1
|
Khandhar AP, Landon CD, Archer J, Krieger K, Warner NL, Randall S, Berube BJ, Erasmus JH, Sather DN, Staats HF. Evaluation of repRNA vaccine for induction and in utero transfer of maternal antibodies in a pregnant rabbit model. Mol Ther 2023; 31:1046-1058. [PMID: 36965482 PMCID: PMC10124083 DOI: 10.1016/j.ymthe.2023.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/25/2023] [Accepted: 02/28/2023] [Indexed: 03/27/2023] Open
Abstract
Mother-to-child transmission is a major route for infections in newborns. Vaccination in mothers to leverage the maternal immune system is a promising approach to vertically transfer protective immunity. During infectious disease outbreaks, such as the 2016 Zika virus (ZIKV) outbreak, rapid availability of vaccines can prove critical in reducing widespread disease burden. The recent successes of mRNA vaccines support their evaluation in pregnant animal models to justify their use in neonatal settings. Here we evaluated immunogenicity of self-amplifying replicon (repRNA) vaccines, delivered with our clinical-stage LION nanoparticle formulation, in pregnant rabbits using ZIKV and HIV-1 as model disease targets. We showed that LION/repRNA vaccines induced robust antigen-specific antibody responses in adult pregnant rabbits that passively transferred to newborn kits in utero. Using a matrixed study design, we further elucidate the effect of vaccination in kits on the presence of pre-existing maternal antibodies. Our findings showed that timing of maternal vaccination is critical in maximizing in utero antibody transfer, and subsequent vaccination in newborns maintained elevated antibody levels compared with no vaccination. Overall, our results support further development of the LION/repRNA vaccine platform for maternal and neonatal settings.
Collapse
Affiliation(s)
- Amit P Khandhar
- HDT Bio Corp, 1616 Eastlake Avenue E, Suite 280, Seattle, WA 98102, USA; PAI Life Sciences Inc., 1616 Eastlake Avenue E, Suite 250, Seattle, WA 98102, USA.
| | - Chelsea D Landon
- Department of Pathology, Duke University School of Medicine, Duke University, Durham, NC 27710, USA
| | - Jacob Archer
- HDT Bio Corp, 1616 Eastlake Avenue E, Suite 280, Seattle, WA 98102, USA
| | - Kyle Krieger
- HDT Bio Corp, 1616 Eastlake Avenue E, Suite 280, Seattle, WA 98102, USA
| | - Nikole L Warner
- HDT Bio Corp, 1616 Eastlake Avenue E, Suite 280, Seattle, WA 98102, USA
| | - Samantha Randall
- HDT Bio Corp, 1616 Eastlake Avenue E, Suite 280, Seattle, WA 98102, USA
| | - Bryan J Berube
- HDT Bio Corp, 1616 Eastlake Avenue E, Suite 280, Seattle, WA 98102, USA
| | - Jesse H Erasmus
- HDT Bio Corp, 1616 Eastlake Avenue E, Suite 280, Seattle, WA 98102, USA
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Herman F Staats
- Department of Pathology, Duke University School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
2
|
Kumar A, Smith CEP, Giorgi EE, Eudailey J, Martinez DR, Yusim K, Douglas AO, Stamper L, McGuire E, LaBranche CC, Montefiori DC, Fouda GG, Gao F, Permar SR. Infant transmitted/founder HIV-1 viruses from peripartum transmission are neutralization resistant to paired maternal plasma. PLoS Pathog 2018; 14:e1006944. [PMID: 29672607 PMCID: PMC5908066 DOI: 10.1371/journal.ppat.1006944] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/16/2018] [Indexed: 01/17/2023] Open
Abstract
Despite extensive genetic diversity of HIV-1 in chronic infection, a single or few maternal virus variants become the founders of an infant’s infection. These transmitted/founder (T/F) variants are of particular interest, as a maternal or infant HIV vaccine should raise envelope (Env) specific IgG responses capable of blocking this group of viruses. However, the maternal or infant factors that contribute to selection of infant T/F viruses are not well understood. In this study, we amplified HIV-1 env genes by single genome amplification from 16 mother-infant transmitting pairs from the U.S. pre-antiretroviral era Women Infant Transmission Study (WITS). Infant T/F and representative maternal non-transmitted Env variants from plasma were identified and used to generate pseudoviruses for paired maternal plasma neutralization sensitivity analysis. Eighteen out of 21 (85%) infant T/F Env pseudoviruses were neutralization resistant to paired maternal plasma. Yet, all infant T/F viruses were neutralization sensitive to a panel of HIV-1 broadly neutralizing antibodies and variably sensitive to heterologous plasma neutralizing antibodies. Also, these infant T/F pseudoviruses were overall more neutralization resistant to paired maternal plasma in comparison to pseudoviruses from maternal non-transmitted variants (p = 0.012). Altogether, our findings suggest that autologous neutralization of circulating viruses by maternal plasma antibodies select for neutralization-resistant viruses that initiate peripartum transmission, raising the speculation that enhancement of this response at the end of pregnancy could further reduce infant HIV-1 infection risk. Mother to child transmission (MTCT) of HIV-1 can occur during pregnancy (in utero), at the time of delivery (peripartum) or by breastfeeding (postpartum). With the availability of anti-retroviral therapy (ART), rate of MTCT of HIV-1 have been significantly lowered. However, significant implementation challenges remain in resource-poor areas, making it difficult to eliminate pediatric HIV. An improved understanding of the viral population (escape variants from autologous neutralizing antibodies) that lead to infection of infants at time of transmission will help in designing immune interventions to reduce perinatal HIV-1 transmission. Here, we selected 16 HIV-1-infected mother-infant pairs from WITS cohort (from pre anti-retroviral era), where infants became infected peripartum. HIV-1 env gene sequences were obtained by the single genome amplification (SGA) method. The sensitivity of these infant Env pseudoviruses against paired maternal plasma and a panel of broadly neutralizing monoclonal antibodies (bNAbs) was analyzed. We demonstrated that the infant T/F viruses were more resistant against maternal plasma than non-transmitted maternal variants, but sensitive to most (bNAbs). Signature sequence analysis of infant T/F and non-transmitted maternal variants revealed the potential importance of V3 and MPER region for resistance against paired maternal plasma. These findings provide insights for the design of maternal immunization strategies to enhance neutralizing antibodies that target V3 region of autologous virus populations, which could work synergistically with maternal ARVs to further reduce the rate of peripartum HIV-1 transmission.
Collapse
Affiliation(s)
- Amit Kumar
- Duke Human Vaccine Institute, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Claire E. P. Smith
- Duke Human Vaccine Institute, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Elena E. Giorgi
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Joshua Eudailey
- Duke Human Vaccine Institute, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - David R. Martinez
- Duke Human Vaccine Institute, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Karina Yusim
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Ayooluwa O. Douglas
- Duke Human Vaccine Institute, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Lisa Stamper
- Duke Human Vaccine Institute, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Erin McGuire
- Duke Human Vaccine Institute, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Celia C. LaBranche
- Department of Surgery, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Genevieve G. Fouda
- Duke Human Vaccine Institute, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Feng Gao
- Department of Medicine, Duke University Medical Centre, Durham, North Carolina, United States of America
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin, China
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University Medical Centre, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
3
|
McFarland EJ, Powell TM, Onyango-Makumbi C, Zhang W, Melander K, Naluyima P, Okurut S, Eller MA, Fowler MG, Janoff EN. Ontogeny of CD4+ T Lymphocytes With Phenotypic Susceptibility to HIV-1 During Exclusive and Nonexclusive Breastfeeding in HIV-1-Exposed Ugandan Infants. J Infect Dis 2017; 215:368-377. [PMID: 27932619 PMCID: PMC5722036 DOI: 10.1093/infdis/jiw553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/23/2016] [Indexed: 01/17/2023] Open
Abstract
Background Among infants exposed to human immunodeficiency virus (HIV) type 1, mixed breastfeeding is associated with higher postnatal HIV-1 transmission than exclusive breastfeeding, but the mechanisms of this differential risk are uncertain. Methods HIV-1-exposed Ugandan infants were prospectively assessed during the first year of life for feeding practices and T-cell maturation, intestinal homing (β7hi), activation, and HIV-1 coreceptor (CCR5) expression in peripheral blood. Infants receiving only breast milk and those with introduction of other foods before 6 months were categorized as exclusive and nonexclusive, respectively. Results Among CD4+ and CD8+ T cells, the expression of memory, activation, and CCR5 markers increased rapidly from birth to week 2, peaking at week 6, whereas cells expressing the intestinal homing marker increased steadily in the central memory (CM) and effector memory T cells over 48 weeks. At 24 weeks, when feeding practices had diverged, nonexclusively breastfed infants showed increased frequencies and absolute counts of β7hi CM CD4+ and CD8+ T cells, including the HIV-1-targeted cells with CD4+β7hi/CCR5+ coexpression, as well as increased activation. Conclusions The T-cell phenotype associated with susceptibility to HIV-1 infection (CCR5+, gut-homing, CM CD4+ T cells) was preferentially expressed in nonexclusively breastfed infants, a group of infants at increased risk for HIV-1 acquisition.
Collapse
Affiliation(s)
- Elizabeth J McFarland
- Departments of Pediatrics
- Mucosal and Vaccine Research Program Colorado, Infectious Diseases. University of Colorado–Anschutz Medical Campus, Aurora
| | | | | | - Weiming Zhang
- Department of Biostatistics and Informatics, Colorado School of Public Health
| | | | | | - Samuel Okurut
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Michael A Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Springs
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda,
| | - Mary Glenn Fowler
- Johns Hopkins University School of Medicine, Baltimore, Maryland
- Makerere University–Johns Hopkins University Research Collaboration
| | - Edward N Janoff
- Medicine
- Mucosal and Vaccine Research Program Colorado, Infectious Diseases. University of Colorado–Anschutz Medical Campus, Aurora
- Denver Veterans Affairs Medical Center, Colorado
| |
Collapse
|
4
|
|
5
|
Safrit JT, Fast PE, Gieber L, Kuipers H, Dean HJ, Koff WC. Status of vaccine research and development of vaccines for HIV-1. Vaccine 2016; 34:2921-2925. [PMID: 26993335 DOI: 10.1016/j.vaccine.2016.02.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/23/2016] [Indexed: 02/06/2023]
Abstract
Human immunodeficiency virus (HIV) is the cause of one of the most lethal pandemics in human history, although in recent years access to highly effective anti-retroviral therapy has provided new hope worldwide. Transmission of HIV by sexual contact, childbirth and injection drug use has been reduced, but 2 million are newly infected each year, and much of the transmission is from people who do not know their status. In addition to known methods, a preventive vaccine is needed to end the pandemic. The extraordinary mutability and genetic diversity of HIV is an enormous challenge, but vaccines are being designed for broad coverage. Computer-aided design of mosaic immunogens, incorporating many epitopes from the entire genome or from conserved regions aim to induce CD8+ T cells to kill virus-infected cells or inhibit virus replication, while trimeric envelope proteins or synthetic mimics aim to induce broadly reactive neutralizing antibodies similar to those cloned from some infected patients. Induction of more potent and durable responses may require new adjuvants or replicating chimeric vectors chimeras that bear HIV genes. Passive or genetic delivery of broadly neutralizing antibodies may provide broad protection and/or lead to insights for vaccine designers. Proof-of-concept trials in non-human primates and in one human efficacy trial have provided scientific clues for a vaccine that could provide broad and durable protection against HIV. The use of vaccines to destroy HIV reservoirs as part of therapy or cure is now also being explored.
Collapse
Affiliation(s)
| | | | - Lisa Gieber
- International AIDS Vaccine Initiative, New York, NY, USA
| | - Hester Kuipers
- International AIDS Vaccine Initiative, Amsterdam, Netherlands
| | - Hansi J Dean
- International AIDS Vaccine Initiative, New York, NY, USA
| | - Wayne C Koff
- International AIDS Vaccine Initiative, New York, NY, USA
| |
Collapse
|
6
|
Klein N, Palma P, Luzuriaga K, Pahwa S, Nastouli E, Gibb DM, Rojo P, Borkowsky W, Bernardi S, Zangari P, Calvez V, Compagnucci A, Wahren B, Foster C, Munoz-Fernández MÁ, De Rossi A, Ananworanich J, Pillay D, Giaquinto C, Rossi P. Early antiretroviral therapy in children perinatally infected with HIV: a unique opportunity to implement immunotherapeutic approaches to prolong viral remission. THE LANCET. INFECTIOUS DISEASES 2015; 15:1108-1114. [PMID: 26187030 DOI: 10.1016/s1473-3099(15)00052-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 05/04/2015] [Accepted: 05/08/2015] [Indexed: 02/02/2023]
Abstract
From the use of antiretroviral therapy to prevent mother-to-child transmission to the possibility of HIV cure hinted at by the Mississippi baby experience, paediatric HIV infection has been pivotal to our understanding of HIV pathogenesis and management. Daily medication and indefinite antiretroviral therapy is recommended for children infected with HIV. Maintenance of life-long adherence is difficult and the incidence of triple-class virological failure after initiation of antiretroviral therapy increases with time. This challenge shows the urgent need to define novel strategies to provide long-term viral suppression that will allow safe interruption of antiretroviral therapy without viral rebound and any associated complications. HIV-infected babies treated within a few days of birth have a unique combination of a very small pool of integrated viruses, a very high proportion of relatively HIV resistant naive T cells, and an unparalleled capacity to regenerate an immune repertoire. These features make this group the optimum model population to investigate the potential efficacy of immune-based therapies. If successful, these investigations could change the way we manage HIV infection.
Collapse
Affiliation(s)
- Nigel Klein
- Institute of Child Health, University College London, London, UK.
| | - Paolo Palma
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Children's Hospital Bambino Gesù, Rome, Italy
| | - Katherine Luzuriaga
- Program in Molecular Medicine, University of Massachusetts Medical School Worcester, MA, USA
| | - Savita Pahwa
- Miami Center for AIDS Research Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Eleni Nastouli
- Department of Virology, University College London, London, UK
| | - Diane M Gibb
- Medical Research Council Clinical Trials Unit, London, UK
| | - Pablo Rojo
- Department of Pediatrics, Hospital 12 de Octubre, Madrid, Spain
| | | | - Stefania Bernardi
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Children's Hospital Bambino Gesù, Rome, Italy
| | - Paola Zangari
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Children's Hospital Bambino Gesù, Rome, Italy
| | - Vincent Calvez
- Pierre et Marie Curie University and Pitié-Salpêtrière Hospital, Paris, France
| | - Alexandra Compagnucci
- Institut National de la Santé et de la Recherche Médicale SC10-US019 Clinical Trials and Infectious Diseases, Villejuif, Paris, France
| | - Britta Wahren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Foster
- Imperial College Healthcare National Health Service Trust, London, UK
| | | | - Anita De Rossi
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology-DiSCOG, University of Padova, and Istituto Oncologico Veneto, Padova, Italy
| | - Jintanat Ananworanich
- US Military HIV Research Program, Walter Reed Army Institute of Research and Henry M Jackson Foundation for the Advancement of Military Medicine, Silver Spring, MD, USA
| | - Deenan Pillay
- Africa Centre, Mtubatuba, KwaZulu Natal, South Africa
| | - Carlo Giaquinto
- Department of Women's and Children's Health, University of Padova, and Penta Foundation, Padova, Italy
| | - Paolo Rossi
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Children's Hospital Bambino Gesù, Rome, Italy.
| |
Collapse
|