1
|
Gwilt MA, Hodgson AR, Axelsson SFA, Cockcroft GJ, McIver LB, Hird M, Stasiak A, McKenzie C, Ip SHY, Cardinal RN, Sawiak SJ, Milosevic-Sephton S, Aigbirhio FI, Hong YT, Fryer TD, Clarke HF. Hippocampal perineuronal net degradation identifies prefrontal and striatal circuits involved in schizophrenia-like changes in marmosets. SCIENCE ADVANCES 2025; 11:eadu0975. [PMID: 40249814 PMCID: PMC12007587 DOI: 10.1126/sciadv.adu0975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/10/2025] [Indexed: 04/20/2025]
Abstract
In schizophrenia, anterior hippocampus (aHipp) overactivity is associated with orbitofrontal cortex (OFC) dysfunction, but the contribution to symptomatology is unknown. In rodents, degradation of the hippocampal perineuronal net (PNN) replicates this overactivity, but uncertainty over rodent/human prefrontal homology limits translation to humans. Here, we test the hypothesis that aHipp PNN degradation in a species with a human-like prefrontal cortex, the marmoset, alters aHipp-striatal and aHipp-OFC circuitry. Microdialysis and [18F]-fluoro-l-dihydroxyphenylalanine positron emission tomography identified increased dopamine synthesis in the associative striatum, but not the nucleus accumbens, as is seen in schizophrenia, and elevated dopamine and noradrenaline in the OFC. Behaviorally, activity was elevated in a marmoset version of the amphetamine-induced activity test, and impaired probabilistic discrimination learning was seen in an OFC/striatum-dependent task that computational modeling suggests was due to loss of goal-directed behavior. Together, these findings demonstrate that a loss of primate aHipp PNNs is sufficient to induce striatal and prefrontal dysfunction consistent with that observed in humans with schizophrenia.
Collapse
Affiliation(s)
- Miriam A. Gwilt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Amy R. Hodgson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | - Gemma J. Cockcroft
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Lauren B. McIver
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Matthew Hird
- Molecular Imaging Chemistry Laboratory, Cambridge Biomedical Campus, West Forvie building, Robinson Way, CB2 0SZ Cambridge, UK
| | - Arkadiusz Stasiak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Colin McKenzie
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Samantha H.-Y. Ip
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Cambridge Centre for AI in Medicine, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Rudolf N. Cardinal
- Department of Psychiatry, University of Cambridge, and Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Stephen J. Sawiak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Selena Milosevic-Sephton
- Molecular Imaging Chemistry Laboratory, Cambridge Biomedical Campus, West Forvie building, Robinson Way, CB2 0SZ Cambridge, UK
| | - Franklin I. Aigbirhio
- Molecular Imaging Chemistry Laboratory, Cambridge Biomedical Campus, West Forvie building, Robinson Way, CB2 0SZ Cambridge, UK
| | - Young T. Hong
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Timothy D. Fryer
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Hannah F. Clarke
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Muñoz Rodríguez PA, Pines A, Zhang X, van Roessel PJ, Mukunda P, McCarthy E, Williams LM, Rodríguez CI. Exploring the effects of cognitive behavioral therapy on cognitive control circuit and behavioral task performance in hoarding disorder. J Psychiatr Res 2025; 186:423-433. [PMID: 40315751 DOI: 10.1016/j.jpsychires.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/11/2025] [Accepted: 04/08/2025] [Indexed: 05/04/2025]
Abstract
Hoarding disorder (HD) is characterized by difficulty discarding or parting with possessions and clutter, which causes distress or impairment in important areas of functioning. Cognitive behavioral therapy (CBT) for HD has shown promise; however, little is known about the brain mechanisms underlying symptom reduction. We previously reported the robust clinical effects of the Buried in Treasures workshop (BIT)-a skills-based group which incorporates CBT principles-augmented with uncluttering home visits (BIT+), in a waitlist-controlled trial involving adults with HD. This study examined neural activity within a network of regions associated with cognitive control in a subset of HD participants (n = 19) before and after 18 weeks of BIT+ sessions using task-based fMRI during a response inhibition task. We used a comparison group of healthy controls (HC; n = 49). Our behavioral results show that participants in the HD group made more errors of omission while performing the task but did not differ from HCs in their errors of commission. The neuroimaging findings indicated a correlation between improvements in hoarding symptoms and blood-oxygen-level-dependent (BOLD) signal during errors of commission in the right insula and anterior cingulate cortex of post-treatment HD participants, suggesting that changes in this region may be associated with the effectiveness of BIT+ treatment. This is the first study exploring neural activity changes associated with symptom-neutral inhibitory control before and after BIT+ treatment in a HD population.
Collapse
Affiliation(s)
- Paula A Muñoz Rodríguez
- Department of Neuroscience, Stanford University, Stanford, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Adam Pines
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Xue Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Peter J van Roessel
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Pavithra Mukunda
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Elizabeth McCarthy
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Carolyn I Rodríguez
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
3
|
Sandøy LB, Kazimierczak K, Riemer F, Craven AR, Ersland L, Lilleskare L, Johnsen E, Hugdahl K, Grüner R. Voxel-based versus network-analysis of changes in brain states in patients with auditory verbal hallucinations using the Eriksen Flanker task. PLoS One 2025; 20:e0319925. [PMID: 40112006 PMCID: PMC11925307 DOI: 10.1371/journal.pone.0319925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/10/2025] [Indexed: 03/22/2025] Open
Abstract
The present functional magnetic resonance imaging (fMRI) study investigated neural correlates of switching between task-processing and periods of rest in a conventional ON-OFF block-design in patients with auditory verbal hallucinations (AVHs) and healthy controls. It has been proposed that auditory hallucinations are a failure of top-down control of bottom-up perceptual processes which could be due to aberrant up- and down regulation of brain networks. A version of the Eriksen Flanker task was used to assess cognitive flexibility and conflict control. BOLD fMRI with alternating blocks of task engagement and rest was collected using a 3T MR scanner. The objective of the study was to explore how patients would dynamically modulate relevant brain networks in response to shifting environmental demands, while transitioning from a resting state to active task-processing. Analysis of performance data found significant behavioral effects between the groups, where AVH patients performed the Flanker task significantly less accurately and with longer reaction times (RTs) than the healthy control group, indicating that AVH patients displayed reduced top-down guided conflict control. A network connectivity analysis of the fMRI data showed that both groups recruited similar networks related to task-present and task-absent conditions. However, the controls displayed increased network variability across task-present and task-absent conditions. This would indicate that the controls were better at switching between networks and conditions when demands changed from task-present to task-absent, with the consequence that they would perform the Flanker task better than the AVH patients.
Collapse
Affiliation(s)
- Lydia Brunvoll Sandøy
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | | | - Frank Riemer
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland, University Hospital, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Alexander R Craven
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Lars Ersland
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Lin Lilleskare
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Erik Johnsen
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Renate Grüner
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
O’Donovan SM, Shan D, Wu X, Choi JH, McCullumsmith RE. Dysregulated Transcript Expression but Not Function of the Glutamate Transporter EAAT2 in the Dorsolateral Prefrontal Cortex in Schizophrenia. Schizophr Bull 2025; 51:531-542. [PMID: 38825587 PMCID: PMC11908862 DOI: 10.1093/schbul/sbae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
BACKGROUND Schizophrenia (SCZ) is a serious mental illness with complex pathology, including abnormalities in the glutamate system. Glutamate is rapidly removed from the synapse by excitatory amino acid transporters (EAATs). Changes in the expression and localization of the primary glutamate transporter EAAT2 are found in the brain in central nervous system (CNS) disorders including SCZ. We hypothesize that neuronal expression and function of EAAT2 are increased in the frontal cortex in subjects diagnosed with SCZ. STUDY DESIGN EAAT2 protein expression and glutamate transporter function were assayed in synaptosome preparations from the dorsolateral prefrontal cortex (DLPFC) of SCZ subjects and age- and sex-matched nonpsychiatrically ill controls. EAAT2 splice variant transcript expression was assayed in enriched populations of neurons and astrocytes from the DLPFC. Pathway analysis of publicly available transcriptomic datasets was carried out to identify biological changes associated with EAAT2 perturbation in different cell types. RESULTS We found no significant changes in EAAT2 protein expression or glutamate uptake in the DLPFC in SCZ subjects compared with controls (n = 10/group). Transcript expression of EAAT2 and signaling molecules associated with EAAT2b trafficking (CaMKIIa and DLG1) were significantly altered in enriched populations of astrocytes and pyramidal neurons (P < .05) in SCZ (n = 16/group). These changes were not associated with antipsychotic medications. Pathway analysis also identified cell-type-specific enrichment of biological pathways associated with perturbation of astrocyte (immune pathways) and neuronal (metabolic pathways) EAAT2 expression. CONCLUSIONS Overall, these data support the growing body of evidence for the role of dysregulation of the glutamate system in the pathophysiology of SCZ.
Collapse
Affiliation(s)
| | - Dan Shan
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xiaojun Wu
- Department of Neuroscience, University of Toledo, Toledo, OH, USA
| | - Jae Hyuk Choi
- Department of Neuroscience, University of Toledo, Toledo, OH, USA
| | - Robert E McCullumsmith
- Department of Neuroscience, University of Toledo, Toledo, OH, USA
- Promedica Neuroscience Institute, Toledo, OH, USA
| |
Collapse
|
5
|
Menon J, Kantipudi SJ, Mani A, Radhakrishnan R. Cognitive functioning and functional ability in women with schizophrenia and homelessness. Schizophr Res Cogn 2025; 39:100338. [PMID: 39610698 PMCID: PMC11603006 DOI: 10.1016/j.scog.2024.100338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024]
Abstract
Background Studies of schizophrenia and homelessness are minimal from the Indian subcontinent. Women with schizophrenia and homelessness in India remain a highly vulnerable group and there is no data to date regarding their clinical characteristics. Cognitive impairment in schizophrenia remains a major factor determining outcomes in schizophrenia. We examined the cognitive functioning of women with schizophrenia and homelessness (WSH) and compared it to an age-matched group of women with schizophrenia living with their family (WSF). Methods 36 women with schizophrenia and homelessness, and 32 women with schizophrenia who were living with family were evaluated for psychopathology using Scale for Assessment of Positive Symptoms (SAPS)/ Scale for assessment of negative symptoms (SANS) scales. Cognitive function was assessed using Montreal Cognitive Assessment (MOCA)/Rowland Universal Dementia Scale (RUDAS), and Frontal Assessment Battery (FAB), disability using World Health Organization - Disability assessment Scale (WHO-DAS) and psychosocial factors using a semi-structured proforma. The groups were compared using t-tests and chi-square for continuous and categorical variables respectively. Results Women with schizophrenia and homelessness were found to have significantly lower cognitive functioning, and much higher disability. Cognition and disability for women with schizophrenia and homelessness differed by 2-3 standard deviations with the mean for women living with family (i.e. z scores). Women with schizophrenia experiencing homelessness (WSH group) exhibited higher literacy levels and previous work experience compared to their counterparts. Those with family support are likely to face reduced pressures to work or earn, which further suggests that premorbid levels of functioning may not be the primary factors influencing the differences observed in cognitive assessments. Conclusions The study demonstrates significantly higher cognitive dysfunction in women with homelessness and schizophrenia, raising the possibility of much higher cognitive dysfunction being a predictor for homelessness in Indian women with schizophrenia.
Collapse
Affiliation(s)
- Jayakumar Menon
- Department of Psychiatry, SRMC & RI, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Chennai, India
- Clinical Lead, Anbagam-TERDOD, India
| | - Suvarna Jyothi Kantipudi
- Department of Psychiatry, SRMC & RI, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Chennai, India
- School of Public Health, University of California, Berkeley, United States of America
| | - Aruna Mani
- Department of Psychiatry, SRMC & RI, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Chennai, India
| | - Rajiv Radhakrishnan
- Department of Psychiatry, Radiology and Biomedical Imaging, Yale School of Medicine, United States of America
- Yale Institute for Global Health, United States of America
| |
Collapse
|
6
|
Chesebro AG, Antal BB, Weistuch C, Mujica-Parodi LR. Challenges and Frontiers in Computational Metabolic Psychiatry. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:258-266. [PMID: 39481469 DOI: 10.1016/j.bpsc.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
One of the primary challenges in metabolic psychiatry is that the disrupted brain functions that underlie psychiatric conditions arise from a complex set of downstream and feedback processes that span multiple spatiotemporal scales. Importantly, the same circuit can have multiple points of failure, each of which results in a different type of dysregulation, and thus elicits distinct cascades downstream that produce divergent signs and symptoms. Here, we illustrate this challenge by examining how subtle differences in circuit perturbations can lead to divergent clinical outcomes. We also discuss how computational models can perform the spatially heterogeneous integration and bridge in vitro and in vivo paradigms. By leveraging recent methodological advances and tools, computational models can integrate relevant processes across scales (e.g., tricarboxylic acid cycle, ion channel, neural microassembly, whole-brain macrocircuit) and across physiological systems (e.g., neural, endocrine, immune, vascular), providing a framework that can unite these mechanistic processes in a manner that goes beyond the conceptual and descriptive to the quantitative and generative. These hold the potential to sharpen our intuitions toward circuit-based models for personalized diagnostics and treatment.
Collapse
Affiliation(s)
- Anthony G Chesebro
- Department of Biomedical Engineering and Laufer Center for Physical and Quantitative Biology, Renaissance School of Medicine, State University of New York at Stony Brook, Stony Brook, New York; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Botond B Antal
- Department of Biomedical Engineering and Laufer Center for Physical and Quantitative Biology, Renaissance School of Medicine, State University of New York at Stony Brook, Stony Brook, New York; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Corey Weistuch
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lilianne R Mujica-Parodi
- Department of Biomedical Engineering and Laufer Center for Physical and Quantitative Biology, Renaissance School of Medicine, State University of New York at Stony Brook, Stony Brook, New York; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts; Santa Fe Institute, Santa Fe, New Mexico.
| |
Collapse
|
7
|
Shatalina E, Whitehurst T, Chika Onwordi E, Whittington A, Mansur A, Arumuham A, Reis Marques T, Gunn RN, Natesan S, Nour MM, Rabiner EA, Wall MB, Howes OD. Mitochondria Make You Think: An [18F]BCPP-EF Positron Emission Tomography Study of Mitochondrial Complex I Levels and Brain Activation during Task Switching. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00064-3. [PMID: 40010687 DOI: 10.1016/j.bpsc.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/29/2025] [Accepted: 02/07/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND Mitochondrial complex I is the largest enzyme complex in the respiratory chain and can be non-invasively measured using [18F]BCPP-EF positron emission tomography (PET). Neurological conditions associated with mitochondria complex I pathology are also associated with altered blood oxygen level-dependent (BOLD) response and impairments in cognition. This study aims to investigate the relationship between mitochondrial complex I levels, cognitive function, and associated neural activity during task switching in healthy humans. METHODS Cognitively healthy adults (n=23) underwent [18F]BCPP-EF PET scans and functional magnetic resonance imaging (fMRI) while performing a task-switching exercise. Task performance metrics included switch cost and switching accuracy. Data were analysed using linear mixed-effects models and partial least squares regression (PLS-R). RESULTS We found significant positive associations between [18F]BCPP-EF VT and the task-switching fMRI response (β=3.351, SE=1.01, z=3.249, p=0.001). Positive Pearson's correlations between [18F]BCPP-EF VT and the fMRI response were observed in the dorsolateral prefrontal cortex (r=0.61, p=0.0019), insula (r=0.46, p=0.0264) parietal-precuneus (r=0.51, p=0.0139) and anterior cingulate cortex (r=0.45, p=0.0293). [18F]BCPP-EF VT across task-relevant regions was associated with task switching accuracy (PLS-R, R2=0.48, RMSE=0.154, p=0.011) and with switch cost (PLS-R, R2=0.38, RMSE=0.07, p=0.048). CONCLUSIONS Higher mitochondrial complex I levels may underlie an individual's ability to exhibit a stronger BOLD response during task switching and are associated with better task-switching performance. This provides the first evidence linking the BOLD response with mitochondrial complex I and suggests a possible biological mechanism for aberrant BOLD response in conditions associated with mitochondrial complex I dysfunction that should be tested in future studies.
Collapse
Affiliation(s)
- Ekaterina Shatalina
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Laboratory of Medical Science, Imperial College London, London, UK.
| | - Thomas Whitehurst
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Laboratory of Medical Science, Imperial College London, London, UK; Centre for Psychiatry and Mental Health, Wolfson Institute of Population Health, Queen Mary University of London, London, UK; East London NHS Foundation Trust, London, UK
| | - Ellis Chika Onwordi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Laboratory of Medical Science, Imperial College London, London, UK; Centre for Psychiatry and Mental Health, Wolfson Institute of Population Health, Queen Mary University of London, London, UK; East London NHS Foundation Trust, London, UK
| | | | | | - Atheeshaan Arumuham
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Laboratory of Medical Science, Imperial College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK
| | - Tiago Reis Marques
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Sridhar Natesan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Laboratory of Medical Science, Imperial College London, London, UK
| | - Matthew M Nour
- Department of Psychiatry, Oxford University, Oxford, UK; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| | | | - Matthew B Wall
- Invicro, London, UK; Faculty of Medicine, Imperial College London, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Laboratory of Medical Science, Imperial College London, London, UK
| |
Collapse
|
8
|
Maximo J, Nelson E, Kraguljac N, Patton R, Bashir A, Lahti A. Changes in glutamate levels in anterior cingulate cortex following 16 weeks of antipsychotic treatment in antipsychotic-naïve first-episode psychosis patients. Psychol Med 2025; 55:e35. [PMID: 39927517 PMCID: PMC12017365 DOI: 10.1017/s0033291724003386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 02/11/2025]
Abstract
BACKGROUND Previous findings in psychosis have revealed mixed findings on glutamate (Glu) levels in the dorsal anterior cingulate cortex (dACC). Factors such as illness chronicity, methodology, and medication status have impeded a more nuanced evaluation of Glu in psychosis. The goal of this longitudinal neuroimaging study was to investigate the role of antipsychotics on Glu in the dACC in antipsychotic-naïve first-episode psychosis (FEP) patients. METHODS We enrolled 117 healthy controls (HCs) and 113 antipsychotic-naïve FEP patients for this study. 3T proton magnetic resonance spectroscopy (1H-MRS; PRESS; TE = 80 ms) data from a voxel prescribed in the dACC were collected from all participants at baseline, 6, and 16 weeks following antipsychotic treatment. Glutamate levels were quantified using the QUEST algorithm and analyzed longitudinally using linear mixed-effects models. RESULTS We found that baseline dACC glutamate levels in FEP were not significantly different than those of HCs. Examining Glu levels in FEP revealed a decrease in Glu levels after 16 weeks of antipsychotic treatment; this effect was weaker in HC. Finally, baseline Glu levels were associated with decreases in positive symptomology. CONCLUSIONS We report a progressive decrease of Glu levels over a period of 16 weeks after initiation of treatment and a baseline Glu level association with a reduction in positive symptomology, suggestive of a potential mechanism of antipsychotic drug (APD) action. Overall, these findings suggest that APDs can influence Glu within a period of 16 weeks, which has been deemed as an optimal window for symptom alleviation using APDs.
Collapse
Affiliation(s)
- Jose Maximo
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eric Nelson
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nina Kraguljac
- Department of Psychiatry and Behavioral Health, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Rita Patton
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adil Bashir
- Department of Electrical and Computer Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL, USA
| | - Adrienne Lahti
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
9
|
Gonzalez-Burgos G, Miyamae T, Nishihata Y, Krimer OL, Wade K, Fish KN, Arion D, Cai ZL, Xue M, Stauffer WR, Lewis DA. Synaptic alterations in pyramidal cells following genetic manipulation of neuronal excitability in monkey prefrontal cortex. J Neurophysiol 2025; 133:399-413. [PMID: 39740351 DOI: 10.1152/jn.00326.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025] Open
Abstract
The primate dorsolateral prefrontal cortex (DLPFC) displays unique in vivo activity patterns, but how in vivo activity regulates DLPFC pyramidal neuron (PN) properties remains unclear. We assessed the effects of in vivo Kir2.1 overexpression, a genetic silencing tool, on synapses in monkey DLPFC PNs. We show for the first time that recombinant ion channel expression successfully modifies the excitability of primate cortex neurons, producing effects on synaptic properties apparently different from those in the rodent cortex.
Collapse
Affiliation(s)
| | - Takeaki Miyamae
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yosuke Nishihata
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Olga L Krimer
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Kirsten Wade
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Dominique Arion
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Zhao-Lin Cai
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, United States
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - William R Stauffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
10
|
Liddle PF, Sami MB. The Mechanisms of Persisting Disability in Schizophrenia: Imprecise Predictive Coding via Corticostriatothalamic-Cortical Loop Dysfunction. Biol Psychiatry 2025; 97:109-116. [PMID: 39181388 DOI: 10.1016/j.biopsych.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
Persisting symptoms and disability remain a problem for an appreciable proportion of people with schizophrenia despite treatment with antipsychotic medication. Improving outcomes requires an understanding of the nature and mechanisms of the pathological processes underlying persistence. Classical features of schizophrenia, which include disorganization and impoverishment of mental activity, are well-recognized early clinical features that predict poor long-term outcome. Substantial evidence indicates that these features reflect imprecise predictive coding. Predictive coding provides an overarching framework for understanding efficient functioning of the nervous system. Imprecise predictive coding also has the potential to precipitate acute psychosis characterized by reality distortion (delusions and hallucinations) at times of stress. On the other hand, substantial evidence indicates that persistent reality distortion itself gives rise to poor occupational and social function in the long term. Furthermore, abuse of psychotomimetic drugs, which exacerbate reality distortion, contributes to poor long-term outcome in schizophrenia. Neural circuits involved in modulating volitional acts are well understood to be implicated in addiction. Plastic changes in these circuits may account for the association between psychotomimetic drug abuse and poor outcomes in schizophrenia. We propose a mechanistic model according to which unbalanced inputs to the corpus striatum disturb the precision of subcortical modulation of cortical activity supporting volitional action. This model accounts for the evidence that early classical symptoms predict poor outcome, while in some circumstances, persistent reality distortion also predicts poor outcome. This model has implications for the development of novel treatments that address the risk of persisting symptoms and disabilities in schizophrenia.
Collapse
Affiliation(s)
- Peter F Liddle
- Institute of Mental Health, University of Nottingham, Nottingham, United Kingdom.
| | - Musa B Sami
- Institute of Mental Health, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
11
|
Arumuham A, Shatalina E, Nour MM, Veronese M, Onwordi EC, Kaar SJ, Jauhar S, Rabiner EA, Howes OD. Working memory processes and the histamine-3 receptor in schizophrenia: a [ 11C]MK-8278 PET-fMRI study. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06730-6. [PMID: 39710764 DOI: 10.1007/s00213-024-06730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024]
Abstract
RATIONALE Working memory impairment is a prominent feature of schizophrenia which predicts clinical and functional outcomes. Preclinical data suggest histamine-3 receptor (H3R) expression in cortical pyramidal neurons may have a role in working memory, and post-mortem data has found disruptions of H3R expression in schizophrenia. OBJECTIVES We examined the role of H3R in vivo to elucidate its role on working memory impairment in schizophrenia. METHODS We used positron emission tomography (PET) with the selective H3R radioligand [11C]MK-8278 to measure H3R availability, and employed a task during functional magnetic resonance imaging (fMRI) to assess working memory-evoked brain activation and cognitive task performance, in patients with schizophrenia (n = 12) and matched healthy volunteers (n = 12). We assessed the relationship between H3R availability and both task performance and working memory-evoked brain activation in regions of interest (ROIs), including the anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC). RESULTS Patients with schizophrenia showed a strong positive correlation, after corrections for multiple comparisons, between ACC H3R availability and task performance (rho = 0.73, p = 0.007), which was absent in the control group (rho = 0.03, p = 0.94). Further ROI analysis did not find a significant relationship between H3R availability and working memory-evoked brain activation. CONCLUSIONS These results provide support for the role of H3R on working memory processes in patients with schizophrenia.
Collapse
Affiliation(s)
- Atheeshaan Arumuham
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
| | - Ekaterina Shatalina
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
| | - Matthew M Nour
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Max Planck University College London Centre for Computational Psychiatry and Ageing research, London, WC1B 5EH, UK
| | - Mattia Veronese
- Department of Information Engineering, University of Padua, Padua, Italy
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Ellis Chika Onwordi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
- Centre for Psychiatry and Mental Health, Wolfson Institute of Population Health, Queen Mary University of London, London, E1 2AB, UK
| | - Stephen J Kaar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK
- Division of Psychology and Mental Health, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, M13 9WL, England
- Greater Manchester Mental Health NHS Foundation Trust, Addictions Services, Manchester, M25 3BL, England
| | - Sameer Jauhar
- Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, Kings College, London, UK
| | | | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
- H Lundbeck A/s, 3 Abbey View, Everard Close, St Albans, AL1 2PS, UK.
| |
Collapse
|
12
|
Fouladivanda M, Iraji A, Wu L, van Erp TGM, Belger A, Hawamdeh F, Pearlson GD, Calhoun VD. A spatially constrained independent component analysis jointly informed by structural and functional network connectivity. Netw Neurosci 2024; 8:1212-1242. [PMID: 39735500 PMCID: PMC11674407 DOI: 10.1162/netn_a_00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 05/28/2024] [Indexed: 12/31/2024] Open
Abstract
There are a growing number of neuroimaging studies motivating joint structural and functional brain connectivity. The brain connectivity of different modalities provides an insight into brain functional organization by leveraging complementary information, especially for brain disorders such as schizophrenia. In this paper, we propose a multimodal independent component analysis (ICA) model that utilizes information from both structural and functional brain connectivity guided by spatial maps to estimate intrinsic connectivity networks (ICNs). Structural connectivity is estimated through whole-brain tractography on diffusion-weighted MRI (dMRI), while functional connectivity is derived from resting-state functional MRI (rs-fMRI). The proposed structural-functional connectivity and spatially constrained ICA (sfCICA) model estimates ICNs at the subject level using a multiobjective optimization framework. We evaluated our model using synthetic and real datasets (including dMRI and rs-fMRI from 149 schizophrenia patients and 162 controls). Multimodal ICNs revealed enhanced functional coupling between ICNs with higher structural connectivity, improved modularity, and network distinction, particularly in schizophrenia. Statistical analysis of group differences showed more significant differences in the proposed model compared with the unimodal model. In summary, the sfCICA model showed benefits from being jointly informed by structural and functional connectivity. These findings suggest advantages in simultaneously learning effectively and enhancing connectivity estimates using structural connectivity.
Collapse
Affiliation(s)
- Mahshid Fouladivanda
- Tri-institute Translational Research in Neuroimaging and Data Science (TReNDS Center), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Georgia State University, Atlanta, GA, USA
| | - Armin Iraji
- Tri-institute Translational Research in Neuroimaging and Data Science (TReNDS Center), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Georgia State University, Atlanta, GA, USA
| | - Lei Wu
- Tri-institute Translational Research in Neuroimaging and Data Science (TReNDS Center), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Theo G. M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior School of Medicine, University of California, Irvine, CA, USA
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Faris Hawamdeh
- Center for Disaster Informatics and Computational Epidemiology (DICE), Georgia State University, Atlanta, GA, USA
| | - Godfrey D. Pearlson
- Olin Neuropsychiatry Research Center, Department of Psychiatry and Neuroscience, Yale University, School of Medicine, New Haven, CT, USA
| | - Vince D. Calhoun
- Tri-institute Translational Research in Neuroimaging and Data Science (TReNDS Center), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Georgia State University, Atlanta, GA, USA
| |
Collapse
|
13
|
Sharma G, Malik A, Tripathi S, Deshmukh V, Patil A. Gene expression analysis of Schizophrenia. Bioinformation 2024; 20:1441-1446. [PMID: 40162448 PMCID: PMC11953522 DOI: 10.6026/9732063002001441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 04/02/2025] Open
Abstract
Schizophrenia is a chronic psychiatric disorder marked by cognitive deficits associated with prefrontal cortical dysfunction, particularly in Broadmann Area 10 (BA 10), where gray matter reduction is observed. The genetic mechanisms behind these abnormalities remain unclear. Therefore, it is of interest to analyze altered gene expression and pathways in the prefrontal cortex of schizophrenia patients. We used two GEO datasets - GSE12654 (discovery) and GSE17612 (validation) and differential gene expression was assessed between schizophrenia patients and healthy controls. Validation confirmed three upregulated genes (S100A9, S100A8, BCL2A1) and one downregulated gene (CBLB), with protein interaction analysis revealing that upregulated genes were linked to immune and apoptotic processes, while downregulated genes suppressed EGF pathways. These findings suggest immune dysfunction and gray matter loss in schizophrenia, highlighting potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
| | | | - Satyendra Tripathi
- Department of Biochemistry AIIMS Nagpur, India
- Bioinformatics Data Analysis Unit (BDAU), AIIMS, Nagpur, India
| | - Vishwajit Deshmukh
- Department of Anatomy AIIMS Nagpur, India
- Bioinformatics Data Analysis Unit (BDAU), AIIMS, Nagpur, India
| | - Ashlesh Patil
- Department of Physiology AIIMS Nagpur, India
- Bioinformatics Data Analysis Unit (BDAU), AIIMS, Nagpur, India
| |
Collapse
|
14
|
Zhang S, Zhao L, Liao A, Li D, Li H, Ouyang L, Chen X, Li Z. Investigating the Shared Genetic Architecture Between Psychiatric Disorders and Executive Function. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100392. [PMID: 39829962 PMCID: PMC11740799 DOI: 10.1016/j.bpsgos.2024.100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 01/03/2025] Open
Abstract
Background Evidence for widespread comorbidity of executive dysfunctions with psychiatric disorders suggests common mechanisms underlying their pathophysiology. However, the shared genetic architectures between psychiatric disorders and executive function (EF) remain poorly understood. Methods Leveraging large genome-wide association study datasets of European ancestry on bipolar disorder (N = 353,899), major depressive disorder (N = 674,452), and schizophrenia (N = 130,644) from the Psychiatric Genomics Consortium and iPSYCH and a common factor of EF (N = 427,037) from UK Biobank, we systematically investigated the shared genomic architectures between psychiatric disorders and EF with a set of statistical genetic, functional genomic, and gene-level analyses. Results Our study demonstrated substantial genetic overlaps and significant genetic correlations between psychiatric disorders and EF. EF showed an estimated 95.9%, 98.1%, and 99.2% of phenotype-influencing variants, as well as 50, 23, and 130 genomic loci shared with bipolar disorder, major depressive disorder, and schizophrenia, respectively. Single nucleotide polymorphism heritability enrichment suggests that the genetic architecture of psychiatric disorders and EF involves the brain's frontal cortex and prefrontal glutamatergic neurons 1 and 2. Functional genomic analysis of shared variants identified 12 functional regulatory variants that regulate gene expression by affecting the binding affinities of 5 transcription factors. In addition, functional characterization analyses of shared genes revealed potential common biological mechanisms related to synaptic processes and fetal brain development. Conclusions Our findings provide evidence for extensive shared genetic architectures between psychiatric disorders and EF and have valuable implications for future mechanistic investigations and drug development efforts.
Collapse
Affiliation(s)
- Sijie Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Linlin Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Aijun Liao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - David Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hong Li
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lijun Ouyang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaogang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- China National Technology Institute on Mental Disorders & Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zongchang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- China National Technology Institute on Mental Disorders & Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
15
|
Zhang Y, Fu J, Zhao X. Neural correlates of working memory training: An fMRI meta-analysis. Neuroimage 2024; 301:120885. [PMID: 39395643 DOI: 10.1016/j.neuroimage.2024.120885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024] Open
Abstract
Working memory (WM) can be improved by cognitive training. Numerous studies examined neural mechanisms underlying WM training, although with differing conclusions. Therefore, we conducted a meta-analysis to examine the neural substrates underlying WM training in healthy adults. Findings from global analyses showed substantial neural changes in the frontoparietal and subcortical regions. Results from training dosage analyses of WM training showed that shorter WM training could produce neural changes in the frontoparietal regions, whereas longer WM training could produce changes in the subcortical regions (striatum, anterior cingulate cortex, and insula). WM training-induced neural changes were also moderated by the type of training task, with updating tasks inducing neural changes in more regions than maintenance tasks. Overall, these results indicate that the neural changes associated with WM training occur in the frontoparietal network and dopamine-related brain areas, extending previous meta-analyses on WM training and advancing our understanding of the neural underpinnings of WM training effects.
Collapse
Affiliation(s)
- Yao Zhang
- School of Psychology, Key Laboratory of Behavioral and Mental Health of Gansu Province, Northwest Normal University, Lanzhou, China
| | - Junjun Fu
- School of Psychology, Key Laboratory of Behavioral and Mental Health of Gansu Province, Northwest Normal University, Lanzhou, China
| | - Xin Zhao
- School of Psychology, Key Laboratory of Behavioral and Mental Health of Gansu Province, Northwest Normal University, Lanzhou, China.
| |
Collapse
|
16
|
Okuda T, Kimoto S, Kawabata R, Bian Y, Tsubomoto M, Okamura K, Enwright JF, Kikuchi M, Lewis DA, Hashimoto T. Alterations in inhibitory neuron subtype-selective transcripts in the prefrontal cortex: comparisons across schizophrenia and mood disorders. Psychol Med 2024; 54:1-10. [PMID: 39478366 PMCID: PMC11578916 DOI: 10.1017/s0033291724002344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/19/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND In schizophrenia (SZ), impairments in cognitive functions, such as working memory, have been associated with alterations in certain types of inhibitory neurons that utilize the neurotransmitter γ-aminobutyric acid (GABA) in the dorsolateral prefrontal cortex (DLPFC). For example, GABA neurons that express parvalbumin (PV) or somatostatin (SST) have more prominent gene expression alterations than those that express vasoactive intestinal peptide (VIP). In bipolar disorder (BD) and major depression (MD), which exhibit similar, but less severe, cognitive impairments than SZ, alterations of transcript levels in GABA neurons have also been reported. However, the extent to which GABA neuron subtype-selective transcripts in the DLPFC are affected, and the relative magnitudes of the diagnosis-associated effects, have not been directly compared across SZ, BD, and MD in the same study. METHODS We used quantitative polymerase chain reaction to examine levels of GABA neuron subtype-selective transcripts (PV, potassium voltage-gated channel modifier subfamily-S member-3, SST, VIP, and calretinin mRNAs), as well as the pan-GABA neuron marker 67 kDa glutamate decarboxylase mRNA, in DLPFC total gray matter of 160 individuals, including those with SZ, BD, or MD and unaffected comparison (UC) individuals. RESULTS Relative to UC individuals, individuals with SZ exhibited large deficits in levels of all transcripts except for calretinin mRNA, whereas individuals with BD or MD showed a marked deficit only for PV or SST mRNAs, respectively. CONCLUSIONS These findings suggest that broader and more severe alterations in DLPFC GABA neurons might contribute to the greater cognitive impairments in SZ relative to BD and MD.
Collapse
Affiliation(s)
- Takeshi Okuda
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Sohei Kimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, 634-8521, Japan
- Department of Neuropsychiatry, Wakayama Medical University School of Medicine, Wakayama, 641-8509, Japan
| | - Rika Kawabata
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Yufan Bian
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Makoto Tsubomoto
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Kazuya Okamura
- Department of Neuropsychiatry, Wakayama Medical University School of Medicine, Wakayama, 641-8509, Japan
| | - John F. Enwright
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Mitsuru Kikuchi
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
- Research Center for Child Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Takanori Hashimoto
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Psychiatry, National Hospital Organization Hokuriku Hospital, Nanto, 939-1893, Japan
| |
Collapse
|
17
|
Theis N, Bahuguna J, Rubin JE, Banerjee SS, Muldoon B, Prasad KM. Energy of functional brain states correlates with cognition in adolescent-onset schizophrenia and healthy persons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.06.565753. [PMID: 37987003 PMCID: PMC10659315 DOI: 10.1101/2023.11.06.565753] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Adolescent-onset schizophrenia (AOS) is rare, under-studied, and associated with more severe cognitive impairments and poorer outcomes than adult-onset schizophrenia. Neuroimaging has shown altered regional activations (first-order effects) and functional connectivity (second-order effects) in AOS compared to controls. The pairwise maximum entropy model (MEM) integrates first- and second-order factors into a single quantity called energy, which is inversely related to probability of occurrence of brain activity patterns. We take a combinatorial approach to study multiple brain-wide MEMs of task-associated components; hundreds of independent MEMs for various sub-systems are fit to 7 Tesla functional MRI scans. Acquisitions were collected from 23 AOS individuals and 53 healthy controls while performing the Penn Conditional Exclusion Test (PCET) for executive function, which is known to be impaired in AOS. Accuracy of PCET performance was significantly reduced among AOS compared to controls. A majority of the models showed significant negative correlation between PCET scores and the total energy attained over the fMRI. Across all instantiations, the AOS group was associated with significantly more frequent occurrence of states of higher energy, assessed with a mixed effects model. An example MEM instance was investigated further using energy landscapes, which visualize high and low energy states on a low-dimensional plane, and trajectory analysis, which quantify the evolution of brain states throughout this landscape. Both supported patient-control differences in the energy profiles. Severity of psychopathology was correlated positively with energy. The MEM's integrated representation of energy in task-associated systems can help characterize pathophysiology of AOS, cognitive impairments, and psychopathology.
Collapse
Affiliation(s)
- Nicholas Theis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jyotika Bahuguna
- Department of Neuroscience, Laboratoire de Neurosciences Cognitive et Adaptive, University of Strasbourg, France
| | | | | | - Brendan Muldoon
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Konasale M. Prasad
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Kim S, Lee SW, Lee H, Lee HJ, Lee SJ, Chang Y. Disrupted cognitive network revealed by task-induced brain entropy in schizophrenia. Brain Imaging Behav 2024; 18:1186-1196. [PMID: 39222212 DOI: 10.1007/s11682-024-00909-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Brain entropy (BEN), which measures the amount of information in brain activity, provides a novel perspective for evaluating brain function. Recent studies using resting-state functional magnetic resonance imaging (fMRI) have shown that BEN during rest can help characterize brain function alterations in schizophrenia (SCZ). However, there is a lack of research on BEN using task-evoked fMRI to explore task-dependent cognitive deficits in SCZ. In this study, we evaluate whether the reduced working memory (WM) capacity in SCZ is possibly associated with dynamic changes in task BEN during tasks with high cognitive demands. We analyzed data from 15 patients with SCZ and 15 healthy controls (HC), calculating task BEN from their N-back task fMRI scans. We then examined correlations between task BEN values, clinical symptoms, 2-back task performance, and neuropsychological test scores. Patients with SCZ exhibited significantly reduced task BEN in the cerebellum, hippocampus, parahippocampal gyrus, thalamus, and the middle and superior frontal gyrus (MFG and SFG) compared to HC. In HC, significant positive correlations were observed between task BEN and 2-back accuracy in several brain regions, including the MFG and SFG; such correlations were absent in patients with SCZ. Additionally, task BEN was negatively associated with scores for both positive and negative symptoms in areas including the parahippocampal gyrus among patients with SCZ. In conclusion, our findings indicate that a reduction in BEN within prefrontal and hippocampal regions during cognitively demanding tasks may serve as a neuroimaging marker for SCZ.
Collapse
Affiliation(s)
- Seungho Kim
- Department of Medical & Biological Engineering, Kyungpook National University, Daegu, Korea
| | - Sang Won Lee
- Department of Psychiatry, Kyungpook National University Chilgok Hospital, Daegu, Korea
- Department of Psychiatry, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Korea
| | - Hansol Lee
- Department of Medical & Biological Engineering, Kyungpook National University, Daegu, Korea
| | - Hui Joong Lee
- Department of Radiology, Kyungpook National University Hospital, Daegu, Korea
- Department of Radiology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Seung Jae Lee
- Department of Psychiatry, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Korea.
- Department of Psychiatry, Kyungpook National University Hospital, Daegu, Korea.
| | - Yongmin Chang
- Department of Radiology, Kyungpook National University Hospital, Daegu, Korea.
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Korea.
| |
Collapse
|
19
|
Hughes H, Brady LJ, Schoonover KE. GABAergic dysfunction in postmortem dorsolateral prefrontal cortex: implications for cognitive deficits in schizophrenia and affective disorders. Front Cell Neurosci 2024; 18:1440834. [PMID: 39381500 PMCID: PMC11458443 DOI: 10.3389/fncel.2024.1440834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
The microcircuitry within superficial layers of the dorsolateral prefrontal cortex (DLPFC), composed of excitatory pyramidal neurons and inhibitory GABAergic interneurons, has been suggested as the neural substrate of working memory performance. In schizophrenia, working memory impairments are thought to result from alterations of microcircuitry within the DLPFC. GABAergic interneurons, in particular, are crucially involved in synchronizing neural activity at gamma frequency, the power of which increases with working memory load. Alterations of GABAergic interneurons, particularly parvalbumin (PV) and somatostatin (SST) subtypes, are frequently observed in schizophrenia. Abnormalities of GABAergic neurotransmission, such as deficiencies in the 67 kDA isoform of GABA synthesis enzyme (GAD67), vesicular GABA transporter (vGAT), and GABA reuptake transporter 1 (GAT1) in presynaptic boutons, as well as postsynaptic alterations in GABA A receptor subunits further contribute to impaired inhibition. This review explores GABAergic abnormalities of the postmortem DLPFC in schizophrenia, with a focus on the roles of interneuron subtypes involved in cognition, and GABAergic neurotransmission within presynaptic boutons and postsynaptic alterations. Where available, comparisons between schizophrenia and affective disorders that share cognitive pathology such as bipolar disorder and major depressive disorder will be made. Challenges in directly measuring GABA levels are addressed, emphasizing the need for innovative techniques. Understanding GABAergic abnormalities and their implications for neural circuit dysfunction in schizophrenia is crucial for developing targeted therapies.
Collapse
Affiliation(s)
- Hannah Hughes
- Graduate Biomedical Sciences Program, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
| | - Lillian J. Brady
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Tuskegee, AL, United States
| | - Kirsten E. Schoonover
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Tuskegee, AL, United States
- Department of Psychology and Sociology, College of Arts and Sciences, Tuskegee University, Tuskegee, AL, United States
| |
Collapse
|
20
|
Tume CE, Chick SL, Holmans PA, Rees E, O’Donovan MC, Cameron D, Bray NJ. Genetic Implication of Specific Glutamatergic Neurons of the Prefrontal Cortex in the Pathophysiology of Schizophrenia. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100345. [PMID: 39099730 PMCID: PMC11295574 DOI: 10.1016/j.bpsgos.2024.100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/03/2024] [Accepted: 05/19/2024] [Indexed: 08/06/2024] Open
Abstract
Background The prefrontal cortex (PFC) has been strongly implicated in the pathophysiology of schizophrenia. Here, we combined high-resolution single-nuclei RNA sequencing data from the human PFC with large-scale genomic data for schizophrenia to identify constituent cell populations likely to mediate genetic liability to the disorder. Methods Gene expression specificity values were calculated from a single-nuclei RNA sequencing dataset comprising 84 cell populations from the human PFC, spanning gestation to adulthood. Enrichment of schizophrenia common variant liability and burden of rare protein-truncating coding variants were tested in genes with high expression specificity for each cell type. We also explored schizophrenia common variant associations in relation to gene expression across the developmental trajectory of implicated neurons. Results Common risk variation for schizophrenia was prominently enriched in genes with high expression specificity for a population of mature layer 4 glutamatergic neurons emerging in infancy. Common variant liability to schizophrenia increased along the developmental trajectory of this neuronal population. Fine-mapped genes at schizophrenia genome-wide association study risk loci had significantly higher expression specificity than other genes in these neurons and in a population of layer 5/6 glutamatergic neurons. People with schizophrenia had a higher rate of rare protein-truncating coding variants in genes expressed by cells of the PFC than control individuals, but no cell population was significantly enriched above this background rate. Conclusions We identified a population of layer 4 glutamatergic PFC neurons likely to be particularly affected by common variant genetic risk for schizophrenia, which may contribute to disturbances in thalamocortical connectivity in the condition.
Collapse
Affiliation(s)
- Claire E. Tume
- Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Sophie L. Chick
- Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Peter A. Holmans
- Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Elliott Rees
- Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Michael C. O’Donovan
- Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Darren Cameron
- Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Nicholas J. Bray
- Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, Wales, United Kingdom
- Neuroscience & Mental Health Innovation Institute, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
21
|
Bian Y, Kawabata R, Enwright JF, Tsubomoto M, Okuda T, Kamikawa K, Kimoto S, Kikuchi M, Lewis DA, Hashimoto T. Expression of activity-regulated transcripts in pyramidal neurons across the cortical visuospatial working memory network in unaffected comparison individuals and individuals with schizophrenia. Psychiatry Res 2024; 339:116084. [PMID: 39033685 DOI: 10.1016/j.psychres.2024.116084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Visuospatial working memory (vsWM), which is impaired in schizophrenia (SZ), is mediated by multiple cortical regions including the primary (V1) and association (V2) visual, posterior parietal (PPC) and dorsolateral prefrontal (DLPFC) cortices. In these regions, parvalbumin (PV) or somatostatin (SST) GABA neurons are altered in SZ as reflected in lower levels of activity-regulated transcripts. As PV and SST neurons receive excitatory inputs from neighboring pyramidal neurons, we hypothesized that levels of activity-regulated transcripts are also lower in pyramidal neurons in these regions. Thus, we quantified levels of four activity-regulated, pyramidal neuron-selective transcripts, namely adenylate cyclase-activating polypeptide-1 (ADCYAP1), brain-derived neurotrophic factor (BDNF), neuronal pentraxin-2 (NPTX2) and neuritin-1 (NRN1) mRNAs, in V1, V2, PPC and DLPFC from unaffected comparison and SZ individuals. In SZ, BDNF and NPTX2 mRNA levels were lower across all four regions, whereas ADCYAP1 and NRN1 mRNA levels were lower in V1 and V2. The regional pattern of deficits in BDNF and NPTX2 mRNAs was similar to that in transcripts in PV and SST neurons in SZ. These findings suggest that lower activity of pyramidal neurons expressing BDNF and/or NPTX2 mRNAs might contribute to alterations in PV and SST neurons across the vsWM network in SZ.
Collapse
Affiliation(s)
- Yufan Bian
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Rika Kawabata
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - John F Enwright
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Makoto Tsubomoto
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Takeshi Okuda
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Kohei Kamikawa
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, 634-8521, Japan
| | - Sohei Kimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, 634-8521, Japan; Department of Neuropsychiatry, Wakayama Medical University School of Medicine, Wakayama, 641-8509, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan; Research Center for Child Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Takanori Hashimoto
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; National Hospital Organization Hokuriku Hospital, Nanto, 939-1893, Japan.
| |
Collapse
|
22
|
Liu X, Liu Z, Wang F, Cheng P, Yang J, Tan W, Cheng Y, Huang D, Xiang Z, Zhang J, Li J, Xie Y, Zhong M, Yang J. A connectome-based model of delusion in schizophrenia using functional connectivity under working memory task. J Psychiatr Res 2024; 177:75-81. [PMID: 38981411 DOI: 10.1016/j.jpsychires.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Delusion is an important feature of schizophrenia, which may stem from cognitive biases. Working memory (WM) is the core foundation of cognition, closely related to delusion. However, the knowledge of neural mechanisms underlying the relationship between WM and delusion in schizophrenia is poorly investigated. Two hundred and thirty patients with schizophrenia (dataset 1: n = 130; dataset 2: n = 100) were enrolled and scanned for an N-back WM task. We constructed the WM-related whole-brain functional connectome and conducted Connectome-based Predictive Modelling (CPM) to detect the delusion-related networks and built the correlation model in dataset 1. The correlation between identified networks and delusion severity was tested in a separate, heterogeneous sample of dataset 2 that mainly includes early-onset schizophrenia. The identified delusion-related network has a strong correlation with delusion severity measured by the NO.20 item of SAPS in dataset 1 (r = 0.433, p = 2.7 × 10-7, permutation-p = 0.035), and can be validated in the same dataset by using another delusion measurement, that is, the P1 item of PANSS (r = 0.362, p = 0.0005). It can be validated in another independent dataset 2 (NO.20 item of SAPS for r = 0.31, p = 0.0024, P1 item of PANSS for r = 0.27, p = 0.0074). The delusion-related network comprises the connections between the default mode network (DMN), cingulo-opercular network (CON), salience network (SN), subcortical, sensory-somatomotor network (SMN), and visual networks. We successfully established correlation models of individualized delusion based on the WM-related functional connectome and showed a strong correlation between delusion severity and connections within the DMN, CON, SMN, and subcortical network.
Collapse
Affiliation(s)
- Xiawei Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhening Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Feiwen Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Peng Cheng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jun Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Wenjian Tan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yixin Cheng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Danqing Huang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhibiao Xiang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jiamei Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jinyue Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yuxin Xie
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Maoxing Zhong
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jie Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
23
|
Kristensen TD, Ambrosen KS, Raghava JM, Syeda WT, Dhollander T, Lemvigh CK, Bojesen KB, Barber AD, Nielsen MØ, Rostrup E, Pantelis C, Fagerlund B, Glenthøj BY, Ebdrup BH. Structural and functional connectivity in relation to executive functions in antipsychotic-naïve patients with first episode schizophrenia and levels of glutamatergic metabolites. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:72. [PMID: 39217180 PMCID: PMC11366027 DOI: 10.1038/s41537-024-00487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Patients with schizophrenia exhibit structural and functional dysconnectivity but the relationship to the well-documented cognitive impairments is less clear. This study investigates associations between structural and functional connectivity and executive functions in antipsychotic-naïve patients experiencing schizophrenia. Sixty-four patients with schizophrenia and 95 matched controls underwent cognitive testing, diffusion weighted imaging and resting state functional magnetic resonance imaging. In the primary analyses, groupwise interactions between structural connectivity as measured by fixel-based analyses and executive functions were investigated using multivariate linear regression analyses. For significant structural connections, secondary analyses examined whether functional connectivity and associations with executive functions also differed for the two groups. In group comparisons, patients exhibited cognitive impairments across all executive functions compared to controls (p < 0.001), but no group difference were observed in the fixel-based measures. Primary analyses revealed a groupwise interaction between planning abilities and fixel-based measures in the left anterior thalamic radiation (p = 0.004), as well as interactions between cognitive flexibility and fixel-based measures in the isthmus of corpus callosum and cingulum (p = 0.049). Secondary analyses revealed increased functional connectivity between grey matter regions connected by the left anterior thalamic radiation (left thalamus with pars opercularis p = 0.018, and pars orbitalis p = 0.003) in patients compared to controls. Moreover, a groupwise interaction was observed between cognitive flexibility and functional connectivity between contralateral regions connected by the isthmus (precuneus p = 0.028, postcentral p = 0.012), all p-values corrected for multiple comparisons. We conclude that structural and functional connectivity appear to associate with executive functions differently in antipsychotic-naïve patients with schizophrenia compared to controls.
Collapse
Affiliation(s)
- Tina D Kristensen
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark.
| | - Karen S Ambrosen
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Jayachandra M Raghava
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Warda T Syeda
- Melbourne Brain Center Imaging Unit, Department of Radiology, University of Melbourne, Parkville, VIC, Australia
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Cecilie K Lemvigh
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Kirsten B Bojesen
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Anita D Barber
- Department of Psychiatry, Zucker Hillside Hospital and Zucker School of Medicine at Hofstra/Northwell, Northwell, NY, USA
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Mette Ø Nielsen
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Christos Pantelis
- Department of Psychiatry, University of Melbourne and Melbourne Health, Parkville, VIC, Australia
| | - Birgitte Fagerlund
- Child and Adolescent Psychiatry, Mental Health Centre, Copenhagen University Hospital, Hellerup, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn H Ebdrup
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Wang C, Zhang Y, Chong JS, Zhang W, Zhang X, McIntyre RS, Li Z, Ho RCM, Tang TB, Lim LG. Altered functional connectivity subserving expressed emotion environments in schizophrenia: An fNIRS study. Schizophr Res 2024; 270:178-187. [PMID: 38917555 DOI: 10.1016/j.schres.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024]
Abstract
Living in high-expressed emotion (EE) environments, characterized by critical, hostile, or over-involved family attitudes, has been linked to increased relapse rates among individuals with schizophrenia (SZ). In our previous work (Wang et al., 2023), we conducted the first feasibility study of using functional near-infrared spectroscopy (fNIRS) with our developed EE stimuli to examine cortical hemodynamics in SZ. To better understand the neural mechanisms underlying EE environmental factors in SZ, we extended our investigation by employing functional connectivity (FC) analysis with a graph theory approach to fNIRS signals. Relative to healthy controls (N=40), individuals with SZ (N=37) exhibited altered connectivity across the medial prefrontal cortex (mPFC), left ventrolateral prefrontal cortex (vlPFC), and left superior temporal gyrus (STG) while exposed to EE environments. Notably, while individuals with SZ were exposed to high-EE environments, (i) reduced connectivity was observed in these brain regions and (ii) the left vlPFC-STG coupling was found to be associated with the negative symptom severity. Taken together, our FC findings suggest individuals with SZ experience a more extensive disruption in neural functioning and coordination, particularly indicating an increased susceptibility to high-EE environments. This further supports the potential utility of integrating fNIRS with the created EE stimuli for assessing EE environmental influences, paving the way for more targeted therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Jie Sheng Chong
- Centre for Intelligent Signal and Imaging Research (CISIR), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | | | - Xi Zhang
- Huaibei Mental Health Center, China
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Zhifei Li
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, 119077, Singapore
| | - Roger C M Ho
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, 119077, Singapore; Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Division of Life Science (LIFS), Hong Kong University of Science and Technology, Hong Kong
| | - Tong Boon Tang
- Centre for Intelligent Signal and Imaging Research (CISIR), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Lam Ghai Lim
- Department of Electrical and Robotics Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia; Medical Engineering & Technology Hub, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia.
| |
Collapse
|
25
|
Warren TL, Tubbs JD, Lesh TA, Corona MB, Pakzad SS, Albuquerque MD, Singh P, Zarubin V, Morse SJ, Sham PC, Carter CS, Nord AS. Association of neurotransmitter pathway polygenic risk with specific symptom profiles in psychosis. Mol Psychiatry 2024; 29:2389-2398. [PMID: 38491343 PMCID: PMC11412910 DOI: 10.1038/s41380-024-02457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 03/18/2024]
Abstract
A primary goal of psychiatry is to better understand the pathways that link genetic risk to psychiatric symptoms. Here, we tested association of diagnosis and endophenotypes with overall and neurotransmitter pathway-specific polygenic risk in patients with early-stage psychosis. Subjects included 205 demographically diverse cases with a psychotic disorder who underwent comprehensive psychiatric and neurological phenotyping and 115 matched controls. Following genotyping, we calculated polygenic scores (PGSs) for schizophrenia (SZ) and bipolar disorder (BP) using Psychiatric Genomics Consortium GWAS summary statistics. To test if overall genetic risk can be partitioned into affected neurotransmitter pathways, we calculated pathway PGSs (pPGSs) for SZ risk affecting each of four major neurotransmitter systems: glutamate, GABA, dopamine, and serotonin. Psychosis subjects had elevated SZ PGS versus controls; cases with SZ or BP diagnoses had stronger SZ or BP risk, respectively. There was no significant association within psychosis cases between individual symptom measures and overall PGS. However, neurotransmitter-specific pPGSs were moderately associated with specific endophenotypes; notably, glutamate was associated with SZ diagnosis and with deficits in cognitive control during task-based fMRI, while dopamine was associated with global functioning. Finally, unbiased endophenotype-driven clustering identified three diagnostically mixed case groups that separated on primary deficits of positive symptoms, negative symptoms, global functioning, and cognitive control. All clusters showed strong genome-wide risk. Cluster 2, characterized by deficits in cognitive control and negative symptoms, additionally showed specific risk concentrated in glutamatergic and GABAergic pathways. Due to the intensive characterization of our subjects, the present study was limited to a relatively small cohort. As such, results should be followed up with additional research at the population and mechanism level. Our study suggests pathway-based PGS analysis may be a powerful path forward to study genetic mechanisms driving psychiatric endophenotypes.
Collapse
Affiliation(s)
- Tracy L Warren
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
- Center for Neuroscience, University of California, Davis, CA, USA
| | - Justin D Tubbs
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tyler A Lesh
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Mylena B Corona
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
- Center for Neuroscience, University of California, Davis, CA, USA
| | - Sarvenaz S Pakzad
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Marina D Albuquerque
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Praveena Singh
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Vanessa Zarubin
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Sarah J Morse
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
- Center for Neuroscience, University of California, Davis, CA, USA
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Pak Chung Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR.
- Centre for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR.
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR.
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA.
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA.
| | - Alex S Nord
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA.
- Center for Neuroscience, University of California, Davis, CA, USA.
| |
Collapse
|
26
|
Mana L, Schwartz-Pallejà M, Vila-Vidal M, Deco G. Overview on cognitive impairment in psychotic disorders: From impaired microcircuits to dysconnectivity. Schizophr Res 2024; 269:132-143. [PMID: 38788432 DOI: 10.1016/j.schres.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Schizophrenia's cognitive deficits, often overshadowed by positive symptoms, significantly contribute to the disorder's morbidity. Increasing attention highlights these deficits as reflections of neural circuit dysfunction across various cortical regions. Numerous connectivity alterations linked to cognitive symptoms in psychotic disorders have been reported, both at the macroscopic and microscopic level, emphasizing the potential role of plasticity and microcircuits impairment during development and later stages. However, the heterogeneous clinical presentation of cognitive impairment and diverse connectivity findings pose challenges in summarizing them into a cohesive picture. This review aims to synthesize major cognitive alterations, recent insights into network structural and functional connectivity changes and proposed mechanisms and microcircuit alterations underpinning these symptoms, particularly focusing on neurodevelopmental impairment, E/I balance, and sleep disturbances. Finally, we will also comment on some of the most recent and promising therapeutic approaches that aim to target these mechanisms to address cognitive symptoms. Through this comprehensive exploration, we strive to provide an updated and nuanced overview of the multiscale connectivity impairment underlying cognitive impairment in psychotic disorders.
Collapse
Affiliation(s)
- L Mana
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain.
| | - M Schwartz-Pallejà
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain; Department of Experimental and Health Science, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain; Eurecat, Technology Center of Catalonia, Multimedia Technologies, Barcelona, Spain.
| | - M Vila-Vidal
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain; Computational Biology and Complex Systems Group, Department of Physics, Universitat Politècnica de Catalunya, Barcelona, Spain.
| | - G Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
27
|
Gonzalez Burgos G, Miyamae T, Nishihata Y, Krimer OL, Wade K, Fish KN, Arion D, Cai ZL, Xue M, Stauffer WR, Lewis DA. Synaptic alterations in pyramidal cells following genetic manipulation of neuronal excitability in monkey prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598658. [PMID: 38915638 PMCID: PMC11195287 DOI: 10.1101/2024.06.12.598658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
In schizophrenia, layer 3 pyramidal neurons (L3PNs) in the dorsolateral prefrontal cortex (DLPFC) are thought to receive fewer excitatory synaptic inputs and to have lower expression levels of activity-dependent genes and of genes involved in mitochondrial energy production. In concert, these findings from previous studies suggest that DLPFC L3PNs are hypoactive in schizophrenia, disrupting the patterns of activity that are crucial for working memory, which is impaired in the illness. However, whether lower PN activity produces alterations in inhibitory and/or excitatory synaptic strength has not been tested in the primate DLPFC. Here, we decreased PN excitability in rhesus monkey DLPFC in vivo using adeno-associated viral vectors (AAVs) to produce Cre recombinase-mediated overexpression of Kir2.1 channels, a genetic silencing tool that efficiently decreases neuronal excitability. In acute slices prepared from DLPFC 7-12 weeks post-AAV microinjections, Kir2.1-overexpressing PNs had a significantly reduced excitability largely attributable to highly specific effects of the AAV-encoded Kir2.1 channels. Moreover, recordings of synaptic currents showed that Kir2.1-overexpressing DLPFC PNs had reduced strength of excitatory synapses whereas inhibitory synaptic inputs were not affected. The decrease in excitatory synaptic strength was not associated with changes in dendritic spine number, suggesting that excitatory synapse quantity was unaltered in Kir2.1-overexpressing DLPFC PNs. These findings suggest that, in schizophrenia, the excitatory synapses on hypoactive L3PNs are weaker and thus might represent a substrate for novel therapeutic interventions. Significance Statement In schizophrenia, dorsolateral prefrontal cortex (DLPFC) pyramidal neurons (PNs) have both transcriptional and structural alterations that suggest they are hypoactive. PN hypoactivity is thought to produce synaptic alterations in schizophrenia, however the effects of lower neuronal activity on synaptic function in primate DLPFC have not been examined. Here, we used, for the first time in primate neocortex, adeno-associated viral vectors (AAVs) to reduce PN excitability with Kir2.1 channel overexpression and tested if this manipulation altered the strength of synaptic inputs onto the Kir2.1-overexpressing PNs. Recordings in DLPFC slices showed that Kir2.1 overexpression depressed excitatory (but not inhibitory), synaptic currents, suggesting that, in schizophrenia, the hypoactivity of PNs might be exacerbated by reduced strength of the excitatory synapses they receive.
Collapse
|
28
|
Liou YJ, Liu MN, Yang KC, Hu LY, Hsieh WC, Chou YH. Hippocampal subfields in remitted schizophrenia. J Chin Med Assoc 2024; 87:627-634. [PMID: 38656303 DOI: 10.1097/jcma.0000000000001100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Current evidence of volume changes in hippocampal subdivisions in schizophrenia remains inconsistent, and few studies have investigated the relationship between regional hippocampal volumes and symptom remission. METHODS In this cross-sectional study, we recruited 31 patients with schizophrenia and 31 healthy controls (HCs). Symptomatic remission in schizophrenia was determined according to Remission in Schizophrenia Working Group criteria. The volumes of hippocampal longitudinal subregions and transverse subfields were measured using manual and automatic techniques, respectively. Between-group regional hippocampal volume differences were analyzed using multivariate analysis of covariance followed by univariate analysis of covariance. RESULTS Compared with the HCs, the patients with schizophrenia had smaller bilateral heads and tails along the longitudinal axis; they also had reduced volumes of the bilateral CA1, CA3, CA4, GC-ML-DG, molecular layer, tail, left subiculum, left HATA, and right parasubiculum along the transverse axis in the hippocampus (all corrected p < 0.05). Furthermore, compared with the HCs and patients with remitted schizophrenia, the patients with nonremitted schizophrenia had smaller bilateral hippocampal tail subfields (corrected p < 0.05). CONCLUSION Our results indicated that the pathophysiology and symptomatic remission of schizophrenia are related to changes in the volumes of hippocampal subdivisions. These volume changes might be clinically relevant as biomarkers for schizophrenia identification and treatment.
Collapse
Affiliation(s)
- Ying-Jay Liou
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Mu-N Liu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Kai-Chun Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Li-Yu Hu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Wen-Chi Hsieh
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Industrial and Systems Engineering, Chung Yuan Christian University, Taoyuan, Taiwan, ROC
| | - Yuan-Hwa Chou
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, ROC
| |
Collapse
|
29
|
Fouladivanda M, Iraji A, Wu L, van Erp TG, Belger A, Hawamdeh F, Pearlson GD, Calhoun VD. A spatially constrained independent component analysis jointly informed by structural and functional network connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.13.553101. [PMID: 38853973 PMCID: PMC11160563 DOI: 10.1101/2023.08.13.553101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
There are a growing number of neuroimaging studies motivating joint structural and functional brain connectivity. Brain connectivity of different modalities provides insight into brain functional organization by leveraging complementary information, especially for brain disorders such as schizophrenia. In this paper, we propose a multi-modal independent component analysis (ICA) model that utilizes information from both structural and functional brain connectivity guided by spatial maps to estimate intrinsic connectivity networks (ICNs). Structural connectivity is estimated through whole-brain tractography on diffusion-weighted MRI (dMRI), while functional connectivity is derived from resting-state functional MRI (rs-fMRI). The proposed structural-functional connectivity and spatially constrained ICA (sfCICA) model estimates ICNs at the subject level using a multi-objective optimization framework. We evaluated our model using synthetic and real datasets (including dMRI and rs-fMRI from 149 schizophrenia patients and 162 controls). Multi-modal ICNs revealed enhanced functional coupling between ICNs with higher structural connectivity, improved modularity, and network distinction, particularly in schizophrenia. Statistical analysis of group differences showed more significant differences in the proposed model compared to the unimodal model. In summary, the sfCICA model showed benefits from being jointly informed by structural and functional connectivity. These findings suggest advantages in simultaneously learning effectively and enhancing connectivity estimates using structural connectivity.
Collapse
Affiliation(s)
- Mahshid Fouladivanda
- Tri-institute Translational Research in Neuroimaging and Data Science (TReNDS Center), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Georgia State University, Atlanta, GA, USA
| | - Armin Iraji
- Tri-institute Translational Research in Neuroimaging and Data Science (TReNDS Center), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Georgia State University, Atlanta, GA, USA
| | - Lei Wu
- Tri-institute Translational Research in Neuroimaging and Data Science (TReNDS Center), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Theodorus G.M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior School of Medicine, University of California, Irvine, CA, USA
| | - Aysenil Belger
- Department of Psychiatry Director, Neuroimaging Research in Psychiatry Director, Clinical Translational Core, UNC Intellectual and Developmental Disabilities Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Faris Hawamdeh
- Center for Disaster Informatics and Computational Epidemiology (DICE), Georgia State University, Atlanta, GA, USA
| | - Godfrey D. Pearlson
- Olin Neuropsychiatry Research Center, Department of Psychiatry and Neuroscience, Yale University, School of Medicine, New Haven, CT, USA
| | - Vince D. Calhoun
- Tri-institute Translational Research in Neuroimaging and Data Science (TReNDS Center), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Georgia State University, Atlanta, GA, USA
| |
Collapse
|
30
|
Li YT, Zhang C, Han JC, Shang YX, Chen ZH, Cui GB, Wang W. Neuroimaging features of cognitive impairments in schizophrenia and major depressive disorder. Ther Adv Psychopharmacol 2024; 14:20451253241243290. [PMID: 38708374 PMCID: PMC11070126 DOI: 10.1177/20451253241243290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/14/2024] [Indexed: 05/07/2024] Open
Abstract
Cognitive dysfunctions are one of the key symptoms of schizophrenia (SZ) and major depressive disorder (MDD), which exist not only during the onset of diseases but also before the onset, even after the remission of psychiatric symptoms. With the development of neuroimaging techniques, these non-invasive approaches provide valuable insights into the underlying pathogenesis of psychiatric disorders and information of cognitive remediation interventions. This review synthesizes existing neuroimaging studies to examine domains of cognitive impairment, particularly processing speed, memory, attention, and executive function in SZ and MDD patients. First, white matter (WM) abnormalities are observed in processing speed deficits in both SZ and MDD, with distinct neuroimaging findings highlighting WM connectivity abnormalities in SZ and WM hyperintensity caused by small vessel disease in MDD. Additionally, the abnormal functions of prefrontal cortex and medial temporal lobe are found in both SZ and MDD patients during various memory tasks, while aberrant amygdala activity potentially contributes to a preference to negative memories in MDD. Furthermore, impaired large-scale networks including frontoparietal network, dorsal attention network, and ventral attention network are related to attention deficits, both in SZ and MDD patients. Finally, abnormal activity and volume of the dorsolateral prefrontal cortex (DLPFC) and abnormal functional connections between the DLPFC and the cerebellum are associated with executive dysfunction in both SZ and MDD. Despite these insights, longitudinal neuroimaging studies are lacking, impeding a comprehensive understanding of cognitive changes and the development of early intervention strategies for SZ and MDD. Addressing this gap is critical for advancing our knowledge and improving patient prognosis.
Collapse
Affiliation(s)
- Yu-Ting Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Chi Zhang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Jia-Cheng Han
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yu-Xuan Shang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zhu-Hong Chen
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Guang-Bin Cui
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi’an 710038, Shaanxi, China
| | - Wen Wang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi’an 710038, Shaanxi, China
| |
Collapse
|
31
|
Chang Z, Liu L, Lin L, Wang G, Zhang C, Tian H, Liu W, Wang L, Zhang B, Ren J, Zhang Y, Xie Y, Du X, Wei X, Wei L, Luo Y, Dong H, Li X, Zhao Z, Liang M, Zhang C, Wang X, Yu C, Qin W, Liu H. Selective disrupted gray matter volume covariance of amygdala subregions in schizophrenia. Front Psychiatry 2024; 15:1349989. [PMID: 38742128 PMCID: PMC11090100 DOI: 10.3389/fpsyt.2024.1349989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Objective Although extensive structural and functional abnormalities have been reported in schizophrenia, the gray matter volume (GMV) covariance of the amygdala remain unknown. The amygdala contains several subregions with different connection patterns and functions, but it is unclear whether the GMV covariance of these subregions are selectively affected in schizophrenia. Methods To address this issue, we compared the GMV covariance of each amygdala subregion between 807 schizophrenia patients and 845 healthy controls from 11 centers. The amygdala was segmented into nine subregions using FreeSurfer (v7.1.1), including the lateral (La), basal (Ba), accessory-basal (AB), anterior-amygdaloid-area (AAA), central (Ce), medial (Me), cortical (Co), corticoamygdaloid-transition (CAT), and paralaminar (PL) nucleus. We developed an operational combat harmonization model for 11 centers, subsequently employing a voxel-wise general linear model to investigate the differences in GMV covariance between schizophrenia patients and healthy controls across these subregions and the entire brain, while adjusting for age, sex and TIV. Results Our findings revealed that five amygdala subregions of schizophrenia patients, including bilateral AAA, CAT, and right Ba, demonstrated significantly increased GMV covariance with the hippocampus, striatum, orbitofrontal cortex, and so on (permutation test, P< 0.05, corrected). These findings could be replicated in most centers. Rigorous correlation analysis failed to identify relationships between the altered GMV covariance with positive and negative symptom scale, duration of illness, and antipsychotic medication measure. Conclusion Our research is the first to discover selectively impaired GMV covariance patterns of amygdala subregion in a large multicenter sample size of patients with schizophrenia.
Collapse
Affiliation(s)
- Zhongyu Chang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Liping Liu
- Department of Psychiatry, The First Psychiatric Hospital of Harbin, Harbin, Heilongjiang, China
| | - Liyuan Lin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Gang Wang
- Wuhan Mental Health Center, The Ninth Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Zhang
- Department of Biochemistry and Psychopharmacology, Shanghai Mental Health Center, Shanghai, China
| | - Hongjun Tian
- Department of Psychiatry, Tianjin Fourth Center Hospital, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Wei Liu
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lina Wang
- Department of Psychiatry, Tianjin Fourth Center Hospital, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Bin Zhang
- Department of Psychiatry, Tianjin Fourth Center Hospital, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Juanjuan Ren
- Department of Biochemistry and Psychopharmacology, Shanghai Mental Health Center, Shanghai, China
| | - Yu Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaotong Du
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaotong Wei
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Luli Wei
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Yun Luo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Haoyang Dong
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Li
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhen Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Liang
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Congpei Zhang
- Department of Psychiatry, The First Psychiatric Hospital of Harbin, Harbin, Heilongjiang, China
| | - Xijin Wang
- Department of Psychiatry, The First Psychiatric Hospital of Harbin, Harbin, Heilongjiang, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
- State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Huaigui Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
32
|
Cai B, Zhu Y, Liu D, Li Y, Bueber M, Yang X, Luo G, Su Y, Grivel MM, Yang LH, Qian M, Stone WS, Phillips MR. Use of the Chinese version of the MATRICS Consensus Cognitive Battery to assess cognitive functioning in individuals with high risk for psychosis, first-episode schizophrenia and chronic schizophrenia: a systematic review and meta-analysis. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 45:101016. [PMID: 38699289 PMCID: PMC11064724 DOI: 10.1016/j.lanwpc.2024.101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 05/05/2024]
Abstract
More than one hundred studies have used the mainland Chinese version of the MATRICS Consensus Cognitive Battery (MCCB) to assess cognition in schizophrenia, but the results of these studies, the quality of the reports, and the strength of the evidence provided in the reports have not been systematically assessed. We identified 114 studies from English-language and Chinese-language databases that used the Chinese MCCB to assess cognition in combined samples of 7394 healthy controls (HC), 392 individuals with clinical high risk for psychosis (CHR-P), 4922 with first-episode schizophrenia (FES), 1549 with chronic schizophrenia (CS), and 2925 with schizophrenia of unspecified duration. The mean difference (MD) of the composite MCCB T-score (-13.72) and T-scores of each of the seven cognitive domains assessed by MCCB (-14.27 to -7.92) were significantly lower in individuals with schizophrenia than in controls. Meta-analysis identified significantly greater cognitive impairment in FES and CS than in CHR-P in six of the seven domains and significantly greater impairment in CS than FES in the reasoning and problem-solving domain (i.e., executive functioning). The only significant covariate of overall cognitive functioning in individuals with schizophrenia was a negative association with the severity of psychotic symptoms. These results confirm the construct validity of the mainland Chinese version of MCCB. However, there were significant limitations in the strength of the evidence provided about CHR-P (small pooled sample sizes) and the social cognition domain (inconsistency of results across studies), and the quality of many reports (particularly those published in Chinese) was rated 'poor' due to failure to report sample size calculations, matching procedures or methods of handling missing data. Moreover, almost all studies were cross-sectional studies limited to persons under 60 with at least nine years of education, so longitudinal studies of under-educated, older individuals with schizophrenia are needed.
Collapse
Affiliation(s)
- Bing Cai
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yikang Zhu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongyang Liu
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Yaxi Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Marlys Bueber
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuezhi Yang
- The Fifth People's Hospital, Nanning, Guangxi, China
| | - Guoshuai Luo
- Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, Tianjin, China
| | - Ying Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Margaux M. Grivel
- Department of Social and Behavioral Sciences, School of Global Public Health, New York University, New York, NY, USA
| | - Lawrence H. Yang
- Department of Social and Behavioral Sciences, School of Global Public Health, New York University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Min Qian
- Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - William S. Stone
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michael R. Phillips
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| |
Collapse
|
33
|
Takai Y, Tamura S, Hoaki N, Kitajima K, Nakamura I, Hirano S, Ueno T, Nakao T, Onitsuka T, Hirano Y. Aberrant thalamocortical connectivity and shifts between the resting state and task state in patients with schizophrenia. Eur J Neurosci 2024; 59:1961-1976. [PMID: 38440952 DOI: 10.1111/ejn.16298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 03/06/2024]
Abstract
Prominent pathological hypotheses for schizophrenia include auditory processing deficits and dysconnectivity within cerebral networks. However, most neuroimaging studies have focused on impairments in either resting-state or task-related functional connectivity in patients with schizophrenia. The aims of our study were to examine (1) blood oxygen level-dependent (BOLD) signals during auditory steady-state response (ASSR) tasks, (2) functional connectivity during the resting-state and ASSR tasks and (3) state shifts between the resting-state and ASSR tasks in patients with schizophrenia. To reduce the functional consequences of scanner noise, we employed resting-state and sparse sampling auditory fMRI paradigms in 25 schizophrenia patients and 25 healthy controls. Auditory stimuli were binaural click trains at frequencies of 20, 30, 40 and 80 Hz. Based on the detected ASSR-evoked BOLD signals, we examined the functional connectivity between the thalamus and bilateral auditory cortex during both the resting state and ASSR task state, as well as their alterations. The schizophrenia group exhibited significantly diminished BOLD signals in the bilateral auditory cortex and thalamus during the 80 Hz ASSR task (corrected p < 0.05). We observed a significant inverse relationship between the resting state and ASSR task state in altered functional connectivity within the thalamo-auditory network in schizophrenia patients. Specifically, our findings demonstrated stronger functional connectivity in the resting state (p < 0.004) and reduced functional connectivity during the ASSR task (p = 0.048), which was mediated by abnormal state shifts, within the schizophrenia group. These results highlight the presence of abnormal thalamocortical connectivity associated with deficits in the shift between resting and task states in patients with schizophrenia.
Collapse
Affiliation(s)
- Yoshifumi Takai
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunsuke Tamura
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Psychiatry, Division of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Nobuhiko Hoaki
- Psychiatry Neuroimaging Center, Hoaki Hospital, Oita, Japan
| | - Kazutoshi Kitajima
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Itta Nakamura
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shogo Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takefumi Ueno
- Division of Clinical Research, National Hospital Organization, Hizen Psychiatric Center, Saga, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Onitsuka
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- National Hospital Organization Sakakibara Hospital, Tsu, Mie, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Psychiatry, Division of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Institute of Industrial Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Martino M, Magioncalda P. A three-dimensional model of neural activity and phenomenal-behavioral patterns. Mol Psychiatry 2024; 29:639-652. [PMID: 38114633 DOI: 10.1038/s41380-023-02356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
How phenomenal experience and behavior are related to neural activity in physiology and psychopathology represents a fundamental question in neuroscience and psychiatry. The phenomenal-behavior patterns may be deconstructed into basic dimensions, i.e., psychomotricity, affectivity, and thought, which might have distinct neural correlates. This work provides a data overview on the relationship of these phenomenal-behavioral dimensions with brain activity across physiological and pathological conditions (including major depressive disorder, bipolar disorder, schizophrenia, attention-deficit/hyperactivity disorder, anxiety disorders, addictive disorders, Parkinson's disease, Tourette syndrome, Alzheimer's disease, and frontotemporal dementia). Accordingly, we propose a three-dimensional model of neural activity and phenomenal-behavioral patterns. In this model, neural activity is organized into distinct units in accordance with connectivity patterns and related input/output processing, manifesting in the different phenomenal-behavioral dimensions. (1) An external neural unit, which involves the sensorimotor circuit/brain's sensorimotor network and is connected with the external environment, processes external inputs/outputs, manifesting in the psychomotor dimension (processing of exteroception/somatomotor activity). External unit hyperactivity manifests in psychomotor excitation (hyperactivity/hyperkinesia/catatonia), while external unit hypoactivity manifests in psychomotor inhibition (retardation/hypokinesia/catatonia). (2) An internal neural unit, which involves the interoceptive-autonomic circuit/brain's salience network and is connected with the internal/body environment, processes internal inputs/outputs, manifesting in the affective dimension (processing of interoception/autonomic activity). Internal unit hyperactivity manifests in affective excitation (anxiety/dysphoria-euphoria/panic), while internal unit hypoactivity manifests in affective inhibition (anhedonia/apathy/depersonalization). (3) An associative neural unit, which involves the brain's associative areas/default-mode network and is connected with the external/internal units (but not with the environment), processes associative inputs/outputs, manifesting in the thought dimension (processing of ideas). Associative unit hyperactivity manifests in thought excitation (mind-wandering/repetitive thinking/psychosis), while associative unit hypoactivity manifests in thought inhibition (inattention/cognitive deficit/consciousness loss). Finally, these neural units interplay and dynamically combine into various neural states, resulting in the complex phenomenal experience and behavior across physiology and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Matteo Martino
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
| | - Paola Magioncalda
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Radiology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
- Department of Medical Research, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
| |
Collapse
|
35
|
Mantonakis L, Stefanatou P, Tsionis A, Konstantakopoulos G, Xenaki LA, Ntigrintaki AA, Ralli I, Dimitrakopoulos S, Kollias K, Stefanis NC. Cognitive Inflexibility Predicts Negative Symptoms Severity in Patients with First-Episode Psychosis: A 1-Year Follow-Up Study. Brain Sci 2024; 14:162. [PMID: 38391736 PMCID: PMC10886606 DOI: 10.3390/brainsci14020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Negative symptoms and cognitive deficits play a major role in psychosis and significantly influence the functional outcomes of patients, particularly those with a first episode of psychosis (FEP). However, limited research has explored the predictive capacity of cognitive deficits during FEP for subsequent negative symptomatology. Drawing from the Athens FEP research study, we conducted a retrospective longitudinal study in 80 individuals with FEP. All patients were drug naive at admission. Cognitive tests were administered at 1-month and 1-year post-admission, while negative symptomatology was assessed at the same time points using PANSS by trained raters. We considered confounding factors such as age, gender, duration of untreated psychosis (DUP), treatment received, premorbid social adjustment, and premorbid IQ. Univariate regression analysis identified cognitive domains that correlated with negative symptomatology. These, along with the confounders, were incorporated into a multiple regression, with the 1-year PANSS negative scale serving as the dependent variable. Employing the backward elimination technique, we found a statistically significant inverse relationship between the categories completed in the Wisconsin card sorting test (WCST) and the 1-year PANNS negative scale (p = 0.01), beyond the associations with DUP and the 1-month PANSS negative scale. Our results suggest that cognitive flexibility, a key component of executive functions, predicts negative symptom severity one year after FEP.
Collapse
Affiliation(s)
- Leonidas Mantonakis
- First Department of Psychiatry, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Pentagiotissa Stefanatou
- First Department of Psychiatry, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Antonis Tsionis
- First Department of Psychiatry, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - George Konstantakopoulos
- First Department of Psychiatry, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
- Research Department of Clinical, Education and Health Psychology, University College London, London WC1E 7HB, UK
| | - Lida-Alkisti Xenaki
- First Department of Psychiatry, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Angeliki-Aikaterini Ntigrintaki
- First Department of Psychiatry, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Irene Ralli
- First Department of Psychiatry, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Stefanos Dimitrakopoulos
- First Department of Psychiatry, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
- Psychiatric Clinic, 414 Military Hospital of Athens, 15236 Palea Penteli, Greece
| | - Konstantinos Kollias
- First Department of Psychiatry, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Nikos C Stefanis
- First Department of Psychiatry, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
36
|
Voineskos AN, Hawco C, Neufeld NH, Turner JA, Ameis SH, Anticevic A, Buchanan RW, Cadenhead K, Dazzan P, Dickie EW, Gallucci J, Lahti AC, Malhotra AK, Öngür D, Lencz T, Sarpal DK, Oliver LD. Functional magnetic resonance imaging in schizophrenia: current evidence, methodological advances, limitations and future directions. World Psychiatry 2024; 23:26-51. [PMID: 38214624 PMCID: PMC10786022 DOI: 10.1002/wps.21159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Functional neuroimaging emerged with great promise and has provided fundamental insights into the neurobiology of schizophrenia. However, it has faced challenges and criticisms, most notably a lack of clinical translation. This paper provides a comprehensive review and critical summary of the literature on functional neuroimaging, in particular functional magnetic resonance imaging (fMRI), in schizophrenia. We begin by reviewing research on fMRI biomarkers in schizophrenia and the clinical high risk phase through a historical lens, moving from case-control regional brain activation to global connectivity and advanced analytical approaches, and more recent machine learning algorithms to identify predictive neuroimaging features. Findings from fMRI studies of negative symptoms as well as of neurocognitive and social cognitive deficits are then reviewed. Functional neural markers of these symptoms and deficits may represent promising treatment targets in schizophrenia. Next, we summarize fMRI research related to antipsychotic medication, psychotherapy and psychosocial interventions, and neurostimulation, including treatment response and resistance, therapeutic mechanisms, and treatment targeting. We also review the utility of fMRI and data-driven approaches to dissect the heterogeneity of schizophrenia, moving beyond case-control comparisons, as well as methodological considerations and advances, including consortia and precision fMRI. Lastly, limitations and future directions of research in the field are discussed. Our comprehensive review suggests that, in order for fMRI to be clinically useful in the care of patients with schizophrenia, research should address potentially actionable clinical decisions that are routine in schizophrenia treatment, such as which antipsychotic should be prescribed or whether a given patient is likely to have persistent functional impairment. The potential clinical utility of fMRI is influenced by and must be weighed against cost and accessibility factors. Future evaluations of the utility of fMRI in prognostic and treatment response studies may consider including a health economics analysis.
Collapse
Affiliation(s)
- Aristotle N Voineskos
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nicholas H Neufeld
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jessica A Turner
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Stephanie H Ameis
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cundill Centre for Child and Youth Depression and McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Alan Anticevic
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristin Cadenhead
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Erin W Dickie
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Julia Gallucci
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anil K Malhotra
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Dost Öngür
- McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - Todd Lencz
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Deepak K Sarpal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lindsay D Oliver
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
37
|
Zhang S, Ai H, Wang J, Liu T, Zheng X, Tian X, Bai W. Reduced Prefrontal-Thalamic Theta Flow During Working Memory Retrieval in APP/PS1 Mice. J Alzheimers Dis 2024; 97:1737-1749. [PMID: 38306044 PMCID: PMC10894573 DOI: 10.3233/jad-231078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 02/03/2024]
Abstract
Background Working memory deficits in Alzheimer's disease (AD) are linked to impairments in the retrieval of stored memory information. However, research on the mechanism of impaired working memory retrieval in Alzheimer's disease is still lacking. Objective The medial prefrontal cortex (mPFC) and mediodorsal thalamus (MD) are involved in memory retrieval. The purpose of this study is to investigate the functional interactions and information transmission between mPFC and MD in the AD model. Methods We recorded local field potentials from mPFC and MD while the mice (APP/PS1 transgenic model and control) performed a T-maze spatial working memory task. The temporal dynamics of oscillatory activity and bidirectional information flow between mPFC and MD were assessed during the task phases. Results We mainly found a significant decrease in theta flow from mPFC to MD in APP/PS1 mice during retrieval. Conclusions Our results indicate an important role of the mPFC-MD input for retrieval and the disrupted information transfer from mPFC to MD may be the underlying mechanism of working memory deficits in APP/PS1 mice.
Collapse
Affiliation(s)
- Shengnan Zhang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Hongrui Ai
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Jia Wang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Xuyuan Zheng
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Xin Tian
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Wenwen Bai
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
38
|
Mayeli A, Donati FL, Ferrarelli F. Altered Sleep Oscillations as Neurophysiological Biomarkers of Schizophrenia. ADVANCES IN NEUROBIOLOGY 2024; 40:351-383. [PMID: 39562451 DOI: 10.1007/978-3-031-69491-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Sleep spindles and slow waves are the two main oscillatory activities occurring during nonrapid eye movement (NREM) sleep. Here, we will first describe the electrophysiological characteristics of these sleep oscillations along with the neurophysiological and molecular mechanisms underlying their generation and synchronization in the healthy brain. We will then review the extant evidence of deficits in sleep spindles and, to a lesser extent, slow waves, including in slow wave-spindle coupling, in patients with Schizophrenia (SCZ) across the course of the disorder, from at-risk to chronic stages. Next, we will discuss how these sleep oscillatory deficits point to defects in neuronal circuits within the thalamocortical network as well as to alterations in molecular neurotransmission implicating the GABAergic and glutamatergic systems in SCZ. Finally, after explaining how spindle and slow waves may represent neurophysiological biomarkers with predictive, diagnostic, and prognostic potential, we will present novel pharmacological and neuromodulatory interventions aimed at restoring sleep oscillatory deficits in SCZ, which in turn may serve as target engagement biomarkers to ameliorate the clinical symptoms and the quality of life of individuals affected by this devastating brain disorder.
Collapse
Affiliation(s)
- Ahmad Mayeli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
39
|
Tuppurainen H, Määttä S, Könönen M, Julkunen P, Kautiainen H, Hyvärinen S, Vaurio O, Joensuu M, Vanhanen M, Aho-Mustonen K, Mervaala E, Tiihonen J. Navigated and individual α-peak-frequency-guided transcranial magnetic stimulation in male patients with treatment-refractory schizophrenia. J Psychiatry Neurosci 2024; 49:E87-E95. [PMID: 38428970 PMCID: PMC10914400 DOI: 10.1503/jpn.230063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/25/2023] [Accepted: 12/07/2023] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Previous electroencephalography (EEG) studies have indicated altered brain oscillatory α-band activity in schizophrenia, and treatment with repetitive transcranial magnetic stimulation (rTMS) using individualized α-frequency has shown therapeutic effects. Magnetic resonance imaging-based neuronavigation methods allow stimulation of a specific cortical region and improve targeting of rTMS; therefore, we sought to study the efficacy of navigated, individual α-peak-frequency-guided rTMS (αTMS) on treatment-refractory schizophrenia. METHODS We recruited medication-refractory male patients with schizophrenia or schizoaffective disorder in this doubleblind, sham-controlled study. We randomized patients to a 3-week course of either active αTMS or sham stimulation applied to the left dorsolateral prefrontal cortex (DLPFC). We assessed participants with the Positive and Negative Syndrome Scale (PANSS) and the Clinical Global Impression Scale (CGI) at baseline and after treatment. We conducted a follow-up assessment with the PANSS 3 months after intervention. RESULTS We included 44 patients. After treatment, we observed a significantly higher PANSS total score (p = 0.029), PANSS general psychopathology score (p = 0.027) and PANSS 5-factor model cognitive-disorganized factor score (p = 0.011) in the αTMS group than the sham group. In addition, the CGI-Improvement score was significantly higher among those who received αTMS compared with sham stimulation (p = 0.048). LIMITATIONS The limited number of study participants included only male patients. Depression was not formally evaluated. CONCLUSION Navigated αTMS to the left DLPFC reduced total, general psychopathological, and cognitive-disorganized symptoms of schizophrenia. These results provide evidence for the therapeutic efficacy of individual α-peak-frequency-guided rTMS in treatment-refractory schizophrenia. CLINICAL TRIAL REGISTRATION NCT01941251; ClinicalTrials.gov.
Collapse
Affiliation(s)
- Heli Tuppurainen
- From the Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland (Tuppurainen, Hyvärinen, Vaurio, Joensuu, Vanhanen, Aho-Mustonen, Tiihonen); the Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland (Määttä, Könönen, Julkunen, Mervaala); the Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland (Könönen); the Department of Technical Physics, University of Eastern Finland, Kuopio, Finland (Julkunen); the Primary Health Care Unit, Kuopio University Hospital, Kuopio, Finland (Kautiainen); the Folkhälsan Research Center, Helsinki, Finland (Kautiainen); Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland (Mervaala); the Department of Clinical Neuroscience, Karolinska Institutet, and Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden (Tiihonen)
| | - Sara Määttä
- From the Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland (Tuppurainen, Hyvärinen, Vaurio, Joensuu, Vanhanen, Aho-Mustonen, Tiihonen); the Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland (Määttä, Könönen, Julkunen, Mervaala); the Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland (Könönen); the Department of Technical Physics, University of Eastern Finland, Kuopio, Finland (Julkunen); the Primary Health Care Unit, Kuopio University Hospital, Kuopio, Finland (Kautiainen); the Folkhälsan Research Center, Helsinki, Finland (Kautiainen); Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland (Mervaala); the Department of Clinical Neuroscience, Karolinska Institutet, and Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden (Tiihonen)
| | - Mervi Könönen
- From the Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland (Tuppurainen, Hyvärinen, Vaurio, Joensuu, Vanhanen, Aho-Mustonen, Tiihonen); the Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland (Määttä, Könönen, Julkunen, Mervaala); the Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland (Könönen); the Department of Technical Physics, University of Eastern Finland, Kuopio, Finland (Julkunen); the Primary Health Care Unit, Kuopio University Hospital, Kuopio, Finland (Kautiainen); the Folkhälsan Research Center, Helsinki, Finland (Kautiainen); Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland (Mervaala); the Department of Clinical Neuroscience, Karolinska Institutet, and Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden (Tiihonen)
| | - Petro Julkunen
- From the Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland (Tuppurainen, Hyvärinen, Vaurio, Joensuu, Vanhanen, Aho-Mustonen, Tiihonen); the Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland (Määttä, Könönen, Julkunen, Mervaala); the Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland (Könönen); the Department of Technical Physics, University of Eastern Finland, Kuopio, Finland (Julkunen); the Primary Health Care Unit, Kuopio University Hospital, Kuopio, Finland (Kautiainen); the Folkhälsan Research Center, Helsinki, Finland (Kautiainen); Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland (Mervaala); the Department of Clinical Neuroscience, Karolinska Institutet, and Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden (Tiihonen)
| | - Hannu Kautiainen
- From the Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland (Tuppurainen, Hyvärinen, Vaurio, Joensuu, Vanhanen, Aho-Mustonen, Tiihonen); the Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland (Määttä, Könönen, Julkunen, Mervaala); the Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland (Könönen); the Department of Technical Physics, University of Eastern Finland, Kuopio, Finland (Julkunen); the Primary Health Care Unit, Kuopio University Hospital, Kuopio, Finland (Kautiainen); the Folkhälsan Research Center, Helsinki, Finland (Kautiainen); Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland (Mervaala); the Department of Clinical Neuroscience, Karolinska Institutet, and Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden (Tiihonen)
| | - Soile Hyvärinen
- From the Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland (Tuppurainen, Hyvärinen, Vaurio, Joensuu, Vanhanen, Aho-Mustonen, Tiihonen); the Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland (Määttä, Könönen, Julkunen, Mervaala); the Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland (Könönen); the Department of Technical Physics, University of Eastern Finland, Kuopio, Finland (Julkunen); the Primary Health Care Unit, Kuopio University Hospital, Kuopio, Finland (Kautiainen); the Folkhälsan Research Center, Helsinki, Finland (Kautiainen); Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland (Mervaala); the Department of Clinical Neuroscience, Karolinska Institutet, and Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden (Tiihonen)
| | - Olli Vaurio
- From the Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland (Tuppurainen, Hyvärinen, Vaurio, Joensuu, Vanhanen, Aho-Mustonen, Tiihonen); the Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland (Määttä, Könönen, Julkunen, Mervaala); the Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland (Könönen); the Department of Technical Physics, University of Eastern Finland, Kuopio, Finland (Julkunen); the Primary Health Care Unit, Kuopio University Hospital, Kuopio, Finland (Kautiainen); the Folkhälsan Research Center, Helsinki, Finland (Kautiainen); Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland (Mervaala); the Department of Clinical Neuroscience, Karolinska Institutet, and Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden (Tiihonen)
| | - Mikko Joensuu
- From the Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland (Tuppurainen, Hyvärinen, Vaurio, Joensuu, Vanhanen, Aho-Mustonen, Tiihonen); the Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland (Määttä, Könönen, Julkunen, Mervaala); the Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland (Könönen); the Department of Technical Physics, University of Eastern Finland, Kuopio, Finland (Julkunen); the Primary Health Care Unit, Kuopio University Hospital, Kuopio, Finland (Kautiainen); the Folkhälsan Research Center, Helsinki, Finland (Kautiainen); Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland (Mervaala); the Department of Clinical Neuroscience, Karolinska Institutet, and Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden (Tiihonen)
| | - Matti Vanhanen
- From the Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland (Tuppurainen, Hyvärinen, Vaurio, Joensuu, Vanhanen, Aho-Mustonen, Tiihonen); the Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland (Määttä, Könönen, Julkunen, Mervaala); the Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland (Könönen); the Department of Technical Physics, University of Eastern Finland, Kuopio, Finland (Julkunen); the Primary Health Care Unit, Kuopio University Hospital, Kuopio, Finland (Kautiainen); the Folkhälsan Research Center, Helsinki, Finland (Kautiainen); Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland (Mervaala); the Department of Clinical Neuroscience, Karolinska Institutet, and Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden (Tiihonen)
| | - Kati Aho-Mustonen
- From the Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland (Tuppurainen, Hyvärinen, Vaurio, Joensuu, Vanhanen, Aho-Mustonen, Tiihonen); the Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland (Määttä, Könönen, Julkunen, Mervaala); the Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland (Könönen); the Department of Technical Physics, University of Eastern Finland, Kuopio, Finland (Julkunen); the Primary Health Care Unit, Kuopio University Hospital, Kuopio, Finland (Kautiainen); the Folkhälsan Research Center, Helsinki, Finland (Kautiainen); Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland (Mervaala); the Department of Clinical Neuroscience, Karolinska Institutet, and Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden (Tiihonen)
| | - Esa Mervaala
- From the Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland (Tuppurainen, Hyvärinen, Vaurio, Joensuu, Vanhanen, Aho-Mustonen, Tiihonen); the Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland (Määttä, Könönen, Julkunen, Mervaala); the Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland (Könönen); the Department of Technical Physics, University of Eastern Finland, Kuopio, Finland (Julkunen); the Primary Health Care Unit, Kuopio University Hospital, Kuopio, Finland (Kautiainen); the Folkhälsan Research Center, Helsinki, Finland (Kautiainen); Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland (Mervaala); the Department of Clinical Neuroscience, Karolinska Institutet, and Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden (Tiihonen)
| | - Jari Tiihonen
- From the Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland (Tuppurainen, Hyvärinen, Vaurio, Joensuu, Vanhanen, Aho-Mustonen, Tiihonen); the Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland (Määttä, Könönen, Julkunen, Mervaala); the Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland (Könönen); the Department of Technical Physics, University of Eastern Finland, Kuopio, Finland (Julkunen); the Primary Health Care Unit, Kuopio University Hospital, Kuopio, Finland (Kautiainen); the Folkhälsan Research Center, Helsinki, Finland (Kautiainen); Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland (Mervaala); the Department of Clinical Neuroscience, Karolinska Institutet, and Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden (Tiihonen)
| |
Collapse
|
40
|
Hoptman MJ, Girgis RR, Javitt DC. Biomarkers for Cognitive Control, Response Inhibition, Aggressivity, Impulsivity, and Violence. ADVANCES IN NEUROBIOLOGY 2024; 40:725-756. [PMID: 39562462 DOI: 10.1007/978-3-031-69491-2_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Deficits in cognitive control contribute to behavioral impairments across neuropsychiatric disorders. Cognitive control is captured as a construct in the Research Domain Construct (RDoC) matrix and incorporate subdomains of goal selection, response selection, and performance monitoring. Relevant tasks for these subdomains include the "AX" version of the continuous performance task (goal selection) and the Go/NoGo and Stop-Signal reaction time tasks (response selection). Underlying mechanisms for these domains have been investigated intensively using fMRI and event-related potential (ERP) approaches, which provide candidate biomarkers for translational research. In RDoC, impulsive behaviors are provisionally assigned to the cognitive control/response selection construct, but other factors may also contribute. Impulsivity has gained increased importance over recent years due to its link to aggression and suicidality, which is mediated especially through the constructs of urgency and frustrative nonreward. These constructs, in turn, may be captured through scales such as the Urgency, (Lack of) Premeditation, (Lack of) Perseverance, and Sensation Seeking (UPPS-P) impulsivity scale and the Point Subtraction Aggression Paradigm (PSAP), respectively. At present, no validated biomarkers exist for either urgency or aggressivity. Potential directions for the development of predictive biomarkers for both targets are discussed.
Collapse
Affiliation(s)
- Matthew J Hoptman
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Ragy R Girgis
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Daniel C Javitt
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
41
|
Rupert PE, Pogue-Geile M. Familial Risk for Schizophrenia vs Bipolar Disorder and Task-Based Neural Activation: A functional Magnetic Resonance Imaging Meta-Analysis. Schizophr Bull 2024; 50:177-186. [PMID: 37606284 PMCID: PMC10754177 DOI: 10.1093/schbul/sbad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
BACKGROUND AND HYPOTHESIS Individuals at familial risk for developing schizophrenia (FRSZ) or bipolar disorder (FRBD) have shared and unique genetic risks. Few studies have compared neural activation between these two groups. Therefore, the present meta-analysis investigated functional brain similarities and differences between FRSZ and FRBD individuals. STUDY DESIGN A systematic literature review was conducted of articles that compared FRSZ or FRBD individuals to healthy controls (31 FRSZ and 22 FRBD). Seed-based d mapping was used to conduct the meta-analysis. Analyses included comparisons of FRSZ to controls, FRBD to controls, and both relative groups to each other. STUDY RESULTS Using a highly conservative family-wise error rate correction, there were no significant findings. Using a less conservative threshold, FRSZ compared to controls had lower activation in the left precuneus (Puncorrected = .02) across all studies and in the left middle frontal gyrus (Puncorrected = .03) in nonsocial cognition studies. FRBD compared to controls had lower activation in the left superior parietal gyrus (Puncorrected = .03) and right angular gyrus (Puncorrected = .03) in nonsocial cognition studies, and higher activation in the left superior frontal gyrus (Puncorrected = .01) in social tasks. Differences between FRSZ and FRBD were not significant. CONCLUSIONS There were few robust differences between FRSZ or FRBD compared to controls. This suggests only weak support for neural activation differences between individuals at genetic risk for schizophrenia or bipolar disorder and controls. The tentative findings observed were in different brain regions for FRSZ and FRBD, with no strong evidence for shared effects between schizophrenia and bipolar genetic risk on neural activation.
Collapse
Affiliation(s)
- Petra E Rupert
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Pogue-Geile
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
42
|
Cattarinussi G, Di Giorgio A, Moretti F, Bondi E, Sambataro F. Dynamic functional connectivity in schizophrenia and bipolar disorder: A review of the evidence and associations with psychopathological features. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110827. [PMID: 37473954 DOI: 10.1016/j.pnpbp.2023.110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Alterations of functional network connectivity have been implicated in the pathophysiology of schizophrenia (SCZ) and bipolar disorder (BD). Recent studies also suggest that the temporal dynamics of functional connectivity (dFC) can be altered in these disorders. Here, we summarized the existing literature on dFC in SCZ and BD, and their association with psychopathological and cognitive features. We systematically searched PubMed, Web of Science, and Scopus for studies investigating dFC in SCZ and BD and identified 77 studies. Our findings support a general model of dysconnectivity of dFC in SCZ, whereas a heterogeneous picture arose in BD. Although dFC alterations are more severe and widespread in SCZ compared to BD, dysfunctions of a triple network system underlying goal-directed behavior and sensory-motor networks were present in both disorders. Furthermore, in SCZ, positive and negative symptoms were associated with abnormal dFC. Implications for understanding the pathophysiology of disorders, the role of neurotransmitters, and treatments on dFC are discussed. The lack of standards for dFC metrics, replication studies, and the use of small samples represent major limitations for the field.
Collapse
Affiliation(s)
- Giulia Cattarinussi
- Department of Neuroscience (DNS), University of Padova, Italy; Padova Neuroscience Center, University of Padova, Italy
| | - Annabella Di Giorgio
- Department of Mental Health and Addictions, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Federica Moretti
- Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - Emi Bondi
- Department of Mental Health and Addictions, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Italy; Padova Neuroscience Center, University of Padova, Italy.
| |
Collapse
|
43
|
Warren TL, Tubbs JD, Lesh TA, Corona MB, Pakzad S, Albuquerque M, Singh P, Zarubin V, Morse S, Sham PC, Carter CS, Nord AS. Association of neurotransmitter pathway polygenic risk with specific symptom profiles in psychosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.24.23290465. [PMID: 37292649 PMCID: PMC10246134 DOI: 10.1101/2023.05.24.23290465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A primary goal of psychiatry is to better understand the pathways that link genetic risk to psychiatric symptoms. Here, we tested association of diagnosis and endophenotypes with overall and neurotransmitter pathway-specific polygenic risk in patients with early-stage psychosis. Subjects included 206 demographically diverse cases with a psychotic disorder who underwent comprehensive psychiatric and neurological phenotyping and 115 matched controls. Following genotyping, we calculated polygenic scores (PGSs) for schizophrenia (SZ) and bipolar disorder (BP) using Psychiatric Genomics Consortium GWAS summary statistics. To test if overall genetic risk can be partitioned into affected neurotransmitter pathways, we calculated pathway PGSs (pPGSs) for SZ risk affecting each of four major neurotransmitter systems: glutamate, GABA, dopamine, and serotonin. Psychosis subjects had elevated SZ PGS versus controls; cases with SZ or BP diagnoses had stronger SZ or BP risk, respectively. There was no significant association within psychosis cases between individual symptom measures and overall PGS. However, neurotransmitter-specific pPGSs were moderately associated with specific endophenotypes; notably, glutamate was associated with SZ diagnosis and with deficits in cognitive control during task-based fMRI, while dopamine was associated with global functioning. Finally, unbiased endophenotype-driven clustering identified three diagnostically mixed case groups that separated on primary deficits of positive symptoms, negative symptoms, global functioning, and cognitive control. All clusters showed strong genome-wide risk. Cluster 2, characterized by deficits in cognitive control and negative symptoms, additionally showed specific risk concentrated in glutamatergic and GABAergic pathways. Due to the intensive characterization of our subjects, the present study was limited to a relatively small cohort. As such, results should be followed up with additional research at the population and mechanism level. Our study suggests pathway-based PGS analysis may be a powerful path forward to study genetic mechanisms driving psychiatric endophenotypes.
Collapse
Affiliation(s)
| | - Justin D. Tubbs
- Department of Psychiatry, The University of Hong Kong
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital
- Department of Psychiatry, Harvard Medical School
| | | | | | | | | | | | | | | | - Pak Chung Sham
- Department of Psychiatry, The University of Hong Kong
- Centre for PanorOmic Sciences, The University of Hong Kong
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong
| | | | | |
Collapse
|
44
|
Wilhelm M, Sych Y, Fomins A, Alatorre Warren JL, Lewis C, Serratosa Capdevila L, Boehringer R, Amadei EA, Grewe B, O'Connor EC, Hall BJ, Helmchen F. Striatum-projecting prefrontal cortex neurons support working memory maintenance. Nat Commun 2023; 14:7016. [PMID: 37919287 PMCID: PMC10622437 DOI: 10.1038/s41467-023-42777-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 10/20/2023] [Indexed: 11/04/2023] Open
Abstract
Neurons in the medial prefrontal cortex (mPFC) are functionally linked to working memory (WM) but how distinct projection pathways contribute to WM remains unclear. Based on optical recordings, optogenetic perturbations, and pharmacological interventions in male mice, we report here that dorsomedial striatum (dmStr)-projecting mPFC neurons are essential for WM maintenance, but not encoding or retrieval, in a T-maze spatial memory task. Fiber photometry of GCaMP6m-labeled mPFC→dmStr neurons revealed strongest activity during the maintenance period, and optogenetic inhibition of these neurons impaired performance only when applied during this period. Conversely, enhancing mPFC→dmStr pathway activity-via pharmacological suppression of HCN1 or by optogenetic activation during the maintenance period-alleviated WM impairment induced by NMDA receptor blockade. Moreover, cellular-resolution miniscope imaging revealed that >50% of mPFC→dmStr neurons are active during WM maintenance and that this subpopulation is distinct from neurons active during encoding and retrieval. In all task periods, neuronal sequences were evident. Striatum-projecting mPFC neurons thus critically contribute to spatial WM maintenance.
Collapse
Affiliation(s)
- Maria Wilhelm
- Brain Research Institute, University of Zurich, 8057, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057, Zurich, Switzerland
- Institute for Neuroscience, ETH Zurich, 8057, Zurich, Switzerland
| | - Yaroslav Sych
- Brain Research Institute, University of Zurich, 8057, Zurich, Switzerland
- Institute of Cellular and Integrative Neuroscience, CNRS, University of Strasbourg, Strasbourg, France
| | - Aleksejs Fomins
- Brain Research Institute, University of Zurich, 8057, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057, Zurich, Switzerland
| | - José Luis Alatorre Warren
- Brain Research Institute, University of Zurich, 8057, Zurich, Switzerland
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, 0317, Norway
| | - Christopher Lewis
- Brain Research Institute, University of Zurich, 8057, Zurich, Switzerland
| | | | - Roman Boehringer
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, 8057, Zurich, Switzerland
| | - Elizabeth A Amadei
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, 8057, Zurich, Switzerland
| | - Benjamin Grewe
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057, Zurich, Switzerland
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, 8057, Zurich, Switzerland
- University Research Priority Program (URPP) Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
| | - Eoin C O'Connor
- Neuroscience & Rare Diseases, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Benjamin J Hall
- Neuroscience & Rare Diseases, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
- Circuit Biology Department, H. Lundbeck A/S, Valby, Denmark
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, 8057, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057, Zurich, Switzerland.
- University Research Priority Program (URPP) Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
45
|
Hu X, Wang S, Zhou H, Li N, Zhong C, Luo W, Liu S, Fu F, Meng Y, Ding Z, Cheng B. Altered Functional Connectivity Strength in Distinct Brain Networks of Children With Early-Onset Schizophrenia. J Magn Reson Imaging 2023; 58:1617-1623. [PMID: 36932678 DOI: 10.1002/jmri.28682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Schizophrenia is regarded as a brain network or connectome disorder that is associated with neurodevelopment. Children with early-onset schizophrenia (EOS) provide an opportunity to evaluate the neuropathology of schizophrenia at a very early stage without potential confounding factors. But dysfunction in brain networks of schizophrenia is inconsistent. PURPOSE To identify abnormal functional connectivity (FC) in EOS patients and relationships with clinical symptoms, we aimed to reveal neuroimaging phenotypes of EOS. STUDY TYPE Prospective, cross-sectional. POPULATION Twenty-six female/22 male patients (age:14.3 ± 3.45 years) with first-episode EOS, 27 female/22 male age- and gender-matched healthy controls (HC) (age:14.1 ± 4.32). FIELD STRENGTH/SEQUENCE 3-T, resting-state (rs) gradient-echo echo-planar imaging and three-dimensional magnetization-prepared rapid gradient-echo imaging. ASSESSMENT Intelligence quotient (IQ) was measured by the Wechsler Intelligence Scale-Fourth edition for Children (WISC-IV). The clinical symptoms were evaluated by the Positive and Negative Syndrome Scale (PANSS). FC strength (FCS) from rs functional MRI (rsfMRI) was used to investigate functional integrity of global brain regions. In addition, associations between regionally altered FCS and clinical symptoms in EOS patients were examined. STATISTICAL TESTS Two-sample t-test controlling for sample size, diagnostic method, brain volume algorithm, and age of the subjects, Bonferroni correction, Pearson's correlation analysis. A P-value <0.05 with a minimum cluster size of 50 voxels was considered statistically significant. RESULTS Compared with HC, EOS patients had significantly lower total IQ scores (IQ:91.5 ± 16.1), increased FCS in the bilateral precuneus, left dorsolateral prefrontal cortex, left thalamus, and left parahippocampus (paraHIP), and decreased FCS in the right cerebellum posterior lobe and right superior temporal gyrus. The PANSS total score of EOS patients (PANSS total score:74.30 ± 7.23) was found to be positively correlated to FCS in the left paraHIP (r = 0.45). DATA CONCLUSION Our study revealed that disrupted FC of brain hubs illustrate multiple abnormalities in brain networks in EOS patients. EVIDENCE LEVEL 1 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Hui Zhou
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Na Li
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Can Zhong
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Weiling Luo
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Sijia Liu
- School of Sociality and Psychology, Southwest Minzu University, Chengdu, China
| | - Fanghui Fu
- School of Sociality and Psychology, Southwest Minzu University, Chengdu, China
| | - Yajing Meng
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zhiyong Ding
- Department of Medical Imaging, Qujing Maternal and Child Health Care Hospital, Qujing, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Farsi Z, Nicolella A, Simmons SK, Aryal S, Shepard N, Brenner K, Lin S, Herzog L, Moran SP, Stalnaker KJ, Shin W, Gazestani V, Song BJ, Bonanno K, Keshishian H, Carr SA, Pan JQ, Macosko EZ, Datta SR, Dejanovic B, Kim E, Levin JZ, Sheng M. Brain-region-specific changes in neurons and glia and dysregulation of dopamine signaling in Grin2a mutant mice. Neuron 2023; 111:3378-3396.e9. [PMID: 37657442 DOI: 10.1016/j.neuron.2023.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/19/2023] [Accepted: 08/04/2023] [Indexed: 09/03/2023]
Abstract
A genetically valid animal model could transform our understanding of schizophrenia (SCZ) disease mechanisms. Rare heterozygous loss-of-function (LoF) mutations in GRIN2A, encoding a subunit of the NMDA receptor, greatly increase the risk of SCZ. By transcriptomic, proteomic, and behavioral analyses, we report that heterozygous Grin2a mutant mice show (1) large-scale gene expression changes across multiple brain regions and in neuronal (excitatory and inhibitory) and non-neuronal cells (astrocytes and oligodendrocytes), (2) evidence of hypoactivity in the prefrontal cortex (PFC) and hyperactivity in the hippocampus and striatum, (3) an elevated dopamine signaling in the striatum and hypersensitivity to amphetamine-induced hyperlocomotion (AIH), (4) altered cholesterol biosynthesis in astrocytes, (5) a reduction in glutamatergic receptor signaling proteins in the synapse, and (6) an aberrant locomotor pattern opposite of that induced by antipsychotic drugs. These findings reveal potential pathophysiologic mechanisms, provide support for both the "hypo-glutamate" and "hyper-dopamine" hypotheses of SCZ, and underscore the utility of Grin2a-deficient mice as a genetic model of SCZ.
Collapse
Affiliation(s)
- Zohreh Farsi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Ally Nicolella
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sean K Simmons
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sameer Aryal
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nate Shepard
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kira Brenner
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sherry Lin
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Linnea Herzog
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sean P Moran
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Katherine J Stalnaker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wangyong Shin
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Vahid Gazestani
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bryan J Song
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kevin Bonanno
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hasmik Keshishian
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven A Carr
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Evan Z Macosko
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Massachusetts General Hospital, Department of Psychiatry, Boston, MA, USA
| | | | - Borislav Dejanovic
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea; Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Joshua Z Levin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Morgan Sheng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
47
|
Selvaggi P, Fazio L, Toro VD, Mucci A, Rocca P, Martinotti G, Cascino G, Siracusano A, Zeppegno P, Pergola G, Bertolino A, Blasi G, Galderisi S. Effect of anticholinergic burden on brain activity during Working Memory and real-world functioning in patients with schizophrenia. Schizophr Res 2023; 260:76-84. [PMID: 37633126 DOI: 10.1016/j.schres.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/30/2023] [Accepted: 08/13/2023] [Indexed: 08/28/2023]
Abstract
Cognitive impairment has been associated with poor real-world functioning in patients with Schizophrenia. Previous studies have shown that pharmacological treatment with anticholinergic properties may contribute to cognitive impairment in Schizophrenia. We investigated the effect of the anticholinergic burden (ACB) on brain activity, cognition, and real-world functioning in Schizophrenia. We hypothesized that greater ACB would be associated with altered brain activity along with poorer cognitive performance and lower real-world functioning. A sample of 100 patients with a diagnosis of schizophrenia or schizoaffective disorder was recruited in the naturalistic multicenter study of the Italian Network for Research on Psychoses (NIRP) across 7 centres. For each participant, ACB was evaluated using the Anticholinergic Cognitive Burden scale. The association of ACB with brain function was assessed using BOLD fMRI during the N-Back Working Memory (WM) task in a nested cohort (N = 31). Real-world functioning was assessed using the Specific Level of Functioning (SLOF) scale. Patients with high ACB scores (≥3) showed lower brain activity in the WM frontoparietal network (TFCE corrected alpha <0.05) and poorer cognitive performance (p = 0.05) than patients with low ACB scores (<3). Both effects were unaffected by demographic characteristics, clinical severity, and antipsychotic dosage. Moreover, patients with high ACB showed poorer real-world functioning than patients with lower ACB (p = 0.03). Our results suggest that ACB in Schizophrenia is associated with impaired WM and abnormal underlying brain function along with reduced real-world functioning. Clinical practice should consider the potential adverse cognitive effects of ACB in the treatment decision-making process.
Collapse
Affiliation(s)
- Pierluigi Selvaggi
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Leonardo Fazio
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy; Department of Medicine and Surgery, LUM University, Casamassima, Bari, Italy
| | - Veronica Debora Toro
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Armida Mucci
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paola Rocca
- Department of Neuroscience, Section of Psychiatry, University of Turin, Turin, Italy
| | - Giovanni Martinotti
- Department of Neuroscience and Imaging, G. D'Annunzio University, Chieti, Italy
| | - Giammarco Cascino
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Section of Neuroscience, University of Salerno, Salerno, Italy
| | - Alberto Siracusano
- Department of Systems Medicine, Psychiatry and Clinical Psychology Unit, Tor Vergata University of Rome, Rome, Italy
| | - Patrizia Zeppegno
- Department of Translational Medicine, Psychiatric Unit, University of Eastern Piedmont, Novara, Italy
| | - Giulio Pergola
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Alessandro Bertolino
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Giuseppe Blasi
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy.
| | - Silvana Galderisi
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
48
|
Liu Y, Huang H, Qin X, Zheng F, Wang H. Altered functional connectivity in anterior cingulate cortex subregions in treatment-resistant schizophrenia patients. Neurosci Lett 2023; 814:137445. [PMID: 37597741 DOI: 10.1016/j.neulet.2023.137445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/02/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND The anterior cingulate cortex (ACC) plays a key role in motor control, attention, and cognitive control. It is well established that schizophrenia is associated with impaired functional connectivity (FC) of the ACC pathway. So far, however, there has been little discussion about the ACC subregions function in patients with treatment-resistant schizophrenia (TRS). AIM This study aims to characterize resting-state functional connectivity (rs-FC) profiles of ACC subregions in patients with TRS. The association between these FC and clinical symptoms, neurocognitive function, and grey matter volume (GMV) was studied as well. METHODS A total of 81 patients with schizophrenia (40 patients with TRS = 40, 41 patients with non-treatment-resistant schizophrenia (NTRS)) and 39 age- and gender-matched healthy controls (HC) were enrolled, and underwent structural magnetic resonance imaging (MRI), resting-state functional MRI (rs-fMRI), clinical evaluation. The ACC subregions, including subgenual ACC (sgACC), pregenual ACC (pgACC), and dorsal ACC (dACC), were selected as seed regions from the automated anatomical labelling atlas 3 (AAL3). The GMV of the ACC subregions were calculated and seed-based FC maps for all ACC subregions were generated and compared between the TRS and NTRS, HC group. Additionally, correlations between altered FC and clinical symptoms, GMV, and neurocognitive functions in the TRS patients were explored. RESULT Compared with HC, increased FC was observed in TRS and NTRS groups between bilateral sgACC and left cuneus, right cuneus, and left lingual gyrus, while decreased FC was found between bilateral dACC and thalamic. Additionally, compared with NTRS, the TRS group showed increased FC between bilateral dACC and right cuneus and decreased FC between bilateral dACC and thalamic. The TRS group showed decreased GMV in all ACC subregions than the HC group, and there is no significant difference between the TRS group and the NTRS group. CONCLUSION The findings in this study suggest that disrupted FC of subregional ACC has the potential as a marker for TRS. The dysconnectivity of bilateral dACC- right cuneus and bilateral dACC-thalamus, are likely to be the unique FC profiles of TRS. These findings further our understanding of the neurobiological impairments in TRS.
Collapse
Affiliation(s)
- Ying Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xucong Qin
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fanfan Zheng
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
49
|
Barch DM, Culbreth AJ, Ben Zeev D, Campbell A, Nepal S, Moran EK. Dissociation of Cognitive Effort-Based Decision Making and Its Associations With Symptoms, Cognition, and Everyday Life Function Across Schizophrenia, Bipolar Disorder, and Depression. Biol Psychiatry 2023; 94:501-510. [PMID: 37080416 PMCID: PMC10755814 DOI: 10.1016/j.biopsych.2023.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Anhedonia and amotivation are symptoms of many different mental health disorders that are frequently associated with functional disability, but it is not clear whether the same processes contribute to motivational impairments across disorders. This study focused on one possible factor, the willingness to exert cognitive effort, referred to as cognitive effort-cost decision making. METHODS We examined performance on the deck choice task as a measure of cognitive effort-cost decision making, in which people choose to complete an easy task for a small monetary reward or a harder task for larger rewards, in 5 groups: healthy control (n = 80), schizophrenia/schizoaffective disorder (n = 50), bipolar disorder with psychosis (n = 58), current major depression (n = 60), and past major depression (n = 51). We examined cognitive effort-cost decision making in relation to clinician and self-reported motivation symptoms, working memory and cognitive control performance, and life function measured by ecological momentary assessment and passive sensing. RESULTS We found a significant diagnostic group × reward interaction (F8,588 = 4.37, p < .001, ηp2 = 0.056). Compared with the healthy control group, the schizophrenia/schizoaffective and bipolar disorder groups, but not the current or past major depressive disorder groups, showed a reduced willingness to exert effort at the higher reward values. In the schizophrenia/schizoaffective and bipolar disorder groups, but not the major depressive disorder groups, reduced willingness to exert cognitive effort for higher rewards was associated with greater clinician-rated motivation impairments, worse working memory and cognitive control performance, and less engagement in goal-directed activities measured by ecological momentary assessment. CONCLUSIONS These findings suggest that the mechanisms contributing to motivational impairments differ among individuals with psychosis spectrum disorders versus depression.
Collapse
Affiliation(s)
- Deanna M Barch
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, Missouri; Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri.
| | - Adam J Culbreth
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland, Baltimore, Maryland
| | - Dror Ben Zeev
- Department of Psychiatry, University of Washington, Seattle, Washington
| | - Andrew Campbell
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire
| | - Subigya Nepal
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire
| | - Erin K Moran
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
50
|
Menon J, Kantipudi SJ, Mani A, Radhakrishnan R. Characterization of an extreme phenotype of schizophrenia among women with homelessness. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.29.23293378. [PMID: 37577469 PMCID: PMC10418294 DOI: 10.1101/2023.07.29.23293378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Background Studies of schizophrenia and homelessness are often confounded by comorbid substance use. Women with schizophrenia and homelessness in India have very low rates of substance use and provide a unique opportunity to disentangle the effects of illness from that of substance use. We examined the clinical characteristics of women with schizophrenia and homelessness and compared it to an age-matched group of women with schizophrenia living with their family. Methods 36 women with schizophrenia and homelessness, and 32 women with schizophrenia who were illness living with family were evaluated for psychopathology using Scale for Assessment of Positive Symptoms (SAPS)/ Scale for assessment of negative symptoms (SANS) scales, cognitive difficulties using Montreal Cognitive Assessment (MOCA)/Rowland Universal Dementia Scale (RUDAS), and Frontal Assessment Battery(FAB), disability using World Health Organization - Disability assessment Scale (WHO-DAS) and psychosocial factors using a semi-structured proforma. The groups were compared using t-tests and chi-square for continuous and categorical variables respectively. Results Women with schizophrenia and homelessness were found to have significantly higher scores on measures of psychopathology, significantly lower cognitive functioning, and much higher disability, and were also on higher doses of antipsychotics. The mean scores on measures of psychopathology, cognition and disability for women with schizophrenia and homelessness differed by 2-3 standard deviations with the mean for women living with family (i.e. z scores) suggesting that they represented an extreme phenotype. Rates of past employment were higher among women with schizophrenia and homelessness. Hence these differences were not accounted for by premorbid functioning. Conclusions The study raises the possibility of an extreme phenotype of schizophrenia with severe and persistent psychopathology non-responsive to dopamine blocking drugs, cognitive impairment, and disability, which needs further exploration.
Collapse
|