.K.)
| |
Collapse
|
418
|
Legnardi M, Tucciarone CM, Franzo G, Cecchinato M. Infectious Bronchitis Virus Evolution, Diagnosis and Control. Vet Sci 2020; 7:E79. [PMID: 32580381 PMCID: PMC7356646 DOI: 10.3390/vetsci7020079] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 01/09/2023] Open
Abstract
RNA viruses are characterized by high mutation and recombination rates, which allow a rapid adaptation to new environments. Most of the emerging diseases and host jumps are therefore sustained by these viruses. Rapid evolution may also hinder the understanding of molecular epidemiology, affect the sensitivity of diagnostic assays, limit the vaccine efficacy and favor episodes of immune escape, thus significantly complicating the control of even well-known pathogens. The history of infectious bronchitis virus (IBV) fits well with the above-mentioned scenario. Despite being known since the 1930s, it still represents one of the main causes of disease and economic losses for the poultry industry. A plethora of strategies have been developed and applied over time, with variable success, to limit its impact. However, they have rarely been evaluated objectively and on an adequate scale. Therefore, the actual advantages and disadvantages of IBV detection and control strategies, as well as their implementation, still largely depend on individual sensibility. The present manuscript aims to review the main features of IBV biology and evolution, focusing on their relevance and potential applications in terms of diagnosis and control.
Collapse
Affiliation(s)
| | - Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell’Università, 16, 35020 Legnaro, Italy; (M.L.); (G.F.); (M.C.)
| | | | | |
Collapse
|
419
|
Genetic Variant of SARS-CoV-2 Isolates in Indonesia: Spike Glycoprotein Gene. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.spl1.35] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a novel coronavirus and the primary causative agent of coronavirus disease 2019 (COVID-19), first occurred in China and rapidly spread worldwide. The government of the Republic of Indonesia confirmed its first two cases of COVID-19 in March 2020. COVID-19 is a serious illness with no efficacious antiviral medication or approved vaccine currently available. Therefore, there is a need to investigate the genome of SARS-CoV-2. In this study, we characterized SARS-CoV-2 spike glycoprotein genes from Indonesia to investigate their genetic composition and variability. Overall, ten SARS-CoV-2 spike glycoprotein gene sequences retrieved from GenBank (National Center for Biotechnology Information, USA) and the GISAID EpiCoV database (Germany) were compared. We analyzed nucleotide variants and amino acid changes using Molecular Evolutionary Genetics Analysis (MEGA) X and analyzed gene similarity using the LALIGN web server. Interestingly, we revealed several specific mutation sites, however, there were no significant changes in the genetic composition of SARS-CoV-2 spike glycoprotein genes, when compared to the Wuhan-Hu-1 isolate from China. However, this is a preliminary study and we recommend that molecular epidemiology and surveillance programs against COVID-19 in Indonesia be improved.
Collapse
|
420
|
Abstract
COVID-19 is a newly emerging viral respiratory disease first identified in Wuhan, China, in December 2019. The disease is caused by the coronavirus SARS-CoV-2, which is related to the viruses that cause SARS and MERS. While the case fatality ratio for COVID-19 (5%) is far lower than that for SARS (11%) and MERS (34%), COVID-19 is spreading relatively uncontrolled at this time across the globe. In contrast, SARS appears to be contained, and MERS is controlled. This paper will explore why COVID-19 is able to progress to a global pandemic that affects our daily lives to an extent not known in recent history. The COVID-19 outbreak and spread will be examined based on the current literature, using a researcher's perspective of risk assessment and risk mitigation; this approach will be related to public health.
Collapse
Affiliation(s)
- Imke Schröder
- University of California Center for Laboratory Safety and the Department of
Microbiology, Immunology and Molecular Genetics, UCLA, 607
Charles E Young Drive, Los Angeles, California 90095, United
States
| |
Collapse
|
421
|
Yang CW, Peng TT, Hsu HY, Lee YZ, Wu SH, Lin WH, Ke YY, Hsu TA, Yeh TK, Huang WZ, Lin JH, Sytwu HK, Chen CT, Lee SJ. Repurposing old drugs as antiviral agents for coronaviruses. Biomed J 2020; 43:368-374. [PMID: 32563698 PMCID: PMC7245249 DOI: 10.1016/j.bj.2020.05.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/27/2022] Open
Abstract
Background New therapeutic options to address the ongoing coronavirus disease 2019 (COVID-19) pandemic are urgently needed. One possible strategy is the repurposing of existing drugs approved for other indications as antiviral agents for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Due to the commercial unavailability of SARS-CoV-2 drugs for treating COVID-19, we screened approximately 250 existing drugs or pharmacologically active compounds for their inhibitory activities against feline infectious peritonitis coronavirus (FIPV) and human coronavirus OC43 (HCoV-OC43), a human coronavirus in the same genus (Betacoronavirus) as SARS-CoV-2. Methods FIPV was proliferated in feline Fcwf-4 cells and HCoV-OC43 in human HCT-8 cells. Viral proliferation was assayed by visualization of cytopathic effects on the infected Fcwf-4 cells and immunofluorescent assay for detection of the nucleocapsid proteins of HCoV-OC43 in the HCT-8 cells. The concentrations (EC50) of each drug necessary to diminish viral activity to 50% of that for the untreated controls were determined. The viabilities of Fcwf-4 and HCT-8 cells were measured by crystal violet staining and MTS/PMS assay, respectively. Results Fifteen out of the 252 drugs or pharmacologically active compounds screened were found to be active against both FIPV and HCoV-OC43, with EC50 values ranging from 11 nM to 75 μM. They are all old drugs as follows, anisomycin, antimycin A, atovaquone, chloroquine, conivaptan, emetine, gemcitabine, homoharringtonine, niclosamide, nitazoxanide, oligomycin, salinomycin, tilorone, valinomycin, and vismodegib. Conclusion All of the old drugs identified as having activity against FIPV and HCoV-OC43 have seen clinical use in their respective indications and are associated with known dosing schedules and adverse effect or toxicity profiles in humans. Those, when later confirmed to have an anti-viral effect on SARS-CoV-2, should be considered for immediate uses in COVID-19 patients.
Collapse
Affiliation(s)
- Cheng-Wei Yang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Tzu-Ting Peng
- Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu, Taiwan
| | - Hsing-Yu Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yue-Zhi Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Szu-Huei Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Wen-Hsing Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yi-Yu Ke
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Tsu-An Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Wen-Zheng Huang
- Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu, Taiwan
| | - Jiunn-Horng Lin
- Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan.
| | - Shiow-Ju Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan.
| |
Collapse
|
422
|
Epidemiologic Characteristics of Imported and Domestic Chikungunya Cases in Taiwan: A 13-Year Retrospective Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103615. [PMID: 32455712 PMCID: PMC7277729 DOI: 10.3390/ijerph17103615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022]
Abstract
Background: Chikungunya fever is caused by the chikungunya virus. Numerous factors affect the risk of chikungunya transmission. This study explored the epidemiological characteristics, differences, and trends in domestic and imported cases of chikungunya fever in Taiwan in terms of patient sex, age, month of confirmation, and area of residence from 2007 to 2019. Methods: Public annual chikungunya data from Taiwan’s Centers for Disease Control (CDC) were analyzed. In total, 21 confirmed domestic and 198 imported cases of chikungunya were reported. Of the domestic cases, one was sporadic and reported in July 2019, and 20 were attributed to a cluster event during August and September 2019. Results: In a comparison between domestic and imported cases reported from July to October 2019, differences in sex were nonsignificant (p = 0.555), whereas significant differences were observed for age (p < 0.001), month of confirmation (p = 0.005), and place of residence (p = 0.001). An age of 69–69 years (odds ratio (OR) = 6.66, 95% confidence interval (95%CI) = 2.15–20.65), month of confirmation of September (OR = 5.25, 95%CI = 1.89–14.61) and place of residence of New Taipei City (OR = 48.70, 95%CI = 6.17–384.44) were identified as potential risk factors. Additionally, domestic cases in August and September 2019 increased in proportion to the increase in imported cases during July and August 2019. Increased domestic patients may have been caused by the domestic mosquitoes that transmitted the virus by biting the imported patients to Taiwan. This is the first report comparing domestic and imported cases of chikungunya from surveillance data from the Taiwan CDC from 2007 to 2019. Conclusion: This study highlights the importance of longitudinal and geographically extended studies to understand the implications of zoonotic disease transmission on Taiwan’s population. Critical data were identified to inform future surveillance and research efforts in Taiwan.
Collapse
|
423
|
Uddin M, Mustafa F, Rizvi TA, Loney T, Al Suwaidi H, Al-Marzouqi AHH, Kamal Eldin A, Alsabeeha N, Adrian TE, Stefanini C, Nowotny N, Alsheikh-Ali A, Senok AC. SARS-CoV-2/COVID-19: Viral Genomics, Epidemiology, Vaccines, and Therapeutic Interventions. Viruses 2020; 12:E526. [PMID: 32397688 PMCID: PMC7290442 DOI: 10.3390/v12050526] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic is due to infection caused by the novel SARS-CoV-2 virus that impacts the lower respiratory tract. The spectrum of symptoms ranges from asymptomatic infections to mild respiratory symptoms to the lethal form of COVID-19 which is associated with severe pneumonia, acute respiratory distress, and fatality. To address this global crisis, up-to-date information on viral genomics and transcriptomics is crucial for understanding the origins and global dispersion of the virus, providing insights into viral pathogenicity, transmission, and epidemiology, and enabling strategies for therapeutic interventions, drug discovery, and vaccine development. Therefore, this review provides a comprehensive overview of COVID-19 epidemiology, genomic etiology, findings from recent transcriptomic map analysis, viral-human protein interactions, molecular diagnostics, and the current status of vaccine and novel therapeutic intervention development. Moreover, we provide an extensive list of resources that will help the scientific community access numerous types of databases related to SARS-CoV-2 OMICs and approaches to therapeutics related to COVID-19 treatment.
Collapse
Affiliation(s)
- Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE; (M.U.); (T.L.); (H.A.S.); (T.E.A.); (N.N.)
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE; (F.M.); (A.H.H.A.-M.)
| | - Tahir A. Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE;
| | - Tom Loney
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE; (M.U.); (T.L.); (H.A.S.); (T.E.A.); (N.N.)
| | - Hanan Al Suwaidi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE; (M.U.); (T.L.); (H.A.S.); (T.E.A.); (N.N.)
| | - Ahmed H. Hassan Al-Marzouqi
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE; (F.M.); (A.H.H.A.-M.)
| | - Afaf Kamal Eldin
- Department of Food, Nutrition and Health, United Arab Emirates University, Al Ain, UAE;
| | | | - Thomas E. Adrian
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE; (M.U.); (T.L.); (H.A.S.); (T.E.A.); (N.N.)
| | - Cesare Stefanini
- Department of Biomedical Engineering, Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi, UAE;
| | - Norbert Nowotny
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE; (M.U.); (T.L.); (H.A.S.); (T.E.A.); (N.N.)
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Alawi Alsheikh-Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE; (M.U.); (T.L.); (H.A.S.); (T.E.A.); (N.N.)
| | - Abiola C. Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE; (M.U.); (T.L.); (H.A.S.); (T.E.A.); (N.N.)
| |
Collapse
|
424
|
Caudill VR, Qin S, Winstead R, Kaur J, Tisthammer K, Pineda EG, Solis C, Cobey S, Bedford T, Carja O, Eggo RM, Koelle K, Lythgoe K, Regoes R, Roy S, Allen N, Aviles M, Baker BA, Bauer W, Bermudez S, Carlson C, Castellanos E, Catalan FL, Chemel AK, Elliot J, Evans D, Fiutek N, Fryer E, Goodfellow SM, Hecht M, Hopp K, Hopson ED, Jaberi A, Kinney C, Lao D, Le A, Lo J, Lopez AG, López A, Lorenzo FG, Luu GT, Mahoney AR, Melton RL, Nascimento GD, Pradhananga A, Rodrigues NS, Shieh A, Sims J, Singh R, Sulaeman H, Thu R, Tran K, Tran L, Winters EJ, Wong A, Pennings PS. CpG-creating mutations are costly in many human viruses. Evol Ecol 2020; 34:339-359. [PMID: 32508375 PMCID: PMC7245597 DOI: 10.1007/s10682-020-10039-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 03/11/2020] [Indexed: 01/26/2023]
Abstract
Mutations can occur throughout the virus genome and may be beneficial, neutral or deleterious. We are interested in mutations that yield a C next to a G, producing CpG sites. CpG sites are rare in eukaryotic and viral genomes. For the eukaryotes, it is thought that CpG sites are rare because they are prone to mutation when methylated. In viruses, we know less about why CpG sites are rare. A previous study in HIV suggested that CpG-creating transition mutations are more costly than similar non-CpG-creating mutations. To determine if this is the case in other viruses, we analyzed the allele frequencies of CpG-creating and non-CpG-creating mutations across various strains, subtypes, and genes of viruses using existing data obtained from Genbank, HIV Databases, and Virus Pathogen Resource. Our results suggest that CpG sites are indeed costly for most viruses. By understanding the cost of CpG sites, we can obtain further insights into the evolution and adaptation of viruses.
Collapse
Affiliation(s)
- Victoria R. Caudill
- Department of Biology, San Francisco State University, San Francisco, CA USA
- Department of Biology, University of Oregon, Eugene, OR USA
| | - Sarina Qin
- Department of Biology, San Francisco State University, San Francisco, CA USA
- Quantitative Systems Biology, Univeristy of California, Merced, CA USA
| | - Ryan Winstead
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Jasmeen Kaur
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Kaho Tisthammer
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - E. Geo Pineda
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Caroline Solis
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, IL USA
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Oana Carja
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, USA
| | - Rosalind M. Eggo
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, GA USA
| | | | - Roland Regoes
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Scott Roy
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Nicole Allen
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Milo Aviles
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Brittany A. Baker
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - William Bauer
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Shannel Bermudez
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Corey Carlson
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Edgar Castellanos
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Francisca L. Catalan
- Department of Biology, San Francisco State University, San Francisco, CA USA
- Department of Neurological Surgery, University of California, San Francisco, CA USA
| | | | - Jacob Elliot
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Dwayne Evans
- Department of Biology, San Francisco State University, San Francisco, CA USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA USA
| | - Natalie Fiutek
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Emily Fryer
- Department of Biology, San Francisco State University, San Francisco, CA USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA USA
| | - Samuel Melvin Goodfellow
- Department of Biology, San Francisco State University, San Francisco, CA USA
- Health Sciences Center, University of New Mexico, Albuquerque, NM USA
| | - Mordecai Hecht
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Kellen Hopp
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - E. Deshawn Hopson
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Amirhossein Jaberi
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Christen Kinney
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Derek Lao
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Adrienne Le
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Jacky Lo
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Alejandro G. Lopez
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Andrea López
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Fernando G. Lorenzo
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Gordon T. Luu
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Andrew R. Mahoney
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Rebecca L. Melton
- Department of Biology, San Francisco State University, San Francisco, CA USA
- UCSD Biomed Sciences PhD Program, University of California, San Diego, CA USA
| | | | - Anjani Pradhananga
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Nicole S. Rodrigues
- Department of Biology, San Francisco State University, San Francisco, CA USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, CA USA
| | - Annie Shieh
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Jasmine Sims
- Department of Biology, San Francisco State University, San Francisco, CA USA
- UCSF Tetrad Graduate Program, University of California, San Francisco, CA USA
| | - Rima Singh
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Hasan Sulaeman
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Ricky Thu
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Krystal Tran
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Livia Tran
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | | | - Albert Wong
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Pleuni S. Pennings
- Department of Biology, San Francisco State University, San Francisco, CA USA
| |
Collapse
|
425
|
Pachetti M, Marini B, Benedetti F, Giudici F, Mauro E, Storici P, Masciovecchio C, Angeletti S, Ciccozzi M, Gallo RC, Zella D, Ippodrino R. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med 2020; 18:179. [PMID: 32321524 PMCID: PMC7174922 DOI: 10.1186/s12967-020-02344-6] [Citation(s) in RCA: 603] [Impact Index Per Article: 120.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND SARS-CoV-2 is a RNA coronavirus responsible for the pandemic of the Severe Acute Respiratory Syndrome (COVID-19). RNA viruses are characterized by a high mutation rate, up to a million times higher than that of their hosts. Virus mutagenic capability depends upon several factors, including the fidelity of viral enzymes that replicate nucleic acids, as SARS-CoV-2 RNA dependent RNA polymerase (RdRp). Mutation rate drives viral evolution and genome variability, thereby enabling viruses to escape host immunity and to develop drug resistance. METHODS We analyzed 220 genomic sequences from the GISAID database derived from patients infected by SARS-CoV-2 worldwide from December 2019 to mid-March 2020. SARS-CoV-2 reference genome was obtained from the GenBank database. Genomes alignment was performed using Clustal Omega. Mann-Whitney and Fisher-Exact tests were used to assess statistical significance. RESULTS We characterized 8 novel recurrent mutations of SARS-CoV-2, located at positions 1397, 2891, 14408, 17746, 17857, 18060, 23403 and 28881. Mutations in 2891, 3036, 14408, 23403 and 28881 positions are predominantly observed in Europe, whereas those located at positions 17746, 17857 and 18060 are exclusively present in North America. We noticed for the first time a silent mutation in RdRp gene in England (UK) on February 9th, 2020 while a different mutation in RdRp changing its amino acid composition emerged on February 20th, 2020 in Italy (Lombardy). Viruses with RdRp mutation have a median of 3 point mutations [range: 2-5], otherwise they have a median of 1 mutation [range: 0-3] (p value < 0.001). CONCLUSIONS These findings suggest that the virus is evolving and European, North American and Asian strains might coexist, each of them characterized by a different mutation pattern. The contribution of the mutated RdRp to this phenomenon needs to be investigated. To date, several drugs targeting RdRp enzymes are being employed for SARS-CoV-2 infection treatment. Some of them have a predicted binding moiety in a SARS-CoV-2 RdRp hydrophobic cleft, which is adjacent to the 14408 mutation we identified. Consequently, it is important to study and characterize SARS-CoV-2 RdRp mutation in order to assess possible drug-resistance viral phenotypes. It is also important to recognize whether the presence of some mutations might correlate with different SARS-CoV-2 mortality rates.
Collapse
Affiliation(s)
- Maria Pachetti
- Elettra Sincrotrone Trieste - Area Science Park, Trieste, Italy
- Department of Physics, University of Trieste, Via Valerio 2, Trieste, Italy
| | - Bruna Marini
- Ulisse BioMed - Area Science Park, Trieste, Italy
| | - Francesca Benedetti
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, USA
| | - Fabiola Giudici
- Department of Medicine, Surgery and Health Science, University of Trieste, Trieste, Italy
| | | | - Paola Storici
- Elettra Sincrotrone Trieste - Area Science Park, Trieste, Italy
| | | | - Silvia Angeletti
- Medical Statistic and Molecular Epidemiology Unit, University of Biomedical Campus, Rome, Italy
| | - Massimo Ciccozzi
- Medical Statistic and Molecular Epidemiology Unit, University of Biomedical Campus, Rome, Italy
| | - Robert C Gallo
- Institute of Human Virology, Department of Medicine, School of Medicine, University of Maryland, Baltimore, USA
- Co-founder and International Science Advisor - Global Virus Network, Baltimore, USA
| | - Davide Zella
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, USA.
- Member of the Global Virus Network, Baltimore, USA.
| | | |
Collapse
|
426
|
Rüdiger S, Plietzsch A, Sagués F, Sokolov IM, Kurths J. Epidemics with mutating infectivity on small-world networks. Sci Rep 2020; 10:5919. [PMID: 32246023 PMCID: PMC7125191 DOI: 10.1038/s41598-020-62597-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/10/2020] [Indexed: 01/24/2023] Open
Abstract
Epidemics and evolution of many pathogens occur on similar timescales so that their dynamics are often entangled. Here, in a first step to study this problem theoretically, we analyze mutating pathogens spreading on simple SIR networks with grid-like connectivity. We have in mind the spatial aspect of epidemics, which often advance on transport links between hosts or groups of hosts such as cities or countries. We focus on the case of mutations that enhance an agent’s infection rate. We uncover that the small-world property, i.e., the presence of long-range connections, makes the network very vulnerable, supporting frequent supercritical mutations and bringing the network from disease extinction to full blown epidemic. For very large numbers of long-range links, however, the effect reverses and we find a reduced chance for large outbreaks. We study two cases, one with discrete number of mutational steps and one with a continuous genetic variable, and we analyze various scaling regimes. For the continuous case we derive a Fokker-Planck-like equation for the probability density and solve it for small numbers of shortcuts using the WKB approximation. Our analysis supports the claims that a potentiating mutation in the transmissibility might occur during an epidemic wave and not necessarily before its initiation.
Collapse
Affiliation(s)
- Sten Rüdiger
- Department of Physics, Humboldt-Universität zu Berlin, 12489, Berlin, Germany.
| | - Anton Plietzsch
- Department of Physics, Humboldt-Universität zu Berlin, 12489, Berlin, Germany.,Potsdam Institute for Climate Impact Research (PIK), 14473, Potsdam, Germany
| | - Francesc Sagués
- Departament de Química Física, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Igor M Sokolov
- Department of Physics, Humboldt-Universität zu Berlin, 12489, Berlin, Germany.,IRIS Adlershof, Zum Großen Windkanal 6, 12489, Berlin, Germany
| | - Jürgen Kurths
- Department of Physics, Humboldt-Universität zu Berlin, 12489, Berlin, Germany.,Potsdam Institute for Climate Impact Research (PIK), 14473, Potsdam, Germany.,Saratov State University, 83, Astrakhanskaya Str., 410012, Saratov, Russia
| |
Collapse
|
427
|
Ahn DG, Shin HJ, Kim MH, Lee S, Kim HS, Myoung J, Kim BT, Kim SJ. Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for Novel Coronavirus Disease 2019 (COVID-19). J Microbiol Biotechnol 2020; 30:313-324. [PMID: 32238757 PMCID: PMC9728410 DOI: 10.4014/jmb.2003.03011] [Citation(s) in RCA: 561] [Impact Index Per Article: 112.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19), which causes serious respiratory illness such as pneumonia and lung failure, was first reported in Wuhan, the capital of Hubei, China. The etiological agent of COVID-19 has been confirmed as a novel coronavirus, now known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is most likely originated from zoonotic coronaviruses, like SARS-CoV, which emerged in 2002. Within a few months of the first report, SARS-CoV-2 had spread across China and worldwide, reaching a pandemic level. As COVID-19 has triggered enormous human casualties and serious economic loss posing global threat, an understanding of the ongoing situation and the development of strategies to contain the virus's spread are urgently needed. Currently, various diagnostic kits to test for COVID-19 are available and several repurposing therapeutics for COVID-19 have shown to be clinically effective. In addition, global institutions and companies have begun to develop vaccines for the prevention of COVID-19. Here, we review the current status of epidemiology, diagnosis, treatment, and vaccine development for COVID-19.
Collapse
Affiliation(s)
- Dae-Gyun Ahn
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 344, Republic of Korea
| | - Hye-Jin Shin
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 344, Republic of Korea
| | - Mi-Hwa Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 344, Republic of Korea,Bioenvironmental Science and Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju 5834, Republic of Korea
| | - Sunhee Lee
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 344, Republic of Korea
| | - Hae-Soo Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 344, Republic of Korea
| | - Jinjong Myoung
- Korea Zoonosis Research Institute and Genetic Engineering Research Institute, Jeonbuk National University, Jeollabuk-do 54896, Republic of Korea
| | - Bum-Tae Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 344, Republic of Korea,B.T.K. Phone: +82-42-860-7023 E-mail:
| | - Seong-Jun Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 344, Republic of Korea,Corresponding authors S.J.K. Phone: +82-42-860-7477 E-mail:
| |
Collapse
|
428
|
Ye ZW, Yuan S, Yuen KS, Fung SY, Chan CP, Jin DY. Zoonotic origins of human coronaviruses. Int J Biol Sci 2020; 16:1686-1697. [PMID: 32226286 PMCID: PMC7098031 DOI: 10.7150/ijbs.45472] [Citation(s) in RCA: 521] [Impact Index Per Article: 104.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
Mutation and adaptation have driven the co-evolution of coronaviruses (CoVs) and their hosts, including human beings, for thousands of years. Before 2003, two human CoVs (HCoVs) were known to cause mild illness, such as common cold. The outbreaks of severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS) have flipped the coin to reveal how devastating and life-threatening an HCoV infection could be. The emergence of SARS-CoV-2 in central China at the end of 2019 has thrusted CoVs into the spotlight again and surprised us with its high transmissibility but reduced pathogenicity compared to its sister SARS-CoV. HCoV infection is a zoonosis and understanding the zoonotic origins of HCoVs would serve us well. Most HCoVs originated from bats where they are non-pathogenic. The intermediate reservoir hosts of some HCoVs are also known. Identifying the animal hosts has direct implications in the prevention of human diseases. Investigating CoV-host interactions in animals might also derive important insight on CoV pathogenesis in humans. In this review, we present an overview of the existing knowledge about the seven HCoVs, with a focus on the history of their discovery as well as their zoonotic origins and interspecies transmission. Importantly, we compare and contrast the different HCoVs from a perspective of virus evolution and genome recombination. The current CoV disease 2019 (COVID-19) epidemic is discussed in this context. In addition, the requirements for successful host switches and the implications of virus evolution on disease severity are also highlighted.
Collapse
Affiliation(s)
- Zi-Wei Ye
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Shuofeng Yuan
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kit-San Yuen
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Sin-Yee Fung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
429
|
Jayawardena N, Poirier JT, Burga LN, Bostina M. Virus-Receptor Interactions and Virus Neutralization: Insights for Oncolytic Virus Development. Oncolytic Virother 2020; 9:1-15. [PMID: 32185149 PMCID: PMC7064293 DOI: 10.2147/ov.s186337] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 02/09/2020] [Indexed: 12/24/2022] Open
Abstract
Oncolytic viruses (OVs) are replication competent agents that selectively target cancer cells. After penetrating the tumor cell, viruses replicate and eventually trigger cell lysis, releasing the new viral progeny, which at their turn will attack and kill neighbouring cells. The ability of OVs to self-amplify within the tumor while sparing normal cells can provide several advantages including the capacity to encode and locally produce therapeutic protein payloads, and to prime the host immune system. OVs targeting of cancer cells is mediated by host factors that are differentially expressed between normal tissue and tumors, including viral receptors and internalization factors. In this review article, we will discuss the evolution of oncolytic viruses that have reached the stage of clinical trials, their mechanisms of oncolysis, cellular receptors, strategies for targeting cancers, viral neutralization and developments to bypass virus neutralization.
Collapse
Affiliation(s)
- Nadishka Jayawardena
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - John T Poirier
- Department of Medicine and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura N Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Otago Micro and Nano Imaging, University of Otago, Dunedin, New Zealand
| |
Collapse
|
430
|
Ciftci S, Neumann F, Abdurahman S, Appelberg KS, Mirazimi A, Nilsson M, Madaboosi N. Digital Rolling Circle Amplification-Based Detection of Ebola and Other Tropical Viruses. J Mol Diagn 2020; 22:272-283. [PMID: 31837428 DOI: 10.1016/j.jmoldx.2019.10.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/04/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023] Open
Abstract
Emerging tropical viruses have caused serious outbreaks during the recent years, such as Ebola virus (EBOV) in 2014 and the most recent in 2018 to 2019 in Congo. Thus, immediate diagnostic attention is demanded at the point of care in resource-limited settings, because the performance and the operational parameters of conventional EBOV testing are limited. Especially, their sensitivity, specificity, and coverage of other tropical disease viruses make them unsuitable for diagnostic at the point of care. Here, a padlock probe (PLP)-based rolling circle amplification (RCA) method for the detection of EBOV is presented. For this, a set of PLPs, separately targeting the viral RNA and complementary RNA of all seven EBOV genes, was used in the RCA assay and validated on virus isolates from cell culture. The assay was then translated for testing clinical samples, and simultaneous detection of both EBOV RNA types was demonstrated. For increased sensitivity, the RCA products were enriched on a simple and pump-free microfluidic chip. Because PLPs and RCA are inherently multiplexable, we demonstrate the extension of the probe panel for the simultaneous detection of the tropical viruses Ebola, Zika, and Dengue. The demonstrated high specificity, sensitivity, and multiplexing capability in combination with the digital quantification rendered the assay a promising diagnostic tool toward tropical virus detection at the point of care.
Collapse
Affiliation(s)
- Sibel Ciftci
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Felix Neumann
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | | | | | - Ali Mirazimi
- Public Health Agency of Sweden, Solna, Sweden; LABMED, Karolinska Institute and Karolinska Hospital University, Solna, Sweden; National Veterinary Institute, Uppsala, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
| | - Narayanan Madaboosi
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
| |
Collapse
|
431
|
San JE, Baichoo S, Kanzi A, Moosa Y, Lessells R, Fonseca V, Mogaka J, Power R, de Oliveira T. Current Affairs of Microbial Genome-Wide Association Studies: Approaches, Bottlenecks and Analytical Pitfalls. Front Microbiol 2020; 10:3119. [PMID: 32082269 PMCID: PMC7002396 DOI: 10.3389/fmicb.2019.03119] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Microbial genome-wide association studies (mGWAS) are a new and exciting research field that is adapting human GWAS methods to understand how variations in microbial genomes affect host or pathogen phenotypes, such as drug resistance, virulence, host specificity and prognosis. Several computational tools and methods have been developed or adapted from human GWAS to facilitate the discovery of novel mutations and structural variations that are associated with the phenotypes of interest. However, no comprehensive, end-to-end, user-friendly tool is currently available. The development of a broadly applicable pipeline presents a real opportunity among computational biologists. Here, (i) we review the prominent and promising tools, (ii) discuss analytical pitfalls and bottlenecks in mGWAS, (iii) provide insights into the selection of appropriate tools, (iv) highlight the gaps that still need to be filled and how users and developers can work together to overcome these bottlenecks. Use of mGWAS research can inform drug repositioning decisions as well as accelerate the discovery and development of more effective vaccines and antimicrobials for pressing infectious diseases of global health significance, such as HIV, TB, influenza, and malaria.
Collapse
Affiliation(s)
- James Emmanuel San
- Kwazulu-Natal Research and Innovation Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Shakuntala Baichoo
- Department of Digital Technologies, FoICDT, University of Mauritius, Réduit, Mauritius
| | - Aquillah Kanzi
- Kwazulu-Natal Research and Innovation Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Yumna Moosa
- Kwazulu-Natal Research and Innovation Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Richard Lessells
- Kwazulu-Natal Research and Innovation Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Vagner Fonseca
- Kwazulu-Natal Research and Innovation Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Laboratório de Genética Celular e Molecular, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - John Mogaka
- Discipline of Public Health, University of Kwazulu-Natal, Durban, South Africa
| | - Robert Power
- St Edmund Hall, Oxford University, Oxford, United Kingdom
| | - Tulio de Oliveira
- Kwazulu-Natal Research and Innovation Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
432
|
Abstract
Plant virus genome replication and movement is dependent on host resources and factors. However, plants respond to virus infection through several mechanisms, such as autophagy, ubiquitination, mRNA decay and gene silencing, that target viral components. Viral factors work in synchrony with pro-viral host factors during the infection cycle and are targeted by antiviral responses. Accordingly, establishment of virus infection is genetically determined by the availability of the pro-viral factors necessary for genome replication and movement, and by the balance between plant defence and viral suppression of defence responses. Sequential requirement of pro-viral factors and the antagonistic activity of antiviral factors suggest a two-step model to explain plant-virus interactions. At each step of the infection process, host factors with antiviral activity have been identified. Here we review our current understanding of host factors with antiviral activity against plant viruses.
Collapse
Affiliation(s)
- Hernan Garcia‐Ruiz
- Nebraska Center for Virology, Department of Plant PathologyUniversity of Nebraska‐LincolnLincolnNE68503USA
| |
Collapse
|
433
|
Clinical correlation of influenza and respiratory syncytial virus load measured by digital PCR. PLoS One 2019; 14:e0220908. [PMID: 31479459 PMCID: PMC6720028 DOI: 10.1371/journal.pone.0220908] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023] Open
Abstract
Acute respiratory tract infections are a major cause of respiratory morbidity and mortality in pediatric patients worldwide. However, accurate viral and immunologic markers to predict clinical outcomes of this patient population are still lacking. Droplet digital PCR assays for influenza and respiratory syncytial virus (RSV) were designed and performed in 64 respiratory samples from 23 patients with influenza virus infection and 73 samples from 19 patients with RSV infection. Samples of patients with hematologic malignancies, solid tumors, or sickle cell disease were included. Clinical information from institutional medical records was reviewed to assess disease severity. Samples from patients with fever or respiratory symptoms had a significantly higher viral loads than those from asymptomatic patients. Samples from patients with influenza virus and RSV infection collected at presentation had significantly higher viral loads than those collected from patients after completing a course of oseltamivir or ribavirin, respectively. RSV loads correlated positively with clinical symptoms in patients ≤5 years of age, whereas influenza viral loads were associated with clinical symptoms, irrespective of age. Patients receiving antivirals for influenza and RSV had a significant reduction in viral loads after completing therapy. Digital PCR offers an effective method to monitor the efficacy of antiviral treatment for respiratory tract infections in immunocompromised hosts.
Collapse
|
434
|
Aris-Brosou S, Parent L, Ibeh N. Viral Long-Term Evolutionary Strategies Favor Stability over Proliferation. Viruses 2019; 11:v11080677. [PMID: 31344814 PMCID: PMC6722887 DOI: 10.3390/v11080677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/12/2019] [Accepted: 07/20/2019] [Indexed: 02/01/2023] Open
Abstract
Viruses are known to have some of the highest and most diverse mutation rates found in any biological replicator, with single-stranded (ss) RNA viruses evolving the fastest, and double-stranded (ds) DNA viruses having rates approaching those of bacteria. As mutation rates are tightly and negatively correlated with genome size, selection is a clear driver of viral evolution. However, the role of intragenomic interactions as drivers of viral evolution is still unclear. To understand how these two processes affect the long-term evolution of viruses infecting humans, we comprehensively analyzed ssRNA, ssDNA, dsRNA, and dsDNA viruses, to find which virus types and which functions show evidence for episodic diversifying selection and correlated evolution. We show that selection mostly affects single stranded viruses, that correlated evolution is more prevalent in DNA viruses, and that both processes, taken independently, mostly affect viral replication. However, the genes that are jointly affected by both processes are involved in key aspects of their life cycle, favoring viral stability over proliferation. We further show that both evolutionary processes are intimately linked at the amino acid level, which suggests that it is the joint action of selection and correlated evolution, and not just selection, that shapes the evolutionary trajectories of viruses—and possibly of their epidemiological potential.
Collapse
Affiliation(s)
- Stéphane Aris-Brosou
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Louis Parent
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Neke Ibeh
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
435
|
Zainutdinov SS, Kochneva GV, Netesov SV, Chumakov PM, Matveeva OV. Directed evolution as a tool for the selection of oncolytic RNA viruses with desired phenotypes. Oncolytic Virother 2019; 8:9-26. [PMID: 31372363 PMCID: PMC6636189 DOI: 10.2147/ov.s176523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 06/07/2019] [Indexed: 12/23/2022] Open
Abstract
Viruses have some characteristics in common with cell-based life. They can evolve and adapt to environmental conditions. Directed evolution can be used by researchers to produce viral strains with desirable phenotypes. Through bioselection, improved strains of oncolytic viruses can be obtained that have better safety profiles, increased specificity for malignant cells, and more efficient spread among tumor cells. It is also possible to select strains capable of killing a broader spectrum of cancer cell variants, so as to achieve a higher frequency of therapeutic responses. This review describes and analyses virus adaptation studies performed with members of four RNA virus families that are used for viral oncolysis: reoviruses, paramyxoviruses, enteroviruses, and rhabdoviruses.
Collapse
Affiliation(s)
- Sergei S Zainutdinov
- State Research Center of Virology and Biotechnology “Vector”
, Koltsovo630559, Russia
| | - Galina V Kochneva
- State Research Center of Virology and Biotechnology “Vector”
, Koltsovo630559, Russia
| | - Sergei V Netesov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk630090, Russia
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology
, Moscow119991, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products
, Moscow108819, Russia
| | | |
Collapse
|
436
|
Camarão AAR, Swanepoel R, Boinas F, Quan M. Development and analytical validation of a group-specific RT-qPCR assay for the detection of the Simbu serogroup orthobunyaviruses. J Virol Methods 2019; 271:113685. [PMID: 31220478 DOI: 10.1016/j.jviromet.2019.113685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/11/2019] [Accepted: 06/14/2019] [Indexed: 11/28/2022]
Abstract
The Simbu serogroup within the genus Orthobunyavirus belongs to the family Peribunyaviridae and comprises 32 recognised three-segmented negative-sense single-stranded RNA viruses, with a cosmopolitan distribution. This group of arthropod-borne viruses includes important pathogens of humans and domestic animals e.g. Oropouche orthobunyavirus and Schmallenberg virus. Sensitive and specific diagnostic tools are required for recognition and control of outbreaks. A novel TaqMan® RT-qPCR assay was developed, optimised and analytically validated for the broad detection of the Simbu serogroup orthobunyaviruses. A region in the S segment, which encodes the nucleocapsid protein, was used to design a group primer set and a pair of differently labelled TaqMan® minor groove binder probes to distinguish phylogenetic clade A and B of the serogroup. Efficiencies determined for seven members of the group were 99% for Akabane orthobunyavirus (AKAV), 96% for Simbu orthobunyavirus (SIMV), 96% for Shuni orthobunyavirus (SHUV), 97% for Sathuperi orthobunyavirus (SATV), 84% for Shamonda orthobunyavirus (SHAV), 93% for Ingwavuma virus (INGV, now classified as Manzanilla orthobunyavirus) and 110% for Sabo virus (SABOV, now classified as AKAV). The 95% limit of detection (TCID50/reaction) was 10-3.61 for AKAV, 10-2.38 for SIMV, 10-3.42 for SHUV, 10-3.32 for SATV, 10-1.67 for SHAV, 100.39 for INGV and 10-2.70 for SABOV.
Collapse
Affiliation(s)
- A A R Camarão
- Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica, 1300-477, Lisbon, Portugal.
| | - R Swanepoel
- Vector and Vector-borne Diseases Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa.
| | - F Boinas
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal.
| | - M Quan
- Vector and Vector-borne Diseases Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa.
| |
Collapse
|
437
|
A New Prevalent Densovirus Discovered in Acari. Insight from Metagenomics in Viral Communities Associated with Two-Spotted Mite ( Tetranychus urticae) Populations. Viruses 2019; 11:v11030233. [PMID: 30866521 PMCID: PMC6466187 DOI: 10.3390/v11030233] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/19/2019] [Accepted: 02/28/2019] [Indexed: 12/14/2022] Open
Abstract
Viral metagenomics and high throughput sequence mining have revealed unexpected diversity, and the potential presence, of parvoviruses in animals from all phyla. Among arthropods, this diversity highlights the poor knowledge that we have regarding the evolutionary history of densoviruses. The aim of this study was to explore densovirus diversity in a small arthropod pest belonging to Acari, the two-spotted spider mite Tetranychus urticae, while using viral metagenomics based on virus-enrichment. Here, we present the viromes obtained from T. urticae laboratory populations made of contigs that are attributed to nine new potential viral species, including the complete sequence of a novel densovirus. The genome of this densovirus has an ambisens genomic organization and an unusually compact size with particularly small non-structural proteins and a predicted major capsid protein that lacks the typical PLA2 motif that is common to all ambidensoviruses described so far. In addition, we showed that this new densovirus had a wide prevalence across populations of mite species tested and a genomic diversity that likely correlates with the host phylogeny. In particular, we observed a low densovirus genomic diversity between the laboratory and natural populations, which suggests that virus within-species evolution is probably slower than initially thought. Lastly, we showed that this novel densovirus can be inoculated to the host plant following feeding by infected mites, and circulate through the plant vascular system. These findings offer new insights into densovirus prevalence, evolution, and ecology.
Collapse
|
438
|
Gałan W, Bąk M, Jakubowska M. Host Taxon Predictor - A Tool for Predicting Taxon of the Host of a Newly Discovered Virus. Sci Rep 2019; 9:3436. [PMID: 30837511 PMCID: PMC6400966 DOI: 10.1038/s41598-019-39847-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/30/2019] [Indexed: 12/04/2022] Open
Abstract
Recent advances in metagenomics provided a valuable alternative to culture-based approaches for better sampling viral diversity. However, some of newly identified viruses lack sequence similarity to any of previously sequenced ones, and cannot be easily assigned to their hosts. Here we present a bioinformatic approach to this problem. We developed classifiers capable of distinguishing eukaryotic viruses from the phages achieving almost 95% prediction accuracy. The classifiers are wrapped in Host Taxon Predictor (HTP) software written in Python which is freely available at https://github.com/wojciech-galan/viruses_classifier. HTP’s performance was later demonstrated on a collection of newly identified viral genomes and genome fragments. In summary, HTP is a culture- and alignment-free approach for distinction between phages and eukaryotic viruses. We have also shown that it is possible to further extend our method to go up the evolutionary tree and predict whether a virus can infect narrower taxa.
Collapse
Affiliation(s)
- Wojciech Gałan
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, ul. Gronostajowa 7, 30-387, Kraków, Poland.
| | - Maciej Bąk
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Małgorzata Jakubowska
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059, Kraków, Poland
| |
Collapse
|
439
|
Gumpper RH, Li W, Luo M. Constraints of Viral RNA Synthesis on Codon Usage of Negative-Strand RNA Virus. J Virol 2019; 93:e01775-18. [PMID: 30541832 PMCID: PMC6384081 DOI: 10.1128/jvi.01775-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/28/2018] [Indexed: 12/14/2022] Open
Abstract
Negative-strand RNA viruses (NSVs) include some of the most pathogenic human viruses known. NSVs completely rely on the host cell for protein translation, but their codon usage bias is often different from that of the host. This discrepancy may have originated from the unique mechanism of NSV RNA synthesis in that the genomic RNA sequestered in the nucleocapsid serves as the template. The stability of the genomic RNA in the nucleocapsid appears to regulate its accessibility to the viral RNA polymerase, thus placing constraints on codon usage to balance viral RNA synthesis. By in situ analyses of vesicular stomatitis virus RNA synthesis, specific activities of viral RNA synthesis were correlated with the genomic RNA sequence. It was found that by simply altering the sequence and not the amino acid that it encoded, a significant reduction, up to an ∼750-fold reduction, in viral RNA transcripts occurred. Through subsequent sequence analysis and thermal shift assays, it was found that the purine/pyrimidine content modulates the overall stability of the polymerase complex, resulting in alteration of the activity of viral RNA synthesis. The codon usage is therefore constrained by the obligation of the NSV genome for viral RNA synthesis.IMPORTANCE Negative-strand RNA viruses (NSVs) include the most pathogenic viruses known. New methods to monitor their evolutionary trends are urgently needed for the development of antivirals and vaccines. The protein translation machinery of the host cell is currently recognized as a main genomic regulator of RNA virus evolution, which works especially well for positive-strand RNA viruses. However, this approach fails for NSVs because it does not consider the unique mechanism of their viral RNA synthesis. For NSVs, the viral RNA-dependent RNA polymerase (vRdRp) must gain access to the genome sequestered in the nucleocapsid. Our work suggests a paradigm shift that the interactions between the RNA genome and the nucleocapsid protein regulate the activity of vRdRp, which selects codon usage.
Collapse
Affiliation(s)
- Ryan H Gumpper
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
- Molecular Basis of Disease, Georgia State University, Atlanta, Georgia, USA
| | - Weike Li
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Ming Luo
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
- Molecular Basis of Disease, Georgia State University, Atlanta, Georgia, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|