401
|
Gomes AQ, Nolasco S, Soares H. Non-coding RNAs: multi-tasking molecules in the cell. Int J Mol Sci 2013; 14:16010-39. [PMID: 23912238 PMCID: PMC3759897 DOI: 10.3390/ijms140816010] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/15/2013] [Accepted: 07/19/2013] [Indexed: 12/15/2022] Open
Abstract
In the last years it has become increasingly clear that the mammalian transcriptome is highly complex and includes a large number of small non-coding RNAs (sncRNAs) and long noncoding RNAs (lncRNAs). Here we review the biogenesis pathways of the three classes of sncRNAs, namely short interfering RNAs (siRNAs), microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs). These ncRNAs have been extensively studied and are involved in pathways leading to specific gene silencing and the protection of genomes against virus and transposons, for example. Also, lncRNAs have emerged as pivotal molecules for the transcriptional and post-transcriptional regulation of gene expression which is supported by their tissue-specific expression patterns, subcellular distribution, and developmental regulation. Therefore, we also focus our attention on their role in differentiation and development. SncRNAs and lncRNAs play critical roles in defining DNA methylation patterns, as well as chromatin remodeling thus having a substantial effect in epigenetics. The identification of some overlaps in their biogenesis pathways and functional roles raises the hypothesis that these molecules play concerted functions in vivo, creating complex regulatory networks where cooperation with regulatory proteins is necessary. We also highlighted the implications of biogenesis and gene expression deregulation of sncRNAs and lncRNAs in human diseases like cancer.
Collapse
Affiliation(s)
- Anita Quintal Gomes
- Health Technology College of Lisbon—Polytechnic Institute of Lisbon, 1990-096 Lisbon, Portugal; E-Mails: (A.Q.G.); (S.N.)
- Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Sofia Nolasco
- Health Technology College of Lisbon—Polytechnic Institute of Lisbon, 1990-096 Lisbon, Portugal; E-Mails: (A.Q.G.); (S.N.)
- Gulbenkian Science Institute, 2780-256 Oeiras, Portugal
- Interdisciplinary Centre of Research in Animal Health (CIISA), Faculty of Veterinary Medicine, 1300-666 Lisbon, Portugal
| | - Helena Soares
- Health Technology College of Lisbon—Polytechnic Institute of Lisbon, 1990-096 Lisbon, Portugal; E-Mails: (A.Q.G.); (S.N.)
- Gulbenkian Science Institute, 2780-256 Oeiras, Portugal
- Center for Chemistry and Biochemistry, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +351-217-500-853; Fax: +351-217-500-088
| |
Collapse
|
402
|
Garitano-Trojaola A, Agirre X, Prósper F, Fortes P. Long non-coding RNAs in haematological malignancies. Int J Mol Sci 2013; 14:15386-422. [PMID: 23887658 PMCID: PMC3759866 DOI: 10.3390/ijms140815386] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/28/2013] [Accepted: 07/09/2013] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are functional RNAs longer than 200 nucleotides in length. LncRNAs are as diverse as mRNAs and they normally share the same biosynthetic machinery based on RNA polymerase II, splicing and polyadenylation. However, lncRNAs have low coding potential. Compared to mRNAs, lncRNAs are preferentially nuclear, more tissue specific and expressed at lower levels. Most of the lncRNAs described to date modulate the expression of specific genes by guiding chromatin remodelling factors; inducing chromosomal loopings; affecting transcription, splicing, translation or mRNA stability; or serving as scaffolds for the organization of cellular structures. They can function in cis, cotranscriptionally, or in trans, acting as decoys, scaffolds or guides. These functions seem essential to allow cell differentiation and growth. In fact, many lncRNAs have been shown to exert oncogenic or tumor suppressor properties in several cancers including haematological malignancies. In this review, we summarize what is known about lncRNAs, the mechanisms for their regulation in cancer and their role in leukemogenesis, lymphomagenesis and hematopoiesis. Furthermore, we discuss the potential of lncRNAs in diagnosis, prognosis and therapy in cancer, with special attention to haematological malignancies.
Collapse
Affiliation(s)
- Andoni Garitano-Trojaola
- Laboratory of Myeloproliferative Syndromes, Oncology Area, Foundation for Applied Medical Research, University of Navarra, Pamplona 31008, Spain; E-Mails: (A.G.-T.); (X.A.); (F.P.)
| | - Xabier Agirre
- Laboratory of Myeloproliferative Syndromes, Oncology Area, Foundation for Applied Medical Research, University of Navarra, Pamplona 31008, Spain; E-Mails: (A.G.-T.); (X.A.); (F.P.)
| | - Felipe Prósper
- Laboratory of Myeloproliferative Syndromes, Oncology Area, Foundation for Applied Medical Research, University of Navarra, Pamplona 31008, Spain; E-Mails: (A.G.-T.); (X.A.); (F.P.)
- Hematology Service and Area of Cell Therapy, University of Navarra Clinic, University of Navarra, Pamplona 31008, Spain
| | - Puri Fortes
- Department of Hepatology and Gene Therapy, Foundation for Applied Medical Research, University of Navarra, Pamplona 31008, Spain
| |
Collapse
|
403
|
Kitagawa M, Kitagawa K, Kotake Y, Niida H, Ohhata T. Cell cycle regulation by long non-coding RNAs. Cell Mol Life Sci 2013; 70:4785-94. [PMID: 23880895 PMCID: PMC3830198 DOI: 10.1007/s00018-013-1423-0] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/24/2013] [Accepted: 07/04/2013] [Indexed: 02/07/2023]
Abstract
The mammalian cell cycle is precisely controlled by cyclin-dependent kinases (CDKs) and related pathways such as the RB and p53 pathways. Recent research on long non-coding RNAs (lncRNAs) indicates that many lncRNAs are involved in the regulation of critical cell cycle regulators such as the cyclins, CDKs, CDK inhibitors, pRB, and p53. These lncRNAs act as epigenetic regulators, transcription factor regulators, post-transcription regulators, and protein scaffolds. These cell cycle-regulated lncRNAs mainly control cellular levels of cell cycle regulators via various mechanisms, and may provide diversity and reliability to the general cell cycle. Interestingly, several lncRNAs are induced by DNA damage and participate in cell cycle arrest or induction of apoptosis as DNA damage responses. Therefore, deregulations of these cell cycle regulatory lncRNAs may be involved in tumorigenesis, and they are novel candidate molecular targets for cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3125, Japan,
| | | | | | | | | |
Collapse
|
404
|
Long and short non-coding RNAs as regulators of hematopoietic differentiation. Int J Mol Sci 2013; 14:14744-70. [PMID: 23860209 PMCID: PMC3742271 DOI: 10.3390/ijms140714744] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/05/2013] [Accepted: 07/09/2013] [Indexed: 02/06/2023] Open
Abstract
Genomic analyses estimated that the proportion of the genome encoding proteins corresponds to approximately 1.5%, while at least 66% are transcribed, suggesting that many non-coding DNA-regions generate non-coding RNAs (ncRNAs). The relevance of these ncRNAs in biological, physiological as well as in pathological processes increased over the last two decades with the understanding of their implication in complex regulatory networks. This review particularly focuses on the involvement of two large families of ncRNAs, namely microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the regulation of hematopoiesis. To date, miRNAs have been widely studied, leading to a wealth of data about processing, regulation and mechanisms of action and more specifically, their involvement in hematopoietic differentiation. Notably, the interaction of miRNAs with the regulatory network of transcription factors is well documented whereas roles, regulation and mechanisms of lncRNAs remain largely unexplored in hematopoiesis; this review gathers current data about lncRNAs as well as both potential and confirmed roles in normal and pathological hematopoiesis.
Collapse
|
405
|
Holdt LM, Hoffmann S, Sass K, Langenberger D, Scholz M, Krohn K, Finstermeier K, Stahringer A, Wilfert W, Beutner F, Gielen S, Schuler G, Gäbel G, Bergert H, Bechmann I, Stadler PF, Thiery J, Teupser D. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet 2013; 9:e1003588. [PMID: 23861667 PMCID: PMC3701717 DOI: 10.1371/journal.pgen.1003588] [Citation(s) in RCA: 302] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/09/2013] [Indexed: 01/01/2023] Open
Abstract
The chromosome 9p21 (Chr9p21) locus of coronary artery disease has been identified in the first surge of genome-wide association and is the strongest genetic factor of atherosclerosis known today. Chr9p21 encodes the long non-coding RNA (ncRNA) antisense non-coding RNA in the INK4 locus (ANRIL). ANRIL expression is associated with the Chr9p21 genotype and correlated with atherosclerosis severity. Here, we report on the molecular mechanisms through which ANRIL regulates target-genes in trans, leading to increased cell proliferation, increased cell adhesion and decreased apoptosis, which are all essential mechanisms of atherogenesis. Importantly, trans-regulation was dependent on Alu motifs, which marked the promoters of ANRIL target genes and were mirrored in ANRIL RNA transcripts. ANRIL bound Polycomb group proteins that were highly enriched in the proximity of Alu motifs across the genome and were recruited to promoters of target genes upon ANRIL over-expression. The functional relevance of Alu motifs in ANRIL was confirmed by deletion and mutagenesis, reversing trans-regulation and atherogenic cell functions. ANRIL-regulated networks were confirmed in 2280 individuals with and without coronary artery disease and functionally validated in primary cells from patients carrying the Chr9p21 risk allele. Our study provides a molecular mechanism for pro-atherogenic effects of ANRIL at Chr9p21 and suggests a novel role for Alu elements in epigenetic gene regulation by long ncRNAs. Chromosome 9p21 is the strongest genetic factor for coronary artery disease and encodes the long non-coding RNA (ncRNA) ANRIL. Here, we show that increased ANRIL expression mediates atherosclerosis risk through trans-regulation of gene networks leading to pro-atherogenic cellular properties, such as increased proliferation and adhesion. ANRIL may act as a scaffold, guiding effector-proteins to chromatin. These functions depend on an Alu motif present in ANRIL RNA and mirrored several thousand-fold in the genome. Alu elements are a family of primate-specific short interspersed repeat elements (SINEs) and have been linked with genetic disease. Current models propose that either exonisation of Alu elements or changes of cis-regulation of adjacent genes are the underlying disease mechanisms. Our work extends the function of Alu transposons to regulatory components of long ncRNAs with a central role in epigenetic trans-regulation. Furthermore, it implies a pivotal role for Alu elements in genetically determined vascular disease and describes a plausible molecular mechanism for a pro-atherogenic function of ANRIL at chromosome 9p21.
Collapse
Affiliation(s)
- Lesca M. Holdt
- LIFE – Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Steve Hoffmann
- LIFE – Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany
- Transcriptome Bioinformatics Group and Interdisciplinary Centre for Bioinformatics, University Leipzig, Leipzig, Germany
| | - Kristina Sass
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - David Langenberger
- LIFE – Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany
- Transcriptome Bioinformatics Group and Interdisciplinary Centre for Bioinformatics, University Leipzig, Leipzig, Germany
| | - Markus Scholz
- LIFE – Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany
- Institute for Medical Informatics, Statistics and Epidemiology, University Leipzig, Leipzig, Germany
| | - Knut Krohn
- LIFE – Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany
- Interdisciplinary Center for Clinical Research, University Leipzig, Leipzig, Germany
| | - Knut Finstermeier
- LIFE – Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Anika Stahringer
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Wolfgang Wilfert
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Frank Beutner
- LIFE – Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
- Department of Internal Medicine/Cardiology, Heart Center, University Leipzig, Leipzig, Germany
| | - Stephan Gielen
- LIFE – Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany
- Department of Internal Medicine/Cardiology, Heart Center, University Leipzig, Leipzig, Germany
| | - Gerhard Schuler
- LIFE – Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany
- Department of Internal Medicine/Cardiology, Heart Center, University Leipzig, Leipzig, Germany
| | - Gabor Gäbel
- Department of General, Thoracic, and Vascular Surgery, University Dresden, Dresden, Germany
| | - Hendrik Bergert
- Department of General, Thoracic, and Vascular Surgery, University Dresden, Dresden, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University Leipzig, Leipzig, Germany
| | - Peter F. Stadler
- LIFE – Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany
- Transcriptome Bioinformatics Group and Interdisciplinary Centre for Bioinformatics, University Leipzig, Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Joachim Thiery
- LIFE – Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Daniel Teupser
- LIFE – Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
406
|
Tushir JS, Akbarian S. Chromatin-bound RNA and the neurobiology of psychiatric disease. Neuroscience 2013; 264:131-41. [PMID: 23831425 DOI: 10.1016/j.neuroscience.2013.06.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 11/18/2022]
Abstract
A large, and still rapidly expanding literature on epigenetic regulation in the nervous system has provided fundamental insights into the dynamic regulation of DNA methylation and post-translational histone modifications in the context of neuronal plasticity in health and disease. Remarkably, however, very little is known about the potential role of chromatin-bound RNAs, including many long non-coding transcripts and various types of small RNAs. Here, we provide an overview on RNA-mediated regulation of chromatin structure and function, with focus on histone lysine methylation and psychiatric disease. Examples of recently discovered chromatin-bound long non-coding RNAs important for neuronal health and function include the brain-derived neurotrophic factor antisense transcript (Bdnf-AS) which regulates expression of the corresponding sense transcript, and LOC389023 which is associated with human-specific histone methylation signatures at the chromosome 2q14.1 neurodevelopmental risk locus by regulating expression of DPP10, an auxillary subunit for voltage-gated K(+) channels. We predict that the exploration of chromatin-bound RNA will significantly advance our current knowledge base in neuroepigenetics and biological psychiatry.
Collapse
Affiliation(s)
- J S Tushir
- Friedman Brain Institute, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - S Akbarian
- Friedman Brain Institute, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
407
|
Zuo C, Wang Z, Lu H, Dai Z, Liu X, Cui L. Expression profiling of lncRNAs in C3H10T1/2 mesenchymal stem cells undergoing early osteoblast differentiation. Mol Med Rep 2013; 8:463-7. [PMID: 23799588 DOI: 10.3892/mmr.2013.1540] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 06/04/2013] [Indexed: 01/13/2023] Open
Abstract
Protein‑coding genes and small non‑coding microRNAs involved in the guidance of differentiation in mesenchymal stem cells (MSCs) into osteoblasts have been extensively investigated in previous studies. However, long non‑coding RNAs (lncRNAs), which account for a large proportion of the genomic sequences in numerous species, have not yet been reported. In the present study, the lncRNA expression profile was analyzed using the Arraystar lncRNA array in C3H10T1/2 MSCs undergoing early osteoblast differentiation and 116 differentially expressed lncRNAs were identified between BMP‑2 treated and untreated groups. Among these lncRNAs, 59 were upregulated and 57 were downregulated in BMP‑2 treated groups. In addition, 24 cooperatively differentially expressed lncRNAs and nearby mRNA pairs were found. For example, mouselincRNA0231 and its nearby gene, EGFR, were downregulated, while lncRNA NR_027652 and its nearby gene, DLK1, were upregulated. These observations may be part of the regulatory mechanisms of lncRNAs in the control of osteoblast differentiaton. In conclusion, results of the present study indicate that lncRNA expression profiles are significantly altered in C3H10T1/2 undergoing early osteoblast differentiation and these results may provide insight into the mechanisms responsible for osteoblast differentiation.
Collapse
Affiliation(s)
- Changqing Zuo
- Department of Pharmacology, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China.
| | | | | | | | | | | |
Collapse
|
408
|
Abstract
Long non-coding RNAs (lncRNAs) have been found to perform various functions in a wide variety of important biological processes. To make easier interpretation of lncRNA functionality and conduct deep mining on these transcribed sequences, it is convenient to classify lncRNAs into different groups. Here, we summarize classification methods of lncRNAs according to their four major features, namely, genomic location and context, effect exerted on DNA sequences, mechanism of functioning and their targeting mechanism. In combination with the presently available function annotations, we explore potential relationships between different classification categories, and generalize and compare biological features of different lncRNAs within each category. Finally, we present our view on potential further studies. We believe that the classifications of lncRNAs as indicated above are of fundamental importance for lncRNA studies, helpful for further investigation of specific lncRNAs, for formulation of new hypothesis based on different features of lncRNA and for exploration of the underlying lncRNA functional mechanisms.
Collapse
Affiliation(s)
- Lina Ma
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing, China
| | - Vladimir B. Bajic
- King Abdullah University of Science and Technology (KAUST); Computational Bioscience Research Center; Computer, Electrical and Mathematical Sciences and Engineering Division; Thuwal, Kingdom of Saudi Arabia
| | - Zhang Zhang
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing, China
- Correspondence to: Zhang Zhang,
| |
Collapse
|
409
|
Schenkein HA, Loos BG. Inflammatory mechanisms linking periodontal diseases to cardiovascular diseases. J Periodontol 2013; 84:S51-69. [DOI: 10.1902/jop.2013.134006] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
410
|
Sun J, Zhou M, Mao ZT, Hao DP, Wang ZZ, Li CX. Systematic analysis of genomic organization and structure of long non-coding RNAs in the human genome. FEBS Lett 2013; 587:976-82. [PMID: 23454638 DOI: 10.1016/j.febslet.2013.02.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/17/2013] [Accepted: 02/19/2013] [Indexed: 12/28/2022]
Abstract
The genomic architecture of several functional elements in animals and plants, such as microRNAs and tRNA, has been better characterized. As yet, there is very little known about genomic organization and structure of lncRNA in animals and plants. Here, we conducted a genome-wide systematic computational analysis of genomic architecture of lncRNAs, and further provided a more comprehensive comparative view of genomic organization between lncRNAs and several other functional elements in the human genome. Our study not only provides comprehensive knowledge for further studies into the correlations between the genomic architecture of lncRNAs and their important functional roles in diverse cellular processes and in disease, but also will be valuable for understanding the origin and evolution of lncRNAs.
Collapse
Affiliation(s)
- Jie Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | | | | | | | | | | |
Collapse
|
411
|
Detection of a long non-coding RNA (CCAT1) in living cells and human adenocarcinoma of colon tissues using FIT-PNA molecular beacons. Cancer Lett 2013; 352:90-6. [PMID: 23416875 DOI: 10.1016/j.canlet.2013.02.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/06/2013] [Accepted: 02/06/2013] [Indexed: 02/06/2023]
Abstract
Although the function and mechanism of action of long non-coding RNAs (lncRNA) is still not completely known, studies have shown their potential role in the control of gene expression and regulation, in cellular proliferation and invasiveness at the transcriptional level via multiple mechanisms. Recently, colon cancer associated transcript 1 (CCAT1) lncRNA was found to be expressed in colorectal cancer (CRC) tumors but not in normal tissue. This study aimed to study the ability of a CCAT1-specific peptide nucleic acid (PNA) based molecular beacons (TO-PNA-MB) to serve as a diagnostic probe for in vitro, ex vivo, and in situ (human colon biopsies) detection of CRC. The data showed enhanced fluorescence upon in vitro hybridization to RNA extracted from CCAT1 expressing cells (HT-29, SW-480) compared to control cells (SK-Mel-2). Uptake of TO-PNA-MBs into cells was achieved by covalently attaching cell penetrating peptides (CPPs) to the TO-PNA-MB probes. In situ hybridization of selected TO-PNA-MB in human CRC specimens was shown to detect CCAT1 expression in all (4/4) subjects with pre-cancerous adenomas, and in all (8/8) patients with invasive adenocarcinoma (penetrating the bowel wall) tumors. The results showed that CCAT1 TO-PNA-MB is a powerful diagnostic tool for the specific identification of CRC, suggesting that with the aid of an appropriate pharmaceutical vehicle, real time in vivo imaging is feasible. TO-PNA-MB may enable identifying occult metastatic disease during surgery, or differentiating in real time in vivo imaging, between benign and malignant lesions.
Collapse
|
412
|
Kraus P, Sivakamasundari V, Lim SL, Xing X, Lipovich L, Lufkin T. Making sense of Dlx1 antisense RNA. Dev Biol 2013; 376:224-35. [PMID: 23415800 DOI: 10.1016/j.ydbio.2013.01.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 01/27/2013] [Accepted: 01/29/2013] [Indexed: 12/13/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been recently recognized as a major class of regulators in mammalian systems. LncRNAs function by diverse and heterogeneous mechanisms in gene regulation, and are key contributors to development, neurological disorders, and cancer. This emerging importance of lncRNAs, along with recent reports of a functional lncRNA encoded by the mouse Dlx5-Dlx6 locus, led us to interrogate the biological significance of another distal-less antisense lncRNA, the previously uncharacterized Dlx1 antisense (Dlx1as) transcript. We have functionally ablated this antisense RNA via a highly customized gene targeting approach in vivo. Mice devoid of Dlx1as RNA are viable and fertile, and display a mild skeletal and neurological phenotype reminiscent of a Dlx1 gain-of function phenotype, suggesting a role for this non-coding antisense RNA in modulating Dlx1 transcript levels and stability. The reciprocal relationship between Dlx1as and Dlx1 places this sense-antisense pair into a growing class of mammalian lncRNA-mRNA pairs characterized by inverse regulation.
Collapse
Affiliation(s)
- Petra Kraus
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | | | | | | | | | | |
Collapse
|
413
|
Jalali S, Bhartiya D, Lalwani MK, Sivasubbu S, Scaria V. Systematic transcriptome wide analysis of lncRNA-miRNA interactions. PLoS One 2013; 8:e53823. [PMID: 23405074 PMCID: PMC3566149 DOI: 10.1371/journal.pone.0053823] [Citation(s) in RCA: 360] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 12/06/2012] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are a recently discovered class of non-protein coding RNAs, which have now increasingly been shown to be involved in a wide variety of biological processes as regulatory molecules. The functional role of many of the members of this class has been an enigma, except a few of them like Malat and HOTAIR. Little is known regarding the regulatory interactions between noncoding RNA classes. Recent reports have suggested that lncRNAs could potentially interact with other classes of non-coding RNAs including microRNAs (miRNAs) and modulate their regulatory role through interactions. We hypothesized that lncRNAs could participate as a layer of regulatory interactions with miRNAs. The availability of genome-scale datasets for Argonaute targets across human transcriptome has prompted us to reconstruct a genome-scale network of interactions between miRNAs and lncRNAs. RESULTS We used well characterized experimental Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP) datasets and the recent genome-wide annotations for lncRNAs in public domain to construct a comprehensive transcriptome-wide map of miRNA regulatory elements. Comparative analysis revealed that in addition to targeting protein-coding transcripts, miRNAs could also potentially target lncRNAs, thus participating in a novel layer of regulatory interactions between noncoding RNA classes. Furthermore, we have modeled one example of miRNA-lncRNA interaction using a zebrafish model. We have also found that the miRNA regulatory elements have a positional preference, clustering towards the mid regions and 3' ends of the long noncoding transcripts. We also further reconstruct a genome-wide map of miRNA interactions with lncRNAs as well as messenger RNAs. CONCLUSIONS This analysis suggests widespread regulatory interactions between noncoding RNAs classes and suggests a novel functional role for lncRNAs. We also present the first transcriptome scale study on miRNA-lncRNA interactions and the first report of a genome-scale reconstruction of a noncoding RNA regulatory interactome involving lncRNAs.
Collapse
Affiliation(s)
- Saakshi Jalali
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Deeksha Bhartiya
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Mukesh Kumar Lalwani
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Sridhar Sivasubbu
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Vinod Scaria
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| |
Collapse
|
414
|
Abstract
The conventional view of gene regulation in biology has centered around protein-coding genes via the central dogma of DNA-->mRNA-->protein. The discovery of thousands of long non-coding RNAs (lncRNAs) has certainly changed our view of the complexity of mammalian genomes and transcriptomes, as well as many other aspects of biology including transcriptional and posttranscriptional regulation of gene expression. Accumulating reports of misregulated lncRNA expression across numerous cancer types suggest that aberrant lncRNA expression may be a major contributor to tumorigenesis. Here, we summarize recent data about the biological characteristics of lncRNAs in cancer pathways. These include examples with a wide range of molecular mechanisms involved in gene regulation. We also consider the medical implications, and discuss how lncRNAs can be used for cancer diagnosis and prognosis, and serve as potential therapeutic targets. As more examples of regulation by lncRNA are uncovered, one might predict that the large transcripts will eventually rival small RNAs and proteins in their versatility as regulators of genetic information.
Collapse
|
415
|
Dkhil MA, Al-Quraishy S, Delic D, Abdel-Baki AA, Wunderlich F. Testosterone-induced persistent susceptibility to Plasmodium chabaudi malaria: long-term changes of lincRNA and mRNA expression in the spleen. Steroids 2013; 78:220-7. [PMID: 23123741 DOI: 10.1016/j.steroids.2012.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 10/01/2012] [Accepted: 10/12/2012] [Indexed: 10/27/2022]
Abstract
Testosterone (T) is known to induce persistent susceptibility to blood-stage malaria of Plasmodium chabaudi in otherwise resistant female C57BL/6 mice, which is associated with permanent changes in mRNA expression of the liver. Here, we investigate the spleen as the major effector against blood-stage malaria for any possible T-induced long-term effects on lincRNA and mRNA expression. Female C57BL/6 mice were treated with T for 3 weeks, then T was withdrawn for 12 weeks before challenging with P. chabaudi. LincRNA and mRNA expression was examined after 12 weeks of T-withdrawal and after subsequent infections using Agilent whole mouse genome oligo microarrays. Our data show for the first time long-term effects of T on lincRNA expression evidenced directly as persistent changes after T-withdrawal for 12 weeks and indirectly as altered responsiveness of expression to P. chabaudi infections. There are 3 lincRNA-species upregulated and 10 lincRNAs downregulated by more than 2-fold (p<0.01). In addition, 11 and 10 mRNAs are persistently up- and downregulated by T, respectively. These changes remain not sustained during infections at peak parasitemia, when 15 other lincRNAs and 9 other mRNAs exhibit an altered expression. The only exception is the Tnk1-mRNA encoding the non-receptor tyrosine kinase 1 that is persistently downregulated by 0.34-fold after T-withdrawal and that becomes upregulated by 5.9-fold upon infection at peak parasitemia, suggesting an involvement of tyrosine phosphorylation by Tnk1 in mediating long-term effects of T in the spleen. The T-induced changes in splenic mRNA expression are totally different to those previously observed in the liver. Collectively, our data support the view that T induces long-term organ-specific changes in both lincRNA and mRNA expression, that presumably contribute to organ-specific dysfunctions upon infection with blood-stage malaria of P. chabaudi.
Collapse
Affiliation(s)
- Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | | | | | | | | |
Collapse
|
416
|
Wang L, Park HJ, Dasari S, Wang S, Kocher JP, Li W. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res 2013; 41:e74. [PMID: 23335781 PMCID: PMC3616698 DOI: 10.1093/nar/gkt006] [Citation(s) in RCA: 1353] [Impact Index Per Article: 112.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Thousands of novel transcripts have been identified using deep transcriptome sequencing. This discovery of large and ‘hidden’ transcriptome rejuvenates the demand for methods that can rapidly distinguish between coding and noncoding RNA. Here, we present a novel alignment-free method, Coding Potential Assessment Tool (CPAT), which rapidly recognizes coding and noncoding transcripts from a large pool of candidates. To this end, CPAT uses a logistic regression model built with four sequence features: open reading frame size, open reading frame coverage, Fickett TESTCODE statistic and hexamer usage bias. CPAT software outperformed (sensitivity: 0.96, specificity: 0.97) other state-of-the-art alignment-based software such as Coding-Potential Calculator (sensitivity: 0.99, specificity: 0.74) and Phylo Codon Substitution Frequencies (sensitivity: 0.90, specificity: 0.63). In addition to high accuracy, CPAT is approximately four orders of magnitude faster than Coding-Potential Calculator and Phylo Codon Substitution Frequencies, enabling its users to process thousands of transcripts within seconds. The software accepts input sequences in either FASTA- or BED-formatted data files. We also developed a web interface for CPAT that allows users to submit sequences and receive the prediction results almost instantly.
Collapse
Affiliation(s)
- Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
417
|
Abstract
Long non-coding RNA have emerged as an increasingly well studied subset of non-coding RNAs (ncRNAs) following their recent discovery in a number of organisms including humans and characterization of their functional and regulatory roles in variety of distinct cellular mechanisms. The recent annotations of long ncRNAs in humans peg their numbers as similar to protein-coding genes. However, despite the rapid advancements in the field the functional characterization and biological roles of most of the long ncRNAs still remain unidentified, although some candidate long ncRNAs have been extensively studied for their roles in cancers and biological phenomena such as X-inactivation and epigenetic regulation of genes. A number of recent reports suggest an exciting possibility of long ncRNAs mediating host response and immune function, suggesting an elaborate network of regulatory interactions mediated through ncRNAs in infection. The present role of long ncRNAs in host-pathogen cross talk is limited to a handful of mechanistically distinct examples. The current commentary chronicles the findings of these reports on the role of long ncRNAs in infection biology and further highlights the bottlenecks and future directions toward understanding the biological significance of the role of long ncRNAs in infection biology.
Collapse
Affiliation(s)
- Vinod Scaria
- GN Ramachandran Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research Delhi, India
| | | |
Collapse
|
418
|
Ma H, Hao Y, Dong X, Gong Q, Chen J, Zhang J, Tian W. Molecular mechanisms and function prediction of long noncoding RNA. ScientificWorldJournal 2012; 2012:541786. [PMID: 23319885 PMCID: PMC3540756 DOI: 10.1100/2012/541786] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 11/21/2012] [Indexed: 12/25/2022] Open
Abstract
The central dogma of gene expression considers RNA as the carrier of genetic information from DNA to protein. However, it has become more and more clear that RNA plays more important roles than simply being the information carrier. Recently, whole genome transcriptomic analyses have identified large numbers of dynamically expressed long noncoding RNAs (lncRNAs), many of which are involved in a variety of biological functions. Even so, the functions and molecular mechanisms of most lncRNAs still remain elusive. Therefore, it is necessary to develop computational methods to predict the function of lncRNAs in order to accelerate the study of lncRNAs. Here, we review the recent progress in the identification of lncRNAs, the molecular functions and mechanisms of lncRNAs, and the computational methods for predicting the function of lncRNAs.
Collapse
Affiliation(s)
- Handong Ma
- Institute of Biostatistics, School of Life Science, Fudan University, 220 Handan Road, Shanghai 2004333, China
| | | | | | | | | | | | | |
Collapse
|
419
|
Abstract
Recent studies show that transcription of the mammalian genome is not only pervasive but also enormously complex. It is estimated that an average of 10 transcription units, the vast majority of which make long noncoding RNAs (lncRNAs), may overlap each traditional coding gene. These lncRNAs include not only antisense, intronic, and intergenic transcripts but also pseudogenes and retrotransposons. Do they universally have function, or are they merely transcriptional by-products of conventional coding genes? A glimpse into the molecular biology of multiple emerging lncRNA systems reveals the "Wild West" landscape of their functions and mechanisms and the key problems to solve in the years ahead toward understanding these intriguing macromolecules.
Collapse
Affiliation(s)
- Jeannie T Lee
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02138, USA.
| |
Collapse
|
420
|
Stabilization of human interferon-α1 mRNA by its antisense RNA. Cell Mol Life Sci 2012; 70:1451-67. [PMID: 23224365 PMCID: PMC3607724 DOI: 10.1007/s00018-012-1216-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 10/31/2012] [Accepted: 11/19/2012] [Indexed: 12/15/2022]
Abstract
Antisense transcription is a widespread phenomenon in the mammalian genome and is believed to play a role in regulating gene expression. However, the exact functional significance of antisense transcription is largely unknown. Here, we show that natural antisense (AS) RNA is an important modulator of interferon-α1 (IFN-α1) mRNA levels. A ~4-kb, spliced IFN-α1 AS RNA targets a single-stranded region within a conserved secondary structure element of the IFN-α1 mRNA, an element which was previously reported to function as the nuclear export element. Following infection of human Namalwa lymphocytes with Sendai virus or infection of guinea pig 104C1 fetal fibroblasts with influenza virus A/PR/8/34, expression of IFN-α1 AS RNA becomes elevated. This elevated expression results in increased IFN-α1 mRNA stability because of the cytoplasmic (but not nuclear) interaction of the AS RNA with the mRNA at the single-stranded region. This results in increased IFN-α protein production. The silencing of IFN-α1 AS RNA by sense oligonucleotides or over-expression of antisense oligoribonucleotides, which were both designed from the target region, confirmed the critical role of the AS RNA in the post-transcriptional regulation of IFN-α1 mRNA levels. This AS RNA stabilization effect is caused by the prevention of the microRNA (miRNA)-induced destabilization of IFN-α1 mRNA due to masking of the miR-1270 binding site. This discovery not only reveals a regulatory pathway for controlling IFN-α1 gene expression during the host innate immune response against virus infection but also suggests a reason for the large number of overlapping complementary transcripts with previously unknown function.
Collapse
|
421
|
Zhu Z, Gao X, He Y, Zhao H, Yu Q, Jiang D, Zhang P, Ma X, Huang H, Dong D, Wan J, Gu Z, Jiang X, Yu L, Gao Y. An insertion/deletion polymorphism within RERT-lncRNA modulates hepatocellular carcinoma risk. Cancer Res 2012; 72:6163-6172. [PMID: 23026137 DOI: 10.1158/0008-5472.can-12-0010] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Prolyl hydroxylase 1 (EGLN2) is known to affect tumorigenesis by regulating the degradation of hypoxia-inducible factor. Polymorphisms in EGLN2 may facilitate cancer cell survival under hypoxic conditions and directly associate with cancer susceptibility. Here, we examined the contribution of a 4-bp insertion/deletion polymorphism (rs10680577) within the distal promoter of EGLN2 to the risk of hepatocelluar carcinoma (HCC) in Chinese populations. The contribution of rs10680577 to HCC risk was investigated in 623 HCC cases and 1,242 controls and replicated in an independent case-control study consisting of 444 HCC cases and 450 controls. Logistic regression analysis showed that the deletion allele of rs10680577 was significantly associated with increased risk for HCC occurrence in both case-control studies [OR = 1.40; 95% confidence interval (CI) = 1.18-1.66, P < 0.0001; OR = 1.49; 95% CI = 1.18-1.88, P = 0.0007]. Such positive association was more pronounced in current smokers (OR = 3.49, 95% CI = 2.24-5.45) than nonsmokers (OR = 1.24, 95% CI = 1.03-1.50; heterogeneity P = 0.0002). Genotype-phenotype correlation studies showed that the deletion allele was significantly correlated with higher expression of both EGLN2 and RERT-lncRNA [a long noncoding RNA whose sequence overlaps with Ras-related GTP-binding protein 4b (RAB4B) and EGLN2)] in vivo and in vitro. Furthermore, RERT-lncRNA expression was also significantly correlated with EGLN2 expression in vivo, consistent with in vitro gain-of-function study that showed overexpressing RERT-lncRNA upregulated EGLN2. Finally, in silico prediction suggested that the insertion allele could disrupt the structure of RERT-lncRNA. Taken together, our findings provided strong evidence for the hypothesis that rs10680577 contributes to hepatocarcinogenesis, possibly by affecting RERT-lncRNA structure and subsequently EGLN2 expression, making it a promising biomarker for early diagnosis of HCC.
Collapse
Affiliation(s)
- Zhansheng Zhu
- Department of Forensic Medicine, Key Laboratory of Pain Research & Therapy, Medical College of Soochow University, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
422
|
Benetatos L, Voulgaris E, Vartholomatos G, Hatzimichael E. Non-coding RNAs and EZH2 interactions in cancer: long and short tales from the transcriptome. Int J Cancer 2012; 133:267-74. [PMID: 23001607 DOI: 10.1002/ijc.27859] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 08/14/2012] [Indexed: 12/12/2022]
Abstract
A large amount of data indicates that non-coding RNAs represent more than the "dark matter" of the genome. Both microRNAs and long non-coding RNAs are involved in several fundamental biologic processes, and their deregulation may lead in oncogenesis. Interacting with the Polycomb-repressive complex 2 subunit EZH2, they could affect the expression of protein-coding genes and form feedback networks and autoregulatory loops. They can also form networks with upstream and downstream important factors, in which EZH2 represent the stabilizing factor of the pathway. As such non-coding RNAs affect the epigenetic modifications leading to malignant transformation.
Collapse
|
423
|
Skinner MK, Mohan M, Haque MM, Zhang B, Savenkova MI. Epigenetic transgenerational inheritance of somatic transcriptomes and epigenetic control regions. Genome Biol 2012; 13:R91. [PMID: 23034163 PMCID: PMC3491419 DOI: 10.1186/gb-2012-13-10-r91] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 08/23/2012] [Accepted: 10/03/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Environmentally induced epigenetic transgenerational inheritance of adult onset disease involves a variety of phenotypic changes, suggesting a general alteration in genome activity. RESULTS Investigation of different tissue transcriptomes in male and female F3 generation vinclozolin versus control lineage rats demonstrated all tissues examined had transgenerational transcriptomes. The microarrays from 11 different tissues were compared with a gene bionetwork analysis. Although each tissue transgenerational transcriptome was unique, common cellular pathways and processes were identified between the tissues. A cluster analysis identified gene modules with coordinated gene expression and each had unique gene networks regulating tissue-specific gene expression and function. A large number of statistically significant over-represented clusters of genes were identified in the genome for both males and females. These gene clusters ranged from 2-5 megabases in size, and a number of them corresponded to the epimutations previously identified in sperm that transmit the epigenetic transgenerational inheritance of disease phenotypes. CONCLUSIONS Combined observations demonstrate that all tissues derived from the epigenetically altered germ line develop transgenerational transcriptomes unique to the tissue, but common epigenetic control regions in the genome may coordinately regulate these tissue-specific transcriptomes. This systems biology approach provides insight into the molecular mechanisms involved in the epigenetic transgenerational inheritance of a variety of adult onset disease phenotypes.
Collapse
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University,
Pullman, WA 99164-4236, USA
| | - Manikkam Mohan
- Center for Reproductive Biology, School of Biological Sciences, Washington State University,
Pullman, WA 99164-4236, USA
| | - Md M Haque
- Center for Reproductive Biology, School of Biological Sciences, Washington State University,
Pullman, WA 99164-4236, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Mount
Sinai School of Medicine, New York, NY 10029, USA
| | - Marina I Savenkova
- Center for Reproductive Biology, School of Biological Sciences, Washington State University,
Pullman, WA 99164-4236, USA
| |
Collapse
|
424
|
Li Q, Su Z, Xu X, Liu G, Song X, Wang R, Sui X, Liu T, Chang X, Huang D. AS1DHRS4, a head-to-head natural antisense transcript, silences the DHRS4 gene cluster in cis and trans. Proc Natl Acad Sci U S A 2012; 109:14110-5. [PMID: 22891334 PMCID: PMC3435198 DOI: 10.1073/pnas.1116597109] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The human genome, like other mammalian genomes, encodes numerous natural antisense transcripts (NATs) that have been classified into head-to-head, tail-to-tail, or fully overlapped categories in reference to their sense transcripts. Evidence for NAT-mediated epigenetic silencing of sense transcription remains scanty. The DHRS4 gene encodes a metabolic enzyme and forms a gene cluster with its two immediately downstream homologous genes, DHRS4L2 and DHRS4L1, generated by gene duplication. We identified a head-to-head NAT of DHRS4, designated AS1DHRS4, which markedly regulates the expression of these three genes in the DHRS4 gene cluster. By pairing with ongoing sense transcripts, AS1DHRS4 not only mediates deacetylation of histone H3 and demethylation of H3K4 in cis for the DHRS4 gene, but also interacts physically in trans with the epigenetic modifiers H3K9- and H3K27-specific histone methyltransferases G9a and EZH2, targeting the promoters of the downstream DHRS4L2 and DHRS4L1 genes to induce local repressive H3K9me2 and H3K27me3 histone modifications. Furthermore, AS1DHRS4 induces DNA methylation in the promoter regions of DHRS4L2 by recruiting DNA methyltransferases. This study demonstrates that AS1DHRS4, as a long noncoding RNA, simultaneously controls the chromatin state of each gene within the DHRS4 gene cluster in a discriminative manner. This finding provides an example of transcriptional control over the multiple and highly homologous genes in a tight gene cluster, and may help explain the role of antisense RNAs in the regulation of duplicated genes as the result of genomic evolution.
Collapse
|
425
|
A two-piece derivative of a group I intron RNA as a platform for designing self-assembling RNA templates to promote Peptide ligation. J Nucleic Acids 2012; 2012:305867. [PMID: 22966423 PMCID: PMC3432377 DOI: 10.1155/2012/305867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 07/17/2012] [Indexed: 12/16/2022] Open
Abstract
Multicomponent RNA-peptide complexes are attractive from the viewpoint of artificial design of functional biomacromolecular systems. We have developed self-folding and self-assembling RNAs that serve as templates to assist chemical ligation between two reactive peptides with RNA-binding capabilities. The design principle of previous templates, however, can be applied only to limited classes of RNA-binding peptides. In this study, we employed a two-piece derivative of a group I intron RNA from the Tetrahymena large subunit ribosomal RNA (LSU rRNA) as a platform for new template RNAs. In this group I intron-based self-assembling platform, modules for the recognition of substrate peptides can be installed independently from modules holding the platform structure. The new self-assembling platform allows us to expand the repertoire of substrate peptides in template RNA design.
Collapse
|
426
|
Jalali S, Jayaraj GG, Scaria V. Integrative transcriptome analysis suggest processing of a subset of long non-coding RNAs to small RNAs. Biol Direct 2012; 7:25. [PMID: 22871084 PMCID: PMC3477000 DOI: 10.1186/1745-6150-7-25] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 07/13/2012] [Indexed: 12/22/2022] Open
Abstract
Background The availability of sequencing technology has enabled understanding of transcriptomes through genome-wide approaches including RNA-sequencing. Contrary to the previous assumption that large tracts of the eukaryotic genomes are not transcriptionally active, recent evidence from transcriptome sequencing approaches have revealed pervasive transcription in many genomes of higher eukaryotes. Many of these loci encode transcripts that have no obvious protein-coding potential and are designated as non-coding RNA (ncRNA). Non-coding RNAs are classified empirically as small and long non-coding RNAs based on the size of the functional RNAs. Each of these classes is further classified into functional subclasses. Although microRNAs (miRNA), one of the major subclass of ncRNAs, have been extensively studied for their roles in regulation of gene expression and involvement in a large number of patho-physiological processes, the functions of a large proportion of long non-coding RNAs (lncRNA) still remains elusive. We hypothesized that some lncRNAs could potentially be processed to small RNA and thus could have a dual regulatory output. Results Integration of large-scale independent experimental datasets in public domain revealed that certain well studied lncRNAs harbor small RNA clusters. Expression analysis of the small RNA clusters in different tissue and cell types reveal that they are differentially regulated suggesting a regulated biogenesis mechanism. Conclusions Our analysis suggests existence of a potentially novel pathway for lncRNA processing into small RNAs. Expression analysis, further suggests that this pathway is regulated. We argue that this evidence supports our hypothesis, though limitations of the datasets and analysis cannot completely rule out alternate possibilities. Further in-depth experimental verification of the observation could potentially reveal a novel pathway for biogenesis. Reviewers This article was reviewed by Dr Rory Johnson (nominated by Fyodor Kondrashov), Dr Raya Khanin (nominated by Dr Yuriy Gusev) and Prof Neil Smalheiser. For full reviews, please go to the Reviewer’s comment section.
Collapse
Affiliation(s)
- Saakshi Jalali
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | | | | |
Collapse
|
427
|
Nakagawa S, Ip JY, Shioi G, Tripathi V, Zong X, Hirose T, Prasanth KV. Malat1 is not an essential component of nuclear speckles in mice. RNA (NEW YORK, N.Y.) 2012; 18:1487-99. [PMID: 22718948 PMCID: PMC3404370 DOI: 10.1261/rna.033217.112] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Malat1 is an abundant long, noncoding RNA that localizes to nuclear bodies known as nuclear speckles, which contain a distinct set of pre-mRNA processing factors. Previous studies in cell culture have demonstrated that Malat1 interacts with pre-mRNA splicing factors, including the serine- and arginine-rich (SR) family of proteins, and regulates a variety of biological processes, including cancer cell migration, synapse formation, cell cycle progression, and responses to serum stimulation. To address the physiological function of Malat1 in a living organism, we generated Malat1-knockout (KO) mice using homologous recombination. Unexpectedly, the Malat1-KO mice were viable and fertile, showing no apparent phenotypes. Nuclear speckle markers were also correctly localized in cells that lacked Malat1. However, the cellular levels of another long, noncoding RNA--Neat1--which is an architectural component of nuclear bodies known as paraspeckles, were down-regulated in a particular set of tissues and cells lacking Malat1. We propose that Malat1 is not essential in living mice maintained under normal laboratory conditions and that its function becomes apparent only in specific cell types and under particular conditions.
Collapse
Affiliation(s)
- Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN Advanced Research Institute, Wako, Saitama 351-0198, Japan.
| | | | | | | | | | | | | |
Collapse
|
428
|
Enfield KSS, Pikor LA, Martinez VD, Lam WL. Mechanistic Roles of Noncoding RNAs in Lung Cancer Biology and Their Clinical Implications. GENETICS RESEARCH INTERNATIONAL 2012; 2012:737416. [PMID: 22852089 PMCID: PMC3407615 DOI: 10.1155/2012/737416] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 03/08/2012] [Indexed: 01/07/2023]
Abstract
Lung cancer biology has traditionally focused on genomic and epigenomic deregulation of protein-coding genes to identify oncogenes and tumor suppressors diagnostic and therapeutic targets. Another important layer of cancer biology has emerged in the form of noncoding RNAs (ncRNAs), which are major regulators of key cellular processes such as proliferation, RNA splicing, gene regulation, and apoptosis. In the past decade, microRNAs (miRNAs) have moved to the forefront of ncRNA cancer research, while the role of long noncoding RNAs (lncRNAs) is emerging. Here we review the mechanisms by which miRNAs and lncRNAs are deregulated in lung cancer, the technologies that can be applied to detect such alterations, and the clinical potential of these RNA species. An improved comprehension of lung cancer biology will come through the understanding of the interplay between deregulation of non-coding RNAs, the protein-coding genes they regulate, and how these interactions influence cellular networks and signalling pathways.
Collapse
Affiliation(s)
- Katey S. S. Enfield
- British Columbia Cancer Research Center, Vancouver, BC, Canada V5Z 1L3
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada V5Z1L3
| | - Larissa A. Pikor
- British Columbia Cancer Research Center, Vancouver, BC, Canada V5Z 1L3
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada V5Z1L3
| | - Victor D. Martinez
- British Columbia Cancer Research Center, Vancouver, BC, Canada V5Z 1L3
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada V6T2B5
| | - Wan L. Lam
- British Columbia Cancer Research Center, Vancouver, BC, Canada V5Z 1L3
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada V5Z1L3
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada V6T2B5
| |
Collapse
|
429
|
Bhartiya D, Kapoor S, Jalali S, Sati S, Kaushik K, Sachidanandan C, Sivasubbu S, Scaria V. Conceptual approaches for lncRNA drug discovery and future strategies. Expert Opin Drug Discov 2012; 7:503-13. [DOI: 10.1517/17460441.2012.682055] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
430
|
|
431
|
Abstract
Recent advances in sequencing technologies have uncovered a world of RNAs that do not code for proteins, known as non-protein coding RNAs, that play important roles in gene regulation. Along with histone modifications and transcription factors, non-coding RNA is part of a layer of transcriptional control on top of the DNA code. This layer of components and their interactions specifically enables (or disables) the modulation of three-dimensional folding of chromatin to create a context for transcriptional regulation that underlies cell-specific transcription. In this perspective, we propose a structural and functional hierarchy, in which the DNA code, proteins and non-coding RNAs act as context creators to fold chromosomes and regulate genes.
Collapse
Affiliation(s)
- Johan H Gibcus
- Program in Systems Biology; Program in Gene Function and Expression University of Massachusetts Medical School, Worcester, MA, USA
| | | |
Collapse
|
432
|
Niazi F, Valadkhan S. Computational analysis of functional long noncoding RNAs reveals lack of peptide-coding capacity and parallels with 3' UTRs. RNA (NEW YORK, N.Y.) 2012; 18:825-43. [PMID: 22361292 PMCID: PMC3312569 DOI: 10.1261/rna.029520.111] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Recent transcriptome analyses have indicated that a large part of mammalian genomes are transcribed into long non-protein-coding RNAs (lncRNAs). However, only a very small fraction of them have been individually studied, and whether the majority of lncRNAs found in large-scale studies have a cellular role is debated. To gain insight into the sequence features and genomic architecture of the subset of lncRNAs that have been proven to be functional, we created a database containing studied lncRNAs manually culled from the literature along with a parallel database containing all annotated protein-coding human RNAs. The Functional lncRNA Database, which contains 204 lncRNAs and their splicing variants, is available at valadkhanlab.org/database. Analysis of the lncRNAs and their comparison to protein-coding transcripts revealed sequence features including paucity of introns and low GC content in lncRNAs, which could explain several biological characteristics of these transcripts, such as their nuclear localization and low expression level. The predicted ORFs in lncRNAs have poor start codon and ORF contexts, which would lead to activation of the nonsense-mediated decay pathways and thus make it unlikely for most lncRNAs to code for even short peptides. Interestingly, our analyses revealed significant similarities between the lncRNAs and the 3' untranslated regions (3' UTRs) in protein-coding RNAs in structural features and sequence composition. The presence of these intriguing parallels between the lncRNAs and 3' UTRs, which constitute the two main components of the RNA-mediated cellular regulatory system, indicates that highly similar evolutionary constraints govern the function of regulatory RNA sequences in the cell.
Collapse
Affiliation(s)
- Farshad Niazi
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
- Corresponding authors.E-mail .E-mail .
| | - Saba Valadkhan
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
- Corresponding authors.E-mail .E-mail .
| |
Collapse
|
433
|
Epigenetic regulation of retinal development and disease. J Ocul Biol Dis Infor 2012; 4:121-36. [PMID: 23538488 DOI: 10.1007/s12177-012-9083-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/05/2012] [Indexed: 12/24/2022] Open
Abstract
Epigenetic regulation, including DNA methylation, histone modifications, and chromosomal organization, is emerging as a new layer of transcriptional regulation in retinal development and maintenance. Guided by intrinsic transcription factors and extrinsic signaling molecules, epigenetic regulation can activate and/or repress the expression of specific sets of genes, therefore playing an important role in retinal cell fate specification and terminal differentiation during development as well as maintaining cell function and survival in adults. Here, we review the major findings that have linked these mechanisms to the development and maintenance of retinal structure and function, with a focus on ganglion cells and photoreceptors. The mechanisms of epigenetic regulation are highly complex and vary among different cell types. Understanding the basic principles of these mechanisms and their regulatory pathways may provide new insight into the pathogenesis of retinal diseases associated with transcription dysregulation, and new therapeutic strategies for treatment.
Collapse
|
434
|
Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell 2012; 148:46-57. [PMID: 22265401 DOI: 10.1016/j.cell.2012.01.003] [Citation(s) in RCA: 368] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Indexed: 12/30/2022]
Abstract
The underlying cause of aging remains one of the central mysteries of biology. Recent studies in several different systems suggest that not only may the rate of aging be modified by environmental and genetic factors, but also that the aging clock can be reversed, restoring characteristics of youthfulness to aged cells and tissues. This Review focuses on the emerging biology of rejuvenation through the lens of epigenetic reprogramming. By defining youthfulness and senescence as epigenetic states, a framework for asking new questions about the aging process emerges.
Collapse
Affiliation(s)
- Thomas A Rando
- The Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
435
|
Abstract
microRNAs (miRNAs), defined as 21–24 nucleotide non-coding RNAs, are important regulators of gene expression. Initially, the functions of miRNAs were recognized as post-transcriptional regulators on mRNAs that result in mRNA degradation and/or translational repression. It is becoming evident that miRNAs are not only restricted to function in the cytoplasm, they can also regulate gene expression in other cellular compartments by a spectrum of targeting mechanisms via coding regions, 5′ and 3′untransalated regions (UTRs), promoters, and gene termini. In this point-of-view, we will specifically focus on the nuclear functions of miRNAs and discuss examples of miRNA-directed transcriptional gene regulation identified in recent years.
Collapse
Affiliation(s)
- Vera Huang
- Department of Urology and Helen-Diller Comprehensive Cancer Center, University of California-San Francisco, San Francisco, CA, USA.
| | | |
Collapse
|
436
|
Holdt LM, Teupser D. Recent Studies of the Human Chromosome 9p21 Locus, Which Is Associated With Atherosclerosis in Human Populations. Arterioscler Thromb Vasc Biol 2012; 32:196-206. [DOI: 10.1161/atvbaha.111.232678] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Lesca M. Holdt
- From the LIFE-Leipzig Center for Civilization Diseases (L.M.H., D.T.), Universität Leipzig, Germany; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (L.M.H.), University Hospital Leipzig, Germany; and Institute of Laboratory Medicine (D.T.), Ludwig-Maximilians-University Munich, Germany
| | - Daniel Teupser
- From the LIFE-Leipzig Center for Civilization Diseases (L.M.H., D.T.), Universität Leipzig, Germany; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (L.M.H.), University Hospital Leipzig, Germany; and Institute of Laboratory Medicine (D.T.), Ludwig-Maximilians-University Munich, Germany
| |
Collapse
|
437
|
Abstract
The central dogma of gene expression is that DNA is transcribed into messenger RNAs, which in turn serve as the template for protein synthesis. The discovery of extensive transcription of large RNA transcripts that do not code for proteins, termed long noncoding RNAs (lncRNAs), provides an important new perspective on the centrality of RNA in gene regulation. Here, we discuss genome-scale strategies to discover and characterize lncRNAs. An emerging theme from multiple model systems is that lncRNAs form extensive networks of ribonucleoprotein (RNP) complexes with numerous chromatin regulators and then target these enzymatic activities to appropriate locations in the genome. Consistent with this notion, lncRNAs can function as modular scaffolds to specify higher-order organization in RNP complexes and in chromatin states. The importance of these modes of regulation is underscored by the newly recognized roles of long RNAs for proper gene control across all kingdoms of life.
Collapse
Affiliation(s)
- John L. Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - Howard Y. Chang
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
438
|
Niller HH, Banati F, Ay E, Minarovits J. Epigenetic Changes in Virus-Associated Neoplasms. PATHO-EPIGENETICS OF DISEASE 2012:179-225. [DOI: 10.1007/978-1-4614-3345-3_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
439
|
Hu W, Yuan B, Flygare J, Lodish HF. Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes Dev 2011; 25:2573-8. [PMID: 22155924 DOI: 10.1101/gad.178780.111] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Long noncoding RNAs (lncRNAs) are differentially expressed under both normal and pathological conditions, implying that they may play important biological functions. Here we examined the expression of lncRNAs during erythropoiesis and identified an erythroid-specific lncRNA with anti-apoptotic activity. Inhibition of this lncRNA blocks erythroid differentiation and promotes apoptosis. Conversely, ectopic expression of this lncRNA can inhibit apoptosis in mouse erythroid cells. This lncRNA represses expression of Pycard, a proapoptotic gene, explaining in part the inhibition of programmed cell death. These findings reveal a novel layer of regulation of cell differentiation and apoptosis by a lncRNA.
Collapse
Affiliation(s)
- Wenqian Hu
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | |
Collapse
|
440
|
Nana-Sinkam SP, Croce CM. Non-coding RNAs in cancer initiation and progression and as novel biomarkers. Mol Oncol 2011; 5:483-491. [PMID: 22079056 PMCID: PMC5528327 DOI: 10.1016/j.molonc.2011.10.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 10/11/2011] [Indexed: 02/09/2023] Open
Abstract
Cancer represents a complex group of heterogeneous diseases. While many cancers share fundamental biological processes (hallmarks of cancer) necessary for their development and progression, cancers also distinguish themselves by their dependence on distinct oncogenic pathways. Over the last decade, targeted therapies have been introduced to the clinic with variable success. In truth, single targeted therapies may be successful in only a subset of malignancies but insufficient to address malignancies that often rely on multiple pathways, thus evading single targeted agents. Investigators have recently identified potentially functional components of the human genome that were previously thought to have no biological function. This discovery has added to the already established complexity of gene regulation in the pathogenesis of cancer. Non-coding RNAs represent key regulators of gene expression. Improved knowledge of their biogenesis and function may in turn lead to a better understanding of the heterogeneity of malignancies and eventually be leveraged as diagnostic, prognostic and therapeutic targets. MicroRNAs (miRNAs or miRs) for example, have the capacity for the regulation of multiple genes and thus redirection or reprogramming of biological pathways. However, several other members of the non-coding RNA family may be of equal biological relevance. In this review, we provide a perspective on emerging concepts in the clinical application of miRNA and other non-coding RNAs as biomarkers in cancer with an eye on the eventual integration of both miRNA and other non-coding RNA biology into our understanding of cancer pathogenesis and treatment.
Collapse
Affiliation(s)
- S. Patrick Nana-Sinkam
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, 473 West 12th Avenue, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Carlo M. Croce
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, 410 West 10th Avenue, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
441
|
Lee JT. Gracefully ageing at 50, X-chromosome inactivation becomes a paradigm for RNA and chromatin control. Nat Rev Mol Cell Biol 2011; 12:815-26. [DOI: 10.1038/nrm3231] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
442
|
Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell 2011; 43:904-14. [PMID: 21925379 DOI: 10.1016/j.molcel.2011.08.018] [Citation(s) in RCA: 3479] [Impact Index Per Article: 248.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/04/2011] [Accepted: 08/15/2011] [Indexed: 02/09/2023]
Abstract
Long noncoding RNAs (lncRNAs) are an important class of pervasive genes involved in a variety of biological functions. Here we discuss the emerging archetypes of molecular functions that lncRNAs execute-as signals, decoys, guides, and scaffolds. For each archetype, examples from several disparate biological contexts illustrate the commonality of the molecular mechanisms, and these mechanistic views provide useful explanations and predictions of biological outcomes. These archetypes of lncRNA function may be a useful framework to consider how lncRNAs acquire properties as biological signal transducers and hint at their possible origins in evolution. As new lncRNAs are being discovered at a rapid pace, the molecular mechanisms of lncRNAs are likely to be enriched and diversified.
Collapse
Affiliation(s)
- Kevin C Wang
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
443
|
Moskalev EA, Schubert M, Hoheisel JD. RNA-directed epigenomic reprogramming-an emerging principle of a more targeted cancer therapy? Genes Chromosomes Cancer 2011; 51:105-10. [DOI: 10.1002/gcc.20943] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/16/2011] [Accepted: 09/28/2011] [Indexed: 01/06/2023] Open
|
444
|
Zong X, Tripathi V, Prasanth KV. RNA splicing control: yet another gene regulatory role for long nuclear noncoding RNAs. RNA Biol 2011; 8:968-77. [PMID: 21941126 DOI: 10.4161/rna.8.6.17606] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The mammalian genome harbors a large number of long non-coding RNAs (lncRNAs) that do not code for proteins, but rather they exert their function directly as RNA molecules. LncRNAs are involved in executing several vital cellular functions. They facilitate the recruitment of proteins to specific chromatin sites, ultimately regulating processes like dosage compensation and genome imprinting. LncRNAs are also known to regulate nucleocytoplasmic transport of macromolecules. A large number of the regulatory lncRNAs are retained within the cell nucleus and constitute a subclass termed nuclear-retained RNAs (nrRNAs). NrRNAs are speculated to be involved in crucial gene regulatory networks, acting as structural scaffolds of subnuclear domains. NrRNAs modulate gene expression by influencing chromatin modification, transcription and post-transcriptional gene processing. The cancer-associated Metastasis-associated lung adenocarcinoma transcript1 (MALAT1) is one such long nrRNA that regulates pre-mRNA processing in mammalian cells. Thus far, our understanding about the roles played by nrRNAs and their relevance in disease pathways is only 'a tip of an iceberg'. It will therefore be crucial to unravel the functions for the vast number of long nrRNAs, buried within the complex mine of the human genome.
Collapse
Affiliation(s)
- Xinying Zong
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | |
Collapse
|
445
|
Wang L, Xiong Y, Bosselut R. Maintaining CD4-CD8 lineage integrity in T cells: where plasticity serves versatility. Semin Immunol 2011; 23:360-7. [PMID: 21963088 PMCID: PMC3740965 DOI: 10.1016/j.smim.2011.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 08/19/2011] [Indexed: 01/10/2023]
Abstract
The divergence of the two αβ T cell subsets defined by the mutually exclusive expression of CD4 and CD8 glycoproteins is an important event during the intrathymic differentiation of T lymphocytes. This reviews briefly summarizes the mechanisms that promote commitment to the CD4 or CD8 lineage in the thymus, and discusses the transcription factor circuits and epigenetic mechanisms that concur to maintain lineage integrity in post-thymic cells and yet allow effector cell differentiation.
Collapse
Affiliation(s)
- Lie Wang
- Laboratory of Immune Cell Biology, Center for Cancer Research (CCR), NCI, NIH, Bethesda, MD 20892-4259, USA
| | | | | |
Collapse
|
446
|
Godfried Sie CP, Kuchka M. RNA Editing adds flavor to complexity. BIOCHEMISTRY (MOSCOW) 2011; 76:869-81. [DOI: 10.1134/s0006297911080025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
447
|
Abstract
Non-coding RNAs (ncRNAs) are receiving more and more attention not only as an abundant class of genes, but also as regulatory structural elements (some located in mRNAs). A key feature of RNA function is its structure. Computational methods were developed early for folding and prediction of RNA structure with the aim of assisting in functional analysis. With the discovery of more and more ncRNAs, it has become clear that a large fraction of these are highly structured. Interestingly, a large part of the structure is comprised of regular Watson-Crick and GU wobble base pairs. This and the increased amount of available genomes have made it possible to employ structure-based methods for genomic screens. The field has moved from folding prediction of single sequences to computational screens for ncRNAs in genomic sequence using the RNA structure as the main characteristic feature. Whereas early methods focused on energy-directed folding of single sequences, comparative analysis based on structure preserving changes of base pairs has been efficient in improving accuracy, and today this constitutes a key component in genomic screens. Here, we cover the basic principles of RNA folding and touch upon some of the concepts in current methods that have been applied in genomic screens for de novo RNA structures in searches for novel ncRNA genes and regulatory RNA structure on mRNAs. We discuss the strengths and weaknesses of the different strategies and how they can complement each other.
Collapse
|
448
|
Piedrahita JA. The role of imprinted genes in fetal growth abnormalities. ACTA ACUST UNITED AC 2011; 91:682-92. [PMID: 21648055 DOI: 10.1002/bdra.20795] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 12/13/2010] [Accepted: 01/26/2011] [Indexed: 12/20/2022]
Abstract
Epigenetics, and in particular imprinted genes, have a critical role in the development and function of the placenta, which in turn has a central role in the regulation of fetal growth and development. A unique characteristic of imprinted genes is their expression from only one allele, maternal or paternal and dependent on parent of origin. This unique expression pattern may have arisen as a mechanism to control the flow of nutrients from the mother to the fetus, with maternally expressed imprinted genes reducing the flow of resources and paternally expressed genes increasing resources to the fetus. As a result, any epigenetic deregulation affecting this balance can result in fetal growth abnormalities. Imprinting-associated disorders in humans, such as Beckwith-Wiedemann and Angelman syndrome, support the role of imprinted genes in fetal growth. Similarly, assisted reproductive technologies in animals have been shown to affect the epigenome of the early embryo and the expression of imprinted genes. Their role in disorders such as intrauterine growth restriction appears to be more complex, in that imprinted gene expression can be seen as both causative and protective of fetal growth restriction. This protective or compensatory effect needs to be explored more fully.
Collapse
Affiliation(s)
- Jorge A Piedrahita
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, USA.
| |
Collapse
|
449
|
Chromatin: constructing the big picture. EMBO J 2011; 30:1885-95. [PMID: 21527910 DOI: 10.1038/emboj.2011.135] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/06/2011] [Indexed: 02/06/2023] Open
Abstract
Chromatin is the ensemble of genomic DNA and a large number of proteins. Various genome-wide mapping techniques have begun to reveal that, despite the tremendous complexity, chromatin organization is governed by simple principles. This review discusses the principles that drive the spatial architecture of chromatin, as well as genome-wide-binding patterns of chromatin proteins.
Collapse
|
450
|
Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA in human carcinomas. Mol Cancer 2011; 10:38. [PMID: 21489289 PMCID: PMC3098824 DOI: 10.1186/1476-4598-10-38] [Citation(s) in RCA: 1337] [Impact Index Per Article: 95.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 04/13/2011] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as new players in the cancer paradigm demonstrating potential roles in both oncogenic and tumor suppressive pathways. These novel genes are frequently aberrantly expressed in a variety of human cancers, however the biological functions of the vast majority remain unknown. Recently, evidence has begun to accumulate describing the molecular mechanisms by which these RNA species function, providing insight into the functional roles they may play in tumorigenesis. In this review, we highlight the emerging functional role of lncRNAs in human cancer.
Collapse
Affiliation(s)
- Ewan A Gibb
- British Columbia Cancer Agency Research Centre, Vancouver, Canada.
| | | | | |
Collapse
|