1
|
Zeng Y, Yang S, Xie Z, Li Q, Wang Y, Xiong Q, Liang X, Lu H, Cheng W. Tianqi Yizhi Granule alleviates cognitive dysfunction and neurodegeneration in SAMP8 mice via the PKC/ERK pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156542. [PMID: 39986222 DOI: 10.1016/j.phymed.2025.156542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/02/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Given the lack of satisfactory clinical treatments for Alzheimer's disease (AD), a neurodegenerative condition detrimental to health, developing alternative therapies is critical. Tianqi Yizhi Granule (TQYZ) is a preparation used to treat AD based on traditional Chinese medicine theory, the latent mechanisms of which await elucidation. PURPOSE This study sought to investigate the neuroprotective properties of TQYZ while exploring its potential therapeutic mechanisms using network pharmacology analyses and experimental validation. METHODS Network pharmacology analyses were performed. Cognitive and neurodegenerative alterations were evaluated through behavioral tests and histological staining. For in vivo and in vitro experiments, short hairpin RNA sequences were transfected via adeno-associated virus vectors to verify the predicted mechanism. RESULTS A total of 159 potential therapeutic targets of TQYZ overlapped with AD-related targets. In senescence-accelerated mouse prone 8 (SAMP8) mice, treatment with TQYZ significantly improved cognitive function, ameliorated neuronal damage and apoptosis, and upregulated the protein expression of PKC/ERK pathway members. TQYZ maintained the mitochondrial membrane potential, reduced the generation of reactive oxygen species, and inhibited neuronal apoptosis in Aβ25-35-induced HT22 cells. However, these neuroprotective effects were notably reduced in shRNA PRKCB-transfected HT22 cells and SAMP8 mice. CONCLUSIONS TQYZ mitigates the pathological degeneration process and cognitive impairment in SAMP8 mice and suppresses mitochondrial dysfunction and apoptosis in HT22 cells treated with Aβ25-35. Its neuroprotective mechanism is linked to PKC/ERK pathway activation. This study highlights a promising strategy for AD therapy.
Collapse
Affiliation(s)
- Yi Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China; Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, PR China
| | - Sixia Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Zeping Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Qitian Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Yuhua Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Qiaowu Xiong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Xiaotong Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Hui Lu
- Department of Geriatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China.
| | - Weidong Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China.
| |
Collapse
|
2
|
Fan FC, Liu LM, Guo M, Du Y, Chen YW, Loh YP, Cheng Y. Neurotrophic factor-α1/carboxypeptidase E controls progression and reversal of Alzheimer's disease pathogenesis in mice. Theranostics 2025; 15:2279-2292. [PMID: 39990227 PMCID: PMC11840748 DOI: 10.7150/thno.99908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/15/2024] [Indexed: 02/25/2025] Open
Abstract
Background: Neurotrophic Factor-α1/Carboxypeptidase E (NF-α1/CPE) is a pivotal neuroprotective protein implicated in rescuing cognitive decline associated with Alzheimer's disease (AD). However, its direct role in AD pathogenesis remains unexplored. Methods: We utilized the Cre/LoxP system to diminish NF-α1/CPE expression, and employed AAV-mediated overexpression of NF-α1/CPE. Results: NF-α1/CPE expression was significantly down-regulated in advanced stages of AD and with age in 5xFAD mice. Reduced NF-α1/CPE levels in the hippocampus of 5xFAD mice increased plaque burden, microglial cell count, disrupted synaptogenesis, and intensified cognitive impairments at 5 and 7 months. However, by 9 months, no further progression of detrimental effects was observed. Overexpression of NF-α1/CPE markedly decreased amyloid plaque accumulation, mitigated spatial memory deficits, and normalized hippocampal synaptogenesis and microglial anomalies across early and late stages of the disease. Conclusion: NF-α1/CPE is a critical regulator of AD pathogenesis, offering promising therapeutic potential for reducing amyloid beta deposition and toxicity in AD.
Collapse
Affiliation(s)
- Fang-Cheng Fan
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China, 528000
- Key Laboratory of Ethnomedicine of Ministry of Education, Center for Translational Neuroscience, School of Pharmacy, Minzu University of China, 27 Zhongguancun South St, Haidian District, Beijing, China, 100081
| | - Li-Ming Liu
- Institute of National Security, Minzu University of China, 27 Zhongguancun South St, Haidian District, Beijing, China, 100081
| | - Mei Guo
- Key Laboratory of Ethnomedicine of Ministry of Education, Center for Translational Neuroscience, School of Pharmacy, Minzu University of China, 27 Zhongguancun South St, Haidian District, Beijing, China, 100081
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, Center for Translational Neuroscience, School of Pharmacy, Minzu University of China, 27 Zhongguancun South St, Haidian District, Beijing, China, 100081
| | - Yue-Wen Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, 1068 Xueyuan Avenue, Xili Shenzhen University City, Nanshan District, Shenzhen, Guangdong, China, 518055
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, 9 Yuexing 1st Road, Nanshan District, Shenzhen, Guangdong, China, 518057
| | - Y. Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, United States of America, 20892
| | - Yong Cheng
- Key Laboratory of Ethnomedicine of Ministry of Education, Center for Translational Neuroscience, School of Pharmacy, Minzu University of China, 27 Zhongguancun South St, Haidian District, Beijing, China, 100081
- Institute of National Security, Minzu University of China, 27 Zhongguancun South St, Haidian District, Beijing, China, 100081
| |
Collapse
|
3
|
Wang J, Fourriere L, Gleeson PA. Advances in the cell biology of the trafficking and processing of amyloid precursor protein: impact of familial Alzheimer's disease mutations. Biochem J 2024; 481:1297-1325. [PMID: 39302110 PMCID: PMC11555708 DOI: 10.1042/bcj20240056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
The production of neurotoxic amyloid-β peptides (Aβ) is central to the initiation and progression of Alzheimer's disease (AD) and involves sequential cleavage of the amyloid precursor protein (APP) by β- and γ-secretases. APP and the secretases are transmembrane proteins and their co-localisation in the same membrane-bound sub-compartment is necessary for APP cleavage. The intracellular trafficking of APP and the β-secretase, BACE1, is critical in regulating APP processing and Aβ production and has been studied in several cellular systems. Here, we summarise the intracellular distribution and transport of APP and its secretases, and the intracellular location for APP cleavage in non-polarised cells and neuronal models. In addition, we review recent advances on the potential impact of familial AD mutations on APP trafficking and processing. This is critical information in understanding the molecular mechanisms of AD progression and in supporting the development of novel strategies for clinical treatment.
Collapse
Affiliation(s)
- Jingqi Wang
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Lou Fourriere
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul A. Gleeson
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
4
|
Huang F, Liu X, Guo Q, Mahaman YAR, Zhang B, Wang JZ, Luo H, Liu R, Wang X. Social isolation impairs cognition via Aβ-mediated synaptic dysfunction. Transl Psychiatry 2024; 14:380. [PMID: 39294141 PMCID: PMC11410967 DOI: 10.1038/s41398-024-03078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
Social isolation (SI) is a common phenomenon in the modern world, especially during the coronavirus disease 2019 pandemic, and causes lasting cognitive impairments and mental disorders. However, it is still unclear how SI alters molecules in the brain and induces behavioural dysfunctions. Here, we report that SI impairs cognitive function and induces depressive-like behaviours in C57BL/6 J mice, in addition to impairing synaptic plasticity and increasing the levels of APP cleavage-related enzymes, thereby promoting Aβ production. Moreover, we show that in APP/PS1 transgenic mice, SI accelerates pathological changes and behavioural deficits. Interestingly, downregulation of the expression of the BACE1 attenuates SI-induced Aβ toxicity and synaptic dysfunction. Furthermore, early intervention with BACE1 shRNA blocks SI-induced cognitive impairments. Together, our data strongly suggest that SI-induced upregulation of BACE1 expression mediates Aβ toxicity and induces behavioural deficits. Down-regulation of BACE1 may be a promising strategy for preventing SI-induced cognitive impairments.
Collapse
Affiliation(s)
- Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| | - Xinghua Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Trauma Center/Department of Emergency and Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Guo
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yacoubou Abdoul Razak Mahaman
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Zhang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| | - Hongbin Luo
- Medical College, Hubei University for Nationalities, Enshi, 445000, HB, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China.
| |
Collapse
|
5
|
Tsintzas E, Niccoli T. Using Drosophila amyloid toxicity models to study Alzheimer's disease. Ann Hum Genet 2024; 88:349-363. [PMID: 38517001 DOI: 10.1111/ahg.12554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 03/23/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia and is characterised by a progressive loss of neurons, which manifests as gradual memory decline, followed by cognitive loss. Despite the significant progress in identifying novel biomarkers and understanding the prodromal pathology and symptomatology, AD remains a significant unmet clinical need. Lecanemab and aducanumab, the only Food and Drug Administration approved drugs to exhibit some disease-modifying clinical efficacy, target Aβ amyloid, underscoring the importance of this protein in disease aetiology. Nevertheless, in the absence of a definitive cure, the utilisation of preclinical models remains imperative for the identification of novel therapeutic targets and the evaluation of potential therapeutic agents. Drosophila melanogaster is a model system that can be used as a research tool to investigate neurodegeneration and therapeutic interventions. The short lifespan, low price and ease of husbandry/rearing make Drosophila an advantageous model organism from a practical perspective. However, it is the highly conserved genome and similarity of Drosophila and human neurobiology which make flies a powerful tool to investigate neurodegenerative mechanisms. In addition, the ease of transgenic modifications allows for early proof of principle studies for future therapeutic approaches in neurodegenerative research. This mini review will specifically focus on utilising Drosophila as an in vivo model of amyloid toxicity in AD.
Collapse
Affiliation(s)
- Elli Tsintzas
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK
| | - Teresa Niccoli
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK
| |
Collapse
|
6
|
Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther 2024; 9:211. [PMID: 39174535 PMCID: PMC11344989 DOI: 10.1038/s41392-024-01911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) stands as the predominant form of dementia, presenting significant and escalating global challenges. Its etiology is intricate and diverse, stemming from a combination of factors such as aging, genetics, and environment. Our current understanding of AD pathologies involves various hypotheses, such as the cholinergic, amyloid, tau protein, inflammatory, oxidative stress, metal ion, glutamate excitotoxicity, microbiota-gut-brain axis, and abnormal autophagy. Nonetheless, unraveling the interplay among these pathological aspects and pinpointing the primary initiators of AD require further elucidation and validation. In the past decades, most clinical drugs have been discontinued due to limited effectiveness or adverse effects. Presently, available drugs primarily offer symptomatic relief and often accompanied by undesirable side effects. However, recent approvals of aducanumab (1) and lecanemab (2) by the Food and Drug Administration (FDA) present the potential in disrease-modifying effects. Nevertheless, the long-term efficacy and safety of these drugs need further validation. Consequently, the quest for safer and more effective AD drugs persists as a formidable and pressing task. This review discusses the current understanding of AD pathogenesis, advances in diagnostic biomarkers, the latest updates of clinical trials, and emerging technologies for AD drug development. We highlight recent progress in the discovery of selective inhibitors, dual-target inhibitors, allosteric modulators, covalent inhibitors, proteolysis-targeting chimeras (PROTACs), and protein-protein interaction (PPI) modulators. Our goal is to provide insights into the prospective development and clinical application of novel AD drugs.
Collapse
Affiliation(s)
- Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yinglu Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Yilin Xia
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
7
|
Zhang J, Pandey M, Awe A, Lue N, Kittock C, Fikse E, Degner K, Staples J, Mokhasi N, Chen W, Yang Y, Adikaram P, Jacob N, Greenfest-Allen E, Thomas R, Bomeny L, Zhang Y, Petros TJ, Wang X, Li Y, Simonds WF. The association of GNB5 with Alzheimer disease revealed by genomic analysis restricted to variants impacting gene function. Am J Hum Genet 2024; 111:473-486. [PMID: 38354736 PMCID: PMC10940018 DOI: 10.1016/j.ajhg.2024.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Disease-associated variants identified from genome-wide association studies (GWASs) frequently map to non-coding areas of the genome such as introns and intergenic regions. An exclusive reliance on gene-agnostic methods of genomic investigation could limit the identification of relevant genes associated with polygenic diseases such as Alzheimer disease (AD). To overcome such potential restriction, we developed a gene-constrained analytical method that considers only moderate- and high-risk variants that affect gene coding sequences. We report here the application of this approach to publicly available datasets containing 181,388 individuals without and with AD and the resulting identification of 660 genes potentially linked to the higher AD prevalence among Africans/African Americans. By integration with transcriptome analysis of 23 brain regions from 2,728 AD case-control samples, we concentrated on nine genes that potentially enhance the risk of AD: AACS, GNB5, GNS, HIPK3, MED13, SHC2, SLC22A5, VPS35, and ZNF398. GNB5, the fifth member of the heterotrimeric G protein beta family encoding Gβ5, is primarily expressed in neurons and is essential for normal neuronal development in mouse brain. Homozygous or compound heterozygous loss of function of GNB5 in humans has previously been associated with a syndrome of developmental delay, cognitive impairment, and cardiac arrhythmia. In validation experiments, we confirmed that Gnb5 heterozygosity enhanced the formation of both amyloid plaques and neurofibrillary tangles in the brains of AD model mice. These results suggest that gene-constrained analysis can complement the power of GWASs in the identification of AD-associated genes and may be more broadly applicable to other polygenic diseases.
Collapse
Affiliation(s)
- Jianhua Zhang
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Mritunjay Pandey
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam Awe
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Lue
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Claire Kittock
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emma Fikse
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine Degner
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jenna Staples
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neha Mokhasi
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weiping Chen
- Genomic Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 8/Rm 1A11, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yanqin Yang
- Laboratory of Transplantation Genomics, National Heart Lung and Blood Institute, Bldg. 10/Rm 7S261, National Institutes of Health, Bethesda, MD 20892, USA
| | - Poorni Adikaram
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nirmal Jacob
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emily Greenfest-Allen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel Thomas
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura Bomeny
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yajun Zhang
- Unit on Cellular and Molecular Neurodevelopment, Bldg. 35/Rm 3B 1002, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, Bldg. 35/Rm 3B 1002, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaowen Wang
- Partek Incorporated, 12747 Olive Boulevard, St. Louis, MO 63141, USA
| | - Yulong Li
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - William F Simonds
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Lian Y, Jia YJ, Wong J, Zhou XF, Song W, Guo J, Masters CL, Wang YJ. Clarity on the blazing trail: clearing the way for amyloid-removing therapies for Alzheimer's disease. Mol Psychiatry 2024; 29:297-305. [PMID: 38001337 DOI: 10.1038/s41380-023-02324-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with a complex pathogenesis. Senile plaques composed of the amyloid-β (Aβ) peptide in the brain are the core hallmarks of AD and a promising target for the development of disease-modifying therapies. However, over the past 20 years, the failures of clinical trials directed at Aβ clearance have fueled a debate as to whether Aβ is the principal pathogenic factor in AD and a valid therapeutic target. The success of the recent phase 3 trials of lecanemab (Clarity AD) and donanemab (Trailblazer Alz2), and lessons from previous Aβ clearance trials provide critical evidence to support the role of Aβ in AD pathogenesis and suggest that targeting Aβ clearance is heading in the right direction for AD treatment. Here, we analyze key questions relating to the efficacy of Aβ targeting therapies, and provide perspectives on early intervention, adequate Aβ removal, sufficient treatment period, and combinatory therapeutics, which may be required to achieve the best cognitive benefits in future trials in the real world.
Collapse
Affiliation(s)
- Yan Lian
- Department of Prevention and Health Care, Daping Hospital, Third Military Medical University, Chongqing, China
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Key Laboratory of Ageing and Brain Disease, Chongqing, China
| | - Yu-Juan Jia
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Joelyn Wong
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences and Sansom Institute, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Weihong Song
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province. Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China.
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia.
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
- Key Laboratory of Ageing and Brain Disease, Chongqing, China.
| |
Collapse
|
9
|
Li Y, Yang Z, Zhang Y, Liu F, Xu J, Meng Y, Xing G, Ruan X, Sun J, Zhang N. Genetic Screening of Patients with Sporadic Alzheimer's Disease and Frontotemporal Lobar Degeneration in the Chinese Population. J Alzheimers Dis 2024; 99:577-593. [PMID: 38701145 DOI: 10.3233/jad-231361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Background Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD) account for the vast majority of neurodegenerative dementias. AD and FTLD have different clinical phenotypes with a genetic overlap between them and other dementias. Objective This study aimed to identify the genetic spectrum of sporadic AD and FTLD in the Chinese population. Methods A total of 74 sporadic AD and 29 sporadic FTLD participants were recruited. All participants underwent whole-exome sequencing (WES) and testing for a hexanucleotide expansion in C9orf72 was additionally performed for participants with negative WES results. Results Four known pathogenic or likely pathogenic variants, including PSEN1 (p.G206D), MAPT (p.R5H), LRRK2 (p.W1434*), and CFAP43 (p.C934*), were identified in AD participants, and 1 novel pathogenic variant of ANXA11 (p.D40G) and two known likely pathogenic variants of MAPT (p.D177V) and TARDBP (p.I383V) were identified in FTLD participants. Twenty-four variants of uncertain significance as well as rare variants in risk genes for dementia, such as ABCA7, SORL1, TRPM7, NOS3, MPO, and DCTN1, were also found. Interestingly, several variants in participants with semantic variant primary progressive aphasia were detected. However, no participants with C9orf72 gene variants were found in the FTLD cohort. Conclusions There was a high frequency of genetic variants in Chinese participants with sporadic AD and FTLD and a complex genetic overlap between these two types of dementia and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yaoru Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Heping District, Tianjin, China
- Department Five of Neurology, Cangzhou Central Hospital, Yunhe District, Cangzhou, Hebei, China
| | - Ziying Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China
| | - Yanxin Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Fang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Jing Xu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Yaping Meng
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Gebeili Xing
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Xuqin Ruan
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China
| | - Jun Sun
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China
| | - Nan Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| |
Collapse
|
10
|
Wang F, Wang H, Yuan Y, Han B, Qiu S, Hu Y, Zang T. Integration of multiple-omics data to reveal the shared genetic architecture of educational attainment, intelligence, cognitive performance, and Alzheimer's disease. Front Genet 2023; 14:1243879. [PMID: 37900179 PMCID: PMC10601659 DOI: 10.3389/fgene.2023.1243879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/01/2023] [Indexed: 10/31/2023] Open
Abstract
Growing evidence suggests the effect of educational attainment (EA) on Alzheimer's disease (AD), but less is known about the shared genetic architecture between them. Here, leveraging genome-wide association studies (GWAS) for AD (N = 21,982/41,944), EA (N = 1,131,881), cognitive performance (N = 257,828), and intelligence (N = 78,308), we investigated their causal association with the linkage disequilibrium score (LDSC) and Mendelian randomization and their shared loci with the conjunctional false discovery rate (conjFDR), transcriptome-wide association studies (TWAS), and colocalization. We observed significant genetic correlations of EA (rg = -0.22, p = 5.07E-05), cognitive performance (rg = -0.27, p = 2.44E-05), and intelligence (rg = -0.30, p = 3.00E-04) with AD, and a causal relationship between EA and AD (OR = 0.74, 95% CI: 0.58-0.94, p = 0.013). We identified 13 shared loci at conjFDR <0.01, of which five were novel, and prioritized three causal genes. These findings inform early prevention strategies for AD.
Collapse
Affiliation(s)
- Fuxu Wang
- Center for Bioinformatics, Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Haoyan Wang
- Center for Bioinformatics, Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Ye Yuan
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Bing Han
- Aier Eye Hospital, Harbin, China
| | - Shizheng Qiu
- Center for Bioinformatics, Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yang Hu
- Center for Bioinformatics, Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Tianyi Zang
- Center for Bioinformatics, Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang, China
| |
Collapse
|
11
|
Ali T, Klein AN, McDonald K, Johansson L, Mukherjee PG, Hallbeck M, Doh-Ura K, Schatzl HM, Gilch S. Cellulose ether treatment inhibits amyloid beta aggregation, neuroinflammation and cognitive deficits in transgenic mouse model of Alzheimer's disease. J Neuroinflammation 2023; 20:177. [PMID: 37507761 PMCID: PMC10375631 DOI: 10.1186/s12974-023-02858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is an incurable, progressive and devastating neurodegenerative disease. Pathogenesis of AD is associated with the aggregation and accumulation of amyloid beta (Aβ), a major neurotoxic mediator that triggers neuroinflammation and memory impairment. Recently, we found that cellulose ether compounds (CEs) have beneficial effects against prion diseases by inhibiting protein misfolding and replication of prions, which share their replication mechanism with Aβ. CEs are FDA-approved safe additives in foods and pharmaceuticals. Herein, for the first time we determined the therapeutic effects of the representative CE (TC-5RW) in AD using in vitro and in vivo models. Our in vitro studies showed that TC-5RW inhibits Aβ aggregation, as well as neurotoxicity and immunoreactivity in Aβ-exposed human and murine neuroblastoma cells. In in vivo studies, for the first time we observed that single and weekly TC-5RW administration, respectively, improved memory functions of transgenic 5XFAD mouse model of AD. We further demonstrate that TC-5RW treatment of 5XFAD mice significantly inhibited Aβ oligomer and plaque burden and its associated neuroinflammation via regulating astrogliosis, microgliosis and proinflammatory mediator glial maturation factor beta (GMFβ). Additionally, we determined that TC-5RW reduced lipopolysaccharide-induced activated gliosis and GMFβ in vitro. In conclusion, our results demonstrate that CEs have therapeutic effects against Aβ pathologies and cognitive impairments, and direct, potent anti-inflammatory activity to rescue neuroinflammation. Therefore, these FDA-approved compounds are effective candidates for developing therapeutics for AD and related neurodegenerative diseases associated with protein misfolding.
Collapse
Affiliation(s)
- Tahir Ali
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Antonia N Klein
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Keegan McDonald
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Lovisa Johansson
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58185, Linköping, Sweden
| | | | - Martin Hallbeck
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58185, Linköping, Sweden
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hermann M Schatzl
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Sabine Gilch
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
12
|
Mahaman YAR, Huang F, Salissou MTM, Yacouba MBM, Wang JZ, Liu R, Zhang B, Li HL, Zhu F, Wang X. Ferulic Acid Improves Synaptic Plasticity and Cognitive Impairments by Alleviating the PP2B/DARPP-32/PP1 Axis-Mediated STEP Increase and Aβ Burden in Alzheimer's Disease. Neurotherapeutics 2023; 20:1081-1108. [PMID: 37079191 PMCID: PMC10457275 DOI: 10.1007/s13311-023-01356-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 04/21/2023] Open
Abstract
The burden of Alzheimer's disease, the most prevalent neurodegenerative disease, is increasing exponentially due to the increase in the elderly population worldwide. Synaptic plasticity is the basis of learning and memory, but it is impaired in AD. Uncovering the disease's underlying molecular pathogenic mechanisms involving synaptic plasticity could lead to the identification of targets for better disease management. Using primary neurons treated with Aβ and APP/PS1 animal models, we evaluated the effect of the phenolic compound ferulic acid (FA) on synaptic dysregulations. Aβ led to synaptic plasticity and cognitive impairments by increasing STEP activity and decreasing the phosphorylation of the GluN2B subunit of NMDA receptors, as well as decreasing other synaptic proteins, including PSD-95 and synapsin1. Interestingly, FA attenuated the Aβ-upregulated intracellular calcium and thus resulted in a decrease in PP2B-induced activation of DARPP-32, inhibiting PP1. This cascade event maintained STEP in its inactive state, thereby preventing the loss of GluN2B phosphorylation. This was accompanied by an increase in PSD-95 and synapsin1, improved LTP, and a decreased Aβ load, together leading to improved behavioral and cognitive functions in APP/PS1 mice treated with FA. This study provides insight into the potential use of FA as a therapeutic strategy in AD.
Collapse
Affiliation(s)
- Yacoubou Abdoul Razak Mahaman
- Coinnovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
- Cognitive Impairment Ward of the Neurology Department, The Third Affiliated Hospital of Shenzhen University, 47 Youyi Rd., Shenzhen, Guangdong Province, 518001, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Maibouge Tanko Mahamane Salissou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- College of Health, Natural and Agriculture Sciences, Africa University, Mutare, Zimbabwe
| | | | - Jian-Zhi Wang
- Coinnovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Zhang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Lian Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of the Neurology Department, The Third Affiliated Hospital of Shenzhen University, 47 Youyi Rd., Shenzhen, Guangdong Province, 518001, China.
| | - Xiaochuan Wang
- Coinnovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China.
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China.
| |
Collapse
|
13
|
Huffels CFM, Middeldorp J, Hol EM. Aß Pathology and Neuron-Glia Interactions: A Synaptocentric View. Neurochem Res 2023; 48:1026-1046. [PMID: 35976488 PMCID: PMC10030451 DOI: 10.1007/s11064-022-03699-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 06/30/2022] [Accepted: 07/15/2022] [Indexed: 10/15/2022]
Abstract
Alzheimer's disease (AD) causes the majority of dementia cases worldwide. Early pathological hallmarks include the accumulation of amyloid-ß (Aß) and activation of both astrocytes and microglia. Neurons form the building blocks of the central nervous system, and astrocytes and microglia provide essential input for its healthy functioning. Their function integrates at the level of the synapse, which is therefore sometimes referred to as the "quad-partite synapse". Increasing evidence puts AD forward as a disease of the synapse, where pre- and postsynaptic processes, as well as astrocyte and microglia functioning progressively deteriorate. Here, we aim to review the current knowledge on how Aß accumulation functionally affects the individual components of the quad-partite synapse. We highlight a selection of processes that are essential to the healthy functioning of the neuronal synapse, including presynaptic neurotransmitter release and postsynaptic receptor functioning. We further discuss how Aß affects the astrocyte's capacity to recycle neurotransmitters, release gliotransmitters, and maintain ion homeostasis. We additionally review literature on how Aß changes the immunoprotective function of microglia during AD progression and conclude by summarizing our main findings and highlighting the challenges in current studies, as well as the need for further research.
Collapse
Affiliation(s)
- Christiaan F M Huffels
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Jinte Middeldorp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Department of Neurobiology & Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
14
|
Kurkinen M, Fułek M, Fułek K, Beszłej JA, Kurpas D, Leszek J. The Amyloid Cascade Hypothesis in Alzheimer’s Disease: Should We Change Our Thinking? Biomolecules 2023; 13:biom13030453. [PMID: 36979388 PMCID: PMC10046826 DOI: 10.3390/biom13030453] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 03/05/2023] Open
Abstract
Old age increases the risk of Alzheimer’s disease (AD), the most common neurodegenerative disease, a devastating disorder of the human mind and the leading cause of dementia. Worldwide, 50 million people have the disease, and it is estimated that there will be 150 million by 2050. Today, healthcare for AD patients consumes 1% of the global economy. According to the amyloid cascade hypothesis, AD begins in the brain by accumulating and aggregating Aβ peptides and forming β-amyloid fibrils (Aβ42). However, in clinical trials, reducing Aβ peptide production and amyloid formation in the brain did not slow cognitive decline or improve daily life in AD patients. Prevention studies in cognitively unimpaired people at high risk or genetically destined to develop AD also have not slowed cognitive decline. These observations argue against the amyloid hypothesis of AD etiology, its development, and disease mechanisms. Here, we look at other avenues in the research of AD, such as the presenilin hypothesis, synaptic glutamate signaling, and the role of astrocytes and the glutamate transporter EAAT2 in the development of AD.
Collapse
Affiliation(s)
| | - Michał Fułek
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Katarzyna Fułek
- Department and Clinic of Otolaryngology, Head and Neck Surgery, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Correspondence: (K.F.); (J.L.)
| | | | - Donata Kurpas
- Department of Family Medicine, Wroclaw Medical University, 51-141 Wroclaw, Poland
| | - Jerzy Leszek
- Department and Clinic of Psychiatry, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Correspondence: (K.F.); (J.L.)
| |
Collapse
|
15
|
Conjugates of Tacrine and Salicylic Acid Derivatives as New Promising Multitarget Agents for Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24032285. [PMID: 36768608 PMCID: PMC9916969 DOI: 10.3390/ijms24032285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
A series of previously synthesized conjugates of tacrine and salicylamide was extended by varying the structure of the salicylamide fragment and using salicylic aldehyde to synthesize salicylimine derivatives. The hybrids exhibited broad-spectrum biological activity. All new conjugates were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. The structure of the salicylamide moiety exerted little effect on anticholinesterase activity, but AChE inhibition increased with spacer elongation. The most active conjugates were salicylimine derivatives: IC50 values of the lead compound 10c were 0.0826 µM (AChE) and 0.0156 µM (BChE), with weak inhibition of the off-target carboxylesterase. The hybrids were mixed-type reversible inhibitors of both cholinesterases and displayed dual binding to the catalytic and peripheral anionic sites of AChE in molecular docking, which, along with experimental results on propidium iodide displacement, suggested their potential to block AChE-induced β-amyloid aggregation. All conjugates inhibited Aβ42 self-aggregation in the thioflavin test, and inhibition increased with spacer elongation. Salicylimine 10c and salicylamide 5c with (CH2)8 spacers were the lead compounds for inhibiting Aβ42 self-aggregation, which was corroborated by molecular docking to Aβ42. ABTS•+-scavenging activity was highest for salicylamides 5a-c, intermediate for salicylimines 10a-c, low for F-containing salicylamides 7, and non-existent for methoxybenzoylamides 6 and difluoromethoxybenzoylamides 8. In the FRAP antioxidant (AO) assay, the test compounds displayed little or no activity. Quantum chemical analysis and molecular dynamics (MD) simulations with QM/MM potentials explained the AO structure-activity relationships. All conjugates were effective chelators of Cu2+, Fe2+, and Zn2+, with molar compound/metal (Cu2+) ratios of 2:1 (5b) and ~1:1 (10b). Conjugates exerted comparable or lower cytotoxicity than tacrine on mouse hepatocytes and had favorable predicted intestinal absorption and blood-brain barrier permeability. The overall results indicate that the synthesized conjugates are promising new multifunctional agents for the potential treatment of AD.
Collapse
|
16
|
Mahaman YAR, Feng J, Huang F, Salissou MTM, Wang J, Liu R, Zhang B, Li H, Zhu F, Wang X. Moringa Oleifera Alleviates Aβ Burden and Improves Synaptic Plasticity and Cognitive Impairments in APP/PS1 Mice. Nutrients 2022; 14:nu14204284. [PMID: 36296969 PMCID: PMC9609596 DOI: 10.3390/nu14204284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease is a global public health problem and the most common form of dementia. Due to the failure of many single therapies targeting the two hallmarks, Aβ and Tau, and the multifactorial etiology of AD, there is now more and more interest in nutraceutical agents with multiple effects such as Moringa oleifera (MO) that have strong anti-oxidative, anti-inflammatory, anticholinesterase, and neuroprotective virtues. In this study, we treated APP/PS1 mice with a methanolic extract of MO for four months and evaluated its effect on AD-related pathology in these mice using a multitude of behavioral, biochemical, and histochemical tests. Our data revealed that MO improved behavioral deficits such as anxiety-like behavior and hyperactivity and cognitive, learning, and memory impairments. MO treatment abrogated the Aβ burden to wild-type control mice levels via decreasing BACE1 and AEP and upregulating IDE, NEP, and LRP1 protein levels. Moreover, MO improved synaptic plasticity by improving the decreased GluN2B phosphorylation, the synapse-related proteins PSD95 and synapsin1 levels, the quantity and quality of dendritic spines, and neurodegeneration in the treated mice. MO is a nutraceutical agent with promising therapeutic potential that can be used in the management of AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yacoubou Abdoul Razak Mahaman
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University, 47 Youyi Rd., Shenzhen 518001, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Feng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Maibouge Tanko Mahamane Salissou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- College of Health, Natural and Agriculture Sciences Africa University, Mutare P.O. Box 1320, Zimbabwe
| | - Jianzhi Wang
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Zhang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Honglian Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University, 47 Youyi Rd., Shenzhen 518001, China
- Correspondence: (F.Z.); (X.W.)
| | - Xiaochuan Wang
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
- Shenzhen Research Institute, Huazhong University of Science and Technology, Shenzhen 518000, China
- Correspondence: (F.Z.); (X.W.)
| |
Collapse
|
17
|
Ruffini N, Klingenberg S, Heese R, Schweiger S, Gerber S. The Big Picture of Neurodegeneration: A Meta Study to Extract the Essential Evidence on Neurodegenerative Diseases in a Network-Based Approach. Front Aging Neurosci 2022; 14:866886. [PMID: 35832065 PMCID: PMC9271745 DOI: 10.3389/fnagi.2022.866886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
The common features of all neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis (ALS), and Huntington's disease, are the accumulation of aggregated and misfolded proteins and the progressive loss of neurons, leading to cognitive decline and locomotive dysfunction. Still, they differ in their ultimate manifestation, the affected brain region, and the kind of proteinopathy. In the last decades, a vast number of processes have been described as associated with neurodegenerative diseases, making it increasingly harder to keep an overview of the big picture forming from all those data. In this meta-study, we analyzed genomic, transcriptomic, proteomic, and epigenomic data of the aforementioned diseases using the data of 234 studies in a network-based approach to study significant general coherences but also specific processes in individual diseases or omics levels. In the analysis part, we focus on only some of the emerging findings, but trust that the meta-study provided here will be a valuable resource for various other researchers focusing on specific processes or genes contributing to the development of neurodegeneration.
Collapse
Affiliation(s)
- Nicolas Ruffini
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Leibniz Institute for Resilience Research, Leibniz Association, Mainz, Germany
| | - Susanne Klingenberg
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Raoul Heese
- Fraunhofer Institute for Industrial Mathematics (ITWM), Kaiserslautern, Germany
| | - Susann Schweiger
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
18
|
Mouse models of Alzheimer's disease for preclinical research. Neurochem Int 2022; 158:105361. [PMID: 35618239 DOI: 10.1016/j.neuint.2022.105361] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022]
Abstract
Most mouse models for preclinical research into Alzheimer's disease (AD) rely on the overexpression paradigm, in which familial AD (FAD)-related genes linked to amyloid precursor protein (APP) and presenilin-1 (PSEN1) are overexpressed. Such mice have been used for over two decades as the first-generation transgenic lines for AD, with animals exhibiting AD pathologies along with additional phenotypes, leading to the serious artifacts. To overcome the intrinsic drawbacks of the overexpression paradigm, we previously developed second-generation mouse models that incorporate humanized amyloid β (Aβ) sequences and several FAD-related mutations on the mouse endogenous App gene. Such models show AD pathologies in an age-dependent manner. In addition, our group recently generated additional lines of mice harboring multiple mutations without gene overexpression; these third-generation models exhibit an accelerated AD pathology compared to earlier generations. In this review, we describe the development and future prospects of AD mouse models in terms of their scientific properties and therapeutic perspectives in the context of the preclinical study of AD.
Collapse
|
19
|
Kimura S, Kamishina H, Hirata Y, Furuta K, Furukawa Y, Yamato O, Maeda S, Kamatari YO. Novel oxindole compounds inhibit the aggregation of amyloidogenic proteins associated with neurodegenerative diseases. Biochim Biophys Acta Gen Subj 2022; 1866:130114. [PMID: 35217127 DOI: 10.1016/j.bbagen.2022.130114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022]
Abstract
Amyloidogenic proteins form aggregates in cells, thereby leading to neurodegenerative disorders, including Alzheimer's and prion's disease, amyotrophic lateral sclerosis (ALS) in humans, and degenerative myelopathy (DM) and cognitive dysfunction in dogs. Hence, many small-molecule compounds have been screened to examine their inhibitory effects on amyloidogenic protein aggregation. However, no effective drug suitable for transition to clinical use has been found. Here we examined several novel oxindole compounds (GIF compounds) for their inhibitory effects on aggregate formation of the canine mutant superoxide dismutase 1 (cSOD1 E40K), a causative mutation resulting in DM, using Thioflavin-T fluorescence. Most GIF compounds inhibited the aggregation of cSOD1 E40K. Among the compounds, GIF-0854-r and GIF-0890-r were most effective. Their inhibitory effects were also observed in cSOD1 E40K-transfected cells. Additionally, GIF-0890-r effectively inhibited the aggregate formation of human SOD1 G93A, a causative mutation of ALS. GIF-0827-r and GIF-0856-r also effectively inhibited aggregate formation of human prion protein (hPrP). Subsequently, the correlation between their inhibitory effects on cSOD1 and hPrP aggregation was shown, indicating GIF compounds inhibited the aggregate formation of multiple amyloidogenic proteins. Conclusively, the novel oxindole compounds (GIF-0827-r, GIF-0854-r, GIF-0856-r, and GIF-0890-r) are proposed as useful therapeutic candidates for amyloidogenic neurodegenerative disorders.
Collapse
Affiliation(s)
- Shintaro Kimura
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Hiroaki Kamishina
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Yoko Hirata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Kyoji Furuta
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Yoshiaki Furukawa
- Department of Chemistry, Laboratory for Mechanistic Chemistry of Biomolecules, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa 223-8522, Japan.
| | - Osamu Yamato
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| | - Sadatoshi Maeda
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Yuji O Kamatari
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Life Science Research Center, Gifu University,1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
20
|
Jiang J, Zhan X, Qu H, Liang T, Li H, Chen L, Huang S, Sun X, Jiang W, Chen J, Chen T, Yao Y, Wu S, Zhu J, Liu C. Upregulated of ANXA3, SORL1, and Neutrophils May Be Key Factors in the Progressionof Ankylosing Spondylitis. Front Immunol 2022; 13:861459. [PMID: 35464477 PMCID: PMC9019158 DOI: 10.3389/fimmu.2022.861459] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction The specific pathogenesis of ankylosing spondylitis (AS) remains unclear, and our study aimed to investigate the possible pathogenesis of AS. Materials and Methods Two datasets were downloaded from the GEO database to perform differentially expressed gene analysis, GO enrichment analysis, KEGG pathway analysis, DO enrichment analysis, GSEA analysis of differentially expressed genes, and construction of diagnostic genes using SVM and WGCNA along with Hypoxia-related genes. Also, drug sensitivity analysis was performed on diagnostic genes. To identify the differentially expressed immune genes in the AS and control groups, we analyzed the composition of immune cells between them. Then, we examined differentially expressed genes in three AS interspinous ligament specimens and three Degenerative lumbar spine specimens using high-throughput sequencing while the immune cells were examined using the neutrophil count data from routine blood tests of 1770 HLA-B27-positive samples and 7939 HLA-B27-negative samples. To assess the relationship between ANXA3 and SORL1 and disease activity, we took the neutrophil counts of the first 50 patients with above-average BASDAI scores and the last 50 patients with below-average BASDAI scores for statistical analysis. We used immunohistochemistry to verify the expression of ANXA3 and SORL1 in AS and in controls. Results ANXA3 and SORL1 were identified as new diagnostic genes for AS. These two genes showed a significant differential expression between AS and controls, along with showing a significant positive correlation with the neutrophil count. The results of high-throughput sequencing verified that these two gene deletions were indeed differentially expressed in AS versus controls. Data from a total of 9707 routine blood tests showed that the neutrophil count was significantly higher in AS patients than in controls (p < 0.001). Patients with AS with a high BASDAI score had a much higher neutrophil count than those with a low score, and the difference was statistically significant (p < 0.001). The results of immunohistochemistry showed that the expression of ANXA3 and SORL1 in AS was significantly higher than that in the control group. Conclusion Upregulated of ANXA3, SORL1, and neutrophils may be a key factor in the progression of Ankylosing spondylitis.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Spinal Orthopedic Surgery, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinli Zhan
- Department of Spinal Orthopedic Surgery, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Haishun Qu
- Department of Traditional Chinese Medicine, The People's Hospital of Guangxi Zhuang Autonmous Region, Nanning, China
| | - Tuo Liang
- Department of Spinal Orthopedic Surgery, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hao Li
- Department of Spinal Orthopedic Surgery, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liyi Chen
- Department of Spinal Orthopedic Surgery, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shengsheng Huang
- Department of Spinal Orthopedic Surgery, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xuhua Sun
- Department of Spinal Orthopedic Surgery, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenyong Jiang
- Department of Spinal Orthopedic Surgery, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiarui Chen
- Department of Spinal Orthopedic Surgery, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tianyou Chen
- Department of Spinal Orthopedic Surgery, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuanlin Yao
- Department of Spinal Orthopedic Surgery, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shaofeng Wu
- Department of Spinal Orthopedic Surgery, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jichong Zhu
- Department of Spinal Orthopedic Surgery, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chong Liu
- Department of Spinal Orthopedic Surgery, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
21
|
Santoro A, Grimaldi M, Buonocore M, Stillitano I, Gloria A, Santin M, Bobba F, Sublimi Saponetti M, Ciaglia E, D'Ursi AM. New Aβ(1-42) ligands from anti-amyloid antibodies: Design, synthesis, and structural interaction. Eur J Med Chem 2022; 237:114400. [PMID: 35489223 DOI: 10.1016/j.ejmech.2022.114400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/17/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD), is the most common neurodegenerative disorder of the aging population resulting in progressive cognitive and functional decline. Accumulation of amyloid plaques around neuronal cells is considered a critical pathogenetic event and, in most cases, a hallmark of the pathology. In the attempt to identify anti-AD drug candidates, hundreds of molecules targeting Aβ peptides have been screened. Peptide molecules have been widely explored, appreciating chemical stability, biocompatibility, and low production cost. More recently, many anti-Aβ(1-42) monoclonal antibodies have been developed, given the excellent potential of immunotherapy for treating or preventing AD. Antibodies are versatile ligands that bind a large variety of molecules with high affinity and specificity; however, their extensive therapeutic application is complex and requires huge economic investments. Novel approaches to identify alternative antibody formats are considered with great interest. In this context, taking advantage of the favorable peptide properties and the availability of Aβ-antibodies structural data, we followed an innovative research approach to identify short peptide sequences on the model of the binding sites of Aβ(1-42)/antibodies. WAibH and SYSTPGK were designed as mimics of solanezumab and aducanumab, respectively. Circular dichroism and nuclear magnetic resonance analysis reveal that the antibody-derived peptides interact with Aβ(1-42) in the soluble monomeric form. Moreover, AFM microscopy imaging shows that WAibH and SYSTPGK are capable of controlling the Aβ(1-42) aggregation. The strategy to identify WAibH and SYSTPGK is innovative and can be widely applied for new anti-Aβ antibody mimicking peptides.
Collapse
Affiliation(s)
- Angelo Santoro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132 - 84084, Fisciano, Salerno, Italy
| | - Manuela Grimaldi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132 - 84084, Fisciano, Salerno, Italy
| | - Michela Buonocore
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132 - 84084, Fisciano, Salerno, Italy
| | - Ilaria Stillitano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132 - 84084, Fisciano, Salerno, Italy
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54 - Pad. 20, Mostra d'Oltremare, 80125, Naples, Italy
| | - Matteo Santin
- Centre for Regenerative Medicine and Devices, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, UK
| | - Fabrizio Bobba
- Department of Physics, University of Salerno, Via Giovanni Paolo II, 132 - 84084, Fisciano, Salerno, Italy
| | - Matilde Sublimi Saponetti
- Department of Physics, University of Salerno, Via Giovanni Paolo II, 132 - 84084, Fisciano, Salerno, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Via Salvatore Allende, 84081, Baronissi, Salerno, Italy
| | - Anna Maria D'Ursi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132 - 84084, Fisciano, Salerno, Italy.
| |
Collapse
|
22
|
Grishchenko MV, Makhaeva GF, Burgart YV, Rudakova EV, Boltneva NP, Kovaleva NV, Serebryakova OG, Lushchekina SV, Astakhova TY, Zhilina EF, Shchegolkov EV, Richardson RJ, Saloutin VI. Conjugates of Tacrine with Salicylamide as Promising Multitarget Agents for Alzheimer's Disease. ChemMedChem 2022; 17:e202200080. [PMID: 35322571 PMCID: PMC9314152 DOI: 10.1002/cmdc.202200080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/04/2022] [Indexed: 12/29/2022]
Abstract
New conjugates of tacrine and salicylamide with alkylene spacers were synthesized and evaluated as potential multifunctional agents for Alzheimer's disease (AD). The compounds exhibited high acetylcholinesterase (AChE, IC50 to 0.224 μM) and butyrylcholinesterase (BChE, IC50 to 0.0104 μM) inhibitory activities. They were also rather poor inhibitors of carboxylesterase, suggesting a low tendency to exert potential unwanted drug-drug interactions in clinical use. The conjugates were mixed-type reversible inhibitors of both cholinesterases and demonstrated dual binding to the catalytic and peripheral anionic sites of AChE in molecular docking that, along with experimental results on propidium iodide displacement, suggest their potential to block AChE-induced β-amyloid aggregation. The new conjugates exhibited high ABTS.+ -scavenging activity. N-(6-(1,2,3,4-Tetrahydroacridin-9-ylamino)hexyl)salicylamide is a lead compound that also demonstrates metal chelating ability toward Cu2+ , Fe2+ and Zn2+ . Thus, the new conjugates have displayed the potential to be multifunctional anti-AD agents for further development.
Collapse
Affiliation(s)
- Maria V Grishchenko
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, 620990, Ekaterinburg, Russia
| | - Galina F Makhaeva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Russia
| | - Yanina V Burgart
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, 620990, Ekaterinburg, Russia
| | - Elena V Rudakova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Russia
| | - Natalia P Boltneva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Russia
| | - Nadezhda V Kovaleva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Russia
| | - Olga G Serebryakova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Russia
| | - Sofya V Lushchekina
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Tatiana Y Astakhova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Ekaterina F Zhilina
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, 620990, Ekaterinburg, Russia
| | - Evgeny V Shchegolkov
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, 620990, Ekaterinburg, Russia
| | - Rudy J Richardson
- Departments of Environmental Health Sciences and Neurology, University of Michigan, 48109, Ann Arbor, MI, USA.,Center for Computational Medicine and Bioinformatics, University of Michigan, 48109, Ann Arbor, MI, USA
| | - Victor I Saloutin
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, 620990, Ekaterinburg, Russia
| |
Collapse
|
23
|
Watamura N, Kakiya N, Nilsson P, Tsubuki S, Kamano N, Takahashi M, Hashimoto S, Sasaguri H, Saito T, Saido TC. Somatostatin-evoked Aβ catabolism in the brain: Mechanistic involvement of α-endosulfine-K ATP channel pathway. Mol Psychiatry 2022; 27:1816-1828. [PMID: 34737456 PMCID: PMC9095489 DOI: 10.1038/s41380-021-01368-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is characterized by the deposition of amyloid β peptide (Aβ) in the brain. The neuropeptide somatostatin (SST) regulates Aβ catabolism by enhancing neprilysin (NEP)-catalyzed proteolytic degradation. However, the mechanism by which SST regulates NEP activity remains unclear. Here, we identified α-endosulfine (ENSA), an endogenous ligand of the ATP-sensitive potassium (KATP) channel, as a negative regulator of NEP downstream of SST signaling. The expression of ENSA is significantly increased in AD mouse models and in patients with AD. In addition, NEP directly contributes to the degradation of ENSA, suggesting a substrate-dependent feedback loop regulating NEP activity. We also discovered the specific KATP channel subtype that modulates NEP activity, resulting in the Aβ levels altered in the brain. Pharmacological intervention targeting the particular KATP channel attenuated Aβ deposition, with impaired memory function rescued via the NEP activation in our AD mouse model. Our findings provide a mechanism explaining the molecular link between KATP channel and NEP activation, and give new insights into alternative strategies to prevent AD.
Collapse
Affiliation(s)
- Naoto Watamura
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Naomasa Kakiya
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Per Nilsson
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Karolinska Institutet, Center for Alzheimer Research, Dept. of Neurobiology, Care Science and Society, Division for Neurogeriatrics, Visionsgatan 4, Solna, 171-64, Sweden
| | - Satoshi Tsubuki
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Naoko Kamano
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mika Takahashi
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
24
|
Zhang Y, Song S, Li H, Wang X, Song L, Xue J. Polysaccharide from Ganoderma lucidum alleviates cognitive impairment in a mouse model of chronic cerebral hypoperfusion by regulating CD4 +CD25 +Foxp3 + regulatory T cells. Food Funct 2022; 13:1941-1952. [PMID: 35088782 DOI: 10.1039/d1fo03698j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ganoderma lucidum (G. lucidum) is a kind of edible and medicinal mushroom. G. lucidum polysaccharide-1 (GLP-1) is one of the polysaccharides purified from crude GLP. Chronic cerebral hypoperfusion (CCH) as the common pathological basis of various forms of dementia is an important cause of cognitive impairment. In this study, a step-down test was used to evaluate the cognitive ability of CCH mice. Flow cytometry was used to detect the proportion of CD4+CD25+Foxp3+ regulatory T (Foxp3+Treg) cells. ELISA analysis and western blot analysis were used to detect the transforming growth factor-β1 (TGF-β1) and Interleukin-10 (IL-10) levels that Foxp3+Treg cells secreted. Metabolomic analysis based on gas chromatography-mass spectrometry (GC-MS) was used to evaluate the effect of GLP-1 on dysfunctional metabolism caused by inflammation. Results indicate that GLP-1 exhibited an alleviating cognitive impairment effect on CCH mice. The mechanism was related to GLP-1 by increasing Foxp3+Treg cell levels to increase levels of IL-10 and TGF-β1 and regulate abnormal energy metabolism. These findings could provide preliminary results to exploit G. lucidum as a health care product or functional food for the adjuvant therapy of cognitive impairment of CCH.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, PR China.
| | - Shuang Song
- Graduate School, Jilin Institute of Chemical Technology, Jilin 132022, PR China
| | - Haitao Li
- Department of Pathology, Traditional Chinese Medicine Academy of Sciences of Jilin Province, Changchun 130021, PR China
| | - Xinyan Wang
- Graduate School, Jilin Institute of Chemical Technology, Jilin 132022, PR China
| | - Lianlian Song
- Department of Pathology, Traditional Chinese Medicine Academy of Sciences of Jilin Province, Changchun 130021, PR China
| | - Jianfei Xue
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, PR China.
| |
Collapse
|
25
|
Liu Y, Chen X, Che Y, Li H, Zhang Z, Peng W, Yang J. LncRNAs as the Regulators of Brain Function and Therapeutic Targets for Alzheimer’s Disease. Aging Dis 2022; 13:837-851. [PMID: 35656102 PMCID: PMC9116922 DOI: 10.14336/ad.2021.1119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia and a serious threat to the health and safety of the elderly population. It has become an emerging public health problem and a major economic and social burden. However, there is currently no effective treatment for AD. Although the mechanism of AD pathogenesis has been investigated substantially, the full range of molecular factors that contribute to its development remain largely unclear. In recent years, accumulating evidence has revealed that long non-coding RNAs (lncRNAs), a type of non-coding RNA longer than 200 nucleotides, play important roles in multiple biological processes involved in AD pathogenesis. With the further exploration of genomics, the role of lncRNA in the pathogenesis of AD has been phenotypically or mechanistically studied. Herein, we systematically review the current knowledge about lncRNAs implicated in AD and elaborate on their main regulatory pathways, which may contribute to the discovery of novel therapeutic targets and drugs for AD.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Xin Chen
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yutong Che
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Inter-disciplinary Research Center of Language Intelligence and Cultural Heritages, Hunan University, Changsha, Hunan, China.
- Correspondence should be addressed to: Dr. Weijun Peng (E-mail: ) and Ms. Jingjing Yang (), Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jingjing Yang
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China.
- Xiangya Nursing School, Central South University, Changsha, China.
- Correspondence should be addressed to: Dr. Weijun Peng (E-mail: ) and Ms. Jingjing Yang (), Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
26
|
Wei C, Lu X, Zou Q, Gong S, Chen Y, Lyu J, Jia J. Generation and characterization of a human induced pluripotent stem cell line (XWHNi001-A) derived from an Alzheimer's disease patient with mutation in the APP gene. Stem Cell Res 2022; 60:102690. [DOI: 10.1016/j.scr.2022.102690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 11/28/2022] Open
|
27
|
Zeng A, Rong H, Pan D, Jia L, Zhang Y, Zhao F, Peng S. Discovery of Genetic Biomarkers for Alzheimer's Disease Using Adaptive Convolutional Neural Networks Ensemble and Genome-Wide Association Studies. Interdiscip Sci 2021; 13:787-800. [PMID: 34410590 DOI: 10.1007/s12539-021-00470-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/01/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To identify candidate neuroimaging and genetic biomarkers for Alzheimer's disease (AD) and other brain disorders, especially for little-investigated brain diseases, we advocate a data-driven approach which incorporates an adaptive classifier ensemble model acquired by integrating Convolutional Neural Network (CNN) and Ensemble Learning (EL) with Genetic Algorithm (GA), i.e., the CNN-EL-GA method, into Genome-Wide Association Studies (GWAS). METHODS Above all, a large number of CNN models as base classifiers were trained using coronal, sagittal, or transverse magnetic resonance imaging slices, respectively, and the CNN models with strong discriminability were then selected to build a single classifier ensemble with the GA for classifying AD, with the help of the CNN-EL-GA method. While the acquired classifier ensemble exhibited the highest generalization capability, the points of intersection were determined with the most discriminative coronal, sagittal, and transverse slices. Finally, we conducted GWAS on the genotype data and the phenotypes, i.e., the gray matter volumes of the top ten most discriminative brain regions, which contained the ten most points of intersection. RESULTS Six genes of PCDH11X/Y, TPTE2, LOC107985902, MUC16 and LINC01621 as well as Single-Nucleotide Polymorphisms, e.g., rs36088804, rs34640393, rs2451078, rs10496214, rs17016520, rs2591597, rs9352767 and rs5941380, were identified. CONCLUSION This approach overcomes the limitations associated with the impact of subjective factors and dependence on prior knowledge while adaptively achieving more robust and effective candidate biomarkers in a data-driven way. SIGNIFICANCE The approach is promising to facilitate discovering effective candidate genetic biomarkers for brain disorders, as well as to help improve the effectiveness of identified candidate neuroimaging biomarkers for brain diseases.
Collapse
Affiliation(s)
- An Zeng
- Faculty of Computer, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Huabin Rong
- Faculty of Computer, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Dan Pan
- School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou, 510665, People's Republic of China.
| | - Longfei Jia
- Faculty of Computer, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Yiqun Zhang
- Faculty of Computer, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Fengyi Zhao
- Faculty of Computer, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, School of Computer Science, National University of Defense Technology, Peng Cheng Lab, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
28
|
Xue YY, Chen YH, Lin RR, Huang HF, Wu ZY, Tao QQ. Alzheimer’s disease susceptibility locus in CD2AP is associated with increased cerebrospinal fluid tau levels in mild cognitive impairment. Neurosci Lett 2021; 771:136419. [DOI: 10.1016/j.neulet.2021.136419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/01/2022]
|
29
|
Jabeen K, Rehman K, Akash MSH. Genetic mutations of APOEε4 carriers in cardiovascular patients lead to the development of insulin resistance and risk of Alzheimer's disease. J Biochem Mol Toxicol 2021; 36:e22953. [PMID: 34757642 DOI: 10.1002/jbt.22953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes mellitus and Alzheimer's disease (AD), both are chronic and progressive diseases. Many cardiovascular and genetic risk factors are considered responsible for the development of AD and diabetes mellitus (DM). Genetic risk factor such as apolipoprotein E (APOE) plays a critical role in the progression of AD. Specifically, APOEε4 is genetically the strongest isoform associated with neuronal insulin deficiency, altered lipid homeostasis, and metabolism, decreased glucose uptake, impaired gray matter volume, and cerebrovascular functions. In this article, we have summarized the mechanisms of cardiovascular disturbances associated with AD and DM, impact of amyloid-β aggregation, and neurofibrillary tangles formation in AD. Moreover, cardiovascular risk factors leading to insulin resistance (IR) and amyloid-β aggregation are highlighted along with the effects of APOE risk alleles on cerebral, lipid, and cholesterol metabolism leading to CVD-mediated IR. Correspondingly, the contribution of IR, genetic and cardiovascular risk factors in amyloid-β aggregation, which may lead to the late onset of AD and DM, has been also discussed. In short, IR is related to significantly lower cerebral glucose metabolism, which sequentially forecasts poorer memory performance. Hence, there will be more chances for neural glucose intolerance and impairment of cognitive function in cardiac patients, particularly APOEε4 carriers having IR. Hence, this review provides a better understanding of the corresponding crosstalk among different pathways. This will help to investigate the rational application of preventive measures against IR and cognitive dysfunction, specifically in APOEε4 carriers' cardio-metabolic patients.
Collapse
Affiliation(s)
- Komal Jabeen
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.,Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
30
|
The Emerging Roles of Autophagy in Human Diseases. Biomedicines 2021; 9:biomedicines9111651. [PMID: 34829881 PMCID: PMC8615641 DOI: 10.3390/biomedicines9111651] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy, a process of cellular self-digestion, delivers intracellular components including superfluous and dysfunctional proteins and organelles to the lysosome for degradation and recycling and is important to maintain cellular homeostasis. In recent decades, autophagy has been found to help fight against a variety of human diseases, but, at the same time, autophagy can also promote the procession of certain pathologies, which makes the connection between autophagy and diseases complex but interesting. In this review, we summarize the advances in understanding the roles of autophagy in human diseases and the therapeutic methods targeting autophagy and discuss some of the remaining questions in this field, focusing on cancer, neurodegenerative diseases, infectious diseases and metabolic disorders.
Collapse
|
31
|
Wu Y, Wu M, Ming S, Zhan X, Hu S, Li X, Yin H, Cao C, Liu J, Li J, Wu Z, Zhou J, Liu L, Gong S, He D, Huang X. TREM-2 promotes Th1 responses by interacting with the CD3ζ-ZAP70 complex following Mycobacterium tuberculosis infection. J Clin Invest 2021; 131:137407. [PMID: 34623322 DOI: 10.1172/jci137407] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM-2) is a modulator of pattern recognition receptors on innate immune cells that regulates the inflammatory response. However, the role of TREM-2 in in vivo models of infection and inflammation remains controversial. Here, we demonstrated that TREM-2 expression on CD4+ T cells was induced by Mycobacterium tuberculosis infection in both humans and mice and positively associated with T cell activation and an effector memory phenotype. Activation of TREM-2 in CD4+ T cells was dependent on interaction with the putative TREM-2 ligand expressed on DCs. Unlike the observation in myeloid cells that TREM-2 signals through DAP12, in CD4+ T cells, TREM-2 interacted with the CD3ζ-ZAP70 complex as well as with the IFN-γ receptor, leading to STAT1/-4 activation and T-bet transcription. In addition, an infection model using reconstituted Rag2-/- mice (with TREM-2-KO vs. WT cells or TREM-2+ vs. TREM-2-CD4+ T cells) or CD4+ T cell-specific TREM-2 conditional KO mice demonstrated that TREM-2 promoted a Th1-mediated host defense against M. tuberculosis infection. Taken together, these findings reveal a critical role of TREM-2 in evoking proinflammatory Th1 responses that may provide potential therapeutic targets for infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yongjian Wu
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong Province, China.,Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Minhao Wu
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Siqi Ming
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of the Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Xiaoxia Zhan
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Shengfeng Hu
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Xingyu Li
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Huan Yin
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Can Cao
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jiao Liu
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jinai Li
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Zhilong Wu
- The Fourth People's Hospital of Foshan, Foshan, China
| | - Jie Zhou
- The Fourth People's Hospital of Foshan, Foshan, China
| | - Lei Liu
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of the Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Duanman He
- Shantou No. 3 People's Hospital, Shantou, Guangdong Province, China
| | - Xi Huang
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong Province, China.,Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province, China.,National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of the Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
32
|
From Menopause to Neurodegeneration-Molecular Basis and Potential Therapy. Int J Mol Sci 2021; 22:ijms22168654. [PMID: 34445359 PMCID: PMC8395405 DOI: 10.3390/ijms22168654] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
The impacts of menopause on neurodegenerative diseases, especially the changes in steroid hormones, have been well described in cell models, animal models, and humans. However, the therapeutic effects of hormone replacement therapy on postmenopausal women with neurodegenerative diseases remain controversial. The steroid hormones, steroid hormone receptors, and downstream signal pathways in the brain change with aging and contribute to disease progression. Estrogen and progesterone are two steroid hormones which decline in circulation and the brain during menopause. Insulin-like growth factor 1 (IGF-1), which plays an import role in neuroprotection, is rapidly decreased in serum after menopause. Here, we summarize the actions of estrogen, progesterone, and IGF-1 and their signaling pathways in the brain. Since the incidence of Alzheimer’s disease (AD) is higher in women than in men, the associations of steroid hormone changes and AD are emphasized. The signaling pathways and cellular mechanisms for how steroid hormones and IGF-1 provide neuroprotection are also addressed. Finally, the molecular mechanisms of potential estrogen modulation on N-methyl-d-aspartic acid receptors (NMDARs) are also addressed. We provide the viewpoint of why hormone therapy has inconclusive results based on signaling pathways considering their complex response to aging and hormone treatments. Nonetheless, while diagnosable AD may not be treatable by hormone therapy, its preceding stage of mild cognitive impairment may very well be treatable by hormone therapy.
Collapse
|
33
|
Exploring the Early Stages of the Amyloid Aβ(1-42) Peptide Aggregation Process: An NMR Study. Pharmaceuticals (Basel) 2021; 14:ph14080732. [PMID: 34451828 PMCID: PMC8400958 DOI: 10.3390/ph14080732] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative pathology characterized by the presence of neurofibrillary tangles and amyloid plaques, the latter mainly composed of Aβ(1–40) and Aβ(1–42) peptides. The control of the Aβ aggregation process as a therapeutic strategy for AD has prompted the interest to investigate the conformation of the Aβ peptides, taking advantage of computational and experimental techniques. Mixtures composed of systematically different proportions of HFIP and water have been used to monitor, by NMR, the conformational transition of the Aβ(1–42) from soluble α-helical structure to β-sheet aggregates. In the previous studies, 50/50 HFIP/water proportion emerged as the solution condition where the first evident Aβ(1–42) conformational changes occur. In the hypothesis that this solvent reproduces the best condition to catch transitional helical-β-sheet Aβ(1–42) conformations, in this study, we report an extensive NMR conformational analysis of Aβ(1–42) in 50/50 HFIP/water v/v. Aβ(1–42) structure was solved by us, giving evidence that the evolution of Aβ(1–42) peptide from helical to the β-sheet may follow unexpected routes. Molecular dynamics simulations confirm that the structural model we calculated represents a starting condition for amyloid fibrils formation.
Collapse
|
34
|
Teerlink CC, Miller JB, Vance EL, Staley LA, Stevens J, Tavana JP, Cloward ME, Page ML, Dayton L, Cannon-Albright LA, Kauwe JSK. Analysis of high-risk pedigrees identifies 11 candidate variants for Alzheimer's disease. Alzheimers Dement 2021; 18:307-317. [PMID: 34151536 PMCID: PMC9291865 DOI: 10.1002/alz.12397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/15/2021] [Accepted: 05/11/2021] [Indexed: 11/08/2022]
Abstract
Introduction Analysis of sequence data in high‐risk pedigrees is a powerful approach to detect rare predisposition variants. Methods Rare, shared candidate predisposition variants were identified from exome sequencing 19 Alzheimer's disease (AD)‐affected cousin pairs selected from high‐risk pedigrees. Variants were further prioritized by risk association in various external datasets. Candidate variants emerging from these analyses were tested for co‐segregation to additional affected relatives of the original sequenced pedigree members. Results AD‐affected high‐risk cousin pairs contained 564 shared rare variants. Eleven variants spanning 10 genes were prioritized in external datasets: rs201665195 (ABCA7), and rs28933981 (TTR) were previously implicated in AD pathology; rs141402160 (NOTCH3) and rs140914494 (NOTCH3) were previously reported; rs200290640 (PIDD1) and rs199752248 (PIDD1) were present in more than one cousin pair; rs61729902 (SNAP91), rs140129800 (COX6A2, AC026471), and rs191804178 (MUC16) were not present in a longevity cohort; and rs148294193 (PELI3) and rs147599881 (FCHO1) approached significance from analysis of AD‐related phenotypes. Three variants were validated via evidence of co‐segregation to additional relatives (PELI3, ABCA7, and SNAP91). Discussion These analyses support ABCA7 and TTR as AD risk genes, expand on previously reported NOTCH3 variant identification, and prioritize seven additional candidate variants.
Collapse
Affiliation(s)
- Craig C Teerlink
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Justin B Miller
- Department of Biomedical Informatics, University of Kentucky Sanders-Brown Center on Aging, Lexington, Kentucky, USA
| | | | - Lyndsay A Staley
- Department of Biology, Brigham Young University, Provo, Utah, USA
| | - Jeffrey Stevens
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Justina P Tavana
- Department of Biology, Brigham Young University, Provo, Utah, USA
| | | | - Madeline L Page
- Department of Biology, Brigham Young University, Provo, Utah, USA
| | - Louisa Dayton
- Department of Biology, Brigham Young University, Provo, Utah, USA
| | | | - Lisa A Cannon-Albright
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA.,Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - John S K Kauwe
- Department of Biology, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
35
|
Rani A, Singh A, Kaur J, Singh G, Bhatti R, Gumede N, Kisten P, Singh P, Sumanjit, Kumar V. 1H-1,2,3-triazole grafted tacrine-chalcone conjugates as potential cholinesterase inhibitors with the evaluation of their behavioral tests and oxidative stress in mice brain cells. Bioorg Chem 2021; 114:105053. [PMID: 34120027 DOI: 10.1016/j.bioorg.2021.105053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 01/06/2023]
Abstract
The present paper explicates the synthesis of 1H-1,2,3-triazole tethered tacrine-chalcone conjugates and evaluation of their AChE and BuChE inhibitory activity. In-vitroAChE inhibition assay revealed three compounds, 9h, 9i, and 11f, being more potent than the standard drug tacrine and further evaluated against butyrylcholinesterase. The present study was extended to investigate the anti-amnestic effect of promising compoundson scopolamine-induced behavioral and neurochemical changes in mice. Inclined plane model and Elevated plus-maze model were performed to assess general limb motor activity and anxiety-like behavior, respectively, in mice pre-treated with scopolamine. Oxidative stress parameters reduced glutathione contents (GSH) and lipid peroxidation products (TBARS) in the brain homogenates as estimated using ex-vivo studies. Furthermore, molecular docking studies were performed for the potent compounds to decipher the mechanism of observed activities.
Collapse
Affiliation(s)
- Anu Rani
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Amandeep Singh
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Jashanpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Gurjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Rajbir Bhatti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Njabulo Gumede
- Department of Chemistry, Mangosuthu University of Technology, P.O. Box 12363, Jacobs 4026, South Africa
| | - Prishani Kisten
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Sumanjit
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
36
|
Reyes-Pablo AE, Campa-Córdoba BB, Luna-Viramontes NI, Ontiveros-Torres MÁ, Villanueva-Fierro I, Bravo-Muñoz M, Sáenz-Ibarra B, Barbosa O, Guadarrama-Ortíz P, Garcés-Ramírez L, de la Cruz F, Harrington CR, Martínez-Robles S, González-Ballesteros E, Perry G, Pacheco-Herrero M, Luna-Muñoz J. National Dementia BioBank: A Strategy for the Diagnosis and Study of Neurodegenerative Diseases in México. J Alzheimers Dis 2021; 76:853-862. [PMID: 32568191 DOI: 10.3233/jad-191015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We recently developed the National Dementia Biobank in México (BioBanco Nacional de Demencias, BND) as a unit for diagnosis, research, and tissue transfer for research purposes. BND is associated with the Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico (UNAM), Mexico. The donation of fluids, brain, and other organs of deceased donors is crucial for understanding the underlying mechanisms of neurodegenerative diseases and for the development of successful treatment. Our laboratory research focuses on 1) analysis of the molecular processing of the proteins involved in those neurodegenerative diseases termed tauopathies and 2) the search for biomarkers for the non-invasive and early diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Aldelmo Emmanuel Reyes-Pablo
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán campo 1, UNAM Estado de México, México.,Escuela Nacional de Ciencias Biológicas, Depto. Fisiología, Instituto Politécnico Nacional, CDMX, México
| | - B Berenice Campa-Córdoba
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán campo 1, UNAM Estado de México, México.,Escuela Nacional de Ciencias Biológicas, Depto. Fisiología, Instituto Politécnico Nacional, CDMX, México
| | - Nabil Itzi Luna-Viramontes
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán campo 1, UNAM Estado de México, México.,Escuela Nacional de Ciencias Biológicas, Depto. Fisiología, Instituto Politécnico Nacional, CDMX, México
| | | | | | - Marely Bravo-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán campo 1, UNAM Estado de México, México
| | - Bárbara Sáenz-Ibarra
- Depto. de Patología, Facultad de medicina de la Universidad Autónoma de Nuevo León, Nuevo León, México
| | - Oralia Barbosa
- Jefa del Servicio de Anatomía Patológicay Citopatología del Hospital Universitario "Dr. José E. González de la UANL, Nuevo León, México
| | | | - Linda Garcés-Ramírez
- Escuela Nacional de Ciencias Biológicas, Depto. Fisiología, Instituto Politécnico Nacional, CDMX, México
| | - Fidel de la Cruz
- Escuela Nacional de Ciencias Biológicas, Depto. Fisiología, Instituto Politécnico Nacional, CDMX, México
| | - Charles R Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Sandra Martínez-Robles
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán campo 1, UNAM Estado de México, México
| | - Erik González-Ballesteros
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán campo 1, UNAM Estado de México, México
| | - George Perry
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Mar Pacheco-Herrero
- School of Medicine, Faculty of Health Sciences, Pontificia Universidad Catolica Madre y Maestra, Dominican Republic
| | - José Luna-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán campo 1, UNAM Estado de México, México
| |
Collapse
|
37
|
Interactome Mapping Provides a Network of Neurodegenerative Disease Proteins and Uncovers Widespread Protein Aggregation in Affected Brains. Cell Rep 2021; 32:108050. [PMID: 32814053 DOI: 10.1016/j.celrep.2020.108050] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 02/15/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Interactome maps are valuable resources to elucidate protein function and disease mechanisms. Here, we report on an interactome map that focuses on neurodegenerative disease (ND), connects ∼5,000 human proteins via ∼30,000 candidate interactions and is generated by systematic yeast two-hybrid interaction screening of ∼500 ND-related proteins and integration of literature interactions. This network reveals interconnectivity across diseases and links many known ND-causing proteins, such as α-synuclein, TDP-43, and ATXN1, to a host of proteins previously unrelated to NDs. It facilitates the identification of interacting proteins that significantly influence mutant TDP-43 and HTT toxicity in transgenic flies, as well as of ARF-GEP100 that controls misfolding and aggregation of multiple ND-causing proteins in experimental model systems. Furthermore, it enables the prediction of ND-specific subnetworks and the identification of proteins, such as ATXN1 and MKL1, that are abnormally aggregated in postmortem brains of Alzheimer's disease patients, suggesting widespread protein aggregation in NDs.
Collapse
|
38
|
Vogrinc D, Goričar K, Dolžan V. Genetic Variability in Molecular Pathways Implicated in Alzheimer's Disease: A Comprehensive Review. Front Aging Neurosci 2021; 13:646901. [PMID: 33815092 PMCID: PMC8012500 DOI: 10.3389/fnagi.2021.646901] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease, affecting a significant part of the population. The majority of AD cases occur in the elderly with a typical age of onset of the disease above 65 years. AD presents a major burden for the healthcare system and since population is rapidly aging, the burden of the disease will increase in the future. However, no effective drug treatment for a full-blown disease has been developed to date. The genetic background of AD is extensively studied; numerous genome-wide association studies (GWAS) identified significant genes associated with increased risk of AD development. This review summarizes more than 100 risk loci. Many of them may serve as biomarkers of AD progression, even in the preclinical stage of the disease. Furthermore, we used GWAS data to identify key pathways of AD pathogenesis: cellular processes, metabolic processes, biological regulation, localization, transport, regulation of cellular processes, and neurological system processes. Gene clustering into molecular pathways can provide background for identification of novel molecular targets and may support the development of tailored and personalized treatment of AD.
Collapse
Affiliation(s)
| | | | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
39
|
Lambracht-Washington D, Fu M, Hynan LS, Rosenberg RN. Changes in the brain transcriptome after DNA Aβ42 trimer immunization in a 3xTg-AD mouse model. Neurobiol Dis 2021; 148:105221. [PMID: 33316368 PMCID: PMC7845550 DOI: 10.1016/j.nbd.2020.105221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) has been associated with accumulation of amyloid beta (Aβ) peptides in brain, and immunotherapy targeting Aβ provides potential for AD prevention. We have used a DNA Aβ42 trimer construct for immunization of 3xTg-AD mice and found previously significant reduction of amyloid and tau pathology due to the immunotherapy. We show here that DNA Aβ42 immunized 3xTg-AD mice showed better performance in nest building activities and had a higher 24 months survival rate compared to the non-treated AD controls. The analysis of differently expressed genes in brains from 24 months old mice showed significant increases transcript levels between non-immunized AD mice and wild-type controls for genes involved in microglia and astrocyte function, cytokine and inflammatory signaling, apoptosis, the innate and adaptive immune response and are consistent with an inflammatory phenotype in AD. Most of these upregulated genes were downregulated in the DNA Aβ42 immunized 3xTg-AD mice due to the vaccine. Transcript numbers for the immediate early genes, Arc, Bdnf, Homer1, Egr1 and cfos, involved in neuronal and neurotransmission pathways which were much lower in the non-immunized 3xTg-AD mice, were restored to wild-type mouse brain levels in DNA Aβ42 immunized 3xTg-AD mice indicating positive effects of DNA Aβ42 immunotherapy on synapse stability and plasticity. The immune response after immunization is complex, but the multitude of changes after DNA Aβ42 immunization shows that this response moves beyond the amyloid hypothesis and into direction of disease prevention.
Collapse
Affiliation(s)
- Doris Lambracht-Washington
- Department of Neurology, UT Southwestern Medical Center Dallas, USA; Doris Lambracht Washington, UT Southwestern Medical Center Dallas, Department of Neurology , 5323 Harry Hines Blvd, Dallas, TX 75390-8813, USA.
| | - Min Fu
- Department of Neurology, UT Southwestern Medical Center Dallas, USA.
| | - Linda S Hynan
- Departments of Population and Data Sciences (Biostatistics) & Psychiatry, UT Southwestern Medical Center Dallas, USA.
| | - Roger N Rosenberg
- Department of Neurology, UT Southwestern Medical Center Dallas, USA.
| |
Collapse
|
40
|
Xu W, Tan CC, Cao XP, Tan L. Association of Alzheimer's disease risk variants on the PICALM gene with PICALM expression, core biomarkers, and feature neurodegeneration. Aging (Albany NY) 2020; 12:21202-21219. [PMID: 33170153 PMCID: PMC7695360 DOI: 10.18632/aging.103814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
It is still unclear how PICALM mutations influence the risk of Alzheimer's disease (AD). We tested the association of AD risk variants on the PICALM gene with PICALM expression and AD feature endophenotypes. Bioinformatic methods were used to annotate the functionalities and to select the tag single nucleotide polymorphisms (SNPs). Multiple regressions were used to examine the cross-sectional and longitudinal influences of tag SNPs on cerebrospinal fluid (CSF) AD biomarkers and neurodegenerations. A total of 59 SNPs, among which 75% were reported in Caucasians, were associated with AD risk. Of these, 73% were linked to PICALM expression in the whole blood (p < 0.0001) and/or brain regions (p < 0.05). Eleven SNPs were selected as tag SNPs in Caucasians. rs510566 (T allele) was associated with decreased CSF ptau and ptau/abeta42 ratio. The G allele of rs1237999 and rs510566 was linked with greater reserve capacities of the hippocampus, parahippocampus, middle temporal lobe, posterior cingulate, and precuneus. The longitudinal analyses revealed four loci that could predict dynamic changes of CSF ptau and ptau/abeta42 ratio (rs10501610, p = 0.0001) or AD feature neurodegeneration (rs3851179, rs592297, and rs7480193, p < 0.005). Overall, the genetic, bioinformatic, and association studies tagged four SNPs (rs3851179, rs7480193, rs510566, and rs1237999) as the most prominent PICALM loci contributing to AD in Caucasians.
Collapse
Affiliation(s)
- Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | | |
Collapse
|
41
|
Fang J, Pieper AA, Nussinov R, Lee G, Bekris L, Leverenz JB, Cummings J, Cheng F. Harnessing endophenotypes and network medicine for Alzheimer's drug repurposing. Med Res Rev 2020; 40:2386-2426. [PMID: 32656864 PMCID: PMC7561446 DOI: 10.1002/med.21709] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022]
Abstract
Following two decades of more than 400 clinical trials centered on the "one drug, one target, one disease" paradigm, there is still no effective disease-modifying therapy for Alzheimer's disease (AD). The inherent complexity of AD may challenge this reductionist strategy. Recent observations and advances in network medicine further indicate that AD likely shares common underlying mechanisms and intermediate pathophenotypes, or endophenotypes, with other diseases. In this review, we consider AD pathobiology, disease comorbidity, pleiotropy, and therapeutic development, and construct relevant endophenotype networks to guide future therapeutic development. Specifically, we discuss six main endophenotype hypotheses in AD: amyloidosis, tauopathy, neuroinflammation, mitochondrial dysfunction, vascular dysfunction, and lysosomal dysfunction. We further consider how this endophenotype network framework can provide advances in computational and experimental strategies for drug-repurposing and identification of new candidate therapeutic strategies for patients suffering from or at risk for AD. We highlight new opportunities for endophenotype-informed, drug discovery in AD, by exploiting multi-omics data. Integration of genomics, transcriptomics, radiomics, pharmacogenomics, and interactomics (protein-protein interactions) are essential for successful drug discovery. We describe experimental technologies for AD drug discovery including human induced pluripotent stem cells, transgenic mouse/rat models, and population-based retrospective case-control studies that may be integrated with multi-omics in a network medicine methodology. In summary, endophenotype-based network medicine methodologies will promote AD therapeutic development that will optimize the usefulness of available data and support deep phenotyping of the patient heterogeneity for personalized medicine in AD.
Collapse
Affiliation(s)
- Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospital Case Medical Center; Department of Psychiatry, Case Western Reserve University, Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, OH 44106, USA
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Garam Lee
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
| | - Lynn Bekris
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - James B. Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
- Department of Brain Health, School of Integrated Health Sciences, UNLV, Las Vegas, NV 89154, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
42
|
Xu GB, Guan PP, Wang P. Prostaglandin A1 Decreases the Phosphorylation of Tau by Activating Protein Phosphatase 2A via a Michael Addition Mechanism at Cysteine 377. Mol Neurobiol 2020; 58:1114-1127. [PMID: 33095414 DOI: 10.1007/s12035-020-02174-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022]
Abstract
Prostaglandin (PG) A1 is a metabolic product of cyclooxygenase 2 (COX-2) that is potentially involved in regulating the development and progression of Alzheimer's disease (AD). PGA1 is a cyclopentenone (cy) PG characterized by the presence of a chemically reactive α,β-unsaturated carbonyl. PGA1 is potentially involved in the regulation of multiple biological processes via Michael addition; however, the specific roles of PGA1 in AD remain unclear. TauP301S transgenic (Tg) mice were used as in vivo AD models, and neuroblastoma (N) 2a cells were used as an in vitro neuronal model. The PGA1-binding proteins were identified by HPLC-MS-MS after intracerebroventricular injection (i.c.v) of PGA1. Western blotting was used to determine tau phosphorylation in PGA1-treated Tg mice in the absence or in the presence of okadaic acid (OA), an inhibitor of protein phosphatase (PP) 2A. A combination of pull-down assay, immunoprecipitation, western blotting, and HPLC-MS-MS was used to determine that the PP2A scaffold subunit A alpha (PPP2R1A) is activated by the direct binding of PGA1 to cysteine 377. The effect of inhibiting tau hyperphosphorylation was tested in the Morris maze to determine the inhibitory effects of PGA1 on cognitive decline in tauP301S Tg mice. Incubation with N2a cells, pull-down assay, and mass spectrometry (MS) analysis revealed and indicated that PGA1 binds to more than 1000 proteins; some of these proteins are associated with AD and especially with tauopathies. Moreover, short-term administration of PGA1 in tauP301S Tg mice significantly decreased tau phosphorylation at Thr181, Ser202, and Ser404 in a dose-dependent manner. This effect was caused by the activation of PPP2R1A in tauP301S Tg mice. Importantly, PGA1 can form a Michael adduct with cysteine 377 of PPP2R1A, which is critical for the enzymatic activity of PP2A. Long-term treatment of tauP301S Tg mice with PGA1 activated PP2A and significantly reduced tau phosphorylation resulting in improvements in cognitive decline in tauP301S Tg mice. Our data provided new insight into the mechanisms of the ameliorating effects of PGA1 on cognitive decline in tauP301S Tg mice by activating PP2A via a mechanism involving the formation of a Michael adduct with cysteine 377 of PPP2R1A.
Collapse
Affiliation(s)
- Guo-Biao Xu
- College of Life and Health Sciences, Northeastern University, No. 3-11. Wenhua Road, Shenyang, 110819, People's Republic of China.,Liaoning Cheng Da Biotechnology Co., Ltd, Shenyang, 110179, People's Republic of China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, No. 3-11. Wenhua Road, Shenyang, 110819, People's Republic of China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11. Wenhua Road, Shenyang, 110819, People's Republic of China.
| |
Collapse
|
43
|
Gadhave K, Gehi BR, Kumar P, Xue B, Uversky VN, Giri R. The dark side of Alzheimer's disease: unstructured biology of proteins from the amyloid cascade signaling pathway. Cell Mol Life Sci 2020; 77:4163-4208. [PMID: 31894361 PMCID: PMC11104979 DOI: 10.1007/s00018-019-03414-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/17/2019] [Accepted: 12/04/2019] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a leading cause of age-related dementia worldwide. Despite more than a century of intensive research, we are not anywhere near the discovery of a cure for this disease or a way to prevent its progression. Among the various molecular mechanisms proposed for the description of the pathogenesis and progression of AD, the amyloid cascade hypothesis, according to which accumulation of a product of amyloid precursor protein (APP) cleavage, amyloid β (Aβ) peptide, induces pathological changes in the brain observed in AD, occupies a unique niche. Although multiple proteins have been implicated in this amyloid cascade signaling pathway, their structure-function relationships are mostly unexplored. However, it is known that two major proteins related to AD pathology, Aβ peptide, and microtubule-associated protein tau belong to the category of intrinsically disordered proteins (IDPs), which are the functionally important proteins characterized by a lack of fixed, ordered three-dimensional structure. IDPs and intrinsically disordered protein regions (IDPRs) play numerous vital roles in various cellular processes, such as signaling, cell cycle regulation, macromolecular recognition, and promiscuous binding. However, the deregulation and misfolding of IDPs may lead to disturbed signaling, interactions, and disease pathogenesis. Often, molecular recognition-related IDPs/IDPRs undergo disorder-to-order transition upon binding to their biological partners and contain specific disorder-based binding motifs, known as molecular recognition features (MoRFs). Knowing the intrinsic disorder status and disorder-based functionality of proteins associated with amyloid cascade signaling pathway may help to untangle the mechanisms of AD pathogenesis and help identify therapeutic targets. In this paper, we have used multiple computational tools to evaluate the presence of intrinsic disorder and MoRFs in 27 proteins potentially relevant to the amyloid cascade signaling pathway. Among these, BIN1, APP, APOE, PICALM, PSEN1 and CD33 were found to be highly disordered. Furthermore, their disorder-based binding regions and associated short linear motifs have also been identified. These findings represent important foundation for the future research, and experimental characterization of disordered regions in these proteins is required to better understand their roles in AD pathogenesis.
Collapse
Affiliation(s)
- Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | | | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, School of Natural Sciences and Mathematics, College of Arts and Sciences, University of South Florida, Tampa, FL, 33620, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia.
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India.
| |
Collapse
|
44
|
Saini R, Shuaib S, Goyal D, Goyal B. Impact of Mutations on the Conformational Transition from α-Helix to β-Sheet Structures in Arctic-Type Aβ 40: Insights from Molecular Dynamics Simulations. ACS OMEGA 2020; 5:23219-23228. [PMID: 32954172 PMCID: PMC7495726 DOI: 10.1021/acsomega.0c02983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/13/2020] [Indexed: 05/13/2023]
Abstract
The amyloid-β (Aβ) protein aggregation into toxic oligomers and fibrils has been recognized as a key player in the pathogenesis of Alzheimer's disease. Recent experiments reported that a double alanine mutation (L17A/F19A) in the central hydrophobic core (CHC) region of [G22]Aβ40 (familial Arctic mutation) diminished the self-assembly propensity of [G22]Aβ40. However, the molecular mechanism behind the decreased aggregation tendency of [A17/A19/G22]Aβ40 is not well understood. Herein, we carried out molecular dynamics simulations to elucidate the structure and dynamics of [G22]Aβ40 and [A17/A19/G22]Aβ40. The results for the secondary structure analysis reveal a significantly increased amount of the helical content in the CHC and C-terminal region of [A17/A19/G22]Aβ40 as compared to [G22]Aβ40. The bending free-energy analysis of D23-K28 salt bridge suggests that the double alanine mutation in the CHC region of [G22]Aβ40 has the potential to reduce the fibril formation rate by 0.57 times of [G22]Aβ40. Unlike [G22]Aβ40, [A17/A19/G22]Aβ40 largely sampled helical conformation, as determined by the minimum energy conformations extracted from the free-energy landscape. The present study provided atomic level details into the experimentally observed diminished aggregation tendency of [A17/A19/G22]Aβ40 as compared to [G22]Aβ40.
Collapse
Affiliation(s)
- Rajneet
Kaur Saini
- Department
of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Suniba Shuaib
- Department
of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Deepti Goyal
- Department
of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Bhupesh Goyal
- School
of Chemistry & Biochemistry, Thapar
Institute of Engineering & Technology, Patiala 147004, Punjab, India
| |
Collapse
|
45
|
Ma Y, Shen X, Xu W, Huang Y, Li H, Tan L, Tan C, Dong Q, Tan L, Yu J. A panel of blood lipids associated with cognitive performance, brain atrophy, and Alzheimer's diagnosis: A longitudinal study of elders without dementia. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12041. [PMID: 32995461 PMCID: PMC7507431 DOI: 10.1002/dad2.12041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/09/2002] [Accepted: 04/14/2020] [Indexed: 11/17/2022]
Abstract
INTRODUCTION We sought lipid-metabolic biomarkers involved in the processes underlying cognitive decline and detected them in association with Alzheimer's disease (AD) phenotypes. METHODS A least absolute shrinkage and selection operator logistic regression model was used to select lipids that best classified cognitive decline defined by a fast-annual rate of cognition. Lipid summary scores were constructed as predictors of cognitive decline by using this model. Multivariable-adjusted models tested the associations of risk score with AD phenotypes. RESULTS A model incorporating 17 selected lipids showed good discrimination and calibration. The lipid risk score was positively associated with the baseline Alzheimer Disease Assessment Scale-13-item cognitive subscale (ADAS-Cog13) score and cerebrospinal tau protein level, and predicted cognitive diagnoses. Additional results showing that individuals with increased lipid risk scores had rapid change rates of ADAS-Cog13 and brain atrophy further corroborated the predictive role of lipids. DISCUSSION A panel of blood lipids instead of individual lipid molecules could better diagnose and predict cognitive decline.
Collapse
Affiliation(s)
- Ya‐Hui Ma
- Department of NeurologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Xue‐Ning Shen
- Department of Neurology and Institute of NeurologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Wei Xu
- Department of NeurologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Yu‐Yuan Huang
- Department of Neurology and Institute of NeurologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Hong‐Qi Li
- Department of Neurology and Institute of NeurologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Lin Tan
- Department of NeurologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Chen‐Chen Tan
- Department of NeurologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Qiang Dong
- Department of Neurology and Institute of NeurologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Lan Tan
- Department of NeurologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Jin‐Tai Yu
- Department of Neurology and Institute of NeurologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | | |
Collapse
|
46
|
Abstract
Alzheimer’s disease (AD) and frontotemporal dementia (FTD) are neurodegenerative
disorders that result in a significant burden to both patients and caregivers.
By 2050, the number of people with dementia in Latin America will increase
4-fold. A deep understanding of the relevant genetic factors of AD and FTD is
fundamental to tackle this reality through prevention. A review of different
genetic variants that cause AD or FTD in Latin America was conducted. We
searched Medline and PubMed databases using the keywords “Alzheimer’s disease,”
“frontotemporal dementia,” “mutation,” “America,” and “Latin America,” besides
specific Latin American countries. Forty-five items were chosen and analyzed.
PSEN1 mutations are the commonest cause of genetic
early-onset Alzheimer’s disease (EOAD), followed by PSEN2 and
APP mutations. Genetic FTD can be mainly explained by
GRN and MAPT mutations, as well as
C9orf72 G4C2 repeat expansion. APOE ε4 can
modify the prevalence and incidence of late-onset Alzheimer’s disease (LOAD), in
addition to the cognitive performance in affected carriers.
Collapse
Affiliation(s)
- Claudia Ramos
- Neurosciences Group of Antioquia, School of Medicine, Universidad de Antioquia - Medellín, Colombia
| | - David Aguillon
- Neurosciences Group of Antioquia, School of Medicine, Universidad de Antioquia - Medellín, Colombia
| | - Christian Cordano
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco - San Francisco, CA, United States
| | - Francisco Lopera
- Neurosciences Group of Antioquia, School of Medicine, Universidad de Antioquia - Medellín, Colombia
| |
Collapse
|
47
|
Catania M, Di Fede G. One or more β-amyloid(s)? New insights into the prion-like nature of Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:213-237. [PMID: 32958234 DOI: 10.1016/bs.pmbts.2020.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Misfolding and aggregation of proteins play a central role in the pathogenesis of several neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's and Lewy Body diseases, Frontotemporal Lobar Degeneration and prion diseases. Increasing evidence supports the view that Aβ and tau, which are the two main molecular players in AD, share with the prion protein several "prion-like" features that can be relevant for disease pathogenesis. These features essentially include structural/conformational/biochemical variations, resistance to degradation by endogenous proteases, seeding ability, attitude to form neurotoxic assemblies, spreading and propagation of toxic aggregates, transmissibility of tau- and Aβ-related pathology to animal models. Following this view, part of the recent scientific literature has generated a new reading frame for AD pathophysiology, based on the application of the prion paradigm to the amyloid cascade hypothesis in an attempt to definitely explain the key events causing the disease and inducing its occurrence under different clinical phenotypes.
Collapse
Affiliation(s)
- Marcella Catania
- Neurology 5 / Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Di Fede
- Neurology 5 / Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| |
Collapse
|
48
|
Wei W, Wang ZY, Ma LN, Zhang TT, Cao Y, Li H. MicroRNAs in Alzheimer's Disease: Function and Potential Applications as Diagnostic Biomarkers. Front Mol Neurosci 2020; 13:160. [PMID: 32973449 PMCID: PMC7471745 DOI: 10.3389/fnmol.2020.00160] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia. Although the incidence of AD is high, the rates of diagnosis and treatment are relatively low. Moreover, effective means for the diagnosis and treatment of AD are still lacking. MicroRNAs (miRNAs, miRs) are non-coding RNAs that play regulatory roles by targeting mRNAs. The expression of miRNAs is conserved, temporal, and tissue-specific. Impairment of microRNA function is closely related to AD pathogenesis, including the beta-amyloid and tau hallmarks of AD, and there is evidence that the expression of some microRNAs differs significantly between healthy people and AD patients. These properties of miRNAs endow them with potential diagnostic and therapeutic value in the treatment of this debilitating disease. This review provides comprehensive information about the regulatory function of miRNAs in AD, as well as potential applications as diagnostic biomarkers.
Collapse
Affiliation(s)
- Wei Wei
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhi-Yong Wang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Na Ma
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ting-Ting Zhang
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Cao
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
49
|
Edwards KA, Leete JJ, Tschiffely AE, Moore CY, Dell KC, Statz JK, Carr W, Walker PB, LoPresti ML, Ahlers ST, Yarnell AM, Gill J. Blast exposure results in tau and neurofilament light chain changes in peripheral blood. Brain Inj 2020; 34:1213-1221. [DOI: 10.1080/02699052.2020.1797171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Katie A. Edwards
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
- Henry M. Jackson Foundation, Bethesda, MD, USA
| | - Jacqueline J. Leete
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Anna E. Tschiffely
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, MD, USA
| | - Candace Y. Moore
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Kristine C. Dell
- Department of Psychology, Pennsylvania State University, University Park, PA, USA
| | - Jonathan K. Statz
- Henry M. Jackson Foundation, Bethesda, MD, USA
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, MD, USA
| | - Walter Carr
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Peter B. Walker
- Joint Artificial Intelligence Center, Arlington, VA, USA
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
- Military Emergency Medicine Department, Uniformed Services, University of the Health Sciences, Bethesda, MD, USA
| | - Matthew L. LoPresti
- Center for Military Psychiatry & Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Stephen T. Ahlers
- Operational & Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, MD, USA
| | - Angela M. Yarnell
- Operational & Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, MD, USA
| | - Jessica Gill
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
50
|
Jokar S, Erfani M, Bavi O, Khazaei S, Sharifzadeh M, Hajiramezanali M, Beiki D, Shamloo A. Design of peptide-based inhibitor agent against amyloid-β aggregation: Molecular docking, synthesis and in vitro evaluation. Bioorg Chem 2020; 102:104050. [PMID: 32663672 DOI: 10.1016/j.bioorg.2020.104050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/07/2020] [Accepted: 06/15/2020] [Indexed: 12/30/2022]
Abstract
Formation of the amyloid beta (Aβ) peptide aggregations represents an indispensable role in appearing and progression of Alzheimer disease. β-sheet breaker peptides can be designed and modified with different amino acids in order to improve biological properties and binding affinity to the amyloid beta peptide. In the present study, three peptide sequences were designed based on the hopeful results of LIAIMA peptide and molecular docking studies were carried out onto the monomer and fibril structure of amyloid beta peptide using AutoDock Vina software. According to the obtained interactions and binding energy from docking, the best-designed peptide (d-GABA-FPLIAIMA) was chosen and synthesized in great yield (%96) via the Fmoc solid-phase peptide synthesis. The synthesis and purity of the resulting peptide were estimated and evaluated by Mass spectroscopy and Reversed-phase high-performance liquid chromatography (RP-HPLC) methods, respectively. Stability studies in plasma and Thioflavin T (ThT) assay were performed in order to measure the binding affinity and in vitro aggregation inhibition of Aβ peptide. The d-GABA-FPLIAIMA peptide showed good binding energy and affinity to Aβ fibrils, high stability (more than 90%) in human serum, and a reduction of 20% in inhibition of the Aβ aggregation growth. Finally, the favorable characteristics of our newly designed peptide make it a promising candidate β-sheet breaker agent for further in vivo studies.
Collapse
Affiliation(s)
- Safura Jokar
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Erfani
- Radiation Applications Research School, Nuclear Science and Technology Research Institute, Tehran, Iran.
| | - Omid Bavi
- Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, Iran.
| | - Saeedeh Khazaei
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy; Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Malihe Hajiramezanali
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Beiki
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|