1
|
Maeda K. Copy Number Variations in a Case with Intractable Epilepsy, Intellectual Disability, and Hereditary Neuropathy with Liability to Pressure Palsies Having a 17p12 Deletion. Intern Med 2025:4811-24. [PMID: 40222930 DOI: 10.2169/internalmedicine.4811-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
Some copy number variations (CNVs) in DNA are associated with the development of pathological phenotypes. Regarding the diagnosis of recurrent radial nerve palsies, a 73-year-old female patient with intractable epilepsy and intellectual disability was diagnosed with duplicated 15q11.1-11.2, in addition to a deletion of 17p12, causing hereditary neuropathy with liability to pressure palsies. CNVs in 15q11.1-11.2 have been reported in patients with schizophrenia and autism. Although CNVs are also sometimes seen in healthy individuals, duplicated 15q11.1-11.2 could be associated with CNS symptoms in this patient.
Collapse
Affiliation(s)
- Kengo Maeda
- Department of Neurology, Vories Memorial Hospital, Japan
| |
Collapse
|
2
|
Cokyaman T, Özcan EG, Akbaş NE. High Genetic Diagnostic Yield of Whole Exome Sequencing in Children with Epilepsy and Neurodevelopmental Disorders. Fetal Pediatr Pathol 2025; 44:25-39. [PMID: 39648350 DOI: 10.1080/15513815.2024.2434919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/12/2024] [Accepted: 11/21/2024] [Indexed: 12/10/2024]
Abstract
Introduction: Nowadays, the diagnostic rate of childhood epilepsies is increasing rapidly in parallel with the advances in genetic technology. In this study, it was aimed to reveal the diagnostic yield of whole exome sequencing (WES) in children with epilepsy and neurodevelopmental disorders (NDDs). Methods: Children aged 1 to 17 years with epilepsy and NDD who underwent WES were included in this retrospective study. Demographic, epilepsy and NDD characteristics, and WES results were recorded. Results: WES was performed in 36.6% of cases. Various single nucleotide variants were detected in 86.3% of cases tested by WES, and the diagnostic yield on a case-by-case basis was found to be 50%. Discussion: The diagnostic yield of WES is quite high in children with epilepsy and NDDs without a definitive diagnosis. Revealing the genetic causes of childhood epilepsy brings up effective and individualized treatment options.
Collapse
Affiliation(s)
- Turgay Cokyaman
- Division of Pediatric Neurology, Department of Pediatrics, Çanakkale Onsekiz Mart University Faculty of Medicine, Çanakkale, Turkey
| | - Eda Gül Özcan
- Department of Pediatrics, Çanakkale Onsekiz Mart University Faculty of Medicine, Çanakkale, Turkey
| | - Nihan Ecmel Akbaş
- Department of Medical Genetics, Çanakkale Onsekiz Mart University Faculty of Medicine, Çanakkale, Turkey
| |
Collapse
|
3
|
Kushima I, Nakatochi M, Ozaki N. Copy Number Variations and Human Well-Being: Integrating Psychiatric, Physical, and Socioeconomic Perspectives. Biol Psychiatry 2024:S0006-3223(24)01788-8. [PMID: 39643102 DOI: 10.1016/j.biopsych.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/12/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Copy number variations (CNVs) have emerged as crucial genetic factors that influence a wide spectrum of human health outcomes, with particularly strong associations to psychiatric disorders. In this review, we present a synthesis of diverse impacts of psychiatric disorder-associated CNVs on neurodevelopment, brain function, and physical health across the lifespan. Large-scale studies have revealed that CNV carriers exhibit an increased risk for psychiatric disorders, cognitive deficits, sleep disturbances, neurological disorders, and other physical conditions, including cardiovascular diseases, diabetes, and renal disease, highlighting the wide-ranging impact of CNVs beyond the brain. Neuroimaging studies have revealed substantial CNV effects on brain structure, from cortical and subcortical alterations to white matter microstructure, with effect sizes often exceeding those observed in idiopathic psychiatric disorders. Cellular and animal models have begun to elucidate dynamic CNV effects on neurodevelopment, neuronal function, and cellular energy metabolism, while revealing complex CNV-environment interactions and cell type-specific responses, particularly in studies of 22q11.2 deletion syndrome. This review also explores the complex interplay between psychiatric and physical health conditions in CNV carriers and how these interactions contribute to adverse socioeconomic outcomes, including reduced educational attainment and income levels, creating a feedback loop that further impacts health outcomes. Finally, in this review, we also highlight research limitations and propose key priorities for clinical implementation, including the need for longitudinal studies, standardized guidelines for CNV result reporting and genetic counseling, and integrated care networks to provide a foundation for advancing the field of precision psychiatry.
Collapse
Affiliation(s)
- Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan.
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Glyco-core Research, Nagoya University, Nagoya, Japan
| |
Collapse
|
4
|
Chau MHK, Choolani M, Dong Z, Cao Y, Choy KW. Genome sequencing in the prenatal diagnosis of structural malformations in the fetus. Best Pract Res Clin Obstet Gynaecol 2024; 97:102539. [PMID: 39327108 DOI: 10.1016/j.bpobgyn.2024.102539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/12/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024]
Abstract
Prenatal genetic diagnosis has undergone two pivotal paradigm shifts, initially with the introduction of chromosomal microarray and subsequently with the advent of next-generation sequencing technologies (NGS). NGS technology has given rise to a multitude of applications, with gene panels, exome sequencing (ES), and genome sequencing (GS) emerging as highly promising tests for prenatal genetic investigations. These advanced approaches have demonstrated superior diagnostic rates when compared to conventional testing methods, showcasing the evolution and enhancement of prenatal genetic screening and diagnostic capabilities. With these ground-breaking innovations, NGS technologies have the potential to replace current standard practice in prenatal diagnosis. With the increasing use of prenatal sequencing, the need for better education and guidance on their applications grows. This chapter aims to illustrate the detection scope and feasibility of various NGS-based methods that are currently used in prenatal diagnosis.
Collapse
Affiliation(s)
- Matthew Hoi Kin Chau
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong Special Administrative Region
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, National University Health System, Singapore; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zirui Dong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong Special Administrative Region
| | - Ye Cao
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong Special Administrative Region
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong Special Administrative Region; Fertility Preservation Research Center, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
5
|
Sulaiman SA, Khalaf IB, Saeed AE, Hoshan W, Hageen AW, Motwani J, Goyal A. Exploring the Genetic Landscape of Epilepsy With Eyelid Myoclonia: A Comprehensive Review on Clinical Features and Diagnostic Challenges. Pediatr Neurol 2024; 161:176-181. [PMID: 39393195 DOI: 10.1016/j.pediatrneurol.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
Jeavons syndrome (JS), also known as epilepsy with eyelid myoclonia (EEM), is an idiopathic epileptic syndrome that primarily affects children. JS constitutes a significant portion of idiopathic generalized epilepsies and overall epileptic conditions and is characterized by frequent eyelid myoclonia. JS is often triggered by factors such as eyelid closure and exposure to light, leading to absence seizures with photoparoxysmal responses. Although previous studies indicate that some genes have demonstrated an association with the syndrome, no definitive causative gene has yet been identified. The current review therefore aims to shed emphasis on the potential value genetic testing holds in the context of EEM, as well as the need to investigate potential early diagnosis and management strategies in future research.
Collapse
Affiliation(s)
| | | | | | | | | | - Jatin Motwani
- Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Aman Goyal
- Department of Internal Medicine, Seth GS Medical College and KEM Hospital, Mumbai, India.
| |
Collapse
|
6
|
Li C, Wang Y, Zeng C, Huang B, Chen Y, Xue C, Liu L, Rong S, Lin Y. Trio-whole exome sequencing reveals the importance of de novo variants in children with intellectual disability and developmental delay. Sci Rep 2024; 14:27590. [PMID: 39528574 PMCID: PMC11555314 DOI: 10.1038/s41598-024-79431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding the genetic basis of developmental delay (DD) and intellectual disability (ID) remains a considerable clinical challenge. This study evaluated the clinical application of trio whole exome sequencing (WES) in children diagnosed with DD/ID. The study comprised 173 children with unexplained DD/ID. The participants underwent trio-WES and their demographic, clinical, and genetic characteristics were evaluated. Based on their clinical features, the participants were classified into two groups for further analysis: a syndromic DD/ID group and a non-syndromic DD/ID group. The genetic diagnostic yield of the 173 children diagnosed with DD/ID was 49.7% (86/173). This included 58 pathogenic or likely pathogenic single nucleotide variants (SNVs) in 41 genes identified across 54 individuals (31.2%) through trio-WES. Among these, 22 SNVs had not been previously reported. Additionally, 30 copy number variations (CNVs) were detected in 36 individuals (20.8%). The diagnostic yield in the syndromic DD/ID group was higher than that in the non-syndromic DD/ID group (57.8% vs. 47.2%, P < 0.001). Within the syndromic DD/ID subgroup, the diagnostic yield of the DD/ID with epilepsy subgroup (83.9%) was significantly higher than those of the other subgroups (P < 0.001). Based on the analysis of the individuals' clinical phenotypes, the individuals with facial dysmorphism shown a higher diagnostic yield (68.2%, P < 0.001). The diagnostic yield of SNVs was higher in the individuals with DD/ID accompanied by epilepsy, whereas the diagnostic yield of CNVs was higher in the DD/ID without epilepsy group. Similarly, the diagnostic yield of de novo SNVs was higher in the DD/ID with epilepsy group, while the diagnostic yield of de novo CNVs was higher in the DD/ID without epilepsy group (all P < 0.001). Trio-WES is a crucial tool for the genetic diagnosis of DD/ID, demonstrating a diagnostic yield of up to 49.7%. De novo variants in autosomal dominant genes are significant contributors to DD/ID, particularly in non-consanguineous families.
Collapse
Affiliation(s)
- Chengyan Li
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China
| | - You Wang
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China
| | - Cizheng Zeng
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China
| | - Binglong Huang
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China
| | - Yinhui Chen
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China
| | - Chupeng Xue
- Department of Pediatrics, Shantou Central Hospital, ShanTou, 515000, Guangdong Province, People's Republic of China
| | - Ling Liu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China
| | - Shiwen Rong
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China
| | - Yongwen Lin
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China.
| |
Collapse
|
7
|
Baer S, Schalk A, Miguet M, Schaefer É, El Chehadeh S, Ginglinger E, de Saint Martin A, Abi Wardé MT, Laugel V, de Feraudy Y, Gauer L, Hirsch E, Boulay C, Bansept C, Bolocan A, Kitadinis I, Gouronc A, Gérard B, Piton A, Scheidecker S. Copy Number Variation and Epilepsy: State of the Art in the Era of High-Throughput Sequencing-A Multicenter Cohort Study. Pediatr Neurol 2024; 159:16-25. [PMID: 39094250 DOI: 10.1016/j.pediatrneurol.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/12/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Genetic epilepsy diagnosis is increasing due to technological advancements. Although the use of molecular diagnosis is increasing, chromosomal microarray analysis (CMA) remains an important diagnostic tool for many patients. We aim to explore the role and indications of CMA in epilepsy, given the current genomic advances. METHODS We obtained data from 378 epileptic described patients, who underwent CMA between 2015 and 2021. Different types of syndromic or nonsyndromic epilepsy were represented. RESULTS After excluding patients who were undertreated or had missing data, we included 250 patients with treated epilepsy and relevant clinical information. These patients mostly had focal epilepsy or developmental and epileptic encephalopathy, with a median start age of 2 years. Ninety percent of the patients had intellectual disability, more than two thirds had normal head size, and 60% had an abnormal magnetic resonance imaging. We also included 10 patients with epilepsy without comorbidities. In our cohort, we identified 35 pathogenic copy number variations (CNVs) explaining epilepsy with nine recurrent CNVs enriched in patients with epilepsy, 12 CNVs related to neurodevelopmental disorder phenotype with possible epilepsy, five CNVs including a gene already known in epilepsy, and nine CNVs based on size combined with de novo occurrence. The diagnosis rate in our study reached 14% (35 of 250) with first-line CMA, as previously reported. Although targeted gene panel sequencing could potentially diagnose some of the reported epilepsy CNVs (34% [12 of 35]). CONCLUSIONS CMA remains a viable option as the first-line genetic test in cases where other genetic tests are not available and as a second-line diagnostic technique if gene panel or exome sequencing yields negative results.
Collapse
Affiliation(s)
- Sarah Baer
- Department of Neuropediatrics, ERN EpiCare, French Centre de référence des Épilepsies Rares (CréER), Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Institute for Genetics and Molecular and Cellular Biology (IGBMC), University of Strasbourg, CNRS UMR7104, INSERM U1258, Illkirch, France.
| | - Audrey Schalk
- Laboratories of Genetic Diagnosis, Institut de Génétique Médicale d'Alsace (IGMA), Strasbourg University Hospitals Strasbourg France, Strasbourg, France
| | | | - Élise Schaefer
- Clinical Genetics Unit, Institut de Génétique Médicale d'Alsace (IGMA), Strasbourg, France
| | - Salima El Chehadeh
- Clinical Genetics Unit, Institut de Génétique Médicale d'Alsace (IGMA), Strasbourg, France
| | | | - Anne de Saint Martin
- Department of Neuropediatrics, ERN EpiCare, French Centre de référence des Épilepsies Rares (CréER), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Marie-Thérèse Abi Wardé
- Department of Neuropediatrics, ERN EpiCare, French Centre de référence des Épilepsies Rares (CréER), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Vincent Laugel
- Department of Neuropediatrics, ERN EpiCare, French Centre de référence des Épilepsies Rares (CréER), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Yvan de Feraudy
- Department of Neuropediatrics, ERN EpiCare, French Centre de référence des Épilepsies Rares (CréER), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Lucas Gauer
- Epilepsy Unit "Francis Rohmer," ERN EpiCare, French Centre de référence des Épilepsies Rares (CréER), Neurology Department, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Edouard Hirsch
- Epilepsy Unit "Francis Rohmer," ERN EpiCare, French Centre de référence des Épilepsies Rares (CréER), Neurology Department, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Clotilde Boulay
- Epilepsy Unit "Francis Rohmer," ERN EpiCare, French Centre de référence des Épilepsies Rares (CréER), Neurology Department, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Department of Pediatrics, Émile Muller Hospital, Mulhouse, France
| | - Claire Bansept
- Department of Pediatrics, Émile Muller Hospital, Mulhouse, France
| | - Anamaria Bolocan
- Department of Pediatrics, Émile Muller Hospital, Mulhouse, France
| | - Ismini Kitadinis
- Department of Pediatrics, Émile Muller Hospital, Mulhouse, France
| | - Aurélie Gouronc
- Laboratories of Genetic Diagnosis, Institut de Génétique Médicale d'Alsace (IGMA), Strasbourg University Hospitals Strasbourg France, Strasbourg, France
| | - Bénédicte Gérard
- Laboratories of Genetic Diagnosis, Institut de Génétique Médicale d'Alsace (IGMA), Strasbourg University Hospitals Strasbourg France, Strasbourg, France
| | - Amélie Piton
- Institute for Genetics and Molecular and Cellular Biology (IGBMC), University of Strasbourg, CNRS UMR7104, INSERM U1258, Illkirch, France; Laboratories of Genetic Diagnosis, Institut de Génétique Médicale d'Alsace (IGMA), Strasbourg University Hospitals Strasbourg France, Strasbourg, France
| | - Sophie Scheidecker
- Laboratories of Genetic Diagnosis, Institut de Génétique Médicale d'Alsace (IGMA), Strasbourg University Hospitals Strasbourg France, Strasbourg, France
| |
Collapse
|
8
|
Chengyan L, Chupeng X, You W, Yinhui C, Binglong H, Dang A, Ling L, Chuan T. Identification of genetic causes in children with unexplained epilepsy based on trio-whole exome sequencing. Clin Genet 2024; 106:140-149. [PMID: 38468460 DOI: 10.1111/cge.14519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
Genotype and clinical phenotype analyses of 128 children were performed based on whole exome sequencing (WES), providing a reference for the provision of genetic counseling and the precise diagnosis and treatment of epilepsy. A total of 128 children with unexplained epilepsy were included in this study, and all their clinical data were analyzed. The children's treatments, epilepsy control, and neurodevelopmental levels were regularly followed up every 3 months. The genetic diagnostic yield of the 128 children with epilepsy is 50.8%, with an SNV diagnostic yield of 39.8% and a CNV diagnostic yield of 12.5%. Among the 128 children with epilepsy, 57.0% had onset of epilepsy in infancy, 25.8% have more than two clinical seizure forms, 62.5% require two or more anti-epileptic drug treatments, and 72.7% of the children have varying degrees of psychomotor development retardation. There are significant differences between ages of onset, neurodevelopmental levels and the presence of drug resistance in the genetic diagnostic yield (all p < 0.05). The 52 pathogenic/likely pathogenic SNVs involve 31 genes, with genes encoding ion channels having the largest number of mutations (30.8%). There were 16 cases of pathogenic/possibly pathogenic CNVs, among which the main proportions of CNVs were located in chromosome 15 and chromosome 16. Trio-WES is an essential tool for the genetic diagnosis of unexplained epilepsy, with a genetic diagnostic yield of up to 50.8%. Early genetic testing can provide an initiate appropriate therapies and accurate molecular diagnosis.
Collapse
Affiliation(s)
- Li Chengyan
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Xue Chupeng
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
- Department of Pediatrics, Shantou Central Hospital, Shantou, People's Republic of China
| | - Wang You
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Chen Yinhui
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Huang Binglong
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Ao Dang
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Liu Ling
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Tian Chuan
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| |
Collapse
|
9
|
Cheng M, Bai L, Yang Y, Liu W, Niu X, Chen Y, Tan Q, Yang X, Wu Q, Zhao HQ, Zhang Y. Novel copy number variations and phenotypes of infantile epileptic spasms syndrome. Clin Genet 2024; 106:161-179. [PMID: 38544467 DOI: 10.1111/cge.14520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 07/02/2024]
Abstract
We summarize the copy number variations (CNVs) and phenotype spectrum of infantile epileptic spasms syndrome (IESS) in a Chinese cohort. The CNVs were identified by genomic copy number variation sequencing. The CNVs and clinical data were analyzed. 74 IESS children with CNVs were enrolled. 35 kinds of CNVs were identified. There were 11 deletions and 5 duplications not reported previously in IESS, including 2 CNVs not reported in epilepsy. 87.8% were de novo, 9.5% were inherited from mother and 2.7% from father. Mosaicism occurred in one patient with Xq21.31q25 duplication. 16.2% (12/74) were 1p36 deletion, and 20.3% (15/74) were 15q11-q13 duplication. The age of seizure onset ranged from 17 days to 24 months. Seizure types included epileptic spasms, focal seizures, tonic seizures, and myoclonic seizures. All patients displayed developmental delay. Additional features included craniofacial anomaly, microcephaly, congenital heart defects, and hemangioma. 29.7% of patients were seizure-free for more than 12 months, and 70.3% still had seizures after trying 2 or more anti-seizure medications. In conclusion, CNVs is a prominent etiology of IESS. 1p36 deletion and 15q duplication occurred most frequently. CNV detection should be performed in patients with IESS of unknown causes, especially in children with craniofacial anomalies and microcephaly.
Collapse
Affiliation(s)
- Miaomiao Cheng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ling Bai
- Research and Development Center, Beijing USCI Medical Laboratory Co., Ltd, Beijing, China
| | - Ying Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Wenwei Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xueyang Niu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yi Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Quanzhen Tan
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaoling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Qixi Wu
- Research and Development Center, Beijing USCI Medical Laboratory Co., Ltd, Beijing, China
| | - Han-Qing Zhao
- Research and Development Center, Beijing USCI Medical Laboratory Co., Ltd, Beijing, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
10
|
Si L, Wang Z, Li XY, Song Y, Yao T, Xu E, Wang X, Wang C. Novel mutations and molecular pathways identified in patients with brain iron accumulation disorders. Neurogenetics 2023; 24:231-241. [PMID: 37453004 DOI: 10.1007/s10048-023-00725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Brain iron accumulation disorders (BIADs) are a group of diseases characterized by iron overload in deep gray matter nuclei, which is a common feature of neurodegenerative diseases. Although genetic factors have been reported to be one of the etiologies, much more details about the genetic background and molecular mechanism of BIADs remain unclear. This study aimed to illustrate the genetic characteristics of BIADs and clarify their molecular mechanisms. A total of 84 patients with BIADs were recruited from April 2018 to October 2022 at Xuanwu Hospital. Clinical characteristics including family history, consanguineous marriage history, and age at onset (AAO) were collected and assessed by two senior neurologists. Neuroimaging data were conducted for all the patients, including cranial magnetic resonance imaging (MRI) and susceptibility-weighted imaging (SWI). Whole-exome sequencing (WES) and capillary electrophoresis for detecting sequence mutation and trinucleotide repeat expansion, respectively, were conducted on all patients and part of their parents (whose samples were available). Variant pathogenicity was assessed according to the American College of Medical Genetics and Association for Molecular Pathology (ACMG/AMP). The NBIA and NBIA-like genes with mutations were included for bioinformatic analysis, using Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genome (KEGG). GO annotation and KEGG pathway analysis were performed on Metascape platform. In the 84 patients, 30 (35.7%) were found to carry mutations, among which 20 carried non-dynamic mutations (missense, stop-gained, frameshift, inframe, and exonic deletion) and 10 carried repeat expansion mutations. Compared with sporadic cases, familial cases had more genetic variants (non-dynamic mutation: P=0.025, dynamic mutation: P=0.003). AAO was 27.85±10.42 years in cases with non-dynamic mutations, which was significantly younger than those without mutations (43.13±17.17, t=3.724, P<0.001) and those with repeated expansions (45.40±8.90, t=4.550, P<0.001). Bioinformatic analysis suggested that genes in lipid metabolism, autophagy, mitochondria regulation, and ferroptosis pathways are more likely to be involved in the pathogenesis of BIADs. This study broadens the genetic spectrum of BIADs and has important implications in genetic counselling and clinical diagnosis. Patients diagnosed as BIADs with early AAO and family history are more likely to carry mutations. Bioinformatic analysis provides new insights into the molecular pathogenesis of BIADs, which may shed lights on the therapeutic strategy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Lianghao Si
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Zhanjun Wang
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Xu-Ying Li
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Yang Song
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Tingyan Yao
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Erhe Xu
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Xianling Wang
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Chaodong Wang
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
| |
Collapse
|
11
|
Smith KM, Wirrell EC, Andrade DM, Choi H, Trenité DKN, Jones H, Knupp KG, Mugar J, Nordli DR, Riva A, Stern JM, Striano P, Thiele EA, Zawar I. Clinical presentation and evaluation of epilepsy with eyelid myoclonia: Results of an international expert consensus panel. Epilepsia 2023; 64:2330-2341. [PMID: 37329145 DOI: 10.1111/epi.17683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE The objective of this study was to determine areas of consensus among an international panel of experts for the clinical presentation and diagnosis of epilepsy with eyelid myoclonia (EEM; formerly known as Jeavons syndrome) to improve a timely diagnosis. METHODS An international steering committee was convened of physicians and patients/caregivers with expertise in EEM. This committee summarized the current literature and identified an international panel of experts (comprising 25 physicians and five patients/caregivers). This international expert panel participated in a modified Delphi process, including three rounds of surveys to determine areas of consensus for the diagnosis of EEM. RESULTS There was a strong consensus that EEM is a female predominant generalized epilepsy syndrome with onset between 3 and 12 years of age and that eyelid myoclonia must be present to make the diagnosis. There was a strong consensus that eyelid myoclonia may go unrecognized for years prior to an epilepsy diagnosis. There was consensus that generalized tonic-clonic and absence seizures are typically or occasionally seen in patients. There was a consensus that atonic or focal seizures should lead to the consideration of reclassification or alternate diagnoses. There was a strong consensus that electroencephalography is required, whereas magnetic resonance imaging is not required for diagnosis. There was a strong consensus to perform genetic testing (either epilepsy gene panel or whole exome sequencing) when one or a combination of factors was present: family history of epilepsy, intellectual disability, or drug-resistant epilepsy. SIGNIFICANCE This international expert panel identified multiple areas of consensus regarding the presentation and evaluation of EEM. These areas of consensus may be used to inform clinical practice to shorten the time to the appropriate diagnosis.
Collapse
Affiliation(s)
- Kelsey M Smith
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Danielle M Andrade
- Department of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Hyunmi Choi
- Department of Neurology, Columbia University, New York, New York, USA
| | | | | | - Kelly G Knupp
- Department of Pediatrics, University of Colorado, Aurora, Colorado, USA
| | | | - Douglas R Nordli
- Department of Neurology, University of Chicago, Chicago, Illinois, USA
| | - Antonella Riva
- Istituto di Ricovero e Cura a Carattere Scientifico Istituto Giannina Gaslini and Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - John M Stern
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| | - Pasquale Striano
- Istituto di Ricovero e Cura a Carattere Scientifico Istituto Giannina Gaslini and Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Elizabeth A Thiele
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ifrah Zawar
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
12
|
Lu Y, Zhou Y, Guo J, Qi M, Lin Y, Zhang X, Xiang Y, Fu Q, Wang B. Integrated analysis of copy number variation-associated lncRNAs identifies candidates contributing to the etiologies of congenital kidney anomalies. Commun Biol 2023; 6:735. [PMID: 37460814 DOI: 10.1038/s42003-023-05101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are disorders resulting from defects in the development of the kidneys and their outflow tract. Copy number variations (CNVs) have been identified as important genetic variations leading to CAKUT, whereas most CAKUT-associated CNVs cannot be attributed to a specific pathogenic gene. Here we construct coexpression networks involving long noncoding RNAs (lncRNAs) within these CNVs (CNV-lncRNAs) using human kidney developmental transcriptomic data. The results show that CNV-lncRNAs encompassed in recurrent CAKUT associated CNVs have highly correlated expression with CAKUT genes in the developing kidneys. The regulatory effects of two hub CNV-lncRNAs (HSALNG0134318 in 22q11.2 and HSALNG0115943 in 17q12) in the module most significantly enriched in known CAKUT genes (CAKUT_sig1, P = 1.150 × 10-6) are validated experimentally. Our results indicate that the reduction of CNV-lncRNAs can downregulate CAKUT genes as predicted by our computational analyses. Furthermore, knockdown of HSALNG0134318 would downregulate HSALNG0115943 and affect kidney development related pathways. The results also indicate that the CAKUT_sig1 module has function significance involving multi-organ development. Overall, our findings suggest that CNV-lncRNAs play roles in regulating CAKUT genes, and the etiologies of CAKUT-associated CNVs should take account of effects on the noncoding genome.
Collapse
Affiliation(s)
- Yibo Lu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yiyang Zhou
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jing Guo
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ming Qi
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuwan Lin
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xingyu Zhang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ying Xiang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, 200127, China.
| | - Qihua Fu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, 200127, China.
| | - Bo Wang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, 200127, China.
| |
Collapse
|
13
|
Mao B, Lin N, Guo D, He D, Xue H, Chen L, He Q, Zhang M, Chen M, Huang H, Xu L. Molecular analysis and prenatal diagnosis of seven Chinese families with genetic epilepsy. Front Neurosci 2023; 17:1165601. [PMID: 37250406 PMCID: PMC10213446 DOI: 10.3389/fnins.2023.1165601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Genetic epilepsy is a large group of clinically and genetically heterogeneous neurological disorders characterized by recurrent seizures, which have a clear association with genetic defects. In this study, we have recruited seven families from China with neurodevelopmental abnormalities in which epilepsy was a predominant manifestation, aiming to elucidate the underlying causes and make a precise diagnosis for the cases. Methods Whole-exome sequencing (WES) combined with Sanger sequencing was used to identify the causative variants associated with the diseases in addition to essential imaging and biomedical examination. Results A gross intragenic deletion detected in MFSD8 was investigated via gap-polymerase chain reaction (PCR), real-time quantitative PCR (qPCR), and mRNA sequence analysis. We identified 11 variants in seven genes (ALDH7A1, CDKL5, PCDH19, QARS1, POLG, GRIN2A, and MFSD8) responsible for genetic epilepsy in the seven families, respectively. A total of six variants (c.1408T>G in ALDH7A1, c.1994_1997del in CDKL5, c.794G>A in QARS1, c.2453C>T in GRIN2A, and c.217dup and c.863+995_998+1480del in MFSD8) have not yet been reported to be associated with diseases and were all evaluated to be pathogenic or likely pathogenic according to the American College of Medical Genetics and Genomics (ACMG) guidelines. Methods Based on the molecular findings, we have associated the intragenic deletion in MFSD8 with the mutagenesis mechanism of Alu-mediated genomic rearrangements for the first time and provided genetic counseling, medical suggestions, and prenatal diagnosis for the families. In conclusion, molecular diagnosis is crucial to obtain improved medical outcomes and recurrence risk evaluation for genetic epilepsy.
Collapse
Affiliation(s)
- Bin Mao
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Danhua Guo
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Deqin He
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Huili Xue
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Lingji Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Qianqian He
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Min Zhang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Meihuan Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| |
Collapse
|
14
|
Smith KM, Wirrell EC, Andrade DM, Choi H, Trenité DKN, Knupp KG, Nordli DR, Riva A, Stern JM, Striano P, Thiele EA, Zawar I. A comprehensive narrative review of epilepsy with eyelid myoclonia. Epilepsy Res 2023; 193:107147. [PMID: 37121024 DOI: 10.1016/j.eplepsyres.2023.107147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
Epilepsy with eyelid myoclonia (EEM) is a generalized epilepsy syndrome with childhood-onset and 2:1 female predominance that consists of: 1. eyelid myoclonia with or without absence seizures, 2. eye closure induced seizures or EEG paroxysms, 3. clinical or EEG photosensitivity. While eyelid myoclonia is the disease hallmark, other seizure types, including absence seizures and generalized tonic-clonic seizures, may be present. It is thought to have a genetic etiology, and around one-third of patients may have a positive family history of epilepsy. Recently, specific genetic mutations have been recognized in a minority patients, including in SYNGAP1, NEXMIF, RORB, and CHD2 genes. There are no randomized controlled trials in EEM, and the management literature is largely restricted to small retrospective studies. Broad-spectrum antiseizure medications such as valproate, levetiracetam, lamotrigine, and benzodiazepines are typically used. Seizures typically persist into adulthood, and drug-resistant epilepsy is reported in over 50%.
Collapse
Affiliation(s)
- Kelsey M Smith
- Department of Neurology, Mayo Clinic, Rochester, MN, United States.
| | - Elaine C Wirrell
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | | | - Hyunmi Choi
- Department of Neurology, Columbia University, New York, NY, United States
| | | | - Kelly G Knupp
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Douglas R Nordli
- Department of Neurology, University of Chicago, Chicago, IL, United States
| | - Antonella Riva
- IRCCS Istituto Giannina Gaslini", Genova, Italy and Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - John M Stern
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, United States
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini", Genova, Italy and Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Elizabeth A Thiele
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Ifrah Zawar
- Department of Neurology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
15
|
Verbitsky M, Krishnamurthy S, Krithivasan P, Hughes D, Khan A, Marasà M, Vena N, Khosla P, Zhang J, Lim TY, Glessner JT, Weng C, Shang N, Shen Y, Hripcsak G, Hakonarson H, Ionita-Laza I, Levy B, Kenny EE, Loos RJ, Kiryluk K, Sanna-Cherchi S, Crosslin DR, Furth S, Warady BA, Igo RP, Iyengar SK, Wong CS, Parsa A, Feldman HI, Gharavi AG. Genomic Disorders in CKD across the Lifespan. J Am Soc Nephrol 2023; 34:607-618. [PMID: 36302597 PMCID: PMC10103259 DOI: 10.1681/asn.2022060725] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/15/2022] [Indexed: 01/24/2023] Open
Abstract
SIGNIFICANCE STATEMENT Pathogenic structural genetic variants, also known as genomic disorders, have been associated with pediatric CKD. This study extends those results across the lifespan, with genomic disorders enriched in both pediatric and adult patients compared with controls. In the Chronic Renal Insufficiency Cohort study, genomic disorders were also associated with lower serum Mg, lower educational performance, and a higher risk of death. A phenome-wide association study confirmed the link between kidney disease and genomic disorders in an unbiased way. Systematic detection of genomic disorders can provide a molecular diagnosis and refine prediction of risk and prognosis. BACKGROUND Genomic disorders (GDs) are associated with many comorbid outcomes, including CKD. Identification of GDs has diagnostic utility. METHODS We examined the prevalence of GDs among participants in the Chronic Kidney Disease in Children (CKiD) cohort II ( n =248), Chronic Renal Insufficiency Cohort (CRIC) study ( n =3375), Columbia University CKD Biobank (CU-CKD; n =1986), and the Family Investigation of Nephropathy and Diabetes (FIND; n =1318) compared with 30,746 controls. We also performed a phenome-wide association analysis (PheWAS) of GDs in the electronic MEdical Records and GEnomics (eMERGE; n =11,146) cohort. RESULTS We found nine out of 248 (3.6%) CKiD II participants carried a GD, replicating prior findings in pediatric CKD. We also identified GDs in 72 out of 6679 (1.1%) adult patients with CKD in the CRIC, CU-CKD, and FIND cohorts, compared with 199 out of 30,746 (0.65%) GDs in controls (OR, 1.7; 95% CI, 1.3 to 2.2). Among adults with CKD, we found recurrent GDs at the 1q21.1, 16p11.2, 17q12, and 22q11.2 loci. The 17q12 GD (diagnostic of renal cyst and diabetes syndrome) was most frequent, present in 1:252 patients with CKD and diabetes. In the PheWAS, dialysis and neuropsychiatric phenotypes were the top associations with GDs. In CRIC participants, GDs were associated with lower serum magnesium, lower educational achievement, and higher mortality risk. CONCLUSION Undiagnosed GDs are detected both in children and adults with CKD. Identification of GDs in these patients can enable a precise genetic diagnosis, inform prognosis, and help stratify risk in clinical studies. GDs could also provide a molecular explanation for nephropathy and comorbidities, such as poorer neurocognition for a subset of patients.
Collapse
Affiliation(s)
- Miguel Verbitsky
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | | | - Priya Krithivasan
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | - Daniel Hughes
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
| | - Atlas Khan
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | - Maddalena Marasà
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | - Natalie Vena
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | - Pavan Khosla
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | - Junying Zhang
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | - Tze Y. Lim
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | - Joseph T. Glessner
- Center for Applied Genomics and Department of Pediatrics, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Chunhua Weng
- Department of Biomedical Informatics, Columbia University, New York, New York
| | - Ning Shang
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
- Department of Biomedical Informatics, Columbia University, New York, New York
| | - Yufeng Shen
- Department of Systems Biology and Columbia Genome Center, Columbia University, New York, New York
| | - George Hripcsak
- Department of Biomedical Informatics, Columbia University, New York, New York
| | - Hakon Hakonarson
- Center for Applied Genomics and Department of Pediatrics, Perelman School of Medicine, Philadelphia, Pennsylvania
| | | | - Brynn Levy
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Eimear E. Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ruth J.F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | - David R. Crosslin
- Division of Biomedical Informatics and Genomics, Tulane University School of Medicine, New Orleans, Louisiana
| | - Susan Furth
- Departments of Pediatrics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bradley A. Warady
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Robert P. Igo
- Department of Population and Quantitative Health Sciences, Case Western Reserve University and Louis Stoke, Cleveland, Ohio
| | - Sudha K. Iyengar
- Department of Population and Quantitative Health Sciences, Case Western Reserve University and Louis Stoke, Cleveland, Ohio
| | - Craig S. Wong
- Division of Pediatric Nephrology, University of New Mexico Children’s Hospital, Albuquerque, New Mexico
| | - Afshin Parsa
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Harold I. Feldman
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Medicine, Perelman School of Medicine, Philadelphia, Pennsylvania
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ali G. Gharavi
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| |
Collapse
|
16
|
Brownstein CA, Douard E, Haynes RL, Koh HY, Haghighi A, Keywan C, Martin B, Alexandrescu S, Haas EA, Vargas SO, Wojcik MH, Jacquemont S, Poduri AH, Goldstein RD, Holm IA. Copy Number Variation and Structural Genomic Findings in 116 Cases of Sudden Unexplained Death between 1 and 28 Months of Age. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2200012. [PMID: 36910592 PMCID: PMC10000288 DOI: 10.1002/ggn2.202200012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/31/2022] [Indexed: 11/09/2022]
Abstract
In sudden unexplained death in pediatrics (SUDP) the cause of death is unknown despite an autopsy and investigation. The role of copy number variations (CNVs) in SUDP has not been well-studied. Chromosomal microarray (CMA) data are generated for 116 SUDP cases with age at death between 1 and 28 months. CNVs are classified using the American College of Medical Genetics and Genomics guidelines and CNVs in our cohort are compared to an autism spectrum disorder (ASD) cohort, and to a control cohort. Pathogenic CNVs are identified in 5 of 116 cases (4.3%). Variants of uncertain significance (VUS) favoring pathogenic CNVs are identified in 9 cases (7.8%). Several CNVs are associated with neurodevelopmental phenotypes including seizures, ASD, developmental delay, and schizophrenia. The structural variant 47,XXY is identified in two cases (2/69 boys, 2.9%) not previously diagnosed with Klinefelter syndrome. Pathogenicity scores for deletions are significantly elevated in the SUDP cohort versus controls (p = 0.007) and are not significantly different from the ASD cohort. The finding of pathogenic or VUS favoring pathogenic CNVs, or structural variants, in 12.1% of cases, combined with the observation of higher pathogenicity scores for deletions in SUDP versus controls, suggests that CMA should be included in the genetic evaluation of SUDP.
Collapse
|
17
|
Microdeletions and microduplications linked to severe congenital disorders in infertile men. Sci Rep 2023; 13:574. [PMID: 36631630 PMCID: PMC9834233 DOI: 10.1038/s41598-023-27750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Data on the clinical validity of DNA copy number variants (CNVs) in spermatogenic failure (SPGF) is limited. This study analyzed the genome-wide CNV profile in 215 men with idiopathic SPGF and 62 normozoospermic fertile men, recruited at the Andrology Clinic, Tartu University Hospital, Estonia. A two-fold higher representation of > 1 Mb CNVs was observed in men with SPGF (13%, n = 28) compared to controls (6.5%, n = 4). Seven patients with SPGF were identified as carriers of microdeletions (1q21.1; 2.4 Mb) or microduplications (3p26.3, 1.1 Mb; 7p22.3-p22.2, 1.56 Mb; 10q11.22, 1.42 Mb, three cases; Xp22.33; 2.3 Mb) linked to severe congenital conditions. Large autosomal CNV carriers had oligozoospermia, reduced or low-normal bitesticular volume (22-28 ml). The 7p22.3-p22.2 microduplication carrier presented mild intellectual disability, neuropsychiatric problems, and short stature. The Xp22.33 duplication at the PAR1/non-PAR boundary, previously linked to uterine agenesis, was detected in a patient with non-obstructive azoospermia. A novel recurrent intragenic deletion in testis-specific LRRC69 was significantly overrepresented in patients with SPGF compared to the general population (3.3% vs. 0.85%; χ2 test, OR = 3.9 [95% CI 1.8-8.4], P = 0.0001). Assessment of clinically valid CNVs in patients with SPGF will improve their management and counselling for general and reproductive health, including risk of miscarriage and congenital disorders in future offspring.
Collapse
|
18
|
Gokce-Samar Z, de Bellescize J, Arzimanoglou A, Putoux A, Chatron N, Lesca G, Portes VD. STAG2 microduplication in a patient with eyelid myoclonia and absences and a review of EMA-related reported genes. Eur J Med Genet 2022; 65:104636. [DOI: 10.1016/j.ejmg.2022.104636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 03/14/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022]
|
19
|
McKnight D, Morales A, Hatchell KE, Bristow SL, Bonkowsky JL, Perry MS, Berg AT, Borlot F, Esplin ED, Moretz C, Angione K, Ríos-Pohl L, Nussbaum RL, Aradhya S, Levy RJ, Parachuri VG, Lay-Son G, de Montellano DJDO, Ramirez-Garcia MA, Benítez Alonso EO, Ziobro J, Chirita-Emandi A, Felix TM, Kulasa-Luke D, Megarbane A, Karkare S, Chagnon SL, Humberson JB, Assaf MJ, Silva S, Zarroli K, Boyarchuk O, Nelson GR, Palmquist R, Hammond KC, Hwang ST, Boutlier SB, Nolan M, Batley KY, Chavda D, Reyes-Silva CA, Miroshnikov O, Zuccarelli B, Amlie-Wolf L, Wheless JW, Seinfeld S, Kanhangad M, Freeman JL, Monroy-Santoyo S, Rodriguez-Vazquez N, Ryan MM, Machie M, Guerra P, Hassan MJ, Candee MS, Bupp CP, Park KL, Muller E, Lupo P, Pedersen RC, Arain AM, Murphy A, Schatz K, Mu W, Kalika PM, Plaza L, Kellogg MA, Lora EG, Carson RP, Svystilnyk V, Venegas V, Luke RR, Jiang H, Stetsenko T, Dueñas-Roque MM, Trasmonte J, Burke RJ, Hurst AC, Smith DM, Massingham LJ, Pisani L, Costin CE, Ostrander B, Filloux FM, Ananth AL, Mohamed IS, Nechai A, Dao JM, Fahey MC, Aliu E, Falchek S, Press CA, Treat L, Eschbach K, Starks A, Kammeyer R, Bear JJ, Jacobson M, Chernuha V, Meibos B, et alMcKnight D, Morales A, Hatchell KE, Bristow SL, Bonkowsky JL, Perry MS, Berg AT, Borlot F, Esplin ED, Moretz C, Angione K, Ríos-Pohl L, Nussbaum RL, Aradhya S, Levy RJ, Parachuri VG, Lay-Son G, de Montellano DJDO, Ramirez-Garcia MA, Benítez Alonso EO, Ziobro J, Chirita-Emandi A, Felix TM, Kulasa-Luke D, Megarbane A, Karkare S, Chagnon SL, Humberson JB, Assaf MJ, Silva S, Zarroli K, Boyarchuk O, Nelson GR, Palmquist R, Hammond KC, Hwang ST, Boutlier SB, Nolan M, Batley KY, Chavda D, Reyes-Silva CA, Miroshnikov O, Zuccarelli B, Amlie-Wolf L, Wheless JW, Seinfeld S, Kanhangad M, Freeman JL, Monroy-Santoyo S, Rodriguez-Vazquez N, Ryan MM, Machie M, Guerra P, Hassan MJ, Candee MS, Bupp CP, Park KL, Muller E, Lupo P, Pedersen RC, Arain AM, Murphy A, Schatz K, Mu W, Kalika PM, Plaza L, Kellogg MA, Lora EG, Carson RP, Svystilnyk V, Venegas V, Luke RR, Jiang H, Stetsenko T, Dueñas-Roque MM, Trasmonte J, Burke RJ, Hurst AC, Smith DM, Massingham LJ, Pisani L, Costin CE, Ostrander B, Filloux FM, Ananth AL, Mohamed IS, Nechai A, Dao JM, Fahey MC, Aliu E, Falchek S, Press CA, Treat L, Eschbach K, Starks A, Kammeyer R, Bear JJ, Jacobson M, Chernuha V, Meibos B, Wong K, Sweney MT, Espinoza AC, Van Orman CB, Weinstock A, Kumar A, Soler-Alfonso C, Nolan DA, Raza M, Rojas Carrion MD, Chari G, Marsh ED, Shiloh-Malawsky Y, Parikh S, Gonzalez-Giraldo E, Fulton S, Sogawa Y, Burns K, Malets M, Montiel Blanco JD, Habela CW, Wilson CA, Guzmán GG, Pavliuk M. Genetic Testing to Inform Epilepsy Treatment Management From an International Study of Clinical Practice. JAMA Neurol 2022; 79:1267-1276. [PMID: 36315135 PMCID: PMC9623482 DOI: 10.1001/jamaneurol.2022.3651] [Show More Authors] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Importance It is currently unknown how often and in which ways a genetic diagnosis given to a patient with epilepsy is associated with clinical management and outcomes. Objective To evaluate how genetic diagnoses in patients with epilepsy are associated with clinical management and outcomes. Design, Setting, and Participants This was a retrospective cross-sectional study of patients referred for multigene panel testing between March 18, 2016, and August 3, 2020, with outcomes reported between May and November 2020. The study setting included a commercial genetic testing laboratory and multicenter clinical practices. Patients with epilepsy, regardless of sociodemographic features, who received a pathogenic/likely pathogenic (P/LP) variant were included in the study. Case report forms were completed by all health care professionals. Exposures Genetic test results. Main Outcomes and Measures Clinical management changes after a genetic diagnosis (ie, 1 P/LP variant in autosomal dominant and X-linked diseases; 2 P/LP variants in autosomal recessive diseases) and subsequent patient outcomes as reported by health care professionals on case report forms. Results Among 418 patients, median (IQR) age at the time of testing was 4 (1-10) years, with an age range of 0 to 52 years, and 53.8% (n = 225) were female individuals. The mean (SD) time from a genetic test order to case report form completion was 595 (368) days (range, 27-1673 days). A genetic diagnosis was associated with changes in clinical management for 208 patients (49.8%) and usually (81.7% of the time) within 3 months of receiving the result. The most common clinical management changes were the addition of a new medication (78 [21.7%]), the initiation of medication (51 [14.2%]), the referral of a patient to a specialist (48 [13.4%]), vigilance for subclinical or extraneurological disease features (46 [12.8%]), and the cessation of a medication (42 [11.7%]). Among 167 patients with follow-up clinical information available (mean [SD] time, 584 [365] days), 125 (74.9%) reported positive outcomes, 108 (64.7%) reported reduction or elimination of seizures, 37 (22.2%) had decreases in the severity of other clinical signs, and 11 (6.6%) had reduced medication adverse effects. A few patients reported worsening of outcomes, including a decline in their condition (20 [12.0%]), increased seizure frequency (6 [3.6%]), and adverse medication effects (3 [1.8%]). No clinical management changes were reported for 178 patients (42.6%). Conclusions and Relevance Results of this cross-sectional study suggest that genetic testing of individuals with epilepsy may be materially associated with clinical decision-making and improved patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Joshua L. Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City,Center for Personalized Medicine, Primary Children’s Hospital, Salt Lake City, Utah
| | - Michael Scott Perry
- Jane and John Justin Neuroscience Center, Cook Children’s Medical Center, Fort Worth, Texas
| | - Anne T. Berg
- Department of Neurology, Northwestern University—Feinberg School of Medicine, Chicago, Illinois,COMBINEDBrain, Brentwood, Tennessee
| | - Felippe Borlot
- Section of Neurology, Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada,Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | - Katie Angione
- Children’s Hospital Colorado, Aurora,Department of Pediatrics, University of Colorado School of Medicine, Aurora
| | - Loreto Ríos-Pohl
- Clinical Integral de Epilepsia, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | | | | | | | - Rebecca J. Levy
- Division of Medical Genetics, Lucile Packard Children’s Hospital at Stanford University, Stanford, California
- Division of Child Neurology, Lucile Packard Children’s Hospital at Stanford University, Stanford, California
| | | | - Guillermo Lay-Son
- Genetic Unit, Pediatrics Division, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Miguel Angel Ramirez-Garcia
- Genetics Department, National Institute of Neurology and Neurosurgery, “Manuel Velasco Suárez,” Mexico City, Mexico
| | - Edmar O. Benítez Alonso
- Genetics Department, National Institute of Neurology and Neurosurgery, “Manuel Velasco Suárez,” Mexico City, Mexico
| | - Julie Ziobro
- Department of Pediatrics, University of Michigan, Ann Arbor
| | - Adela Chirita-Emandi
- Genetic Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy “Victor Babes” Timisoara, Timis, Romania
- Regional Center of Medical Genetics Timis, Clinical Emergency Hospital for Children “Louis Turcanu” Timisoara, Timis, Romania
| | - Temis M. Felix
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Dianne Kulasa-Luke
- NeuroDevelopmental Science Center, Akron Children’s Hospital, Akron, Ohio
| | - Andre Megarbane
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
- Institut Jerome Lejeune, Paris, France
| | | | | | | | | | - Sebastian Silva
- Child Neurology Service, Hospital de Puerto Montt, Puerto Montt, Chile
| | | | - Oksana Boyarchuk
- I.Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Gary R. Nelson
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City
| | - Rachel Palmquist
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City
| | - Katherine C. Hammond
- Department of Pediatric Neurology, University of Alabama at Birmingham, Birmingham
| | - Sean T. Hwang
- Zucker School of Medicine, Hofstra Northwell, Hempstead, New York
| | - Susan B. Boutlier
- ECU Physician Internal Medicine Pediatric Neurology, Greenville, North Carolina
| | | | - Kaitlin Y. Batley
- Department of Pediatrics and Neurology, UT Southwestern, Dallas, Texas
| | - Devraj Chavda
- SUNY Downstate Health Sciences University, Brooklyn, New York
| | | | | | | | | | - James W. Wheless
- Pediatric Neurology, University of Tennessee Health Science Center, Memphis
- Le Bonheur Comprehensive Epilepsy Program & Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, Tennessee
| | | | - Manoj Kanhangad
- Department of Paediatrics, Monash University, Clayton, Australia
| | | | | | | | - Monique M. Ryan
- The Royal Children’s Hospital Melbourne, Melbourne, Australia
- Murdoch Children’s Research Institute, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| | - Michelle Machie
- Department of Pediatrics and Neurology, UT Southwestern, Dallas, Texas
| | - Patricio Guerra
- Universidad San Sebastián, Department of Pediatrics, Medicine School, Patagonia Campus, Puerto Montt, Chile
| | - Muhammad Jawad Hassan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Meghan S. Candee
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City
| | - Caleb P. Bupp
- Spectrum Health, West Michigan Helen DeVos Children’s Hospital, Grand Rapids, Michigan
| | - Kristen L. Park
- Children’s Hospital Colorado, Aurora
- Department of Pediatrics, University of Colorado School of Medicine, Aurora
- Department of Neurology, University of Colorado School of Medicine, Aurora
| | - Eric Muller
- Clinical Genetics, Stanford Children’s Health Specialty Services, San Francisco, California
| | - Pamela Lupo
- Division of Neurology, Department of Pediatrics, University of Texas Medical Branch, League City
| | | | - Amir M. Arain
- Division of Epilepsy, Department of Neurology, University of Utah School of Medicine, Salt Lake City
| | - Andrea Murphy
- Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana
| | | | - Weiyi Mu
- Johns Hopkins University, Baltimore, Maryland
| | | | - Lautaro Plaza
- Hospital Materno Perinatal “Mónica Pretelini Sáenz,” Toluca, México
| | | | - Evelyn G. Lora
- Dominican Neurological and Neurosurgical Society, Santo Domingo, Dominican Republic
| | | | | | - Viviana Venegas
- Clínica Alemana de Santiago, Universidad del Desarrollo, Pediatric Neurology Unit, Santiago, Chile
| | - Rebecca R. Luke
- Jane and John Justin Neuroscience Center, Cook Children’s Medical Center, Fort Worth, Texas
| | | | | | | | | | - Rebecca J. Burke
- Division of Medical Genetics, Department of Pediatrics, West Virginia University School of Medicine, Morgantown
- Division of Neonatology, Department of Pediatrics, West Virginia University School of Medicine, Morgantown
| | - Anna C.E. Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham
| | | | - Lauren J. Massingham
- Hasbro Children’s Hospital, Providence, Rhode Island
- Alpert Medical School, Brown University, Providence, Rhode Island
| | - Laura Pisani
- Zucker School of Medicine, Hofstra Northwell, Hempstead, New York
- Northwell Health, Medical Genetics, Great Neck, New York
| | | | - Betsy Ostrander
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City
| | - Francis M. Filloux
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City
| | - Amitha L. Ananth
- Department of Pediatric Neurology, University of Alabama at Birmingham, Birmingham
| | - Ismail S. Mohamed
- Department of Pediatric Neurology, University of Alabama at Birmingham, Birmingham
| | - Alla Nechai
- Neurology Department, Kiev City Children Clinical Hospital No. 1, Kyiv City, Ukraine
| | - Jasmin M. Dao
- Adult and Child Neurology Medical Associates, Long Beach, California
- Miller Children’s Hospital, Long Beach, California
| | - Michael C. Fahey
- Department of Paediatrics, Monash University, Clayton, Australia
| | - Ermal Aliu
- Department of Genetics, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Stephen Falchek
- Nemours Children’s Hospital, Wilmington, Delaware
- Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Craig A. Press
- Children’s Hospital Colorado, Aurora
- Department of Pediatrics, University of Colorado School of Medicine, Aurora
- Department of Neurology, University of Colorado School of Medicine, Aurora
| | - Lauren Treat
- Children’s Hospital Colorado, Aurora
- Department of Pediatrics, University of Colorado School of Medicine, Aurora
- Department of Neurology, University of Colorado School of Medicine, Aurora
| | - Krista Eschbach
- Children’s Hospital Colorado, Aurora
- Department of Pediatrics, University of Colorado School of Medicine, Aurora
- Department of Neurology, University of Colorado School of Medicine, Aurora
| | - Angela Starks
- Children’s Hospital Colorado, Aurora
- Department of Pediatrics, University of Colorado School of Medicine, Aurora
- Department of Neurology, University of Colorado School of Medicine, Aurora
| | - Ryan Kammeyer
- Children’s Hospital Colorado, Aurora
- Department of Pediatrics, University of Colorado School of Medicine, Aurora
- Department of Neurology, University of Colorado School of Medicine, Aurora
| | - Joshua J. Bear
- Children’s Hospital Colorado, Aurora
- Department of Pediatrics, University of Colorado School of Medicine, Aurora
- Department of Neurology, University of Colorado School of Medicine, Aurora
| | - Mona Jacobson
- Children’s Hospital Colorado, Aurora
- Department of Pediatrics, University of Colorado School of Medicine, Aurora
- Department of Neurology, University of Colorado School of Medicine, Aurora
| | - Veronika Chernuha
- Pediatric Neurology Institute, “Dana-Dwek” Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | - Kristen Wong
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City
| | - Matthew T. Sweney
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City
| | - A. Chris Espinoza
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City
| | - Colin B. Van Orman
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City
| | - Arie Weinstock
- Division of Child Neurology, Department of Neurology, University at Buffalo, Buffalo, New York
- Oishei Children’s Hospital, Buffalo, New York
| | - Ashutosh Kumar
- Department of Pediatrics and Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Muhammad Raza
- Nishtar Medical University, Multan, Punjab, Pakistan
| | | | - Geetha Chari
- SUNY Downstate Health Sciences University, Brooklyn, New York
- Kings County Hospital Center, Brooklyn, New York
| | - Eric D. Marsh
- Division of Child Neurology, Departments of Neurology and Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- University of Pennsylvania Perelman School of Medicine, Philadelphia
| | | | - Sumit Parikh
- Neurogenetics, Cleveland Clinic, Cleveland, Ohio
| | | | - Stephen Fulton
- Pediatric Neurology, University of Tennessee Health Science Center, Memphis
- Le Bonheur Comprehensive Epilepsy Program & Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, Tennessee
| | - Yoshimi Sogawa
- UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | | | | - Carey A. Wilson
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City
| | - Guillermo G. Guzmán
- Servicio Neuropsiquiatria Infantil, Hospital San Borja Arriarán, Santiago, Chile
| | | | | |
Collapse
|
20
|
Krey I, Platzer K, Esterhuizen A, Berkovic SF, Helbig I, Hildebrand MS, Lerche H, Lowenstein D, Møller RS, Poduri A, Sadleir L, Sisodiya SM, Weckhuysen S, Wilmshurst JM, Weber Y, Lemke JR. Current practice in diagnostic genetic testing of the epilepsies. Epileptic Disord 2022; 24:765-786. [PMID: 35830287 PMCID: PMC10752379 DOI: 10.1684/epd.2022.1448] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/10/2022] [Indexed: 01/19/2023]
Abstract
Epilepsy genetics is a rapidly developing field, in which novel disease-associated genes, novel mechanisms associated with epilepsy, and precision medicine approaches are continuously being identified. In the past decade, advances in genomic knowledge and analysis platforms have begun to make clinical genetic testing accessible for, in principle, people of all ages with epilepsy. For this reason, the Genetics Commission of the International League Against Epilepsy (ILAE) presents this update on clinical genetic testing practice, including current techniques, indications, yield of genetic testing, recommendations for pre- and post-test counseling, and follow-up after genetic testing is completed. We acknowledge that the resources vary across different settings but highlight that genetic diagnostic testing for epilepsy should be prioritized when the likelihood of an informative finding is high. Results of genetic testing, in particular the identification of causative genetic variants, are likely to improve individual care. We emphasize the importance of genetic testing for individuals with epilepsy as we enter the era of precision therapy.
Collapse
Affiliation(s)
- Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Alina Esterhuizen
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| | - Samuel F. Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne (Austin Health), Heidelberg, VIC, Australia
| | - Ingo Helbig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Building C, Arnold-Heller-Straße 3, 24105 Kiel, Germany
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104 USA
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104 USA
| | - Michael S. Hildebrand
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg and Murdoch Children’s Research Institute, Royal Children’s Hospital, Victoria, Australia
| | - Holger Lerche
- Department of Epileptology and Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Daniel Lowenstein
- Department of Neurology, University of California, San Francisco, USA
| | - Rikke S. Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lynette Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology London, UK and Chalfont Centre for Epilepsy, Buckinghamshire, UK
| | - Sarah Weckhuysen
- Center for Molecular Neurology, VIB-University of Antwerp, VIB, Antwerp, Belgium; Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Jo M. Wilmshurst
- Department of Paediatric Neurology, Paediatric and Child Health, Red Cross War Memorial Children’s Hospital, Neuroscience Institute, University of Cape Town, South Africa
| | - Yvonne Weber
- Department of Epileptology and Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
- Department of Epileptology and Neurology, University of Aachen, Germany
| | - Johannes R. Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
21
|
Lee S, Kim BR, Kim YO. Rates of rare copy number variants in different circumstances among patients with genetic developmental and epileptic encephalopathy. Sci Prog 2022; 105:368504221131233. [PMID: 36217831 PMCID: PMC10481157 DOI: 10.1177/00368504221131233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Most patients with developmental and epileptic encephalopathy (DEE) have genetic etiology, which has been uncovered with different methods. Although chromosomal microarray analysis (CMA) has been broadly used in patients with DEE, data is still limited. METHODS Among 560 children (<18 years) who underwent CMA in our hospital between January 2013 and June 2021, 146 patients with developmental delay and recurrent seizures were screened. Patients with major brain abnormalities, metabolic abnormalities, and specific syndromes were excluded. The rate of rare copy number variants (CNVs) was estimated in total and according to seizure-onset age, relation to first seizure with the diagnosis of developmental delay, epilepsy syndromes, and organ anomalies. RESULTS Among the 110 patients enrolled, the rate of rare CNVs was 16.4%, varying by seizure-onset age: 33.3% in three neonates, 21.2% in 33 infants, 13.3% in 45 early childhood patients, 5.3% in 19 late childhood patients, and 30.0% in 10 adolescents. In relation to the first seizure with the diagnosis of developmental delay, the rates were 3.7%, 22.2%, and 12.5% in "before", "after", and "concurrent" subclasses, respectively. The rates of rare CNVs were 16.7% in "other predominantly focal or multifocal epilepsy", 28.6% in "other predominantly generalized epilepsy (PGE)", and 15.4% in West syndrome. The rates were 27.8% in minor brain anomalies, 37.5% in facial dysmorphism, and 22.2%, 20.0%, and 57.1% in endocrine, genitourinary and cardiovascular anomalies, respectively. CONCLUSION The rate of rare CNVs in patients with genetic DEE was 16.4% in total, which was higher in seizures occurring below the infantile period or after the diagnosis of developmental delay, in PGE, and in the presence of facial dysmorphism or cardiovascular anomalies.
Collapse
Affiliation(s)
- Sanghoon Lee
- Department of Pediatrics, Chonnam National University Children’s Hospital, Gwangju, Republic of Korea
| | - Bo Ram Kim
- Department of Pediatrics, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Young Ok Kim
- Department of Pediatrics, Chonnam National University Children’s Hospital, Gwangju, Republic of Korea
- Department of Pediatrics, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
22
|
Krey I, Platzer K, Lemke JR. Monogenetic epilepsies and how to approach them in 2022. MED GENET-BERLIN 2022; 34:201-205. [PMID: 38835882 PMCID: PMC11006248 DOI: 10.1515/medgen-2022-2143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Affiliation(s)
- Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
23
|
A Multi-Disciplinary Team Approach to Genomic Testing for Drug-Resistant Epilepsy Patients—The GENIE Study. J Clin Med 2022; 11:jcm11144238. [PMID: 35888005 PMCID: PMC9319736 DOI: 10.3390/jcm11144238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Background. The genomic era has led to enormous progress in clinical care and a multi-disciplinary team (MDT) approach is imperative for integration of genomics into epilepsy patient care. Methods. The MDT approach involved patient selection, genomic testing choice, variant discussions and return of results. Genomics analysis included cytogenomic testing and whole exome sequencing (WES). Neurologist surveys were undertaken at baseline and after genomic testing to determine if genomic diagnoses would alter their management, and if there was a change in confidence in genomic testing and neurologist perceptions of the MDT approach. Results. The total diagnostic yield from all genomic testing was 17% (11/66), with four diagnoses from cytogenomic analyses. All chromosomal microarray (CMA) diagnoses were in patients seen by adult neurologists. Diagnostic yield for WES was 11% (7/62). The most common gene with pathogenic variants was DCX, reported in three patients, of which two were mosaic. The genomic diagnosis impacted management in 82% (9/11). There was increased confidence with integrating genomics into clinical care (Pearson chi square = 83, p = 0.004) and qualitative comments were highly supportive of the MDT approach. Conclusions. We demonstrated diagnostic yield from genomic testing, and the impact on management in a cohort with drug-resistant epilepsy. The MDT approach increased confidence in genomic testing and neurologists valued the input from this approach. The utility of CMA was demonstrated in epilepsy patients seen by adult neurologists as was the importance of considering mosaicism for previously undiagnosed patients.
Collapse
|
24
|
Complex Diagnostics of Non-Specific Intellectual Developmental Disorder. Int J Mol Sci 2022; 23:ijms23147764. [PMID: 35887114 PMCID: PMC9323143 DOI: 10.3390/ijms23147764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Intellectual development disorder (IDD) is characterized by a general deficit in intellectual and adaptive functioning. In recent years, there has been a growing interest in studying the genetic structure of IDD. Of particular difficulty are patients with non-specific IDD, for whom it is impossible to establish a clinical diagnosis without complex genetic diagnostics. We examined 198 patients with non-specific IDD from 171 families using whole-exome sequencing and chromosome microarray analysis. Hereditary forms of IDD account for at least 35.7% of non-specific IDD, of which 26.9% are monogenic forms. Variants in the genes associated with the BAF (SWI/SNF) complex were the most frequently identified. We were unable to identify phenotypic features that would allow differential diagnosis of monogenic and microstructural chromosomal rearrangements in non-specific IDD at the stage of clinical examination, but due to its higher efficiency, exome sequencing should be the diagnostic method of the highest priority study after the standard examination of patients with NIDD in Russia.
Collapse
|
25
|
Fisher RS, Acharya JN, Baumer FM, French JA, Parisi P, Solodar JH, Szaflarski JP, Thio LL, Tolchin B, Wilkins AJ, Kasteleijn-Nolst Trenité D. Visually sensitive seizures: An updated review by the Epilepsy Foundation. Epilepsia 2022; 63:739-768. [PMID: 35132632 DOI: 10.1111/epi.17175] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/19/2022]
Abstract
Light flashes, patterns, or color changes can provoke seizures in up to 1 in 4000 persons. Prevalence may be higher because of selection bias. The Epilepsy Foundation reviewed light-induced seizures in 2005. Since then, images on social media, virtual reality, three-dimensional (3D) movies, and the Internet have proliferated. Hundreds of studies have explored the mechanisms and presentations of photosensitive seizures, justifying an updated review. This literature summary derives from a nonsystematic literature review via PubMed using the terms "photosensitive" and "epilepsy." The photoparoxysmal response (PPR) is an electroencephalography (EEG) phenomenon, and photosensitive seizures (PS) are seizures provoked by visual stimulation. Photosensitivity is more common in the young and in specific forms of generalized epilepsy. PS can coexist with spontaneous seizures. PS are hereditable and linked to recently identified genes. Brain imaging usually is normal, but special studies imaging white matter tracts demonstrate abnormal connectivity. Occipital cortex and connected regions are hyperexcitable in subjects with light-provoked seizures. Mechanisms remain unclear. Video games, social media clips, occasional movies, and natural stimuli can provoke PS. Virtual reality and 3D images so far appear benign unless they contain specific provocative content, for example, flashes. Images with flashes brighter than 20 candelas/m2 at 3-60 (particularly 15-20) Hz occupying at least 10 to 25% of the visual field are a risk, as are red color flashes or oscillating stripes. Equipment to assay for these characteristics is probably underutilized. Prevention of seizures includes avoiding provocative stimuli, covering one eye, wearing dark glasses, sitting at least two meters from screens, reducing contrast, and taking certain antiseizure drugs. Measurement of PPR suppression in a photosensitivity model can screen putative antiseizure drugs. Some countries regulate media to reduce risk. Visually-induced seizures remain significant public health hazards so they warrant ongoing scientific and regulatory efforts and public education.
Collapse
Affiliation(s)
- Robert S Fisher
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Jayant N Acharya
- Department of Neurology, Penn State Health, Hershey, Pennsylvania, USA
| | - Fiona Mitchell Baumer
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Jacqueline A French
- NYU Comprehensive Epilepsy Center, Epilepsy Foundation, New York, New York, USA
| | - Pasquale Parisi
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Rome, Italy
| | - Jessica H Solodar
- American Medical Writers Association-New England Chapter, Boston, Massachusetts, USA
| | - Jerzy P Szaflarski
- Department of Neurology, Neurobiology and Neurosurgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Liu Lin Thio
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Benjamin Tolchin
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
26
|
Deficiency of nde1 in zebrafish induces brain inflammatory responses and autism-like behavior. iScience 2022; 25:103876. [PMID: 35243238 PMCID: PMC8861649 DOI: 10.1016/j.isci.2022.103876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/10/2022] [Accepted: 02/01/2022] [Indexed: 12/27/2022] Open
Abstract
The cytoskeletal protein NDE1 plays an important role in chromosome segregation, neural precursor differentiation, and neuronal migration. Clinical studies have shown that NDE1 deficiency is associated with several neuropsychiatric disorders including autism. Here, we generated nde1 homologous deficiency zebrafish (nde1−/−) to elucidate the cellular molecular mechanisms behind it. nde1−/− exhibit increased neurological apoptotic responses at early infancy, enlarged ventricles, and shrank valvula cerebelli in adult brain tissue. Behavioral analysis revealed that nde1−/− displayed autism-like behavior traits such as increased locomotor activity and repetitive stereotype behaviors and impaired social and kin recognition behaviors. Furthermore, nde1 mRNA injection rescued apoptosis in early development, and minocycline treatment rescued impaired social behavior and overactive motor activity by inhibiting inflammatory cytokines. In this study, we revealed that nde1 homozygous deletion leads to abnormal neurological development with autism-related behavioral phenotypes and that inflammatory responses in the brain are an important molecular basis behind it. nde1−/− zebrafish display autism-like behavior features nde1 deficiency results in immune responses in the brain Minocycline treatment inhibits immune responses in the adult nde1−/− brain Minocycline rescued the impaired social behavior and locomotor activity
Collapse
|
27
|
Chen S, Deng X, Xiong J, Chen B, He F, Yang L, Yang L, Peng J, Yin F. NEXMIF mutations in intellectual disability and epilepsy: A report of 2 cases and literature review. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:265-270. [PMID: 35545418 PMCID: PMC10930526 DOI: 10.11817/j.issn.1672-7347.2022.210070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 06/15/2023]
Abstract
More than 100 genes located on the X chromosome have been found to be associated with X-linked intellectual disability (XLID) to date, and NEXMIF is a pathogenic gene for XLID. In addition to intellectual disability, patients with NEXMIF gene mutation can also have other neurological symptoms, such as epilepsy, abnormal behavior, and hypotonia, as well as abnormalities of other systems. Two children with intellectual disability and epilepsy caused by NEXMIF gene mutation were treated in the Department of Pediatrics, Xiangya Hospital, Central South University from March 8, 2017 to June 20, 2020. Patient 1, a 7 years and 8 months old girl, visited our department because of the delayed psychomotor development. Physical examination revealed strabismus (right eye), hyperactivity, and loss of concentration. Intelligence test showed a developmental quotient of 43.6. Electroencephalogram showed abnormal discharge, and cranial imaging appeared normal. Whole exome sequencing revealed a de novo heterozygous mutation, c.2189delC (p.S730Lfs*17) in the NEXMIF gene (NM_001008537). During the follow-up period, the patient developed epileptic seizures, mainly manifested as generalized and absent seizures. She took the medicine of levetiracetam and lamotrigine, and the seizures were under control. Patient 2, a 6-months old boy, visited our department due to developmental regression and seizures. He showed poor reactions to light and sound, and was not able to raise head without aid. Hypotonia was also noticed. The electroencephalogram showed intermittent hyperarrhythmia, and spasms were monitored. He was given topiramate and adrenocorticotrophic hormone (ACTH). Whole exome sequencing detected a de novo c.592C>T (Q198X) mutation in NEXMIF gene. During the follow-up period, the seizures were reduced with vigabatrin. He had no obvious progress in the psychomotor development, and presented strabismus. There were 91 cases reported abroad, 1 case reported in China, and 2 patients were included in this study. A total of 85 variants in NEXMIF gene were found, involving 83 variants reported in PubMed and HGMD, and the 2 new variants presented in our patients. The patients with variants in NEXMIF gene all had mild to severe intellectual disability. Behavioral abnormalities, epilepsy, hypotonia, and other neurological symptoms are frequently presented. The phenotype of male partially overlaps with that of female. Male patients often have more severe intellectual disability, impaired language, and autistic features, while female patients often have refractory epilepsy. Most of the variants reported so far were loss-of-function resulted in the reduced protein expression of NEXMIF. The degree of NEXMIF loss appears to correlate with the severity of the phenotype.
Collapse
Affiliation(s)
- Shimeng Chen
- Department of Pediatrics, Xiangya Hospital, Central South University; Research Center of Children Intellectual Disability of Hunan Province, Changsha 410008, China.
| | - Xiaolu Deng
- Department of Pediatrics, Xiangya Hospital, Central South University; Research Center of Children Intellectual Disability of Hunan Province, Changsha 410008, China
| | - Juan Xiong
- Department of Pediatrics, Xiangya Hospital, Central South University; Research Center of Children Intellectual Disability of Hunan Province, Changsha 410008, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University; Research Center of Children Intellectual Disability of Hunan Province, Changsha 410008, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University; Research Center of Children Intellectual Disability of Hunan Province, Changsha 410008, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University; Research Center of Children Intellectual Disability of Hunan Province, Changsha 410008, China
| | - Li Yang
- Department of Pediatrics, Xiangya Hospital, Central South University; Research Center of Children Intellectual Disability of Hunan Province, Changsha 410008, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University; Research Center of Children Intellectual Disability of Hunan Province, Changsha 410008, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University; Research Center of Children Intellectual Disability of Hunan Province, Changsha 410008, China.
| |
Collapse
|
28
|
Beltrán-Corbellini Á, Aledo-Serrano Á, Møller RS, Pérez-Palma E, García-Morales I, Toledano R, Gil-Nagel A. Epilepsy Genetics and Precision Medicine in Adults: A New Landscape for Developmental and Epileptic Encephalopathies. Front Neurol 2022; 13:777115. [PMID: 35250806 PMCID: PMC8891166 DOI: 10.3389/fneur.2022.777115] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/27/2022] [Indexed: 12/14/2022] Open
Abstract
This review aims to provide an updated perspective of epilepsy genetics and precision medicine in adult patients, with special focus on developmental and epileptic encephalopathies (DEEs), covering relevant and controversial issues, such as defining candidates for genetic testing, which genetic tests to request and how to interpret them. A literature review was conducted, including findings in the discussion and recommendations. DEEs are wide and phenotypically heterogeneous electroclinical syndromes. They generally have a pediatric presentation, but patients frequently reach adulthood still undiagnosed. Identifying the etiology is essential, because there lies the key for precision medicine. Phenotypes modify according to age, and although deep phenotyping has allowed to outline certain entities, genotype-phenotype correlations are still poor, commonly leading to long-lasting diagnostic odysseys and ineffective therapies. Recent adult series show that the target patients to be identified for genetic testing are those with epilepsy and different risk factors. The clinician should take active part in the assessment of the pathogenicity of the variants detected, especially concerning variants of uncertain significance. An accurate diagnosis implies precision medicine, meaning genetic counseling, prognosis, possible future therapies, and a reduction of iatrogeny. Up to date, there are a few tens of gene mutations with additional concrete treatments, including those with restrictive/substitutive therapies, those with therapies modifying signaling pathways, and channelopathies, that are worth to be assessed in adults. Further research is needed regarding phenotyping of adult syndromes, early diagnosis, and the development of targeted therapies.
Collapse
Affiliation(s)
| | - Ángel Aledo-Serrano
- Epilepsy Program, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
- *Correspondence: Ángel Aledo-Serrano
| | - Rikke S. Møller
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Centre, Dianalund, Denmark
| | - Eduardo Pérez-Palma
- Universidad del Desarrollo, Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Santiago, Chile
| | - Irene García-Morales
- Epilepsy Program, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
- Epilepsy Unit, Neurology Department, Clínico San Carlos University Hospital, Madrid, Spain
| | - Rafael Toledano
- Epilepsy Program, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
- Epilepsy Unit, Neurology Department, Ramón y Cajal University Hospital, Madrid, Spain
| | - Antonio Gil-Nagel
- Epilepsy Program, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
| |
Collapse
|
29
|
Frueh JS, Press DZ, Sanders JS. Diagnosis and Workup of Intellectual Disability in Adults: Suggested Strategies for the Adult Neurologist. Neurol Clin Pract 2022; 11:534-540. [PMID: 34992961 DOI: 10.1212/cpj.0000000000001128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/24/2021] [Indexed: 11/15/2022]
Abstract
Purpose of Review Etiologic investigations for adults with intellectual disability (ID) pose a special challenge to many adult neurologists. The adaptability of pediatric guidelines for workup of ID to adult populations has not been clearly established. We review the current recommendations on etiologic workup of ID in children and adults and provide initial guidance for adult neurologists who care for individuals with ID of unknown etiology. Recent Findings Etiologic workup, including genetic testing, is recommended in individuals with ID of unknown origin. Workup should be guided by a thoughtful history and physical examination, which can help identify certain causes of ID. Summary Specific diagnoses may help guide management and surveillance of comorbid conditions in individuals with ID. Etiologic investigations of adults with ID include genetic and metabolic testing and brain imaging in the appropriate clinical setting.
Collapse
Affiliation(s)
- Julia Sophie Frueh
- Department of Neurology (JSF), Boston Children's Hospital, MA; Department of Neurology (JSF, DZP), Beth Israel Deaconess Medical Center, Boston, MA; and Department of Pediatrics (JSS), University of Colorado, Denver
| | - Daniel Zvi Press
- Department of Neurology (JSF), Boston Children's Hospital, MA; Department of Neurology (JSF, DZP), Beth Israel Deaconess Medical Center, Boston, MA; and Department of Pediatrics (JSS), University of Colorado, Denver
| | - Jessica Solomon Sanders
- Department of Neurology (JSF), Boston Children's Hospital, MA; Department of Neurology (JSF, DZP), Beth Israel Deaconess Medical Center, Boston, MA; and Department of Pediatrics (JSS), University of Colorado, Denver
| |
Collapse
|
30
|
Abstract
Advances in genetic technology have decreased the cost and increased the accessibility of genetic testing, and introduced new therapeutic options for many genetic conditions. With new treatments available for previously untreatable neurogenetic conditions, identifying a genetic diagnosis has become of great importance. This article provides a review of basic genetic concepts, ethical and counseling considerations with genetic testing, and genetic testing strategies, and highlights a series of clinical care pearls.
Collapse
Affiliation(s)
- Roa Sadat
- Pediatric Neurogenetics Clinic, Blue Bird Circle Clinic for Pediatric Neurology, Section of Pediatric Neurology and Developmental Neuroscience, Texas Children's Hospital
- Baylor College of Medicine, 6701 Fannin St., Suite 1250.07, Houston, TX 77030, USA.
| | - Lisa Emrick
- Pediatric Neurogenetics Clinic, Blue Bird Circle Clinic for Pediatric Neurology, Section of Pediatric Neurology and Developmental Neuroscience, Texas Children's Hospital
- Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
31
|
Chen WL, Mefford HC. Diagnostic Considerations in the Epilepsies-Testing Strategies, Test Type Advantages, and Limitations. Neurotherapeutics 2021; 18:1468-1477. [PMID: 34532824 PMCID: PMC8608977 DOI: 10.1007/s13311-021-01121-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2021] [Indexed: 02/04/2023] Open
Abstract
The role of genetics in epilepsy has been recognized for a long time. Over the past decade, genome-wide technologies have identified numerous genes and variants associated with epilepsy. In the clinical setting, a myriad of genetic testing options are available, and a subset of specific genetic diagnoses have management implications. Furthermore, genetic testing can be a dynamic process. As a result, fundamental knowledge about genetics and genomics has become essential for all specialists. Here, we review current knowledge of the genetic contribution to various types of epilepsy, provide an overview of types of genetic variants, and discuss genetic testing options and their diagnostic yield. We also consider advantages and limitations of testing approaches.
Collapse
Affiliation(s)
- Wei-Liang Chen
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA, 98105, USA
| | - Heather C Mefford
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA, 98105, USA.
- Current Location: Center for Pediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
32
|
Han JY, Park J. Variable Phenotypes of Epilepsy, Intellectual Disability, and Schizophrenia Caused by 12p13.33-p13.32 Terminal Microdeletion in a Korean Family: A Case Report and Literature Review. Genes (Basel) 2021; 12:1001. [PMID: 34210021 PMCID: PMC8303811 DOI: 10.3390/genes12071001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022] Open
Abstract
A simultaneous analysis of nucleotide changes and copy number variations (CNVs) based on exome sequencing data was demonstrated as a potential new first-tier diagnosis strategy for rare neuropsychiatric disorders. In this report, using depth-of-coverage analysis from exome sequencing data, we described variable phenotypes of epilepsy, intellectual disability (ID), and schizophrenia caused by 12p13.33-p13.32 terminal microdeletion in a Korean family. We hypothesized that CACNA1C and KDM5A genes of the six candidate genes located in this region were the best candidates for explaining epilepsy, ID, and schizophrenia and may be responsible for clinical features reported in cases with monosomy of the 12p13.33 subtelomeric region. On the background of microdeletion syndrome, which was described in clinical cases with mild, moderate, and severe neurodevelopmental manifestations as well as impairments, the clinician may determine whether the patient will end up with a more severe or milder end-phenotype, which in turn determines disease prognosis. In our case, the 12p13.33-p13.32 terminal microdeletion may explain the variable expressivity in the same family. However, further comprehensive studies with larger cohorts focusing on careful phenotyping across the lifespan are required to clearly elucidate the possible contribution of genetic modifiers and the environmental influence on the expressivity of 12p13.33 microdeletion and associated characteristics.
Collapse
Affiliation(s)
- Ji Yoon Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Joonhong Park
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea
| |
Collapse
|
33
|
Mayo S, Gómez-Manjón I, Fernández-Martínez FJ, Camacho A, Martínez F, Benito-León J. Candidate Genes for Eyelid Myoclonia with Absences, Review of the Literature. Int J Mol Sci 2021; 22:ijms22115609. [PMID: 34070602 PMCID: PMC8199219 DOI: 10.3390/ijms22115609] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 01/11/2023] Open
Abstract
Eyelid myoclonia with absences (EMA), also known as Jeavons syndrome (JS) is a childhood onset epileptic syndrome with manifestations involving a clinical triad of absence seizures with eyelid myoclonia (EM), photosensitivity (PS), and seizures or electroencephalogram (EEG) paroxysms induced by eye closure. Although a genetic contribution to this syndrome is likely and some genetic alterations have been defined in several cases, the genes responsible for have not been identified. In this review, patients diagnosed with EMA (or EMA-like phenotype) with a genetic diagnosis are summarized. Based on this, four genes could be associated to this syndrome (SYNGAP1, KIA02022/NEXMIF, RORB, and CHD2). Moreover, although there is not enough evidence yet to consider them as candidate for EMA, three more genes present also different alterations in some patients with clinical diagnosis of the disease (SLC2A1, NAA10, and KCNB1). Therefore, a possible relationship of these genes with the disease is discussed in this review.
Collapse
Affiliation(s)
- Sonia Mayo
- Genetics and Inheritance Research Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (I.G.-M.); (F.J.F.-M.)
- Correspondence: ; Tel.: +34-91-779-2603
| | - Irene Gómez-Manjón
- Genetics and Inheritance Research Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (I.G.-M.); (F.J.F.-M.)
- Department of Genetics, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Fco. Javier Fernández-Martínez
- Genetics and Inheritance Research Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (I.G.-M.); (F.J.F.-M.)
- Department of Genetics, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Ana Camacho
- Department of Neurology, Division of Pediatric Neurology, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, 28041 Madrid, Spain;
| | - Francisco Martínez
- Traslational Research in Genetics, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain;
- Genetics Unit, Hospital Universitario y Politecnico La Fe, 46026 Valencia, Spain
| | - Julián Benito-León
- Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Department of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
34
|
The genetic landscape of intellectual disability and epilepsy in adults and the elderly: a systematic genetic work-up of 150 individuals. Genet Med 2021; 23:1492-1497. [PMID: 33911214 PMCID: PMC8354852 DOI: 10.1038/s41436-021-01153-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose Genetic diagnostics of neurodevelopmental disorders with epilepsy (NDDE) are predominantly applied in children, thus limited information is available regarding adults or elderly. Methods We investigated 150 adult/elderly individuals with NDDE by conventional karyotyping, FMR1 testing, chromosomal microarray, panel sequencing, and for unresolved cases, also by exome sequencing (nsingle = 71, ntrios = 24). Results We identified (likely) pathogenic variants in 71 cases (47.3%) comprising fragile X syndrome (n = 1), disease-causing copy number (n = 23), and single-nucleotide variants (n = 49). Seven individuals displayed multiple independent genetic diagnoses. The diagnostic yield correlated with the severity of intellectual disability. Individuals with anecdotal evidence of exogenic early-life events (e.g., nuchal cord, complications at delivery) with alleged/unproven association to the disorder had a particularly high yield of 58.3%. Screening for disease-specific comorbidities was indicated in 45.1% and direct treatment consequences arose in 11.8% of diagnosed individuals. Conclusion Panel/exome sequencing displayed the highest yield and should be considered as first-tier diagnostics in NDDE. This high yield and the numerous indications for additional screening or treatment modifications arising from genetic diagnoses indicate a current medical undersupply of genetically undiagnosed adult/elderly individuals with NDDE. Moreover, knowledge of the course of elderly individuals will ultimately help in counseling newly diagnosed individuals with NDDE.
Collapse
|
35
|
Praticò AD, Falsaperla R, Polizzi A, Ruggieri M. Monogenic Epilepsies: Channelopathies, Synaptopathies, mTorpathies, and Otheropathies. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractEpilepsy has been historically defined as the recurrence of two or more seizures, together with typical electroencephalogram (EEG) changes, and significant comorbidities, including cardiac and autonomic changes, injuries, intellectual disability, permanent brain damage, and higher mortality risk. Epilepsy may be the consequence of several causes, including genetic anomalies, structural brain malformations, hypoxic–ischemic encephalopathy, brain tumors, drugs, and all contributing factors to the imbalance between excitatory and inhibitory neurons and modulatory interneurons which in turn provoke abnormal, simultaneous electric discharge(s) involving part, or all the brain. In the pregenetic, pregenomic era, in most cases, the exact cause of such neuronal/interneuronal disequilibrium remained unknown and the term “idiopathic epilepsy” was used to define all the epilepsies without cause. At the same time, some specific epileptic syndromes were indicated by the eponym of the first physician who originally described the condition (e.g., the West syndrome, Dravet syndrome, Ohtahara syndrome, and Lennox–Gastaut syndrome) or by some characteristic clinical features (e.g., nocturnal frontal lobe epilepsy, absence epilepsy, and epilepsy and mental retardation limited to females). In many of these occurrences, the distinct epileptic syndrome was defined mainly by its most relevant clinical feature (e.g., seizure semiology), associated comorbidities, and EEGs patterns. Since the identification of the first epilepsy-associated gene (i.e., CHRNA4 gene: cholinergic receptor neuronal nicotinic α polypeptide 4), one of the genes responsible for autosomal dominant nocturnal frontal lobe epilepsy (currently known as sleep-related hypermotor epilepsy) in 1995, the field of epilepsy and the history of epilepsy gene discoveries have gone through at least three different stages as follows: (1) an early stage of relentless gene discovery in monogenic familial epilepsy syndromes; (2) a relatively quiescent and disappointing period characterized by largely negative genome-wide association candidate gene studies; and (3) a genome-wide era in which large-scale molecular genetic studies have led to the identification of several novel epilepsy genes, especially in sporadic forms of epilepsy. As of 2021, more than 150 epilepsy-associated genes or loci are listed in the Online Mendelian Inheritance in Man database.
Collapse
Affiliation(s)
- Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
36
|
Morrison-Levy N, Borlot F, Jain P, Whitney R. Early-Onset Developmental and Epileptic Encephalopathies of Infancy: An Overview of the Genetic Basis and Clinical Features. Pediatr Neurol 2021; 116:85-94. [PMID: 33515866 DOI: 10.1016/j.pediatrneurol.2020.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022]
Abstract
Our current knowledge of genetically determined forms of epilepsy has shortened the diagnostic pathway usually experienced by the families of infants diagnosed with early-onset developmental and epileptic encephalopathies. Genetic causes can be found in up to 80% of infants presenting with early-onset developmental and epileptic encephalopathies, often in the context of an uneventful perinatal history and with no clear underlying brain abnormalities. Although current disease-specific therapies remain limited and patient outcomes are often guarded, a genetic diagnosis may lead to early therapeutic intervention using new and/or repurposed therapies. In this review, an overview of epilepsy genetics, the indications for genetic testing in infants, the advantages and limitations of each test, and the challenges and ethical implications of genetic testing are discussed. In addition, the following causative genes associated with early-onset developmental and epileptic encephalopathies are discussed in detail: KCNT1, KCNQ2, KCNA2, SCN2A, SCN8A, STXBP1, CDKL5, PIGA, SPTAN1, and GNAO1. The epilepsy phenotypes, comorbidities, electroencephalgraphic findings, neuroimaging findings, and potential targeted therapies for each gene are reviewed.
Collapse
Affiliation(s)
| | - Felippe Borlot
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Puneet Jain
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Robyn Whitney
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
37
|
García-Hernández JL, Corchete LA, Marcos-Alcalde Í, Gómez-Puertas P, Fons C, Lazo PA. Pathogenic convergence of CNVs in genes functionally associated to a severe neuromotor developmental delay syndrome. Hum Genomics 2021; 15:11. [PMID: 33557955 PMCID: PMC7871650 DOI: 10.1186/s40246-021-00309-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/26/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Complex developmental encephalopathy syndromes might be the consequence of unknown genetic alterations that are likely to contribute to the full neurological phenotype as a consequence of pathogenic gene combinations. METHODS To identify the additional genetic contribution to the neurological phenotype, we studied as a test case a boy, with a KCNQ2 exon-7 partial duplication, by single-nucleotide polymorphism (SNP) microarray to detect copy-number variations (CNVs). RESULTS The proband presented a cerebral palsy like syndrome with a severe motor and developmental encephalopathy. The SNP array analysis detected in the proband several de novo CNVs, nine partial gene losses (LRRC55, PCDH9, NALCN, RYR3, ELAVL2, CDH13, ATP1A2, SLC17A5, ANO3), and two partial gene duplications (PCDH19, EFNA5). The biological functions of these genes are associated with ion channels such as calcium, chloride, sodium, and potassium with several membrane proteins implicated in neural cell-cell interactions, synaptic transmission, and axon guidance. Pathogenically, these functions can be associated to cerebral palsy, seizures, dystonia, epileptic crisis, and motor neuron dysfunction, all present in the patient. CONCLUSIONS Severe motor and developmental encephalopathy syndromes of unknown origin can be the result of a phenotypic convergence by combination of several genetic alterations in genes whose physiological function contributes to the neurological pathogenic mechanism.
Collapse
Affiliation(s)
- Juan L García-Hernández
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Departamento de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Luis A Corchete
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Departamento de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Network Center for Biomedical Research in Cancer (CIBERONC), Salamanca, Spain
| | - Íñigo Marcos-Alcalde
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.,Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Paulino Gómez-Puertas
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Carmen Fons
- Neurology Department, Hospital Sant Joan de Déu, Sant Joan de Déu Research Institute, Esplugues de Llobregat, Barcelona and CIBERER, Instituto de Salud Carlos III, Barcelona, Spain.
| | - Pedro A Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, Spain. .,Instituto de Investigación Biomédica de Salamanca (IBSAL), Departamento de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.
| |
Collapse
|
38
|
Albuz B, Ozdemir O, Silan F. The high frequency of chromosomal copy number variations and candidate genes in epilepsy patients. Clin Neurol Neurosurg 2021; 202:106487. [PMID: 33484953 DOI: 10.1016/j.clineuro.2021.106487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/29/2020] [Accepted: 01/07/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Epilepsy is a chronic brain disease and is estimated to affect more than 50 million people worldwide.Epilepsy is a polygenic and multifactorial disease.Genetic causes play a major role in 40-60 % of all epilepsies.Copy number variations(CNVs) have been reported in approximately 5-12 % of patients with different types of epilepsy.Here we aimed to determine the diagnostic yield of the aCGH in epilepsy and to reveal new candidate genes and CNVs by analyzing aCGH data retrospectively. METHODS The clinical data of 80 patients with the diagnosis of epilepsy were examined retrospectively and the raw data of aCGH of these patients were reanalyzed in the light of current literature. RESULTS Pathogenic/likely pathogenic CNVs were detected in 14 of 80 patients and 12 of these CNVs (15 %) were associated with epilepsy phenotype. In addition, 18 CNVs in 16 different chromosomal loci that were evaluated as the variant of unknown clinical significance(VOUS). In four cases (5%), CNVs associated with epilepsy were less than 100 kb and these accounted for 13.3 % of all epilepsy associated CNVs. CONCLUSION The diagnostic yield of aCGH in epilepsy patients was found to be higher than most studies in the literature. MACROD2,ADGRB3(BAI3),SOX8,HIP1,PARK2 and TAFA2 genes were evaluated as potential epilepsy-related genes and NEDD9,RASAL2 and TNR genes thought to be the candidate genes for epilepsy. Our study showed that the diagnostic efficiency of aCGH in epilepsy is high and with more comprehensive studies, it will contribute to the elucidation of genes involved in genetic etiology in epilepsy patients.
Collapse
Affiliation(s)
- Burcu Albuz
- Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, 17020, Canakkale, Turkey.
| | - Ozturk Ozdemir
- Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, 17020, Canakkale, Turkey.
| | - Fatma Silan
- Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, 17020, Canakkale, Turkey.
| |
Collapse
|
39
|
Yang M, Xu B, Wang J, Zhang Z, Xie H, Wang H, Hu T, Liu S. Genetic diagnoses in pediatric patients with epilepsy and comorbid intellectual disability. Epilepsy Res 2021; 170:106552. [PMID: 33486335 DOI: 10.1016/j.eplepsyres.2021.106552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/19/2020] [Accepted: 01/05/2021] [Indexed: 01/14/2023]
Abstract
PURPOSE The aim of this retrospective study is to investigate the genetic etiology and propose a diagnostic strategy for pediatric patients with epilepsy and comorbid intellectual disability (ID). METHODS From September 2014 to May 2020, a total of 102 pediatric patients diagnosed with epilepsy with co-morbid ID with unknown causes were included in this study. All patients underwent tests of single nucleotide polymorphism (SNP) array for chromosomal abnormalities. Whole exome sequencing (WES) was consecutively performed in patients without diagnostic copy number variants (CNVs) (n = 85) for single nucleotide variants (SNVs). Subgroup analyses based on the age of seizure onset and ID severity were done. RESULTS The overall diagnostic yield of genetic aberrations was 33.3 % (34/102), which comprised 50.0 % with diagnostic CNVs and 50.0 % with diagnostic SNVs. The yield nominally increased with ID severity and decreased with age of seizure onset, though this result was not statistically significant. The diagnostic yield of SNVs in patients with seizure onset in the first year of life (25.0 % (11/44)) was significantly higher than those with childhood-onset epilepsy (10.3 % (6/58)) (p = 0.049), however, the diagnostic yield of CNVs in patients with childhood-onset epilepsy (17.2 % (10/58) was higher than the diagnostic yield of SNVs (10.3 % (6/58)). The most frequently syndromic epilepsy detected by SNP array was Angelman syndrome (n=4), including one confirmed with paternal uniparental disomy. Meanwhile, the most frequent SNVs were mutations of MECP2 (n=2) and IQSEC2 (n = 2) in sporadic cases. CONCLUSION Both CMA and WES are advantageous as unbiased approaches for a genetically heterogeneous condition. We proposed an effective diagnostic strategy for pediatric patients with epilepsy. For patients with seizure onset in the first year of life, WES is recommended as the first-tier test. However, for patients with childhood-onset epilepsy, SNP array should be considered for the first-tier test.
Collapse
Affiliation(s)
- Mei Yang
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Bocheng Xu
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Jiamin Wang
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Zhu Zhang
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Hanbing Xie
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - He Wang
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Ting Hu
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China.
| | - Shanling Liu
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China.
| |
Collapse
|
40
|
Whitman MC, Di Gioia SA, Chan WM, Gelber A, Pratt BM, Bell JL, Collins TE, Knowles JA, Armoskus C, Pato M, Pato C, Shaaban S, Staffieri S, MacKinnon S, Maconachie GDE, Elder JE, Traboulsi EI, Gottlob I, Mackey DA, Hunter DG, Engle EC. Recurrent Rare Copy Number Variants Increase Risk for Esotropia. Invest Ophthalmol Vis Sci 2021; 61:22. [PMID: 32780866 PMCID: PMC7443120 DOI: 10.1167/iovs.61.10.22] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To determine whether rare copy number variants (CNVs) increase risk for comitant esotropia. Methods CNVs were identified in 1614 Caucasian individuals with comitant esotropia and 3922 Caucasian controls from Illumina SNP genotyping using two Hidden Markov model (HMM) algorithms, PennCNV and QuantiSNP, which call CNVs based on logR ratio and B allele frequency. Deletions and duplications greater than 10 kb were included. Common CNVs were excluded. Association testing was performed with 1 million permutations in PLINK. Significant CNVs were confirmed with digital droplet polymerase chain reaction (ddPCR). Whole genome sequencing was performed to determine insertion location and breakpoints. Results Esotropia patients have similar rates and proportions of CNVs compared with controls but greater total length and average size of both deletions and duplications. Three recurrent rare duplications significantly (P = 1 × 10−6) increase the risk of esotropia: chromosome 2p11.2 (hg19, 2:87428677-87965359), spanning one long noncoding RNA (lncRNA) and two microRNAs (OR 14.16; 95% confidence interval [CI] 5.4–38.1); chromosome 4p15.2 (hg19, 4:25554332-25577184), spanning one lncRNA (OR 11.1; 95% CI 4.6–25.2); chromosome 10q11.22 (hg19, 10:47049547-47703870) spanning seven protein-coding genes, one lncRNA, and four pseudogenes (OR 8.96; 95% CI 5.4–14.9). Overall, 114 cases (7%) and only 28 controls (0.7%) had one of the three rare duplications. No case nor control had more than one of these three duplications. Conclusions Rare CNVs are a source of genetic variation that contribute to the genetic risk for comitant esotropia, which is likely polygenic. Future research into the functional consequences of these recurrent duplications may shed light on the pathophysiology of esotropia.
Collapse
Affiliation(s)
- Mary C Whitman
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Silvio Alessandro Di Gioia
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Wai-Man Chan
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Alon Gelber
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Brandon M Pratt
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Jessica L Bell
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Thomas E Collins
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - James A Knowles
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, United States
| | - Christopher Armoskus
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, United States
| | - Michele Pato
- Institute for Genomic Health, SUNY Downstate Medical Center, Brooklyn, New York, United States
| | - Carlos Pato
- Institute for Genomic Health, SUNY Downstate Medical Center, Brooklyn, New York, United States
| | - Sherin Shaaban
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States.,Present address: Department of Pathology and ARUP Laboratories, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Sandra Staffieri
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Sarah MacKinnon
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Gail D E Maconachie
- Department of Neuroscience, Psychology and Behavior, The University of Leicester Ulverscroft Eye Unit, University of Leicester, Leicester, United Kingdom
| | - James E Elder
- Department of Ophthalmology, Royal Children's Hospital, University of Melbourne, Parkville, Victoria, Australia.,Department of Pediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Elias I Traboulsi
- Department of Pediatric Ophthalmology and Strabismus, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Irene Gottlob
- Department of Neuroscience, Psychology and Behavior, The University of Leicester Ulverscroft Eye Unit, University of Leicester, Leicester, United Kingdom
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.,Centre for Eye Research Australia, University of Melbourne, Melbourne, Australia
| | - David G Hunter
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Elizabeth C Engle
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States.,Howard Hughes Medical Institute, Chevy Chase, Maryland, United States
| | | |
Collapse
|
41
|
Wang T, Wang J, Ma Y, Zhou H, Ding D, Li C, Du X, Jiang YH, Wang Y, Long S, Li S, Lu G, Chen W, Zhou Y, Zhou S, Wang Y. High genetic burden in 163 Chinese children with status epilepticus. Seizure 2020; 84:40-46. [PMID: 33278787 DOI: 10.1016/j.seizure.2020.10.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 10/22/2022] Open
Abstract
PURPOSE This study aimed to investigate the genetic aetiology in Chinese children diagnosed with status epilepticus (SE). METHODS Next-generation sequencing, copy number variation (CNV) analysis, and other genetic testing methods were conducted for children with SE lacking an identifiable non-genetic aetiology. Furthermore, the phenotype and molecular data of patients with SE were retrospectively analysed. RESULTS Among children with SE lacking an identifiable non-genetic aetiology, 73 out of 163 children (44.8 %) were found to have causative variants associated with SE including 66 monogenic mutations in 22 genes and 7 CNVs. Based on the American College of Medical Genetics and Genomics scoring system, the monogenic variants included 64 pathogenic/likely pathogenic and 2 uncertain significance variants. SCN1A gene mutations (n = 32) were the most common cause, followed by TSC2 (n = 5), CACNA1A (n = 5), SCN2A (n = 4), SCN9A (n = 2) and DEPDC5 (n = 2) gene mutations. Sixteen mutations were identified in single genes. Furthermore, 51 (77.3 %) monogenic mutations were de novo. Age at SE onset < 1 year (odds ratio [OR] = 2.70, 95 % confidence interval [CI]: 1.25-5.83, p = 0.012) and co-morbidity of intellectual disability (OR = 3.36, 95 %CI: 1.61-6.99, p = 0.001) were independently associated with pathogenic genetic variants. CONCLUSION This study identified genetic aetiology in 44.8 % of patients with SE, which indicates a high burden of genetic aetiology among children with SE in China. Our findings highlight the importance for genetic testing of children with SE that lacks an identifiable non-genetic aetiology.
Collapse
Affiliation(s)
- Tianqi Wang
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Ji Wang
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Yu Ma
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Hao Zhou
- Department of Pediatrics, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, China
| | - Ding Ding
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chunpei Li
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaonan Du
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Yong-Hui Jiang
- Department of Genetics, Yale University School of Medicine, New Haven, United States
| | - Yi Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shasha Long
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Shuang Li
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Guoping Lu
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, Shanghai, China
| | - Weiming Chen
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, Shanghai, China
| | - Yuanfeng Zhou
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Shuizhen Zhou
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
42
|
So J, Sriretnakumar V, Suddaby J, Barsanti-Innes B, Faghfoury H, Gofine T. High Rates of Genetic Diagnosis in Psychiatric Patients with and without Neurodevelopmental Disorders: Toward Improved Genetic Diagnosis in Psychiatric Populations. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2020; 65:865-873. [PMID: 32495635 PMCID: PMC7658423 DOI: 10.1177/0706743720931234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE There is a paucity of literature on genetic diagnosis in psychiatric populations, particularly the vulnerable population of patients with concomitant neurodevelopmental disorder (NDD). In this cross-sectional study, we investigated the genetic diagnostic rate in 151 adult psychiatric patients from two centers in Ontario, Canada, including a large subset (73.5%) with concurrent NDD, and performed phenotypic analysis to determine the strongest predictors for the presence of a genetic diagnosis. METHOD Patients 16 years of age or older and affected with a psychiatric disorder plus at least one of NDD, neurological disorder, congenital anomaly, dysmorphic features, or family history of NDD were recruited through the genetics clinics between 2012 and 2016. Patients underwent genetic assessment and testing according to clinical standards. Chi-squared test was used for phenotypic comparisons. Multivariate logistic regression analysis was performed to determine which phenotypic features were predictive of genetic diagnosis types. RESULTS Overall, 45.7% of patients in the total cohort were diagnosed with genetic disorders with the vast majority of diagnoses (89.9%) comprising single gene and chromosomal disorders. There were management and treatment implications for almost two-thirds (63.8%) of diagnosed patients. Presence of a single gene disorder or chromosomal diagnosis was predicted by differing combinations of neurological, NDD, and psychiatric phenotypes. CONCLUSION The results of this study highlight the frequency and impact of genetic diagnosis in psychiatric populations, particularly those with concomitant NDD. Genetic assessment should be considered in psychiatric patients, particularly those with multiple brain phenotypes (psychiatric, neurodevelopmental, neurological).
Collapse
Affiliation(s)
- Joyce So
- The Fred A. Litwin Family Centre in Genetic Medicine, University Health Network and Mount Sinai Hospital, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Ontario, Canada
- Ontario Shores Centre for Mental Health Sciences, Whitby, Ontario, Canada
- Department of Psychiatry, University of Toronto, Ontario, Canada
| | - Venuja Sriretnakumar
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Jessica Suddaby
- The Fred A. Litwin Family Centre in Genetic Medicine, University Health Network and Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Hanna Faghfoury
- The Fred A. Litwin Family Centre in Genetic Medicine, University Health Network and Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Ontario, Canada
| | - Timothy Gofine
- Ontario Shores Centre for Mental Health Sciences, Whitby, Ontario, Canada
- Department of Psychiatry, University of Toronto, Ontario, Canada
| |
Collapse
|
43
|
Stamberger H, Hammer TB, Gardella E, Vlaskamp DRM, Bertelsen B, Mandelstam S, de Lange I, Zhang J, Myers CT, Fenger C, Afawi Z, Almanza Fuerte EP, Andrade DM, Balcik Y, Ben Zeev B, Bennett MF, Berkovic SF, Isidor B, Bouman A, Brilstra E, Busk ØL, Cairns A, Caumes R, Chatron N, Dale RC, de Geus C, Edery P, Gill D, Granild-Jensen JB, Gunderson L, Gunning B, Heimer G, Helle JR, Hildebrand MS, Hollingsworth G, Kharytonov V, Klee EW, Koeleman BPC, Koolen DA, Korff C, Küry S, Lesca G, Lev D, Leventer RJ, Mackay MT, Macke EL, McEntagart M, Mohammad SS, Monin P, Montomoli M, Morava E, Moutton S, Muir AM, Parrini E, Procopis P, Ranza E, Reed L, Reif PS, Rosenow F, Rossi M, Sadleir LG, Sadoway T, Schelhaas HJ, Schneider AL, Shah K, Shalev R, Sisodiya SM, Smol T, Stumpel CTRM, Stuurman K, Symonds JD, Mau-Them FT, Verbeek N, Verhoeven JS, Wallace G, Yosovich K, Zarate YA, Zerem A, Zuberi SM, Guerrini R, Mefford HC, Patel C, Zhang YH, Møller RS, Scheffer IE. NEXMIF encephalopathy: an X-linked disorder with male and female phenotypic patterns. Genet Med 2020; 23:363-373. [PMID: 33144681 DOI: 10.1038/s41436-020-00988-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Pathogenic variants in the X-linked gene NEXMIF (previously KIAA2022) are associated with intellectual disability (ID), autism spectrum disorder, and epilepsy. We aimed to delineate the female and male phenotypic spectrum of NEXMIF encephalopathy. METHODS Through an international collaboration, we analyzed the phenotypes and genotypes of 87 patients with NEXMIF encephalopathy. RESULTS Sixty-three females and 24 males (46 new patients) with NEXMIF encephalopathy were studied, with 30 novel variants. Phenotypic features included developmental delay/ID in 86/87 (99%), seizures in 71/86 (83%) and multiple comorbidities. Generalized seizures predominated including myoclonic seizures and absence seizures (both 46/70, 66%), absence with eyelid myoclonia (17/70, 24%), and atonic seizures (30/70, 43%). Males had more severe developmental impairment; females had epilepsy more frequently, and varied from unaffected to severely affected. All NEXMIF pathogenic variants led to a premature stop codon or were deleterious structural variants. Most arose de novo, although X-linked segregation occurred for both sexes. Somatic mosaicism occurred in two males and a family with suspected parental mosaicism. CONCLUSION NEXMIF encephalopathy is an X-linked, generalized developmental and epileptic encephalopathy characterized by myoclonic-atonic epilepsy overlapping with eyelid myoclonia with absence. Some patients have developmental encephalopathy without epilepsy. Males have more severe developmental impairment. NEXMIF encephalopathy arises due to loss-of-function variants.
Collapse
Affiliation(s)
- Hannah Stamberger
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia.,Applied and Translational Neurogenomics group, Center for Molecular Neurology, VIB, and Department of Neurology, University Hospital of Antwerp, University of Antwerp, Antwerpen, Belgium
| | - Trine B Hammer
- Department of Epilepsy Genetics, Danish Epilepsy Centre Filadelfia, Dianalund, Denmark.,Clinical Genetic Department, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Elena Gardella
- Department of Epilepsy Genetics, Danish Epilepsy Centre Filadelfia, Dianalund, Denmark.,Institute for Regional Health Services Research, University of Southern Denmark, Odense, Denmark
| | - Danique R M Vlaskamp
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia.,University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, the Netherlands.,University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Birgitte Bertelsen
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Simone Mandelstam
- Royal Children's Hospital, Melbourne, VIC, Australia.,Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, VIC, Australia.,Department of Radiology, University of Melbourne, Melbourne, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Iris de Lange
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jing Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Candace T Myers
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Christina Fenger
- Department of Epilepsy Genetics, Danish Epilepsy Centre Filadelfia, Dianalund, Denmark
| | - Zaid Afawi
- Tel Aviv University Medical School, Tel Aviv, Israel
| | - Edith P Almanza Fuerte
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Danielle M Andrade
- Division of Neurology, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Yunus Balcik
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, University Hospital Frankfurt, and Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Bruria Ben Zeev
- Edmond and Lily Safra Children's Hospital, Pediatric Neurology Unit, Tel-Hashomer, Israel.,Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel
| | - Mark F Bennett
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia.,The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology University of Melbourne, Melbourne, VIC, Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia
| | | | - Arjan Bouman
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Eva Brilstra
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Øyvind L Busk
- Section for Medical Genetics, Telemark Hospital, Skien, Norway
| | - Anita Cairns
- Department of Neurosciences, Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Roseline Caumes
- Service de Neuropédiatrie, Pôle de Médecine et Spécialités Médicales, CHRU de Lille, Lille, France
| | - Nicolas Chatron
- Lyon University Hospitals, Departments of Genetics, Lyon, France
| | - Russell C Dale
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Christa de Geus
- University Medical Centre Groningen, Department of Genetics, Groningen, The Netherlands
| | - Patrick Edery
- Lyon University Hospitals, Departments of Genetics, Lyon, France.,INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, GENDEV Team, Bron, France
| | - Deepak Gill
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | | | - Lauren Gunderson
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | | | - Gali Heimer
- Edmond and Lily Safra Children's Hospital, Pediatric Neurology Unit, Tel-Hashomer, Israel.,Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel
| | - Johan R Helle
- Section for Medical Genetics, Telemark Hospital, Skien, Norway
| | - Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia.,Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Georgie Hollingsworth
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia
| | | | - Eric W Klee
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Bobby P C Koeleman
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - David A Koolen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Korff
- Pediatric Neurology Unit, University Hospitals, Geneva, Switzerland
| | - Sébastien Küry
- Service de génétique médicale, CHU Nantes, Nantes, France
| | - Gaetan Lesca
- Lyon University Hospitals, Departments of Genetics, Lyon, France
| | - Dorit Lev
- Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel.,Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel
| | - Richard J Leventer
- Royal Children's Hospital, Melbourne, VIC, Australia.,Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Mark T Mackay
- Royal Children's Hospital, Melbourne, VIC, Australia.,Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Erica L Macke
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Meriel McEntagart
- Medical Genetics, St George's University Hospitals NHS FT, Cranmer Tce, London, United Kingdom
| | - Shekeeb S Mohammad
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Pauline Monin
- Lyon University Hospitals, Departments of Genetics, Lyon, France
| | - Martino Montomoli
- Department of Neuroscience, Pharmacology and Child Health, Children's Hospital A. Meyer and University of Florence, Florence, Italy
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sebastien Moutton
- CPDPN, Pôle mère enfant, Maison de Santé Protestante Bordeaux Bagatelle, Talence, France.,INSERM UMR1231 GAD, FHU-TRANSLAD, Université de Bourgogne, Dijon, France
| | - Alison M Muir
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Elena Parrini
- Department of Neuroscience, Pharmacology and Child Health, Children's Hospital A. Meyer and University of Florence, Florence, Italy
| | - Peter Procopis
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.,Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Emmanuelle Ranza
- Medigenome, Swiss Institute of Genomic Medicine, Geneva, Switzerland
| | - Laura Reed
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Philipp S Reif
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, University Hospital Frankfurt, and Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, University Hospital Frankfurt, and Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Massimiliano Rossi
- Lyon University Hospitals, Departments of Genetics, Lyon, France.,INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, GENDEV Team, Bron, France
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago Wellington, Wellington, New Zealand
| | - Tara Sadoway
- Division of Neurology, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | | | - Amy L Schneider
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia
| | | | - Ruth Shalev
- Neuropaediatric Unit, Shaare Zedek Medical Centre, Hebrew University School of Medicine, Jerusalem, Israel
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom and Chalfont Centre for Epilepsy, Bucks, UK
| | - Thomas Smol
- Institut de Génétique Médicale, Hopital Jeanne de Flandre, Lille University Hospital, Lille, France
| | - Connie T R M Stumpel
- Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Kyra Stuurman
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Joseph D Symonds
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Frederic Tran Mau-Them
- UF Innovation en diagnostic genomique des maladies rares, CHU Dijon Bourgogne, Dijon, France.,INSERM UMR1231 GAD, Dijon, France
| | - Nienke Verbeek
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Judith S Verhoeven
- Academic Center for Epileptology, Kempenhaege, Department of Neurology, Heeze, The Netherlands
| | - Geoffrey Wallace
- Department of Neurosciences, Queensland Children's Hospital, Brisbane, QLD, Australia.,School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Keren Yosovich
- Molecular Genetics Lab, Wolfson Medical Center, Holon, Israel
| | - Yuri A Zarate
- Section of Genetics and Metabolism, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR, USA
| | - Ayelet Zerem
- Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel.,White Matter Disease Care, Pediatric Neurology Unit, Dana-Dwak Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Sameer M Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Renzo Guerrini
- Department of Neuroscience, Pharmacology and Child Health, Children's Hospital A. Meyer and University of Florence, Florence, Italy
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Yue-Hua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Rikke S Møller
- Department of Epilepsy Genetics, Danish Epilepsy Centre Filadelfia, Dianalund, Denmark.,Institute for Regional Health Services Research, University of Southern Denmark, Odense, Denmark
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia. .,Royal Children's Hospital, Melbourne, VIC, Australia. .,Murdoch Children's Research Institute, Melbourne, VIC, Australia. .,Department of Pediatrics, University of Melbourne, Melbourne, VIC, Australia. .,Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
| |
Collapse
|
44
|
Cappuccio G, Sayou C, Tanno PL, Tisserant E, Bruel AL, Kennani SE, Sá J, Low KJ, Dias C, Havlovicová M, Hančárová M, Eichler EE, Devillard F, Moutton S, Van-Gils J, Dubourg C, Odent S, Gerard B, Piton A, Yamamoto T, Okamoto N, Firth H, Metcalfe K, Moh A, Chapman KA, Aref-Eshghi E, Kerkhof J, Torella A, Nigro V, Perrin L, Piard J, Le Guyader G, Jouan T, Thauvin-Robinet C, Duffourd Y, George-Abraham JK, Buchanan CA, Williams D, Kini U, Wilson K, Sousa SB, Hennekam RCM, Sadikovic B, Thevenon J, Govin J, Vitobello A, Brunetti-Pierri N. De novo SMARCA2 variants clustered outside the helicase domain cause a new recognizable syndrome with intellectual disability and blepharophimosis distinct from Nicolaides-Baraitser syndrome. Genet Med 2020; 22:1838-1850. [PMID: 32694869 DOI: 10.1038/s41436-020-0898-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Nontruncating variants in SMARCA2, encoding a catalytic subunit of SWI/SNF chromatin remodeling complex, cause Nicolaides-Baraitser syndrome (NCBRS), a condition with intellectual disability and multiple congenital anomalies. Other disorders due to SMARCA2 are unknown. METHODS By next-generation sequencing, we identified candidate variants in SMARCA2 in 20 individuals from 18 families with a syndromic neurodevelopmental disorder not consistent with NCBRS. To stratify variant interpretation, we functionally analyzed SMARCA2 variants in yeasts and performed transcriptomic and genome methylation analyses on blood leukocytes. RESULTS Of 20 individuals, 14 showed a recognizable phenotype with recurrent features including epicanthal folds, blepharophimosis, and downturned nasal tip along with variable degree of intellectual disability (or blepharophimosis intellectual disability syndrome [BIS]). In contrast to most NCBRS variants, all SMARCA2 variants associated with BIS are localized outside the helicase domains. Yeast phenotype assays differentiated NCBRS from non-NCBRS SMARCA2 variants. Transcriptomic and DNA methylation signatures differentiated NCBRS from BIS and those with nonspecific phenotype. In the remaining six individuals with nonspecific dysmorphic features, clinical and molecular data did not permit variant reclassification. CONCLUSION We identified a novel recognizable syndrome named BIS associated with clustered de novo SMARCA2 variants outside the helicase domains, phenotypically and molecularly distinct from NCBRS.
Collapse
Affiliation(s)
- Gerarda Cappuccio
- Department of Translational Medicine, Federico II University, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Camille Sayou
- Inserm U1209, CNRS UMR 5309, Univ. Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Pauline Le Tanno
- Department of Genetics and Reproduction, Centre Hospitalo-Universitaire Grenoble-Alpes, Grenoble, France
| | - Emilie Tisserant
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
| | - Ange-Line Bruel
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
| | - Sara El Kennani
- Inserm U1209, CNRS UMR 5309, Univ. Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Joaquim Sá
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Karen J Low
- University Hospitals Bristol NHS Foundation Trust, University of Bristol, Bristol, UK
| | - Cristina Dias
- Department of Medical and Molecular Genetics, King's College, London, UK
- The Francis Crick Institute, London, UK
- Clinical Genetics, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Markéta Havlovicová
- Department of Biology and Medical Genetics, Charles University Prague 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Miroslava Hančárová
- Department of Biology and Medical Genetics, Charles University Prague 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Françoise Devillard
- Department of Genetics and Reproduction, Centre Hospitalo-Universitaire Grenoble-Alpes, Grenoble, France
| | - Sébastien Moutton
- CPDPN, Pôle mère enfant, Maison de Santé Protestante Bordeaux Bagatelle, Talence, France
| | - Julien Van-Gils
- Reference Center for Developmental Anomalies, Department of Medical Genetics, Bordeaux University Hospital, Bordeaux, France
| | - Christèle Dubourg
- Service de Génétique Moléculaire et Génomique, BMT-HC « Jean Dausset », Rennes, France
| | - Sylvie Odent
- Service de Génétique clinique, CHU de Rennes, Univ. Rennes, Institut de Génétique et Développement de Rennes (IGDR) UMR 6290, Rennes, France
| | - Bénédicte Gerard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Amélie Piton
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
- Tokyo Women's Medical University Institute of Integrated Medical Sciences, Tokyo, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Helen Firth
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Kay Metcalfe
- Manchester Centre for Genomic Medicine, Manchester, UK
| | - Anna Moh
- Department of Genetics and Metabolism, Children's National Medical Center, Washington, DC, USA
| | - Kimberly A Chapman
- Department of Genetics and Metabolism, Children's National Medical Center, Washington, DC, USA
| | - Erfan Aref-Eshghi
- Molecular Genetics Laboratory, Victoria Hospital, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, Canada
| | - Jennifer Kerkhof
- Molecular Genetics Laboratory, Victoria Hospital, London Health Sciences Centre, London, ON, Canada
| | - Annalaura Torella
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Laurence Perrin
- Department of Genetics, Robert Debré Hospital, AP-HP, Paris, France
| | - Juliette Piard
- Centre de génétique humaine, Université de Franche-Comté, Besançon, France
| | - Gwenaël Le Guyader
- Department of Medical Genetics, Poitiers University Hospital, Poitiers, France
| | - Thibaud Jouan
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
| | - Christel Thauvin-Robinet
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
- Centre de Référence Déficiences Intellectuelles de Causes Rares, CHU Dijon, Dijon, France
- UF Innovation en diagnostic génomique des maladies rares, CHU Dijon, Dijon, France
| | - Yannis Duffourd
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
| | - Jaya K George-Abraham
- Dell Children's Medical Group, Austin, TX, USA
- Department of Pediatrics, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | | | | | - Usha Kini
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Kate Wilson
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sérgio B Sousa
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- University Clinic of Genetics, Faculty of Medicine, Universidade de Coimbra, Coimbra, Portugal
| | - Raoul C M Hennekam
- Department of Pediatrics and Translational Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bekim Sadikovic
- Molecular Genetics Laboratory, Victoria Hospital, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, Canada
| | - Julien Thevenon
- Department of Genetics and Reproduction, Centre Hospitalo-Universitaire Grenoble-Alpes, Grenoble, France
| | - Jérôme Govin
- Inserm U1209, CNRS UMR 5309, Univ. Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France.
| | - Antonio Vitobello
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France.
- UF Innovation en diagnostic génomique des maladies rares, CHU Dijon, Dijon, France.
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University, Naples, Italy.
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.
| |
Collapse
|
45
|
Ogasawara M, Nakagawa E, Takeshita E, Hamanaka K, Miyatake S, Matsumoto N, Sasaki M. Clonazepam as an Effective Treatment for Epilepsy in a Female Patient with NEXMIF Mutation: Case Report. Mol Syndromol 2020; 11:232-237. [PMID: 33224018 PMCID: PMC7675231 DOI: 10.1159/000510172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
The NEXMIF (KIAA2022) gene is located in the X chromosome, and hemizygous mutations in NEXMIF cause X-linked intellectual disability in male patients. Female patients with heterozygous mutations in NEXMIF also show similar, but milder, intellectual disability. Most female patients demonstrate intractable epilepsy compared with male patients, and the treatment strategy for epilepsy is still uncertain. Thus far, 24 female patients with NEXMIF mutations have been reported. Of these 24 patients, 20 also have epilepsy. Until now, epilepsy has been controlled in only 2 of these female patients. We report a female patient with a heterozygous de novo mutation, NM_001008537.2:c.1123del (p.Glu375Argfs*21), in NEXMIF. The patient showed mild intellectual disability, facial dysmorphism, obesity, generalized tonic-clonic seizures, and nonconvulsive status epilepticus. Sodium valproate was effective but caused secondary amenorrhea. We successfully treated her epilepsy with clonazepam without side effects, indicating that clonazepam might be a good choice to treat epilepsy in patients with NEXMIF mutations.
Collapse
Affiliation(s)
- Masashi Ogasawara
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Eiji Nakagawa
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Eri Takeshita
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masayuki Sasaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
46
|
Panda PK, Sharawat IK, Joshi K, Dawman L, Bolia R. Clinical spectrum of KIAA2022/NEXMIF pathogenic variants in males and females: Report of three patients from Indian kindred with a review of published patients. Brain Dev 2020; 42:646-654. [PMID: 32600841 DOI: 10.1016/j.braindev.2020.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND In the last two decades, with the advent of whole-exome and whole-genome sequencing, supplemented with linkage analysis, more than 150 genes responsible for X-linked intellectual disability have been identified. Some genes like NEXMIF remain an enigmatic entity, as often the carrier females show wide phenotypic diversity ranging from completely asymptomatic to severe intellectual disability and drug-resistant epilepsy. METHODS We report three patients with pathogenic NEXMIF variants from an Indian family. All of them had language predominant developmental delay and later progressed to moderate intellectual disability with autistic features. We also reviewed the previously published reports of patients with pathogenic NEXMIF variants. RESULTS Together with the presented cases, 45 cases (24 symptomatic females) were identified from 15 relevant research items for analysis. Males have demonstrated a more severe intellectual disability and increasingly delayed walking age, autistic features, central hypotonia, and gastroesophageal reflux. In contrast, females have shown a predominant presentation with drug-resistant epilepsy and mild to moderate intellectual impairment. Notably, the affected females demonstrate a higher incidence of myoclonic, absence, and atonic seizures. The majority of the variants reported are nonsense or frameshift mutations, causing loss of function of the NEXMIF gene, while a considerable proportion possesses chromosomal translocations, microdeletions, and duplications. CONCLUSIONS NEXMIF gene mutations should be suspected in all cases of X-linked ID and autism cases in males or even in refractory epilepsy cases in females.
Collapse
Affiliation(s)
- Prateek Kumar Panda
- Pediatric Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, Rishikesh, Uttarakhand 249203, India
| | - Indar Kumar Sharawat
- Pediatric Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, Rishikesh, Uttarakhand 249203, India.
| | - Kriti Joshi
- Department of Endocrinology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand 249203, India
| | - Lesa Dawman
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Rishi Bolia
- Department of Pediatrics, All India Institute of Medical Sciences, Rishikesh, Uttarakhand 249203, India
| |
Collapse
|
47
|
Borlot F, Andrade DM. Epilepsy gene panel yield and impact on outcomes for adults with unexplained seizures. Epilepsia 2020; 61:1797-1798. [DOI: 10.1111/epi.16606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Felippe Borlot
- Division of Neurology Department of Paediatrics Hospital for Sick Children Toronto Ontario Canada
| | - Danielle M. Andrade
- Epilepsy Genetics Program Toronto Western Hospital Krembil Neuroscience Centre University of Toronto Toronto Ontario Canada
- Division of Neurology Krembil Neuroscience Centre Toronto Western Hospital University of Toronto Toronto Ontario Canada
| |
Collapse
|
48
|
Lewis-Smith D, Ellis CA, Helbig I, Thomas RH. Early-onset genetic epilepsies reaching adult clinics. Brain 2020; 143:e19. [PMID: 32203577 DOI: 10.1093/brain/awaa029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- David Lewis-Smith
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK.,Royal Victoria Infirmary, Newcastle-upon-Tyne, UK
| | - Colin A Ellis
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ingo Helbig
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.,Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rhys H Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK.,Royal Victoria Infirmary, Newcastle-upon-Tyne, UK
| |
Collapse
|
49
|
Lazo PA, García JL, Gómez-Puertas P, Marcos-Alcalde Í, Arjona C, Villarroel A, González-Sarmiento R, Fons C. Novel Dominant KCNQ2 Exon 7 Partial In-Frame Duplication in a Complex Epileptic and Neurodevelopmental Delay Syndrome. Int J Mol Sci 2020; 21:ijms21124447. [PMID: 32585800 PMCID: PMC7352878 DOI: 10.3390/ijms21124447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/23/2022] Open
Abstract
Complex neurodevelopmental syndromes frequently have an unknown etiology, in which genetic factors play a pathogenic role. This study utilizes whole-exome sequencing (WES) to examine four members of a family with a son presenting, since birth, with epileptic-like crises, combined with cerebral palsy, severe neuromotor and developmental delay, dystonic tetraparexia, axonal motor affectation, and hyper-excitability of unknown origin. The WES study detected within the patient a de novo heterozygous in-frame duplication of thirty-six nucleotides within exon 7 of the human KCNQ2 gene. This insertion duplicates the first twelve amino acids of the calmodulin binding site I. Molecular dynamics simulations of this KCNQ2 peptide duplication, modelled on the 3D structure of the KCNQ2 protein, suggest that the duplication may lead to the dysregulation of calcium inhibition of this protein function.
Collapse
Affiliation(s)
- Pedro A. Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 30007 Salamanca, Spain; (J.L.G.); (R.G.-S.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 30007 Salamanca, Spain
- Correspondence:
| | - Juan L. García
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 30007 Salamanca, Spain; (J.L.G.); (R.G.-S.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 30007 Salamanca, Spain
| | - Paulino Gómez-Puertas
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain; (P.G.-P.); (Í.M.-A.)
| | - Íñigo Marcos-Alcalde
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain; (P.G.-P.); (Í.M.-A.)
- Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Cesar Arjona
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain; (C.A.); (C.F.)
- Instituto Pediátrico de Enfermedades Raras (IPER), Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Alvaro Villarroel
- Instituto de Biofísica, Consejo Superior de Investigaciones Científicas (CSIC), Universidad del País Vasco, 48940 Bilbao, Spain;
| | - Rogelio González-Sarmiento
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 30007 Salamanca, Spain; (J.L.G.); (R.G.-S.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 30007 Salamanca, Spain
- Unidad de Genética Molecular, Departamento de Medicina, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Carmen Fons
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain; (C.A.); (C.F.)
- Neurology Department, Hospital Sant Joan de Déu, Sant Joan de Déu Research Institute and CIBERER, Instituto de Salud Carlos III, 08950 Barcelona, Spain
| |
Collapse
|
50
|
Johannesen KM, Nikanorova N, Marjanovic D, Pavbro A, Larsen LHG, Rubboli G, Møller RS. Utility of genetic testing for therapeutic decision-making in adults with epilepsy. Epilepsia 2020; 61:1234-1239. [PMID: 32427350 DOI: 10.1111/epi.16533] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Genetic testing has become a routine part of the diagnostic workup in children with early onset epilepsies. In the present study, we sought to investigate a cohort of adult patients with epilepsy, to determinate the diagnostic yield and explore the gain of personalized treatment approaches in adult patients. METHODS Two hundred patients (age span = 18-80 years) referred for diagnostic gene panel testing at the Danish Epilepsy Center were included. The vast majority (91%) suffered from comorbid intellectual disability. The medical records of genetically diagnosed patients were mined for data on epilepsy syndrome, cognition, treatment changes, and seizure outcome following the genetic diagnosis. RESULTS We found a genetic diagnosis in 46 of 200 (23%) patients. SCN1A, KCNT1, and STXBP1 accounted for the greatest number of positive findings (48%). More rare genetic findings included SLC2A1, ATP6A1V, HNRNPU, MEF2C, and IRF2BPL. Gene-specific treatment changes were initiated in 11 of 46 (17%) patients (one with SLC2A1, 10 with SCN1A) following the genetic diagnosis. Ten patients improved, with seizure reduction and/or increased alertness and general well-being. SIGNIFICANCE With this study, we show that routine diagnostic testing is highly relevant in adults with epilepsy. The diagnostic yield is similar to previously reported pediatric cohorts, and the genetic findings can be useful for therapeutic decision-making, which may lead to better seizure control, ultimately improving quality of life.
Collapse
Affiliation(s)
- Katrine M Johannesen
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Center, Dianalund, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Natalya Nikanorova
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Center, Dianalund, Denmark
| | | | - Agnieszka Pavbro
- Department of Neurology, Danish Epilepsy Center, Dianalund, Denmark
| | | | - Guido Rubboli
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Center, Dianalund, Denmark.,University of Copenhagen, Copenhagen, Denmark
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Center, Dianalund, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|