1
|
Alex AM, Rasmussen JM, Tuulari JJ, Sigurðardottir JN, Buss C, Donald KA, Edwards AD, Entringer S, Gilmore JH, Groenewold NA, Karlsson H, Karlsson L, Lawrence KE, Mattilla I, Stein DJ, Styner M, Thompson PM, Wadhwa PD, Zar HJ, Zhu X, de Los Campos G, Knickmeyer RC, Luo S. Infant Subcortical Brain Volumes Associated with Maternal Obesity and Diabetes: A Large Multicohort Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.25.25324641. [PMID: 40196260 PMCID: PMC11974981 DOI: 10.1101/2025.03.25.25324641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Importance Maternal diabetes (MD) and maternal obesity (MO) have been robustly established to confer health risks in offspring. Additionally, mounting evidence suggests that these fetal programming effects vary by sex, but whether these factors independently or interactively influence infant brain development remains unclear. Objectives To characterize interactions between MD, MO, and sex on offspring subcortical brain volumes. Design setting and participants This was a cross-sectional study of 1,966 infants from six international cohorts. Exposures MD and MO. Main outcomes and measures MRI-based subcortical brain volumes (thalamus, amygdala, hippocampus, pallidum, putamen, caudate) were segmented and mixed effects models were used to examine associations, controlling for age at scan, prematurity, birthweight, maternal education, and intracranial volume. Backward elimination regression was used to identify the best fitting model (3-way interaction, 2-way interaction, no interaction) for each region and false discovery rate (FDR) corrections were applied. Results Of 1,966 infants, 46% were female (N=909), 9% were exposed to MD (N=172), and 21% were exposed to MO (N=386). MRI scans were performed at (mean±SD) 25.9±18.8 days of age. There was a significant interaction between MD, MO and sex in the thalamus (standardized β=-0.32, 95%CI -0.54 to -0.11, FDR corrected P =0.014). In female infants, MD (standardized β=-0.10, 95%CI -0.02 to -0.003, P =0.04) and MO (standardized β =-0.09, 95%CI -0.14 to -0.03, P =0.003) were independently and negatively associated with thalamic volume. In males, a significant interaction between MD and MO was observed (standardized β =-0.20, 95%CI -0.34 to -0.06, P =0.005), with post hoc analysis showing that males with combined exposure to MD and MO had lower thalamic volume compared to those with one or neither exposure (all Ps <0.05). In the hippocampus, an interaction between MO and infant sex was identified (standardized β =0.15, 95%CI 0.05 to 0.26, FDR corrected P =0.015), whereby MO (independent of MD) was associated with lower offspring hippocampal volume in females only (standardized β =-0.12, 95%CI -0.2 to -0.05, P =0.002). Conclusion and relevance Our results suggest independent, interactive associations of intrauterine exposure to MD and MO with infant subcortical brain volumes, varying by sex. This has implications for future metabolic disorders, among other health risks. Summary This study aims to investigate how sex modulates the influence of intrauterine exposure to maternal diabetes (MD) and maternal obesity (MO) on infant subcortical brain volumes. We observed sex-specific associations of gestational exposure to MD or MO with infant brain volumes in regions critical for motivation, emotion, and signal integration. In female offspring, MD and MO were negatively and independently associated with thalamic volume, while MO was negatively associated with hippocampal volume. In males, combined exposure to MD and MO was associated with lower thalamic volume. Sex modulates the influence of prenatal exposure to MD and/or MO on early brain development. This has implications for future metabolic disorders, among other health risks.
Collapse
|
2
|
Parsaei M, Hashemi SM, Moghaddam HS, Peterson BS. A systematic review of MRI studies on the effects of maternal obesity on offspring brain structure and function. J Neurosci Res 2024; 102:e25368. [PMID: 39007363 DOI: 10.1002/jnr.25368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024]
Abstract
Maternal obesity before or during pregnancy has been associated previously in offspring with a wide range of poor neurodevelopmental outcomes and mental health problems. The effects of maternal obesity on offspring brain structure and function that may be responsible for these poor outcomes are not well understood. We, therefore, undertook a systematic review of magnetic resonance imaging (MRI) studies that have assessed the associations of maternal obesity with brain measures in offspring. A systematic search was conducted in PubMed, Web of Science, Scopus, and PsycINFO on August 20, 2023. Of 15 eligible studies, seven employed functional MRI (fMRI), five diffusion tensor imaging (DTI), and four anatomical MRI (one used both DTI and anatomical MRI) in the offspring. The ages of offspring varied widely: one was a study of fetuses in utero, five of neonates, one of infants, five of school-aged children, two of both neonates and infants, and one of both children and adults. Collectively, 12 studies reported significant associations of maternal obesity with structural or functional alterations of the offspring's brain, most frequently in the prefrontal cortex and limbic system. In conclusion, maternal obesity appears to have a profound influence on offspring brain development, particularly within the prefrontal and limbic networks that regulate emotion and behavior. Further studies are needed to identify how changes in brain structure and function mediate the effects of maternal obesity on long-term emotional and behavioral outcomes, as well as the molecular pathways through which maternal obesity alters offspring brain development.
Collapse
Affiliation(s)
- Mohammadamin Parsaei
- Maternal, Fetal & Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Sanjari Moghaddam
- Psychiatry and Psychology Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bradley S Peterson
- Institute for the Developing Mind, Children's Hospital, Los Angeles, California, USA
- Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Meredith Weiss S, Aydin E, Lloyd-Fox S, Johnson MH. Trajectories of brain and behaviour development in the womb, at birth and through infancy. Nat Hum Behav 2024; 8:1251-1262. [PMID: 38886534 DOI: 10.1038/s41562-024-01896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/04/2024] [Indexed: 06/20/2024]
Abstract
Birth is often seen as the starting point for studying effects of the environment on human development, with much research focused on the capacities of young infants. However, recent imaging advances have revealed that the complex behaviours of the fetus and the uterine environment exert influence. Birth is now viewed as a punctuate event along a developmental pathway of increasing autonomy of the child from their mother. Here we highlight (1) increasing physiological autonomy and perceptual sensitivity in the fetus, (2) physiological and neurochemical processes associated with birth that influence future behaviour, (3) the recalibration of motor and sensory systems in the newborn to adapt to the world outside the womb and (4) the effect of the prenatal environment on later infant behaviours and brain function. Taken together, these lines of evidence move us beyond nature-nurture issues to a developmental human lifespan view beginning within the womb.
Collapse
Affiliation(s)
- Staci Meredith Weiss
- University of Cambridge, Department of Psychology, Cambridge, UK.
- University of Roehampton, School of Psychology, London, UK.
| | - Ezra Aydin
- University of Cambridge, Department of Psychology, Cambridge, UK
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sarah Lloyd-Fox
- University of Cambridge, Department of Psychology, Cambridge, UK
| | - Mark H Johnson
- University of Cambridge, Department of Psychology, Cambridge, UK
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK
| |
Collapse
|
4
|
Lu ZH, Liu C, Chen YJ, Chen YJ, Lei XN, Cai LJ, Zhou HX, Chang H, Zhu M, Wang YX, Zhang J. Gestational Exposure to PM 2.5 and Specific Constituents, Meconium Metabolites, and Neonatal Neurobehavioral Development: A Cohort Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9980-9990. [PMID: 38819024 DOI: 10.1021/acs.est.4c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Exposure to fine particulate matter (PM2.5) during pregnancy has been inversely associated with neonatal neurological development. However, the associations of exposure to specific PM2.5 constituents with neonatal neurological development remain unclear. We investigated these associations and examined the mediating role of meconium metabolites in a Chinese birth cohort consisting of 294 mother-infant pairs. Our results revealed that exposure to PM2.5 and its specific constituents (i.e., organic matter, black carbon, sulfate, nitrate, and ammonium) in the second trimester, but not in the first or third trimester, was inversely associated with the total neonatal behavioral neurological assessment (NBNA) scores. The PM2.5 constituent mixture in the second trimester was also inversely associated with NBNA scores, and sulfate was identified as the largest contributor. Furthermore, meconium metabolome analysis identified four metabolites, namely, threonine, lysine, leucine, and saccharopine, that were associated with both PM2.5 constituents and NBNA scores. Threonine was identified as an important mediator, accounting for a considerable proportion (14.53-15.33%) of the observed inverse associations. Our findings suggest that maternal exposure to PM2.5 and specific constituents may adversely affect neonatal behavioral development, in which meconium metabolites may play a mediating role.
Collapse
Affiliation(s)
- Zhong-Hua Lu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chong Liu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu-Jie Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ying-Jun Chen
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong 523808, China
| | - Xiao-Ning Lei
- Department of Nutrition and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Li-Jing Cai
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hai-Xia Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hao Chang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Miao Zhu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yi-Xin Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Nutrition and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Jie Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
5
|
Chen Q, He Z, Wang Y, Yang X, Liu N, Zhang S, Ma L, Shi X, Jia X, Yang Y, Sun Y, He Y. Effect of Maternal Pre-Pregnancy Body Mass Index on Longitudinal Fetal Growth and Mediating Role of Maternal Fasting Plasma Glucose: A Retrospective Cohort Study. Diabetes Metab Syndr Obes 2024; 17:1911-1921. [PMID: 38711675 PMCID: PMC11073526 DOI: 10.2147/dmso.s449706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
Purpose To assess the impact of maternal pre-pregnancy body mass index (BMI) on longitudinal fetal growth, and the potential mediation effect of the maternal fasting plasma glucose in first trimester. Methods In this retrospective cohort study, we collected pre-pregnancy BMI data and ultrasound measurements during pregnancy of 3879 singleton pregnant women who underwent antenatal examinations and delivered at Peking Union Medical College Hospital. Generalized estimation equations, linear regression, and logistic regression were used to examine the association between pre-pregnancy BMI with fetal growth and adverse neonatal outcomes. Mediation analyses were also used to examine the mediating role of maternal fasting plasma glucose (FPG) in first trimester. Results A per 1 Kg/m² increase in pre-pregnancy BMI was associated with increase fetal body length Z-score (β 0.010, 95% CI 0.001, 0.019) and fetal body weight (β 0.017, 95% CI 0.008, 0.027). In mid pregnancy, pre-pregnancy BMI also correlated with an increase Z-score of fetal abdominal circumference, femur length (FL). Pre-pregnancy BMI was associated with an increased risk of large for gestational age and macrosomia. Mediation analysis indicated that the associations between pre-pregnancy BMI and fetal weight in mid and late pregnancy, and at birth were partially mediated by maternal FPG in first trimester (mediation proportion: 5.0%, 8.3%, 1.6%, respectively). Conclusion Maternal pre-pregnancy BMI was associated with the longitudinal fetal growth, and the association was partly driven by maternal FPG in first trimester. The study emphasized the importance of identifying and managing mothers with higher pre-pregnancy BMI to prevent fetal overgrowth.
Collapse
Affiliation(s)
- Qinzheng Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Zhen He
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yaxin Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences (CAMS) and PUMC, Beijing, People’s Republic of China
| | - Xuanjin Yang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences (CAMS) and PUMC, Beijing, People’s Republic of China
| | - Nana Liu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences (CAMS) and PUMC, Beijing, People’s Republic of China
| | - Suhan Zhang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences (CAMS) and PUMC, Beijing, People’s Republic of China
| | - Liangkun Ma
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences (CAMS) and PUMC, Beijing, People’s Republic of China
| | - Xuezhong Shi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xiaocan Jia
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yin Sun
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences (CAMS) and PUMC, Beijing, People’s Republic of China
| | - Yuan He
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Holland CM, Alleyne K, Pierre-Louis A, Bansal R, Pollatou A, Barbato K, Cheng B, Hao X, Rosen TS, Peterson BS, Spann MN. Utilizing maternal prenatal cognition as a predictor of newborn brain measures of intellectual development. Child Neuropsychol 2024; 30:582-601. [PMID: 37489806 PMCID: PMC10808270 DOI: 10.1080/09297049.2023.2233155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/28/2023] [Indexed: 07/26/2023]
Abstract
Identifying reliable indicators of cognitive functioning prior to age five has been challenging. Prior studies have shown that maternal cognition, as indexed by intellectual quotient (IQ) and years of education, predict child intelligence at school age. We examined whether maternal full scale IQ, education, and inhibitory control (index of executive function) are associated with newborn brain measures and toddler language outcomes to assess potential indicators of early cognition. We hypothesized that maternal indices of cognition would be associated with brain areas implicated in intelligence in school-age children and adults in the newborn period. Thirty-seven pregnant women and their newborns underwent an MRI scan. T2-weighted images and surface-based morphometric analysis were used to compute local brain volumes in newborn infants. Maternal cognition indices were associated with local brain volumes for infants in the anterior and posterior cingulate, occipital lobe, and pre/postcentral gyrus - regions associated with IQ, executive function, or sensori-motor functions in children and adults. Maternal education and executive function, but not maternal intelligence, were associated with toddler language scores at 12 and 24 months. Newborn brain volumes did not predict language scores. Overall, the pre/postcentral gyrus and occipital lobe may be unique indicators of early intellectual development in the newborn period. Given that maternal executive function as measured by inhibitory control has robust associations with the newborn brain and is objective, brief, and easy to administer, it may be a useful predictor of early developmental and cognitive capacity for young children.
Collapse
Affiliation(s)
- Cristin M. Holland
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY
| | - Kiarra Alleyne
- Department of Sociomedical Sciences, Columbia University Mailman School of Public Health, New York, NY
| | - Arline Pierre-Louis
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY
| | - Ravi Bansal
- Institute for the Developing Mind, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Angeliki Pollatou
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY
| | - Kristiana Barbato
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY
| | - Bin Cheng
- Columbia University Mailman School of Public Health, New York, NY
| | - Xuejun Hao
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY
| | - Tove S Rosen
- Columbia University Mailman School of Public Health, New York, NY
| | - Bradley S. Peterson
- Institute for the Developing Mind, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Marisa N. Spann
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY
- New York State Psychiatric Institute, New York, NY
| |
Collapse
|
7
|
Snoek KM, van de Woestijne N, Ritfeld VEEG, Klaassen RA, Versendaal H, Galjaard S, Willemsen SP, Laven JSE, Steegers-Theunissen RPM, Schoenmakers S. Preconception maternal gastric bypass surgery and the impact on fetal growth parameters. Surg Obes Relat Dis 2024; 20:128-137. [PMID: 37805294 DOI: 10.1016/j.soard.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/27/2023] [Accepted: 08/28/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Bariatric surgery is increasingly performed in women of reproductive age. As bariatric surgery will result in postoperative rapid catabolic weight loss which potentially leads to fetal malnutrition and directly related impaired intra-uterine growth, it is advised to postpone pregnancy for at least 12-18 months after surgery. OBJECTIVES To investigate the consequences of preconception gastric bypass surgery (pGB) on fetal growth parameters and maternal pregnancy outcome. SETTING Maasstad Hospital, The Netherlands, general hospital and Erasmus Medical Center, The Netherlands, university hospital. METHODS We included 97 pGB pregnancies (Maasstad hospital) and 440 non-bariatric pregnancies (Rotterdam Periconception cohort, Erasmus Medical Center). Longitudinal second and third trimester fetal growth parameters (head circumference, biparietal diameter, femur length, abdominal circumference, estimated fetal weight) were analyzed using linear mixed models, adjusting for covariates and possible confounders. Fetal growth and birthweight in pGB pregnancies were compared to non-bariatric pregnancies and Dutch reference curves. Maternal pregnancy outcome in the pGB group was compared to non-bariatric pregnancies. RESULTS All fetal growth parameters of pGB pregnancies were significantly decreased at 20 weeks' gestation (P < .001) and throughout the remaining part of pregnancy (P < .05) compared with non-bariatric pregnancies (crude and adjusted models). In our cohort, gestational weight gain was not significantly associated with birthweight corrected for gestational age. Birthweight was significantly lower in pGB pregnancies (estimate -241 grams [95% CI, -342.7 to -140.0]) with a 2-fold increased risk of small-for-gestational-age (SGA) (adjusted odds ratio 2.053 [95% CI, 1.058 to 3.872]). Compared to the non-bariatric pregnancies, we found no significant differences in maternal pregnancy outcome. CONCLUSIONS PGB is associated with overall reduced fetal growth trajectories and a 2-fold increased risk of SGA, without significant adverse consequences for maternal pregnancy outcome. We recommend close monitoring of fetal growth after pGB.
Collapse
Affiliation(s)
- Katinka M Snoek
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Nadia van de Woestijne
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - René A Klaassen
- Department of Surgery, Maasstad Hospital, Rotterdam, The Netherlands
| | - Hans Versendaal
- Department of Obstetrics and Gynecology, Maasstad Hospital, Rotterdam, The Netherlands
| | - Sander Galjaard
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Sten P Willemsen
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Biostatistics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Joop S E Laven
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - Sam Schoenmakers
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Spann MN, Alleyne K, Holland CM, Davids A, Pierre-Louis A, Bang C, Oyeneye V, Kiflom R, Shea E, Cheng B, Peterson BS, Monk C, Scheinost D. The effects of experience of discrimination and acculturation during pregnancy on the developing offspring brain. Neuropsychopharmacology 2024; 49:476-485. [PMID: 37968451 PMCID: PMC10724278 DOI: 10.1038/s41386-023-01765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023]
Abstract
The experience of ethnic, racial, and structural inequalities is increasingly recognized as detrimental to health, and early studies suggest that its experience in pregnant mothers may affect the developing fetus. We characterized discrimination and acculturation experiences in a predominantly Hispanic sample of pregnant adolescent women and assessed their association with functional connectivity in their neonate's brain. We collected self-report measures of acculturation, discrimination, maternal distress (i.e., perceived stress, childhood trauma, and depressive symptoms), and socioeconomic status in 165 women. Then, we performed a data-driven clustering of acculturation, discrimination, perceived stress, depressive symptoms, trauma, and socioeconomic status variables during pregnancy to determine whether discrimination or acculturation clustered into distinct factors. Discrimination and acculturation styles loaded onto different factors from perceived stress, depressive symptoms, trauma, and socioeconomic status, suggesting that they were distinct from other factors in our sample. We associated these data-driven maternal phenotypes (discrimination and acculturation styles) with measures of resting-state functional MRI connectivity of the infant amygdala (n = 38). Higher maternal report of assimilation was associated with weaker connectivity between their neonate's amygdala and bilateral fusiform gyrus. Maternal experience of discrimination was associated with weaker connectivity between the amygdala and prefrontal cortex and stronger connectivity between the amygdala and fusiform of their neonate. Cautiously, the results may suggest a similarity to self-contained studies with adults, noting that the experience of discrimination and acculturation may influence amygdala circuitry across generations. Further prospective studies are essential that consider a more diverse population of minoritized individuals and with a comprehensive assessment of ethnic, racial, and structural factors.
Collapse
Affiliation(s)
- Marisa N Spann
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
| | - Kiarra Alleyne
- Columbia University Mailman School of Public Health, New York, NY, USA
| | - Cristin M Holland
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Antonette Davids
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Arline Pierre-Louis
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Claire Bang
- Columbia University Mailman School of Public Health, New York, NY, USA
| | | | | | - Eileen Shea
- New York State Psychiatric Institute, New York, NY, USA
| | - Bin Cheng
- Columbia University Mailman School of Public Health, New York, NY, USA
| | - Bradley S Peterson
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Catherine Monk
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | | |
Collapse
|
9
|
Lee JY, Lee HJ, Jang YH, Kim H, Im K, Yang S, Hoh JK, Ahn JH. Maternal pre-pregnancy obesity affects the uncinate fasciculus white matter tract in preterm infants. Front Pediatr 2023; 11:1225960. [PMID: 38034827 PMCID: PMC10684693 DOI: 10.3389/fped.2023.1225960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Background A growing body of evidence suggests an association between a higher maternal pre-pregnancy body mass index (BMI) and adverse long-term neurodevelopmental outcomes for their offspring. Despite recent attention to the effects of maternal obesity on fetal and neonatal brain development, changes in the brain microstructure of preterm infants born to mothers with pre-pregnancy obesity are still not well understood. This study aimed to detect the changes in the brain microstructure of obese mothers in pre-pregnancy and their offspring born as preterm infants using diffusion tensor imaging (DTI). Methods A total of 32 preterm infants (born to 16 mothers with normal BMI and 16 mothers with a high BMI) at <32 weeks of gestation without brain injury underwent brain magnetic resonance imaging at term-equivalent age (TEA). The BMI of all pregnant women was measured within approximately 12 weeks before pregnancy or the first 2 weeks of gestation. We analyzed the brain volume using a morphologically adaptive neonatal tissue segmentation toolbox and calculated the major white matter (WM) tracts using probabilistic maps of the Johns Hopkins University neonatal atlas. We investigated the differences in brain volume and WM microstructure between preterm infants of mothers with normal and high BMI. The DTI parameters were compared among groups using analysis of covariance adjusted for postmenstrual age at scan and multiple comparisons. Results Preterm infants born to mothers with a high BMI showed significantly increased cortical gray matter volume (p = 0.001) and decreased WM volume (p = 0.003) after controlling for postmenstrual age and multiple comparisons. We found a significantly lower axial diffusivity in the uncinate fasciculus (UNC) in mothers with high BMI than that in mothers with normal BMI (1.690 ± 0.066 vs. 1.762 ± 0.101, respectively; p = 0.005). Conclusion Our study is the first to demonstrate that maternal obesity impacts perinatal brain development patterns in preterm infants at TEA, even in the absence of apparent brain injury. These findings provide evidence for the detrimental effects of maternal obesity on brain developmental trajectories in offspring and suggest potential neurodevelopmental outcomes based on an altered UNC WM microstructure, which is known to be critical for language and social-emotional functions.
Collapse
Affiliation(s)
- Joo Young Lee
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
- Division of Neonatology and Development Medicine, Hanyang University Hospital, Seoul, Republic of Korea
| | - Yong Hun Jang
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Hyuna Kim
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Kiho Im
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Seung Yang
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
- Department of Pediatrics, Hanyang University Hospital, Seoul, Republic of Korea
| | - Jeong-Kyu Hoh
- Department of Obstetrics and Gynecology, Hanyang University College of Medicine, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Hanyang University Hospital, Seoul, Republic of Korea
| | - Ja-Hye Ahn
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
- Division of Neonatology and Development Medicine, Hanyang University Hospital, Seoul, Republic of Korea
| |
Collapse
|
10
|
Rajasilta O, Häkkinen S, Björnsdotter M, Scheinin NM, Lehtola SJ, Saunavaara J, Parkkola R, Lähdesmäki T, Karlsson L, Karlsson H, Tuulari JJ. Maternal psychological distress associates with alterations in resting-state low-frequency fluctuations and distal functional connectivity of the neonate medial prefrontal cortex. Eur J Neurosci 2023; 57:242-257. [PMID: 36458867 PMCID: PMC10108202 DOI: 10.1111/ejn.15882] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Prenatal stress exposure (PSE) has been observed to exert a programming effect on the developing infant brain, possibly with long-lasting consequences on temperament, cognitive functions and the risk for developing psychiatric disorders. Several prior studies have revealed that PSE associates with alterations in neonate functional connectivity in the prefrontal regions and amygdala. In this study, we explored whether maternal psychological symptoms measured during the 24th gestational week had associations with neonate resting-state network metrics. Twenty-one neonates (nine female) underwent resting-state fMRI scanning (mean gestation-corrected age at scan 26.95 days) to assess fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo). The ReHo/fALFF maps were used in multiple regression analysis to investigate whether maternal self-reported anxiety and/or depressive symptoms associate with neonate functional brain features. Maternal psychological distress (composite score of depressive and anxiety symptoms) was positively associated with fALFF in the neonate medial prefrontal cortex (mPFC). Anxiety and depressive symptoms, assessed separately, exhibited similar but weaker associations. Post hoc seed-based connectivity analyses further showed that distal connectivity of mPFC covaried with PSE. No associations were found between neonate ReHo and PSE. These results offer preliminary evidence that PSE may affect functional features of the developing brain during gestation.
Collapse
Affiliation(s)
- Olli Rajasilta
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Suvi Häkkinen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Malin Björnsdotter
- The Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Noora M Scheinin
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Satu J Lehtola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Jani Saunavaara
- Department of Medical Physics, University of Turku and Turku University Hospital, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Tuire Lähdesmäki
- Department of Pediatric Neurology, University of Turku and Turku University Hospital, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
- Center for Population Health Research, University of Turku and Turku University Hospital, Finland
- Department of Paediatrics and Adolescent Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
- Center for Population Health Research, University of Turku and Turku University Hospital, Finland
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
- Department of Psychiatry, University of Oxford (Sigrid Juselius Fellowship), Oxford, UK
- Turku Collegium for Science and Medicine, University of Turku, Turku, Finland
| |
Collapse
|
11
|
Morton SU, Pereira AC, Quiat D, Richter F, Kitaygorodsky A, Hagen J, Bernstein D, Brueckner M, Goldmuntz E, Kim RW, Lifton RP, Porter GA, Tristani-Firouzi M, Chung WK, Roberts A, Gelb BD, Shen Y, Newburger JW, Seidman JG, Seidman CE. Genome-Wide De Novo Variants in Congenital Heart Disease Are Not Associated With Maternal Diabetes or Obesity. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003500. [PMID: 35130025 PMCID: PMC9295870 DOI: 10.1161/circgen.121.003500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/17/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND Congenital heart disease (CHD) is the most common anomaly at birth, with a prevalence of ≈1%. While infants born to mothers with diabetes or obesity have a 2- to 3-fold increased incidence of CHD, the cause of the increase is unknown. Damaging de novo variants (DNV) in coding regions are more common among patients with CHD, but genome-wide rates of coding and noncoding DNVs associated with these prenatal exposures have not been studied in patients with CHD. METHODS DNV frequencies were determined for 1812 patients with CHD who had whole-genome sequencing and prenatal history data available from the Pediatric Cardiac Genomics Consortium's CHD GENES study (Genetic Network). The frequency of DNVs was compared between subgroups using t test or linear model. RESULTS Among 1812 patients with CHD, the number of DNVs per patient was higher with maternal diabetes (76.5 versus 72.1, t test P=3.03×10-11), but the difference was no longer significant after including parental ages in a linear model (paternal and maternal correction P=0.42). No interaction was observed between diabetes risk and parental age (paternal and maternal interaction P=0.80 and 0.68, respectively). No difference was seen in DNV count per patient based on maternal obesity (72.0 versus 72.2 for maternal body mass index <25 versus maternal body mass index >30, t test P=0.86). CONCLUSIONS After accounting for parental age, the offspring of diabetic or obese mothers have no increase in DNVs compared with other children with CHD. These results emphasize the role for other mechanisms in the cause of CHD associated with these prenatal exposures. REGISTRATION URL: https://clinicaltrials.gov; NCT01196182.
Collapse
Affiliation(s)
- Sarah U Morton
- Division of Newborn Medicine, Department of Medicine (S.U.M.), Boston Children's Hospital
| | - Alexandre C Pereira
- Department of Genetics (A.C.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
| | - Daniel Quiat
- Department of Cardiology (D.Q., A.R., J.W.N.), Boston Children's Hospital
| | - Felix Richter
- Graduate School of Biomedical Sciences (F.R.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexander Kitaygorodsky
- Departments of Systems Biology and Biomedical Informatics (A.K., J.H., Y.S.), Columbia University Medical Center, New York, NY
| | - Jacob Hagen
- Departments of Systems Biology and Biomedical Informatics (A.K., J.H., Y.S.), Columbia University Medical Center, New York, NY
| | - Daniel Bernstein
- Department of Pediatrics (Cardiology), Stanford University, CA (D.B.)
| | - Martina Brueckner
- Departments of Genetics and Pediatrics, Yale University School of Medicine, New Haven, CT (M.B.)
| | - Elizabeth Goldmuntz
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine, Univeristy of Pennsylvania (E.G.)
| | - Richard W Kim
- Cedars-Sinai Medical Center, Los Angeles, CA (R.W.K.)
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY (R.P.L.)
| | - George A Porter
- Department of Pediatrics, University of Rochester Medical Center, The School of Medicine and Dentistry, Rochester, NY (G.A.P.)
| | | | - Wendy K Chung
- Departments of Pediatrics and Medicine (W.K.C.), Columbia University Medical Center, New York, NY
| | - Amy Roberts
- Department of Cardiology (D.Q., A.R., J.W.N.), Boston Children's Hospital
| | - Bruce D Gelb
- Department of Pediatrics, Mindich Child Health and Development Institute (B.D.G.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yufeng Shen
- Departments of Systems Biology and Biomedical Informatics (A.K., J.H., Y.S.), Columbia University Medical Center, New York, NY
| | - Jane W Newburger
- Department of Pediatrics (S.U.M., D.Q., A.R., J.W.N.), Harvard Medical School, Boston, MA
| | - J G Seidman
- Department of Genetics (A.C.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
| | - Christine E Seidman
- Department of Genetics (A.C.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
| |
Collapse
|
12
|
Dufford AJ, Spann M, Scheinost D. How prenatal exposures shape the infant brain: Insights from infant neuroimaging studies. Neurosci Biobehav Rev 2021; 131:47-58. [PMID: 34536461 DOI: 10.1016/j.neubiorev.2021.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/30/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
Brain development during the prenatal period is rapid and unparalleled by any other time during development. Biological systems undergoing rapid development are at higher risk for disorganizing influences. Therefore, certain prenatal exposures impact brain development, increasing risk for negative neurodevelopmental outcome. While prenatal exposures have been associated with cognitive and behavioral outcomes later in life, the underlying macroscopic brain pathways remain unclear. Here, we review magnetic resonance imaging (MRI) studies investigating the association between prenatal exposures and infant brain development focusing on prenatal exposures via maternal physical health factors, maternal mental health factors, and maternal drug and medication use. Further, we discuss the need for studies to consider multiple prenatal exposures in parallel and suggest future directions for this body of research.
Collapse
Affiliation(s)
| | - Marisa Spann
- Columbia University Irving Medical Center, 622 West 168th Street, New York, NY, 10032, USA
| | - Dustin Scheinost
- Child Study Center, Yale School of Medicine, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, USA; Department of Statistics and Data Science, Yale University, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| |
Collapse
|
13
|
Tarui T, Rasool A, O'Tierney-Ginn P. How the placenta-brain lipid axis impacts the nutritional origin of child neurodevelopmental disorders: Focus on attention deficit hyperactivity disorder and autism spectrum disorder. Exp Neurol 2021; 347:113910. [PMID: 34742689 DOI: 10.1016/j.expneurol.2021.113910] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/19/2021] [Accepted: 10/31/2021] [Indexed: 12/01/2022]
Abstract
Dietary fish is a rich source of omega-3 (n-3) fatty acids, and as such, is believed to have played an important role in the evolution of the human brain and its advanced cognitive function. The long chain polyunsaturated fatty acids, particularly the n-3 docosahexanoic acid (DHA), are critical for proper neurological development and function. Both low plasma DHA and obesity in pregnancy are associated with neurodevelopmental disorders such as attention deficit and hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) in childhood, and n-3 supplementation has been shown to improve symptoms, as reviewed herein. The mechanisms underlying the connection between maternal obesity, n-3 fatty acid levels and offspring's neurological outcomes are poorly understood, but we review the evidence for a mediating role of the placenta in this relationship. Despite promising data that n-3 fatty acid supplementation mitigates the effect of maternal obesity on placental lipid metabolism, few clinical trials or animal studies have considered the neurological outcomes of offspring of mothers with obesity supplemented with n-3 FA in pregnancy.
Collapse
Affiliation(s)
- Tomo Tarui
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States of America
| | - Aisha Rasool
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States of America
| | - Perrie O'Tierney-Ginn
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States of America.
| |
Collapse
|
14
|
Na X, Phelan NE, Tadros MR, Wu Z, Andres A, Badger TM, Glasier CM, Ramakrishnaiah RR, Rowell AC, Wang L, Li G, Williams DK, Ou X. Maternal Obesity during Pregnancy is Associated with Lower Cortical Thickness in the Neonate Brain. AJNR Am J Neuroradiol 2021; 42:2238-2244. [PMID: 34620592 DOI: 10.3174/ajnr.a7316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/09/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Recent studies have suggested that maternal obesity during pregnancy is associated with differences in neurodevelopmental outcomes in children. In this study, we aimed to investigate the relationships between maternal obesity during pregnancy and neonatal brain cortical development. MATERIALS AND METHODS Forty-four healthy women (28 normal-weight, 16 obese) were prospectively recruited at <10 weeks' gestation, and their healthy full-term neonates (23 boys, 21 girls) underwent brain MR imaging. All pregnant women had their body composition (fat mass percentage) measured at ∼12 weeks of pregnancy. All neonates were scanned at ∼2 weeks of age during natural sleep without sedation, and their 3D T1-weighted images were postprocessed by the new iBEAT2.0 software. Brain MR imaging segmentation and cortical surface reconstruction and parcellation were completed using age-appropriate templates. Mean cortical thickness for 34 regions in each brain hemisphere defined by the UNC Neonatal Cortical Surface Atlas was measured, compared between groups, and correlated with maternal body fat mass percentage, controlled for neonate sex and race, postmenstrual age at MR imaging, maternal age at pregnancy, and the maternal intelligence quotient and education. RESULTS Neonates born to obese mothers showed significantly lower (P ≤ .05, false discovery rate-corrected) cortical thickness in the left pars opercularis gyrus, left pars triangularis gyrus, and left rostral middle frontal gyrus. Mean cortical thickness in these frontal lobe regions negatively correlated (R = -0.34, P = .04; R = -0.50, P = .001; and R = -0.42, P = .01; respectively) with the maternal body fat mass percentage measured at early pregnancy. CONCLUSIONS Maternal obesity during pregnancy is associated with lower neonate brain cortical thickness in several frontal lobe regions important for language and executive functions.
Collapse
Affiliation(s)
- X Na
- From the Department of Radiology (X.N., C.M.G., R.R.R., A.C.R., X.O.).,Arkansas Children's Nutrition Center (X.N., A.A., T.M.B., X.O.), Little Rock, Arkansas.,Arkansas Children's Research Institute (X.N., A.A., T.M.B., X.O.), Little Rock, Arkansas
| | | | | | - Z Wu
- Department of Radiology (Z.W., L.W., G.L.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - A Andres
- Departments of Pediatrics (A.A., T.M.B., C.M.G., R.R.R., X.O.).,Arkansas Children's Nutrition Center (X.N., A.A., T.M.B., X.O.), Little Rock, Arkansas.,Arkansas Children's Research Institute (X.N., A.A., T.M.B., X.O.), Little Rock, Arkansas
| | - T M Badger
- Departments of Pediatrics (A.A., T.M.B., C.M.G., R.R.R., X.O.).,Arkansas Children's Nutrition Center (X.N., A.A., T.M.B., X.O.), Little Rock, Arkansas.,Arkansas Children's Research Institute (X.N., A.A., T.M.B., X.O.), Little Rock, Arkansas
| | - C M Glasier
- From the Department of Radiology (X.N., C.M.G., R.R.R., A.C.R., X.O.).,Departments of Pediatrics (A.A., T.M.B., C.M.G., R.R.R., X.O.)
| | - R R Ramakrishnaiah
- From the Department of Radiology (X.N., C.M.G., R.R.R., A.C.R., X.O.).,Departments of Pediatrics (A.A., T.M.B., C.M.G., R.R.R., X.O.)
| | - A C Rowell
- From the Department of Radiology (X.N., C.M.G., R.R.R., A.C.R., X.O.)
| | - L Wang
- Department of Radiology (Z.W., L.W., G.L.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - G Li
- Department of Radiology (Z.W., L.W., G.L.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - D K Williams
- Biostatistics (D.K.W.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - X Ou
- From the Department of Radiology (X.N., C.M.G., R.R.R., A.C.R., X.O.) .,Departments of Pediatrics (A.A., T.M.B., C.M.G., R.R.R., X.O.).,Arkansas Children's Nutrition Center (X.N., A.A., T.M.B., X.O.), Little Rock, Arkansas.,Arkansas Children's Research Institute (X.N., A.A., T.M.B., X.O.), Little Rock, Arkansas
| |
Collapse
|
15
|
Rajasilta O, Häkkinen S, Björnsdotter M, Scheinin NM, Lehtola SJ, Saunavaara J, Parkkola R, Lähdesmäki T, Karlsson L, Karlsson H, Tuulari JJ. Maternal pre-pregnancy BMI associates with neonate local and distal functional connectivity of the left superior frontal gyrus. Sci Rep 2021; 11:19182. [PMID: 34584134 PMCID: PMC8478954 DOI: 10.1038/s41598-021-98574-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 09/06/2021] [Indexed: 11/09/2022] Open
Abstract
Maternal obesity/overweight during pregnancy has reached epidemic proportions and has been linked with adverse outcomes for the offspring, including cognitive impairment and increased risk for neuropsychiatric disorders. Prior neuroimaging investigations have reported widespread aberrant functional connectivity and white matter tract abnormalities in neonates born to obese mothers. Here we explored whether maternal pre-pregnancy adiposity is associated with alterations in local neuronal synchrony and distal connectivity in the neonate brain. 21 healthy mother-neonate dyads from uncomplicated pregnancies were included in this study (age at scanning 26.14 ± 6.28 days, 12 male). The neonates were scanned with a 6-min resting-state functional magnetic resonance imaging (rs-fMRI) during natural sleep. Regional homogeneity (ReHo) maps were computed from obtained rs-fMRI data. Multiple regression analysis was performed to assess the association of pre-pregnancy maternal body-mass-index (BMI) and ReHo. Seed-based connectivity analysis with multiple regression was subsequently performed with seed-ROI derived from ReHo analysis. Maternal adiposity measured by pre-pregnancy BMI was positively associated with neonate ReHo values within the left superior frontal gyrus (SFG) (FWE-corrected p < 0.005). Additionally, we found both positive and negative associations (p < 0.05, FWE-corrected) for maternal pre-pregnancy BMI and seed-based connectivity between left SFG and prefrontal, amygdalae, basal ganglia and insular regions. Our results imply that maternal pre-pregnancy BMI associates with local and distal functional connectivity within the neonate left superior frontal gyrus. These findings add to the evidence that increased maternal pre-pregnancy BMI has a programming influence on the developing neonate brain functional networks.
Collapse
Affiliation(s)
- Olli Rajasilta
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.
| | - Suvi Häkkinen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Malin Björnsdotter
- Department of Psychiatry for Affective Disorders, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Noora M Scheinin
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Satu J Lehtola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
| | - Jani Saunavaara
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Tuire Lähdesmäki
- Department of Pediatric Neurology, Turku University Hospital and University of Turku, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.,Center for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland.,Center for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland.,Department of Psychiatry, University of Oxford, UK (Sigrid Juselius Fellowship), Oxford, UK.,Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
| |
Collapse
|
16
|
Coley EJL, Hsiao EY. Malnutrition and the microbiome as modifiers of early neurodevelopment. Trends Neurosci 2021; 44:753-764. [PMID: 34303552 DOI: 10.1016/j.tins.2021.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/23/2021] [Accepted: 06/11/2021] [Indexed: 01/16/2023]
Abstract
Malnutrition refers to a dearth, excess, or altered differential ratios of calories, macronutrients, or micronutrients. Malnutrition, particularly during early life, is a pressing global health and socioeconomic burden that is increasingly associated with neurodevelopmental impairments. Understanding how perinatal malnutrition influences brain development is crucial to uncovering fundamental mechanisms for establishing behavioral neurocircuits, with the potential to inform public policy and clinical interventions for neurodevelopmental conditions. Recent studies reveal that the gut microbiome can mediate dietary effects on host physiology and that the microbiome modulates the development and function of the nervous system. This review discusses evidence that perinatal malnutrition alters brain development and examines the maternal and neonatal microbiome as a potential contributing factor.
Collapse
Affiliation(s)
- Elena J L Coley
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Elaine Y Hsiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Copeland A, Silver E, Korja R, Lehtola SJ, Merisaari H, Saukko E, Sinisalo S, Saunavaara J, Lähdesmäki T, Parkkola R, Nolvi S, Karlsson L, Karlsson H, Tuulari JJ. Infant and Child MRI: A Review of Scanning Procedures. Front Neurosci 2021; 15:666020. [PMID: 34321992 PMCID: PMC8311184 DOI: 10.3389/fnins.2021.666020] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Magnetic resonance imaging (MRI) is a safe method to examine human brain. However, a typical MR scan is very sensitive to motion, and it requires the subject to lie still during the acquisition, which is a major challenge for pediatric scans. Consequently, in a clinical setting, sedation or general anesthesia is often used. In the research setting including healthy subjects anesthetics are not recommended for ethical reasons and potential longer-term harm. Here we review the methods used to prepare a child for an MRI scan, but also on the techniques and tools used during the scanning to enable a successful scan. Additionally, we critically evaluate how studies have reported the scanning procedure and success of scanning. We searched articles based on special subject headings from PubMed and identified 86 studies using brain MRI in healthy subjects between 0 and 6 years of age. Scan preparations expectedly depended on subject's age; infants and young children were scanned asleep after feeding and swaddling and older children were scanned awake. Comparing the efficiency of different procedures was difficult because of the heterogeneous reporting of the used methods and the success rates. Based on this review, we recommend more detailed reporting of scanning procedure to help find out which are the factors affecting the success of scanning. In the long term, this could help the research field to get high quality data, but also the clinical field to reduce the use of anesthetics. Finally, we introduce the protocol used in scanning 2 to 5-week-old infants in the FinnBrain Birth Cohort Study, and tips for calming neonates during the scans.
Collapse
Affiliation(s)
- Anni Copeland
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Eero Silver
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Riikka Korja
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| | - Satu J. Lehtola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Harri Merisaari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Ekaterina Saukko
- Department of Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Susanne Sinisalo
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Jani Saunavaara
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Tuire Lähdesmäki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Pediatric Neurology, Turku University Hospital, University of Turku, Turku, Finland
| | - Riitta Parkkola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Saara Nolvi
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychology and Speech-Language Pathology, Turku Institute for Advanced Studies, University of Turku, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Jetro J. Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Shin D, Lee KW. High pre-pregnancy BMI with a history of gestational diabetes mellitus is associated with an increased risk of type 2 diabetes in Korean women. PLoS One 2021; 16:e0252442. [PMID: 34086709 PMCID: PMC8177465 DOI: 10.1371/journal.pone.0252442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/16/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the importance of pre-pregnancy body mass index (BMI) and a history of gestational diabetes mellitus (GDM) in the progression of GDM to type 2 diabetes, few studies have evaluated the combined effect of high pre-pregnancy BMI and GDM status on the future development of type 2 diabetes in Korean women. This study aimed to examine the relationship of pre-pregnancy BMI and GDM history with the risk of type 2 diabetes among Korean women. In addition, the effects of pre-pregnancy BMI and current BMI on the risk of type 2 diabetes were evaluated. Women who gave birth in the Health Examinees Study of the Korean Genome and Epidemiology Study from 2004 to 2013 (n = 59,258) were included in this study. Multivariable logistic regression was used to examine the association of pre-pregnancy BMI categories (underweight: <18.5 kg/m2; normal: 18.5–22.9 kg/m2; overweight: 23.0–24.9 kg/m2; obese: ≥25.0 kg/m2) and GDM history with the risk of type 2 diabetes after controlling for the following covariates: age, education, income, smoking status before the first pregnancy, alcohol consumption, regular exercise, menarche age, first pregnancy age, and first pregnancy outcome. Compared to women with normal pre-pregnancy BMIs, women with overweight and obese pre-pregnancy BMIs had higher odds of developing type 2 diabetes (adjusted odds ratio [AOR]: 1.13, 95% confidence interval [CI]: 1.02–1.25 and AOR: 1.29, 95% CI: 1.10–1.50, respectively) after controlling for covariates. Women with pre-pregnancy BMIs <23 kg/m2 and current BMIs ≥23 kg/m2 had increased odds of developing type 2 diabetes (AOR: 1.64, 95% CI: 1.51–1.78) compared to those with pre-pregnancy BMIs <23 kg/m2 and current BMIs <23 kg/m2. Among women without a history of GDM, those with overweight and obese pre-pregnancy BMIs had increased odds of developing type 2 diabetes compared to those with normal pre-pregnancy BMIs (AOR: 1.12, 95% CI: 1.01–1.24 and AOR: 1.23, 95% CI: 1.05–1.44, respectively). Among women with GDM, those with obese pre-pregnancy BMIs had increased odds of developing type 2 diabetes (AOR: 3.84, 95% CI: 1.52–9.87). This study showed that there was a higher likelihood of developing type 2 diabetes in women who were overweight or obese before pregnancy with a history of GDM compared to their counterparts without a history of GDM. Furthermore, high pre-pregnancy BMI or high current BMI increased the risk of type 2 diabetes in Korean women, regardless of GDM history. This emphasizes the importance of maintaining a healthy weight status before and after pregnancy to prevent the future risk of type 2 diabetes.
Collapse
Affiliation(s)
- Dayeon Shin
- Department of Food and Nutrition, Inha University, Incheon, Republic of Korea
| | - Kyung Won Lee
- Department of Home Economics Education, Korea National University of Education, Cheongju, Republic of Korea
- * E-mail:
| |
Collapse
|