1
|
Fernandes AG, Poirier AC, Veilleux CC, Melin AD. Contributions and future potential of animal models for geroscience research on sensory systems. GeroScience 2025; 47:61-83. [PMID: 39312151 PMCID: PMC11872837 DOI: 10.1007/s11357-024-01327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/23/2024] [Indexed: 03/04/2025] Open
Abstract
Sensory systems mediate our social interactions, food intake, livelihoods, and other essential daily functions. Age-related decline and disease in sensory systems pose a significant challenge to healthy aging. Research on sensory decline in humans is informative but can often be difficult, subject to sampling bias, and influenced by environmental variation. Study of animal models, including mice, rats, rabbits, pigs, cats, dogs, and non-human primates, plays a complementary role in biomedical research, offering advantages such as controlled conditions and shorter lifespans for longitudinal study. Various species offer different advantages and limitations but have provided key insights in geroscience research. Here we review research on age-related decline and disease in vision, hearing, olfaction, taste, and touch. For each sense, we provide an epidemiological overview of impairment in humans, describing the physiological processes and diseases for each sense. We then discuss contributions made by research on animal models and ideas for future research. We additionally highlight the need for integrative, multimodal research across the senses as well as across disciplines. Long-term studies spanning multiple generations, including on species with longer life spans, are also highly valuable. Overall, integrative studies of appropriate animal models have high translational potential for clinical applications, the development of novel diagnostics, therapies, and medical interventions and future research will continue to close gaps in these areas. Research on animal models to improve understanding of the biology of the aging senses and improve the healthspan and additional research on sensory systems hold special promise for new breakthroughs.
Collapse
Affiliation(s)
- Arthur G Fernandes
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 4N1, Canada.
| | - Alice C Poirier
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Carrie C Veilleux
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 4N1, Canada
- Department of Anatomy, Midwestern University, Glendale, AZ, USA
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 4N1, Canada.
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
2
|
Vanbrabant K, Rasking L, Vangeneugden M, Bové H, Ameloot M, Vanmierlo T, Schins RPF, Cassee FR, Plusquin M. Impact on murine neurodevelopment of early-life exposure to airborne ultrafine carbon nanoparticles. Part Fibre Toxicol 2024; 21:51. [PMID: 39633442 PMCID: PMC11619103 DOI: 10.1186/s12989-024-00612-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
The effects of ultrafine particle (UFP) inhalation on neurodevelopment, especially during critical windows of early life, remain largely unexplored. The specific time windows during which exposure to UFP might be the most detrimental remain poorly understood. Here, we studied early-life exposure to clean ultrafine carbonaceous particles (UFPC) and neurodevelopment and central nervous system function in offspring.Pregnant wild-type C57BL/6J mice were either sham-exposed (HEPA-filtered air) or exposed to clean ultrafine carbonaceous particles at a concentration of 438 ± 72 μg/m³ (mean ± SD) and a count median diameter of 49 ± 2 nm (CMD ± GSD) via whole-body exposure for four hours per day. For prenatal exposure, mice were exposed for two consecutive days in two exposure periods, while the postnatal exposure was conducted for four consecutive days in two exposure periods. The mice were divided into four groups: (i) sham, (ii) only prenatal exposure, (iii) only postnatal exposure, and (iv) both prenatal and postnatal exposure. Neurodevelopmental behaviour was assessed throughout the life of the offspring using a functional observation battery.Early-life UFPC-exposed offspring exhibited altered anxiety-related behaviour in the open field test, with exclusively postnatally exposed offspring (567 ± 120 s) spending significantly more time within the border zone of the arena compared to the sham group (402 ± 73 s), corresponding to an increase of approximately 41% (p < 0.05). The behavioural alterations remained unaffected by olfactory function or maternal behaviour. Mice with both prenatal and postnatal exposure did not show this effect. No discernible impact on developmental behavioural reflexes was evident.Early life exposure to UFPC, particularly during the early postnatal period, may lead to developmental neurotoxicity, potentially resulting in complications for the central nervous system later in life. The current data will support future studies investigating the possible effects and characteristics of nanoparticle-based toxicity.
Collapse
Affiliation(s)
- Kenneth Vanbrabant
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, Diepenbeek, BE-3590, Belgium
| | - Leen Rasking
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, Diepenbeek, BE-3590, Belgium
| | - Maartje Vangeneugden
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, Diepenbeek, BE-3590, Belgium
| | - Hannelore Bové
- Department of Sciences, Hasselt University, Diepenbeek, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Tim Vanmierlo
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- Department Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute, European Graduate School of Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Flemming R Cassee
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, Diepenbeek, BE-3590, Belgium.
| |
Collapse
|
3
|
Bratman GN, Bembibre C, Daily GC, Doty RL, Hummel T, Jacobs LF, Kahn PH, Lashus C, Majid A, Miller JD, Oleszkiewicz A, Olvera-Alvarez H, Parma V, Riederer AM, Sieber NL, Williams J, Xiao J, Yu CP, Spengler JD. Nature and human well-being: The olfactory pathway. SCIENCE ADVANCES 2024; 10:eadn3028. [PMID: 38748806 PMCID: PMC11809653 DOI: 10.1126/sciadv.adn3028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/12/2024] [Indexed: 07/04/2024]
Abstract
The world is undergoing massive atmospheric and ecological change, driving unprecedented challenges to human well-being. Olfaction is a key sensory system through which these impacts occur. The sense of smell influences quality of and satisfaction with life, emotion, emotion regulation, cognitive function, social interactions, dietary choices, stress, and depressive symptoms. Exposures via the olfactory pathway can also lead to (anti-)inflammatory outcomes. Increased understanding is needed regarding the ways in which odorants generated by nature (i.e., natural olfactory environments) affect human well-being. With perspectives from a range of health, social, and natural sciences, we provide an overview of this unique sensory system, four consensus statements regarding olfaction and the environment, and a conceptual framework that integrates the olfactory pathway into an understanding of the effects of natural environments on human well-being. We then discuss how this framework can contribute to better accounting of the impacts of policy and land-use decision-making on natural olfactory environments and, in turn, on planetary health.
Collapse
Affiliation(s)
- Gregory N. Bratman
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Cecilia Bembibre
- Institute for Sustainable Heritage, University College London, London, UK
| | - Gretchen C. Daily
- Natural Capital Project, Stanford University, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Woods Institute, Stanford University, Stanford, CA 94305, USA
| | - Richard L. Doty
- Smell and Taste Center, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas Hummel
- Interdisciplinary Center Smell and Taste, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lucia F. Jacobs
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Peter H. Kahn
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
| | - Connor Lashus
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Asifa Majid
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | | | - Anna Oleszkiewicz
- Interdisciplinary Center Smell and Taste, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Institute of Psychology, University of Wroclaw, Wrocław, Poland
| | | | | | - Anne M. Riederer
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Nancy Long Sieber
- T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Jonathan Williams
- Air Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus
| | - Jieling Xiao
- College of Architecture, Birmingham City University, Birmingham, UK
| | - Chia-Pin Yu
- School of Forestry and Resource Conservation, National Taiwan University, Taiwan
- The Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University, Taiwan
| | - John D. Spengler
- T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
4
|
Vohra V, Simonsick EM, Kamath V, Bandeen-Roche K, Agrawal Y, Rowan NR. Physical Function Trajectories and Mortality in Older Adults With Multisensory Impairment. JAMA Otolaryngol Head Neck Surg 2024; 150:217-225. [PMID: 38236596 PMCID: PMC10797522 DOI: 10.1001/jamaoto.2023.4378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024]
Abstract
Importance Single sensory impairment is associated with reduced functional resilience and increased mortality, though the effects of multiple sensory deficits are not known. Objective To investigate longitudinal associations of the type, severity, and number of sensory impairments with physical function trajectories and mortality in older adults. Design, Setting, and Participants This retrospective analysis of a longitudinal cohort study, the Health, Aging, and Body Composition (Health ABC) study, incorporated data from April 1997 to July 2013, featuring a 16-year follow-up with annual examinations and questionnaires. The cohort comprised 3075 men and women, aged 70 to 79 years at baseline, residing in Memphis, Tennessee, and Pittsburgh, Pennsylvania. All participants with complete sensory testing and covariate data at analytical baseline (year 5, 2002) were included. The data were analyzed September 1, 2022. Exposures Visual, olfactory, auditory, and touch sensory functions were assessed between 2000 and 2002. Main Outcomes The main outcomes included physical functioning trajectories and mortality risk. Physical function was assessed longitudinally using the Health ABC physical performance battery (HABCPPB). Results A total of 1825 individuals (mean [SD] age, 77.4 [3.2] years; 957 [52%] female) were included in this study. Multivariable analysis of HABCPPB decline indicated that having 1 sensory impairment (β estimate, -0.01 [95% CI, -0.02 to -0.001]); 2 sensory impairments (β estimate, -0.01 [95% CI, -0.02 to -0.01]); 3 sensory impairments (β estimate, -0.03 [95% CI, -0.04 to -0.02]); or 4 sensory impairments (β estimate, -0.04 [95% CI, -0.05,-0.03]) was significantly associated with a steeper HABCPPB score decline in a dose-dependent manner. Adjusted Cox proportional hazards models indicated that having 1 sensory impairment (hazard ratio [HR], 1.35 [95% CI, 1.01-1.81]), 2 sensory impairments (HR, 1.58 [95% CI, 1.19-2.11]), 3 sensory impairments (HR, 1.79 [95% CI, 1.33-2.42]), or 4 sensory impairments (HR, 1.97 [95% CI, 1.39-2.79]) was significantly associated with increased mortality risk in a similarly dose-dependent manner. Conclusion In this retrospective cohort study, the degree and number of multiple sensory impairments were associated with worse physical functioning and increased mortality risk. These findings represent an opportunity for further investigation into the value of screening, prevention, and treatment of sensory impairments to reduce morbidity and mortality in older adults.
Collapse
Affiliation(s)
- Varun Vohra
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Eleanor M. Simonsick
- National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland
| | - Vidyulata Kamath
- Department of Psychiatry and Behavior Sciences, Johns Hopkins University, Baltimore, Maryland
| | | | - Yuri Agrawal
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Nicholas R. Rowan
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
5
|
Zaręba Ł, Piszczatowska K, Dżaman K, Soroczynska K, Motamedi P, Szczepański MJ, Ludwig N. The Relationship between Fine Particle Matter (PM2.5) Exposure and Upper Respiratory Tract Diseases. J Pers Med 2024; 14:98. [PMID: 38248800 PMCID: PMC10817350 DOI: 10.3390/jpm14010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/13/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
PM2.5 is one of the most harmful components of airborne pollution and includes particles with diameters of less than 2.5 μm. Almost 90% of the world's population lives in areas with poor air quality exceeding the norms established by the WHO. PM2.5 exposure affects various organs and systems of the human body including the upper respiratory tract which is one of the most prone to its adverse effects. PM2.5 can disrupt nasal epithelial cell metabolism, decrease the integrity of the epithelial barrier, affect mucociliary clearance, and alter the inflammatory process in the nasal mucosa. Those effects may increase the chance of developing upper respiratory tract diseases in areas with high PM2.5 pollution. PM2.5's contribution to allergic rhinitis (AR) and rhinosinusitis was recently thoroughly investigated. Numerous studies demonstrated various mechanisms that occur when subjects with AR or rhinosinusitis are exposed to PM2.5. Various immunological changes and alterations in the nasal and sinonasal epithelia were reported. These changes may contribute to the observations that exposure to higher PM2.5 concentrations may increase AR and rhinosinusitis symptoms in patients and the number of clinical visits. Thus, studying novel strategies against PM2.5 has recently become the focus of researchers' attention. In this review, we summarize the current knowledge on the effects of PM2.5 on healthy upper respiratory tract mucosa and PM2.5's contribution to AR and rhinosinusitis. Finally, we summarize the current advances in developing strategies against PM2.5 particles' effects on the upper respiratory tract.
Collapse
Affiliation(s)
- Łukasz Zaręba
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (K.P.); (K.S.); (P.M.)
| | - Katarzyna Piszczatowska
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (K.P.); (K.S.); (P.M.)
| | - Karolina Dżaman
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 03-242 Warsaw, Poland;
| | - Karolina Soroczynska
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (K.P.); (K.S.); (P.M.)
| | - Parham Motamedi
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (K.P.); (K.S.); (P.M.)
| | - Mirosław J. Szczepański
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (K.P.); (K.S.); (P.M.)
| | - Nils Ludwig
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
6
|
Dorsey ER, Bloem BR. Parkinson's Disease Is Predominantly an Environmental Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:451-465. [PMID: 38217613 PMCID: PMC11091623 DOI: 10.3233/jpd-230357] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/15/2024]
Abstract
Parkinson's disease is the world's fastest growing brain disorder, and exposure to environmental toxicants is the principal reason. In this paper, we consider alternative, but unsatisfactory, explanations for its rise, including improved diagnostic skills, aging populations, and genetic causes. We then detail three environmental toxicants that are likely among the main causes of Parkinson's disease- certain pesticides, the solvent trichloroethylene, and air pollution. All three environmental toxicants are ubiquitous, many affect mitochondrial functioning, and all can access humans via various routes, including inhalation and ingestion. We reach the hopeful conclusion that most of Parkinson's disease is thus preventable and that we can help to create a world where Parkinson's disease is increasingly rare.
Collapse
Affiliation(s)
- E. Ray Dorsey
- Center for Health + Technology and Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Bastiaan R. Bloem
- Department of Neurology, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Centre of Expertise for Parkinson and Movement Disorders, Nijmegen, the Netherlands
| |
Collapse
|
7
|
Yu SE, Athni TS, Mitchell MB, Zhou X, Chiang S, Lee SE. The Impact of Ambient and Wildfire Air Pollution on Rhinosinusitis and Olfactory Dysfunction. Curr Allergy Asthma Rep 2023; 23:665-673. [PMID: 38047993 DOI: 10.1007/s11882-023-01110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 12/05/2023]
Abstract
PURPOSE OF REVIEW With increasing industrialization, exposure to ambient and wildfire air pollution is projected to increase, necessitating further research to elucidate the complex relationship between exposure and sinonasal disease. This review aims to summarize the role of ambient and wildfire air pollution in chronic rhinosinusitis (CRS) and olfactory dysfunction and provide a perspective on gaps in the literature. RECENT FINDINGS Based on an emerging body of evidence, exposure to ambient air pollutants is correlated with the development of chronic rhinosinusitis in healthy individuals and increased symptom severity in CRS patients. Studies have also found a robust relationship between long-term exposure to ambient air pollutants and olfactory dysfunction. Ambient air pollution exposure is increasingly recognized to impact the development and sequelae of sinonasal pathophysiology. Given the rising number of wildfire events and worsening impacts of climate change, further study of the impact of wildfire-related air pollution is a crucial emerging field.
Collapse
Affiliation(s)
- Sophie E Yu
- Division of Otolaryngology-Head & Neck Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tejas S Athni
- Division of Otolaryngology-Head & Neck Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Margaret B Mitchell
- Division of Otolaryngology-Head & Neck Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology-Head & Neck Surgery, Massachusetts Eye & Ear, Boston, USA
| | - Xiaodan Zhou
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | - Simon Chiang
- Division of Otolaryngology-Head & Neck Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stella E Lee
- Division of Otolaryngology-Head & Neck Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Lomme J, Reedijk M, Peters S, Downward GS, Stefanopoulou M, Vermeulen R, Huss A. Traffic-related air pollution, road traffic noise, and Parkinson's disease: Evaluations in two Dutch cohort studies. Environ Epidemiol 2023; 7:e272. [PMID: 38912395 PMCID: PMC11189687 DOI: 10.1097/ee9.0000000000000272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/06/2023] [Indexed: 06/25/2024] Open
Abstract
Background Environmental factors such as air pollution have been associated with Parkinson's disease (PD), but findings have been inconsistent. We investigated the association between exposure to several air pollutants, road traffic noise, and PD risk in two Dutch cohorts. Methods Data from 50,087 participants from two Dutch population-based cohort studies, European Prospective Investigation into Cancer and Nutrition in the Netherlands and Arbeid, Milieu en Gezondheid Onderzoek were analyzed. In these cohorts, 235 PD cases were ascertained based on a previously validated algorithm combining self-reported information (diagnosis, medication, and symptoms) and registry data. We assigned the following traffic-related exposures to residential addresses at baseline: NO2, NOx, particulate matter (PM)2.5absorbance (as a marker for black carbon exposure), PM with aerodynamic diameter ≤2.5 µm (PM2.5), ≤10 µm (PM10), PMcoarse (size fraction 2.5-10 µm), ultrafine particles <0.1 µm (UFP), and road traffic noise (Lden). Logistic regression models were applied to investigate the associations with PD, adjusted for possible confounders. Results Both single- and two-pollutant models indicated associations between exposure to NOx, road traffic noise, and increasing odds of developing PD. Odds ratios of fully adjusted two-pollutant models in the highest compared with the lowest exposure quartile were 1.62 (95% CI = 1.02, 2.62) for NOx and 1.47 (95% CI = 0.97, 2.25) for road traffic noise, with clear trends across exposure categories. Conclusions Our findings suggest that NOx and road traffic noise are associated with an increased risk of PD. While the association with NOx has been shown before, further investigation into the possible role of environmental noise on PD is warranted.
Collapse
Affiliation(s)
- Jara Lomme
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Marije Reedijk
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Susan Peters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - George S. Downward
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Anke Huss
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
9
|
Cao Z, Yang A, White AJ, Purdy F, Li C, Luo Z, D’Aloisio AA, Suarez L, Deming-Halverson S, Pinto JM, Chen JC, Werder EJ, Kaufman JD, Sandler DP, Chen H. Ambient Air Pollutants and Olfaction among Women 50-79 Years of Age from the Sister Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:87012. [PMID: 37594315 PMCID: PMC10436839 DOI: 10.1289/ehp12066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Poor olfaction is common in older adults and may have profound adverse implications on their health. However, little is known about the potential environmental contributors to poor olfaction. OBJECTIVE We investigated ambient fine particulate matter [PM ≤ 2.5 μ m in aerodynamic diameter (PM 2.5 )] and nitrogen dioxide (NO 2 ) in relation to poor olfaction in middle-aged to older women. METHODS The Sister Study is a nationwide cohort of 50,884 women in the United States with annual average air pollutant exposures estimated based on participants' residences from enrollment (2003-2009) through 2017. This analysis was limited to 3,345 women, 50-79 years of age as of January 2018, who completed the Brief Smell Identification Test (B-SIT) in 2018-2019. Poor olfaction was defined as a B-SIT score of ≤ 9 in the primary analysis. We conducted multivariable logistic regressions, accounting for covariates and study sampling design. RESULTS Overall, we found little evidence for associations of air pollutants with poor olfaction. The odds ratio (OR) and 95% confidence interval (CI) of poor olfaction for each interquartile range (IQR) increment of air pollutants in 2006 were 1.03 (95% CI: 0.91, 1.17) for PM 2.5 (per 3.3 μ g / m 3 ) and 1.08 (95% CI: 0.96, 1.22) for NO 2 (per 5.7 ppb ). Results were similar in the analyses using the most recent (2017) or the cumulative average (2006-2017) air pollutant exposure data. Secondary analyses suggested potential association in certain subgroups. The OR per IQR was 1.35 (95% CI: 1.11, 1.65) for PM 2.5 among younger participants (< 54.2 years of age) and 1.87 (95% CI: 1.29, 2.71) for NO 2 among current smokers. DISCUSSION This study did not find convincing evidence that air pollutants have lasting detrimental effects on the sense of smell of women 50-79 years of age. The subgroup analyses are exploratory, and the findings need independent confirmation. https://doi.org/10.1289/EHP12066.
Collapse
Affiliation(s)
- Zichun Cao
- Department of Epidemiology and Biostatistics, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
| | - Aiwen Yang
- Department of Epidemiology and Biostatistics, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
| | - Alexandra J. White
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Frank Purdy
- Department of Epidemiology and Biostatistics, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
| | - Chenxi Li
- Department of Epidemiology and Biostatistics, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
| | - Zhehui Luo
- Department of Epidemiology and Biostatistics, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
| | - Aimee A. D’Aloisio
- Social & Scientific Systems, DLH Holdings Corporation, Durham, North Carolina, USA
| | - Lourdes Suarez
- Social & Scientific Systems, DLH Holdings Corporation, Durham, North Carolina, USA
| | | | - Jayant M. Pinto
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, University of Southern California (USC), Los Angeles, California, USA
- Department of Neurology, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Emily J. Werder
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Joel D. Kaufman
- Department of Environmental and Occupational Health Sciences, University of Washington School of Medicine (UW Medicine), Seattle, Washington, USA
- Department of Medicine, UW Medicine, Seattle, Washington, USA
- Department of Epidemiology, UW Medicine, Seattle, Washington, USA
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Honglei Chen
- Department of Epidemiology and Biostatistics, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
| |
Collapse
|
10
|
Lee HM, Son YS, Kim HS, Kim JY, Kim SH, Lee JH, Choi SW, Oh SJ, Kong SK, Baek MJ, Lee IW. Effects of Particulate Matter Exposure on the Eustachian Tube and Middle Ear Mucosa of Rats. Clin Exp Otorhinolaryngol 2023; 16:225-235. [PMID: 37202348 PMCID: PMC10471908 DOI: 10.21053/ceo.2023.00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/20/2023] Open
Abstract
OBJECTIVES Particulate matter (PM) is a risk factor for various diseases. Recent studies have established an association between otitis media (OM) and PM exposure. To confirm this relationship, we developed a novel exposure model designed to control the concentration of PM, and we observed the effects of PM exposure on the Eustachian tube (ET) and middle ear mucosa of rats. METHODS Forty healthy, 10-week-old, male Sprague-Dawley rats were divided into 3-day, 7-day, 14-day exposure, and control groups (each, n=10). The rats were exposed to incense smoke as the PM source for 3 hours per day. After exposure, bilateral ETs and mastoid bullae were harvested, and histopathological findings were compared using microscopy and transmission electron microscopy (TEM). The expression levels of interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and vascular endothelial growth factor (VEGF) in the middle ear mucosa of each group were compared using real-time reverse transcription polymerase chain reaction (RT-PCR). RESULTS In the ET mucosa of the exposure group, the goblet cell count significantly increased after PM exposure (P=0.032). In the middle ear mucosa, subepithelial space thickening, increased angio-capillary tissue, and inflammatory cell infiltration were observed. Moreover, the thickness of the middle ear mucosa in the exposure groups increased compared to the control group (P<0.01). The TEM findings showed PM particles on the surface of the ET and middle ear mucosa, and RT-PCR revealed that messenger RNA (mRNA) expression of IL-1β significantly increased in the 3-day and 7-day exposure groups compared to the control group (P=0.035). VEGF expression significantly increased in the 7-day exposure group compared to the control and 3-day exposure groups (P<0.01). CONCLUSION The ET and middle ear mucosa of rats showed histopathologic changes after acute exposure to PM that directly reached the ET and middle ear mucosa. Therefore, acute exposure to PM may play a role in the development of OM.
Collapse
Affiliation(s)
- Hyun Min Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University College of Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
- The Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Youn-Suk Son
- Department of Environmental Engineering, Pukyong National University, Busan, Korea
| | - Hyang-Sook Kim
- The Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Joo-Young Kim
- The Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Seok-Hyun Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University College of Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
- The Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Jung Hee Lee
- Department of Pathology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Sung-Won Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University College of Medicine, Pusan National University Hospital, Busan, Korea
| | - Se-Joon Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University College of Medicine, Pusan National University Hospital, Busan, Korea
| | - Soo-Keun Kong
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University College of Medicine, Pusan National University Hospital, Busan, Korea
| | - Moo Jin Baek
- Department of Otorhinolaryngology, Inje University College of Medicine, Haeundae Paik Hospital, Busan, Korea
| | - Il-Woo Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University College of Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
- The Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| |
Collapse
|
11
|
Pini L, Salvalaggio A, Wennberg AM, Dimakou A, Matteoli M, Corbetta M. The pollutome-connectome axis: a putative mechanism to explain pollution effects on neurodegeneration. Ageing Res Rev 2023; 86:101867. [PMID: 36720351 DOI: 10.1016/j.arr.2023.101867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Abstract
The study of pollutant effects is extremely important to address the epochal challenges we are facing, where world populations are increasingly moving from rural to urban centers, revolutionizing our world into an urban world. These transformations will exacerbate pollution, thus highlighting the necessity to unravel its effect on human health. Epidemiological studies have reported that pollution increases the risk of neurological diseases, with growing evidence on the risk of neurodegenerative disorders. Air pollution and water pollutants are the main chemicals driving this risk. These chemicals can promote inflammation, acting in synergy with genotype vulnerability. However, the biological underpinnings of this association are unknown. In this review, we focus on the link between pollution and brain network connectivity at the macro-scale level. We provide an updated overview of epidemiological findings and studies investigating brain network changes associated with pollution exposure, and discuss the mechanistic insights of pollution-induced brain changes through neural networks. We explain, in detail, the pollutome-connectome axis that might provide the functional substrate for pollution-induced processes leading to cognitive impairment and neurodegeneration. We describe this model within the framework of two pollutants, air pollution, a widely recognized threat, and polyfluoroalkyl substances, a large class of synthetic chemicals which are currently emerging as new neurotoxic source.
Collapse
Affiliation(s)
- Lorenzo Pini
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, Italy; Venetian Institute of Molecular Medicine, VIMM, Padova, Italy.
| | | | - Alexandra M Wennberg
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anastasia Dimakou
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, Italy
| | - Michela Matteoli
- Neuro Center, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milano, Italy; CNR Institute of Neuroscience, Milano, Italy
| | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, Italy; Venetian Institute of Molecular Medicine, VIMM, Padova, Italy
| |
Collapse
|
12
|
Crepeau P, Zhang Z, Udyavar R, Morris-Wiseman L, Biswal S, Ramanathan M, Mathur A. Socioeconomic disparity in the association between fine particulate matter exposure and papillary thyroid cancer. Environ Health 2023; 22:20. [PMID: 36823621 PMCID: PMC9948306 DOI: 10.1186/s12940-023-00972-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Limited data exists suggesting that cumulative exposure to air pollution in the form of fine particulate matter (aerodynamic diameter ≤ 2.5 μm [PM2.5]) may be associated with papillary thyroid carcinoma (PTC), although this relationship has not been widely established. This study aims to evaluate the association between PM2.5 and PTC and determine the subgroups of patients who are at the highest risk of PTC diagnosis. METHODS Under IRB approval, we conducted a case-control study of adult patients (age ≥ 18) newly diagnosed with PTC between 1/2013-12/2016 across a single health care system were identified using electronic medical records. These patients were compared to a control group of patients without any evidence of thyroid disease. Cumulative PM2.5 exposure was calculated for each patient using a deep learning neural networks model, which incorporated meteorological and satellite-based measurements at the patients' residential zip code. Adjusted multivariate logistic regression was used to quantify the association between cumulative PM2.5 exposure and PTC diagnosis. We tested whether this association differed by gender, race, BMI, smoking history, current alcohol use, and median household income. RESULTS A cohort of 1990 patients with PTC and a control group of 6919 patients without thyroid disease were identified. Compared to the control group, patients with PTC were more likely to be older (51.2 vs. 48.8 years), female (75.5% vs 46.8%), White (75.2% vs. 61.6%), and never smokers (71.1% vs. 58.4%) (p < 0.001). After adjusting for age, sex, race, BMI, current alcohol use, median household income, current smoking status, hypertension, diabetes, COPD, and asthma, 3-year cumulative PM2.5 exposure was associated with a 1.41-fold increased odds of PTC diagnosis (95%CI: 1.23-1.62). This association varied by median household income (p-interaction =0.03). Compared to those with a median annual household income <$50,000, patients with a median annual household income between $50,000 and < $100,000 had a 43% increased risk of PTC diagnosis (aOR = 1.43, 95%CI: 1.19-1.72), and patients with median household income ≥$100,000 had a 77% increased risk of PTC diagnosis (aOR = 1.77, 95%CI: 1.37-2.29). CONCLUSIONS Cumulative exposure to PM2.5 over 3 years was significantly associated with the diagnosis of PTC. This association was most pronounced in those with a high median household income, suggesting a difference in access to care among socioeconomic groups.
Collapse
Affiliation(s)
- Philip Crepeau
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Zhenyu Zhang
- Department of Global Health, Peking University School of Public Health, Beijing, China
- Institute for Global Health and Development, Peking University, Beijing, China
| | - Rhea Udyavar
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lilah Morris-Wiseman
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shyam Biswal
- Department of Environmental Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Murugappan Ramanathan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aarti Mathur
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Tanaka M, Okuda T, Itoh K, Ishihara N, Oguro A, Fujii-Kuriyama Y, Nabetani Y, Yamamoto M, Vogel CFA, Ishihara Y. Polycyclic aromatic hydrocarbons in urban particle matter exacerbate movement disorder after ischemic stroke via potentiation of neuroinflammation. Part Fibre Toxicol 2023; 20:6. [PMID: 36797786 PMCID: PMC9933276 DOI: 10.1186/s12989-023-00517-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND A recent epidemiological study showed that air pollution is closely involved in the prognosis of ischemic stroke. We and others have reported that microglial activation in ischemic stroke plays an important role in neuronal damage. In this study, we investigated the effects of urban aerosol exposure on neuroinflammation and the prognosis of ischemic stroke using a mouse photothrombotic model. RESULTS When mice were intranasally exposed to CRM28, urban aerosols collected in Beijing, China, for 7 days, microglial activation was observed in the olfactory bulb and cerebral cortex. Mice exposed to CRM28 showed increased microglial activity and exacerbation of movement disorder after ischemic stroke induction. Administration of core particles stripped of attached chemicals from CRM28 by washing showed less microglial activation and suppression of movement disorder compared with CRM28-treated groups. CRM28 exposure did not affect the prognosis of ischemic stroke in null mice for aryl hydrocarbon receptor, a polycyclic aromatic hydrocarbon (PAH) receptor. Exposure to PM2.5 collected at Yokohama, Japan also exacerbated movement disorder after ischemic stroke. CONCLUSION Particle matter in the air is involved in neuroinflammation and aggravation of the prognosis of ischemic stroke; furthermore, PAHs in the particle matter could be responsible for the prognosis exacerbation.
Collapse
Affiliation(s)
- Miki Tanaka
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, 769-2101, Japan
| | - Tomoaki Okuda
- Faculty of Science and Technology, Keio University, Yokohama, Kanagawa, 223-8522, Japan
| | - Kouichi Itoh
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, 769-2101, Japan
| | - Nami Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
| | - Ami Oguro
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
| | - Yoshiaki Fujii-Kuriyama
- Medical Research Institute, Molecular Epidemiology, Tokyo Medical and Dental University, Bunkyo, Tokyo, 113-8510, Japan
| | - Yu Nabetani
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Megumi Yamamoto
- Department of Environment and Public Health, National Institute for Minamata Disease, Minamata, Kumamoto, 867-0008, Japan
| | - Christoph F A Vogel
- Department of Environmental Toxicology, University of California, Davis, Davis, CA, 95616, USA
- Center for Health and the Environment, University of California, Davis, Davis, CA, 95616, USA
| | - Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan.
- Center for Health and the Environment, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
14
|
Franks ZG, London NR, Lee SE, Biswal S, Ramanathan M, Zhang Z. Long-term particulate matter exposure is associated with the development of nonallergic rhinitis: A case-control study. Int Forum Allergy Rhinol 2022; 13:1042-1045. [PMID: 36541720 DOI: 10.1002/alr.23125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Zechariah G Franks
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD
| | - Nyall R London
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD
| | - Stella E Lee
- Division of Otolaryngology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Shyam Biswal
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Murugappan Ramanathan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD
| | - Zhenyu Zhang
- Department of Global Health, The Peking University School of Public Health, Beijing, China.,Institute for Global Health and Development, Peking University, Beijing, China
| |
Collapse
|
15
|
Choi YS, Jeong BS, Lee YK, Kim YD. Effects of Air Pollution on Chemosensory Dysfunction in COVID-19 Patients. J Korean Med Sci 2022; 37:e290. [PMID: 36217572 PMCID: PMC9550633 DOI: 10.3346/jkms.2022.37.e290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 08/11/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND In some patients, coronavirus disease 2019 (COVID-19) is accompanied by loss of smell and taste, and this has been reportedly associated with exposure to air pollutants. This study investigated the relationship between the occurrence of chemosensory dysfunction in COVID-19 patients and air pollutant concentrations in Korea. METHODS Information on the clinical symptom of chemosensory dysfunction, the date of diagnosis, residential area, age, and sex of 60,194 confirmed COVID-19 cases reported to the Korea Disease Control and Prevention Agency from January 20 to December 31, 2020 was collected. In addition, the daily average concentration of air pollutants for a week in the patients' residential area was collected from the Ministry of Environment based on the date of diagnosis of COVID-19. A binomial logistic regression model, using age and gender, standardized smoking rate, number of outpatient visits, 24-hour mean temperature and relative humidity at the regional level as covariates, was used to determine the effect of air pollution on chemosensory dysfunction. RESULTS Symptoms of chemosensory dysfunction were most frequent among patients in their 20s and 30s, and occurred more frequently in large cities. The logistic analysis showed that the concentration of particulate matter 10 (PM10) and 2.5 (PM2.5) up to 2 days before the diagnosis of COVID-19 and the concentration of sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3) at least 7 days before the diagnosis of COVID-19 affected the development of chemosensory dysfunction. In the logistic regression model adjusted for age, sex, standardized smoking rate, number of outpatient visits, and daily average temperature and relative humidity, it was found that an increase in the interquartile range of PM10, PM2.5, SO2, NO2, and CO on the day of diagnosis increased the incidence of chemosensory dysfunction 1.10, 1.10, 1.17, 1.31, and 1.19-fold, respectively. In contrast, the O3 concentration had a negative association with chemosensory dysfunction. CONCLUSION High concentrations of air pollutants such as PM10, PM2.5, SO2, NO2, and CO on the day of diagnosis increased the risk of developing chemosensory dysfunction from COVID-19 infection. This result underscores the need to actively prevent exposure to air pollution and prevent COVID-19 infection. In addition, policies that regulate activities and products that create high amounts of harmful environmental wastes may help in promoting better health for all during COVID-19 pandemic.
Collapse
Affiliation(s)
- Young-Sook Choi
- Compensation & Support Center for COVID-19 Vaccine Injury, Korea Disease Control and Prevention Agency, Cheongju, Korea
| | - Byeong-Su Jeong
- Digital Health Devices Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| | - Yeon-Kyeng Lee
- Division of Healthcare Associated Infection Control, Bureau of Healthcare Safety and Immunization, Korea Disease Control and Prevention Agency, Cheongju, Korea.
| | - Yong-Dae Kim
- Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju, Korea
- Chungbuk Regional Cancer Center, Chungbuk National University Hospital, Cheongju, Korea.
| |
Collapse
|
16
|
O'Piela DR, Durisek GR, Escobar YNH, Mackos AR, Wold LE. Particulate matter and Alzheimer's disease: an intimate connection. Trends Mol Med 2022; 28:770-780. [PMID: 35840480 PMCID: PMC9420776 DOI: 10.1016/j.molmed.2022.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 06/10/2022] [Indexed: 10/17/2022]
Abstract
The environmental role in disease progression has been appreciated for decades; however, understanding how airborne toxicant exposure can affect organs beyond the lungs is an underappreciated area of scientific inquiry. Particulate matter (PM) includes various gases, liquids, and particles in suspension and is produced by industrial activities such as fossil fuel combustion and natural events including wildfires and volcanic eruptions. Although agencies have attempted to reduce acceptable airborne particulate levels, with urbanization and population growth, these policies have been only moderately effective in mitigating disease progression. A growing area of research is focused on the role of PM exposure in the progression of Alzheimer's disease (AD). This review will summarize the knowns and unknowns of this expanding field.
Collapse
Affiliation(s)
- Devin R O'Piela
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA; College of Nursing, The Ohio State University, Columbus, OH, USA
| | - George R Durisek
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA; College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Yael-Natalie H Escobar
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA; College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Amy R Mackos
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA; College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Loren E Wold
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA; College of Nursing, The Ohio State University, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
17
|
Shamsa EH, Song Z, Kim H, Shamsa F, Hazlett LD, Zhang K. The links of fine airborne particulate matter exposure to occurrence of cardiovascular and metabolic diseases in Michigan, USA. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000707. [PMID: 36962575 PMCID: PMC10021276 DOI: 10.1371/journal.pgph.0000707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022]
Abstract
Air pollutants, particularly airborne particulate matter with aerodynamic diameter < 2.5μm (PM2.5), have been linked to the increase in mortality and morbidity associated with cardiovascular and metabolic diseases. In this study, we investigated the dose-risk relationships between PM2.5 concentrations and occurrences of cardiovascular and metabolic diseases as well as the confounding socioeconomic factors in Michigan, USA, where PM2.5 levels are generally considered acceptable. Multivariate linear regression analyses were performed to investigate the relationship between health outcome and annual ground-level PM2.5 concentrations of 82 counties in Michigan. The analyses revelated significant linear dose-response associations between PM2.5 concentrations and cardiovascular disease (CVD) hospitalization. A 10 μg/m3 increase in PM2.5 exposure was found to be associated with a 3.0% increase in total CVD, 0.45% increase in Stroke, and a 0.3% increase in Hypertension hospitalization rates in Medicare beneficiaries. While the hospitalization rates of Total Stroke, Hemorrhagic Stroke, and Hypertension in urbanized counties were significantly higher than those of rural counties, the death rates of coronary heart disease and ischemic stroke in urbanized counties were significantly lower than those of rural counties. These results were correlated with the facts that PM2.5 levels in urbanized counties were significantly higher than that in rural counties and that the percentage of the population with health insurance and the median household income in rural counties were significantly lower. While obesity prevalence showed evidence of a weak positive correlation (ρ = 0.20, p-value = 0.078) with PM2.5 levels, there was no significant dose-response association between county diabetes prevalence rates and PM2.5 exposure in Michigan. In summary, this study revealed strong dose-response associations between PM2.5 concentrations and CVD incidence in Michigan, USA. The socioeconomic factors, such as access to healthcare resources and median household income, represent important confounding factors that could override the impact of PM2.5 exposure on CVD mortality.
Collapse
Affiliation(s)
- El Hussain Shamsa
- Center for Molecular Medicine & Genetics, The Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Zhenfeng Song
- Center for Molecular Medicine & Genetics, The Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Hyunbae Kim
- Center for Molecular Medicine & Genetics, The Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Falah Shamsa
- Cancer Coalition of Georgia, Atlanta, GA, United States of America
| | - Linda D. Hazlett
- Ophthalmology, Visual and Anatomical Sciences, The Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Kezhong Zhang
- Center for Molecular Medicine & Genetics, The Wayne State University School of Medicine, Detroit, MI, United States of America
- Department of Immunology and Microbiology, The Wayne State University School of Medicine, Detroit, MI, United States of America
| |
Collapse
|
18
|
Chen H, Wang K, Scheperjans F, Killinger B. Environmental triggers of Parkinson's disease - Implications of the Braak and dual-hit hypotheses. Neurobiol Dis 2022; 163:105601. [PMID: 34954321 PMCID: PMC9525101 DOI: 10.1016/j.nbd.2021.105601] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/05/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022] Open
Abstract
Idiopathic Parkinson's disease (PD) may take decades to develop, during which many risk or protective factors may come into play to initiate the pathogenesis or modify its progression to clinical PD. The lack of understanding of this prodromal phase of PD and the factors involved has been a major hurdle in the study of PD etiology and preventive strategies. Although still controversial, the Braak and dual-hit hypotheses that PD may start peripherally in the olfactory structures and/or the gut provides a theoretical platform to identify the triggers and modifiers of PD prodromal development and progression. This is particularly true for the search of environmental causes of PD as the olfactory structures and gut are the major human mucosal interfaces with the environment. In this review, we lay out our personal views about how the Braak and dual-hit hypotheses may help us search for the environmental triggers and modifiers for PD, summarize available experimental and epidemiological evidence, and discuss research gaps and strategies.
Collapse
Affiliation(s)
- Honglei Chen
- Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA.
| | - Keran Wang
- Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Filip Scheperjans
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Haartmaninkatu 4, 00290 Helsinki, Finland
| | - Bryan Killinger
- Graduate College, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
19
|
Ambient particulate matter air pollution is associated with increased risk of papillary thyroid cancer. Surgery 2022; 171:212-219. [PMID: 34210530 PMCID: PMC8688174 DOI: 10.1016/j.surg.2021.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND The association between exposure to air pollution and papillary thyroid carcinoma is unknown. We sought to estimate the relationship between long-term exposure to the fine (diameter ≤ 2.5 μm) particulate matter component of air pollution and the risk of papillary thyroid cancer. METHODS Adult (age ≥18) patients with newly diagnosed papillary thyroid carcinoma between January 1, 2013 and December 31, 2016 across a single health system were identified using electronic medical records. Data from 1,990 patients with papillary thyroid carcinoma were compared with 3,980 age- and sex-matched control subjects without any evidence of thyroid disease. Cumulative fine (diameter <2.5 μm) particulate matter exposure was estimated by incorporating patients' residential zip codes into a deep learning neural networks model, which uses both meteorological and satellite-based measurements. Conditional logistic regression was performed to assess for association between papillary thyroid carcinoma and increasing fine (diameter ≤2.5 μm) particulate matter concentrations over 1, 2, and 3 years of cumulative exposure preceding papillary thyroid carcinoma diagnosis. RESULTS Increased odds of developing papillary thyroid carcinoma was associated with a 5 μg/m3 increase of fine (diameter ≤2.5 μm) particulate matter concentrations over 2 years (adjusted odds ratio = 1.18, 95% confidence interval: 1.00-1.40) and 3 years (adjusted odds ratio = 1.23, 95% confidence interval: 1.05-1.44) of exposure. This risk differed by smoking status (pinteraction = 0.04). Among current smokers (n = 623), the risk of developing papillary thyroid carcinoma was highest (adjusted odds ratio = 1.35, 95% confidence interval: 1.12-1.63). CONCLUSION Increasing concentration of fine (diameter ≤2.5 μm) particulate matter in air pollution is significantly associated with the incidence of papillary thyroid carcinoma with 2 and 3 years of exposure. Our novel findings provide additional insight into the potential associations between risk factors and papillary thyroid carcinoma and warrant further investigation, specifically in areas with high levels of air pollution both nationally and internationally.
Collapse
|
20
|
Gudis DA, Ramanathan M, Levy JM, Lee SE. Let the sunshine in. Int Forum Allergy Rhinol 2021; 11:1521-1523. [PMID: 34132504 DOI: 10.1002/alr.22853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 11/07/2022]
Affiliation(s)
- David A Gudis
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Irving Medical Center-NewYork Presbyterian Hospital, New York, New York, USA
| | - Murugappan Ramanathan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Joshua M Levy
- Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stella E Lee
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|