1
|
Tavitian A, Lax E, Song W, Szyf M, Schipper HM. Hippocampal reelin and GAD67 gene expression and methylation in the GFAP.HMOX1 mouse model of schizophrenia. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119899. [PMID: 39798610 DOI: 10.1016/j.bbamcr.2025.119899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 01/15/2025]
Abstract
Schizophrenia is a complex neuropsychiatric disorder featuring enhanced brain oxidative stress and deficient reelin protein. GFAP.HMOX10-12m mice that overexpress heme oxygenase-1 (HO-1) in astrocytes manifest a schizophrenia-like neurochemical, neuropathological and behavioral phenotype including brain oxidative stress and reelin downregulation. We used RT-PCR, targeted bisulfite next-generation sequencing, immunohistochemistry and in situ hybridization on hippocampal tissue of GFAP.HMOX10-12m mice to delineate a possible molecular mechanism for the downregulation of reelin and to identify the neuronal and non-neuronal (glial) cell types expressing reelin in our model. We found reduced reelin and increased DNMT1 and TET1 mRNA expression in the hippocampus of male GFAP.HMOX10-12m mice and reduced GAD67 mRNA expression in females. These mRNA changes were accompanied by sexually dimorphic alterations in DNA methylation levels of Reln and Gad1 genes. Reelin protein was expressed by oligodendrocytes and GABAergic interneurons, but not by astrocytes or microglia in GFAP.HMOX10-12m and wild-type brains of both sexes. Reelin mRNA was also observed in oligodendrocytes. Moreover, a significant downregulation of reelin-expressing oligodendrocytes was detected in the hippocampal dentate gyrus of male GFAP.HMOX10-12m mice. These results suggest a novel mechanism for brain reelin depletion in schizophrenia. Containment of the astrocytic HO-1 cascade by pharmacological or other means may protect against stress-induced brain reelin depletion in schizophrenia and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ayda Tavitian
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Elad Lax
- Department of Molecular Biology, Ariel University, Ariel, Israel; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Wei Song
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Moshe Szyf
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.
| | - Hyman M Schipper
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Xu C, Fu X, Qin H, Yao K. Traversing the epigenetic landscape: DNA methylation from retina to brain in development and disease. Front Cell Neurosci 2024; 18:1499719. [PMID: 39678047 PMCID: PMC11637887 DOI: 10.3389/fncel.2024.1499719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
DNA methylation plays a crucial role in development, aging, degeneration of various tissues and dedifferentiated cells. This review explores the multifaceted impact of DNA methylation on the retina and brain during development and pathological processes. First, we investigate the role of DNA methylation in retinal development, and then focus on retinal diseases, detailing the changes in DNA methylation patterns in diseases such as diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma. Since the retina is considered an extension of the brain, its unique structure allows it to exhibit similar immune response mechanisms to the brain. We further extend our exploration from the retina to the brain, examining the role of DNA methylation in brain development and its associated diseases, such as Alzheimer's disease (AD) and Huntington's disease (HD) to better understand the mechanistic links between retinal and brain diseases, and explore the possibility of communication between the visual system and the central nervous system (CNS) from an epigenetic perspective. Additionally, we discuss neurodevelopmental brain diseases, including schizophrenia (SZ), autism spectrum disorder (ASD), and intellectual disability (ID), focus on how DNA methylation affects neuronal development, synaptic plasticity, and cognitive function, providing insights into the molecular mechanisms underlying neurodevelopmental disorders.
Collapse
Affiliation(s)
- Chunxiu Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Possamai-Della T, Peper-Nascimento J, Varela RB, Daminelli T, Fries GR, Ceretta LB, Juruena MF, Quevedo J, Valvassori SS. Exploring the impact of childhood maltreatment on epigenetic and brain-derived neurotrophic factor changes in bipolar disorder and healthy control. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01917-6. [PMID: 39540902 DOI: 10.1007/s00406-024-01917-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Childhood maltreatment may be linked to epigenetics and brain-derived neurotrophic factor (BDNF) changes, which are mechanisms altered in several psychiatric conditions, including bipolar disorder (BD). However, the specific mechanisms connecting childhood maltreatment to the pathophysiology of BD remain unclear. The present study aims to examine the effects of childhood maltreatment on epigenetic and neurotrophic outcomes in BD patients and health controls. History of childhood maltreatment was obtained using the Childhood Trauma Questionnaire (CTQ) from 36 BD outpatients and 46 healthy subjects. DNA methyltransferase (DNMT) activity, HMTH3K9 activity, histone 3 lysine 9 tri-methylation (H3K9me3) levels, histone deacetylase (HDAC)1 levels, HDAC2 levels, histone 3 lysine 14 acetylation (H3K14ac) levels, and mRNA of BDNF were evaluated in peripheral blood mononuclear cells. Plasma BDNF levels were also measured. Total scores of CTQ, as well as the subscale scores of emotional abuse, sexual abuse, and emotional neglect, were predictive of changes in DNMT and HMTh3k9 activity, H3K9m3 levels, BDNF mRNA expression, and BDNF levels. These findings were observed in all our samples and, in some cases, among BD patients. Emotional abuse was the main childhood maltreatment subtype associated with epigenetic alterations in BD. Our results elucidate some mechanisms by which childhood maltreatment can alter epigenetic and neurotrophic markers. Especially in BD subjects, our results suggest childhood maltreatment per se is not a direct cause for epigenetic alterations. In another way, we suppose that the effect of childhood maltreatment could be cumulative and interact with other factors associated with the pathophysiology of BD.
Collapse
Affiliation(s)
- Taise Possamai-Della
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jefté Peper-Nascimento
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Roger B Varela
- Neuromodulation and Novel Therapeutics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Thiani Daminelli
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gabriel R Fries
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Luciane B Ceretta
- Graduate Program in Collective Health, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Mario F Juruena
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - João Quevedo
- Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
4
|
Kong L, Chen Y, Shen Y, Zhang D, Wei C, Lai J, Hu S. Progress and Implications from Genetic Studies of Bipolar Disorder. Neurosci Bull 2024; 40:1160-1172. [PMID: 38206551 PMCID: PMC11306703 DOI: 10.1007/s12264-023-01169-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 01/12/2024] Open
Abstract
With the advancements in gene sequencing technologies, including genome-wide association studies, polygenetic risk scores, and high-throughput sequencing, there has been a tremendous advantage in mapping a detailed blueprint for the genetic model of bipolar disorder (BD). To date, intriguing genetic clues have been identified to explain the development of BD, as well as the genetic association that might be applied for the development of susceptibility prediction and pharmacogenetic intervention. Risk genes of BD, such as CACNA1C, ANK3, TRANK1, and CLOCK, have been found to be involved in various pathophysiological processes correlated with BD. Although the specific roles of these genes have yet to be determined, genetic research on BD will help improve the prevention, therapeutics, and prognosis in clinical practice. The latest preclinical and clinical studies, and reviews of the genetics of BD, are analyzed in this review, aiming to summarize the progress in this intriguing field and to provide perspectives for individualized, precise, and effective clinical practice.
Collapse
Affiliation(s)
- Lingzhuo Kong
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yiqing Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuting Shen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Danhua Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Wei
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jianbo Lai
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China.
- Brain Research Institute of Zhejiang University, Hangzhou, 310003, China.
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China.
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China.
- Brain Research Institute of Zhejiang University, Hangzhou, 310003, China.
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China.
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
5
|
Ruzicka WB, Mohammadi S, Fullard JF, Davila-Velderrain J, Subburaju S, Tso DR, Hourihan M, Jiang S, Lee HC, Bendl J, Voloudakis G, Haroutunian V, Hoffman GE, Roussos P, Kellis M. Single-cell multi-cohort dissection of the schizophrenia transcriptome. Science 2024; 384:eadg5136. [PMID: 38781388 DOI: 10.1126/science.adg5136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/21/2023] [Indexed: 05/25/2024]
Abstract
The complexity and heterogeneity of schizophrenia have hindered mechanistic elucidation and the development of more effective therapies. Here, we performed single-cell dissection of schizophrenia-associated transcriptomic changes in the human prefrontal cortex across 140 individuals in two independent cohorts. Excitatory neurons were the most affected cell group, with transcriptional changes converging on neurodevelopment and synapse-related molecular pathways. Transcriptional alterations included known genetic risk factors, suggesting convergence of rare and common genomic variants on neuronal population-specific alterations in schizophrenia. Based on the magnitude of schizophrenia-associated transcriptional change, we identified two populations of individuals with schizophrenia marked by expression of specific excitatory and inhibitory neuronal cell states. This single-cell atlas links transcriptomic changes to etiological genetic risk factors, contextualizing established knowledge within the human cortical cytoarchitecture and facilitating mechanistic understanding of schizophrenia pathophysiology and heterogeneity.
Collapse
Affiliation(s)
- W Brad Ruzicka
- Laboratory for Epigenomics in Human Psychopathology, McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shahin Mohammadi
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jose Davila-Velderrain
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Neurogenomics Research Center, Human Technopole, 20157 Milan, Italy
| | - Sivan Subburaju
- Laboratory for Epigenomics in Human Psychopathology, McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Reed Tso
- Laboratory for Epigenomics in Human Psychopathology, McLean Hospital, Belmont, MA 02478, USA
| | - Makayla Hourihan
- Laboratory for Epigenomics in Human Psychopathology, McLean Hospital, Belmont, MA 02478, USA
| | - Shan Jiang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hao-Chih Lee
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Georgios Voloudakis
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vahram Haroutunian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Neurogenomics Research Center, Human Technopole, 20157 Milan, Italy
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Delphin N, Aust C, Griffiths L, Fernandez F. Epigenetic Regulation in Schizophrenia: Focus on Methylation and Histone Modifications in Human Studies. Genes (Basel) 2024; 15:272. [PMID: 38540331 PMCID: PMC10970389 DOI: 10.3390/genes15030272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 06/15/2024] Open
Abstract
Despite extensive research over the last few decades, the etiology of schizophrenia (SZ) remains unclear. SZ is a pathological disorder that is highly debilitating and deeply affects the lifestyle and minds of those affected. Several factors (one or in combination) have been reported as contributors to SZ pathogenesis, including neurodevelopmental, environmental, genetic and epigenetic factors. Deoxyribonucleic acid (DNA) methylation and post-translational modification (PTM) of histone proteins are potentially contributing epigenetic processes involved in transcriptional activity, chromatin folding, cell division and apoptotic processes, and DNA damage and repair. After establishing a summary of epigenetic processes in the context of schizophrenia, this review aims to highlight the current understanding of the role of DNA methylation and histone PTMs in this disorder and their potential roles in schizophrenia pathophysiology and pathogenesis.
Collapse
Affiliation(s)
- Natasha Delphin
- School of Health and Behavioural Sciences, Faculty of Health Sciences, Australian Catholic University, 1100 Nudgee Rd, Banyo, QLD 4014, Australia; (N.D.)
| | - Caitlin Aust
- School of Health and Behavioural Sciences, Faculty of Health Sciences, Australian Catholic University, 1100 Nudgee Rd, Banyo, QLD 4014, Australia; (N.D.)
| | - Lyn Griffiths
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia;
| | - Francesca Fernandez
- School of Health and Behavioural Sciences, Faculty of Health Sciences, Australian Catholic University, 1100 Nudgee Rd, Banyo, QLD 4014, Australia; (N.D.)
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia;
- Healthy Brain and Mind Research Centre, Australian Catholic University, Melbourne, VIC 3000, Australia
| |
Collapse
|
7
|
Bhuiyan P, Sun Z, Khan MA, Hossain MA, Rahman MH, Qian Y. System biology approaches to identify hub genes linked with ECM organization and inflammatory signaling pathways in schizophrenia pathogenesis. Heliyon 2024; 10:e25191. [PMID: 38322840 PMCID: PMC10844262 DOI: 10.1016/j.heliyon.2024.e25191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 12/18/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Schizophrenia (SZ) is a chronic and devastating mental illness that affects around 20 million individuals worldwide. Cognitive deficits and structural and functional changes of the brain, abnormalities of brain ECM components, chronic neuroinflammation, and devastating clinical manifestation during SZ are likely etiological factors shown by affected individuals. However, the pathophysiological events associated with multiple regulatory pathways involved in the brain of this complex disorder are still unclear. This study aimed to develop a pipeline based on bioinformatics and systems biology approaches for identifying potential therapeutic targets involving possible biological mechanisms from SZ patients and healthy volunteers. About 420 overlapping differentially expressed genes (DEGs) from three RNA-seq datasets were identified. Gene ontology (GO), and pathways analysis showed several biological mechanisms enriched by the commonly shared DEGs, including extracellular matrix organization (ECM) organization, collagen fibril organization, integrin signaling pathway, inflammation mediated by chemokines and cytokines signaling pathway, and GABA-B receptor II and IL4 mediated signaling. Besides, 15 hub genes (FN1, COL1A1, COL3A1, COL1A2, COL5A1, COL2A1, COL6A2, COL6A3, MMP2, THBS1, DCN, LUM, HLA-A, HLA-C, and FBN1) were discovered by comprehensive analysis, which was mainly involved in the ECM organization and inflammatory signaling pathway. Furthermore, the miRNA target of the hub genes was analyzed with the random-forest-based approach software miRTarBase. In addition, the transcriptional factors and protein kinases regulating overlapping DEGs in SZ, namely, SUZ12, EZH2, TRIM28, TP53, EGR1, CSNK2A1, GSK3B, CDK1, and MAPK14, were also identified. The results point to a new understanding that the hub genes (fibronectin 1, collagen, matrix metalloproteinase-2, and lumican) in the ECM organization and inflammatory signaling pathways may be involved in the SZ occurrence and pathogenesis.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, University of Development Alternative, Dhaka, 1209, Bangladesh
| | - Zhaochu Sun
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Md Arif Khan
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, University of Development Alternative, Dhaka, 1209, Bangladesh
- Bio-Bio-1 Bioinformatics Research Foundation, Dhaka, Bangladesh
| | - Md Arju Hossain
- Department of Microbiology, Primeasia University, Banani, Dhaka 1213, Bangladesh
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Faculty of Engineering and Technology, Islamic University, Kushtia-7003, Bangladesh
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| |
Collapse
|
8
|
Gillespie B, Panthi S, Sundram S, Hill RA. The impact of maternal immune activation on GABAergic interneuron development: A systematic review of rodent studies and their translational implications. Neurosci Biobehav Rev 2024; 156:105488. [PMID: 38042358 DOI: 10.1016/j.neubiorev.2023.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Mothers exposed to infections during pregnancy disproportionally birth children who develop autism and schizophrenia, disorders associated with altered GABAergic function. The maternal immune activation (MIA) model recapitulates this risk factor, with many studies also reporting disruptions to GABAergic interneuron expression, protein, cellular density and function. However, it is unclear if there are species, sex, age, region, or GABAergic subtype specific vulnerabilities to MIA. Furthermore, to fully comprehend the impact of MIA on the GABAergic system a synthesised account of molecular, cellular, electrophysiological and behavioural findings was required. To this end we conducted a systematic review of GABAergic interneuron changes in the MIA model, focusing on the prefrontal cortex and hippocampus. We reviewed 102 articles that revealed robust changes in a number of GABAergic markers that present as gestationally-specific, region-specific and sometimes sex-specific. Disruptions to GABAergic markers coincided with distinct behavioural phenotypes, including memory, sensorimotor gating, anxiety, and sociability. Findings suggest the MIA model is a valid tool for testing novel therapeutics designed to recover GABAergic function and associated behaviour.
Collapse
Affiliation(s)
- Brendan Gillespie
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Sandesh Panthi
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Rachel A Hill
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
9
|
Ye J, Huang Z, Li Q, Li Z, Lan Y, Wang Z, Ni C, Wu X, Jiang T, Li Y, Yang Q, Lim J, Ren CY, Jiang M, Li S, Jin P, Chen JH, Zhao C. Transition of allele-specific DNA hydroxymethylation at regulatory loci is associated with phenotypic variation in monozygotic twins discordant for psychiatric disorders. BMC Med 2023; 21:491. [PMID: 38082312 PMCID: PMC10714646 DOI: 10.1186/s12916-023-03177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Major psychiatric disorders such as schizophrenia (SCZ) and bipolar disorder (BPD) are complex genetic mental illnesses. Their non-Mendelian features, such as those observed in monozygotic twins discordant for SCZ or BPD, are likely complicated by environmental modifiers of genetic effects. 5-Hydroxymethylcytosine (5hmC) is an important epigenetic mark in gene regulation, and whether it is linked to genetic variants that contribute to non-Mendelian features remains largely unexplored. METHODS We combined the 5hmC-selective chemical labeling method (5hmC-seq) and whole-genome sequencing (WGS) analysis of peripheral blood DNA obtained from monozygotic (MZ) twins discordant for SCZ or BPD to identify allelic imbalances in hydroxymethylome maps, and examined association of allele-specific hydroxymethylation (AShM) transition with disease susceptibility based on Bayes factors (BF) derived from the Bayesian generalized additive linear mixed model. We then performed multi-omics integrative analysis to determine the molecular pathogenic basis of those AShM sites. We finally employed luciferase reporter, CRISPR/Cas9 technology, electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), PCR, FM4-64 imaging analysis, and RNA sequencing to validate the function of interested AShM sites in the human neuroblastoma SK-N-SH cells and human embryonic kidney 293T (HEK293T) cells. RESULTS We identified thousands of genetic variants associated with AShM imbalances that exhibited phenotypic variation-associated AShM changes at regulatory loci. These AShM marks showed plausible associations with SCZ or BPD based on their effects on interactions among transcription factors (TFs), DNA methylation levels, or other epigenomic marks and thus contributed to dysregulated gene expression, which ultimately increased disease susceptibility. We then validated that competitive binding of POU3F2 on the alternative allele at the AShM site rs4558409 (G/T) in PLLP-enhanced PLLP expression, while the hydroxymethylated alternative allele, which alleviated the POU3F2 binding activity at the rs4558409 site, might be associated with the downregulated PLLP expression observed in BPD or SCZ. Moreover, disruption of rs4558409 promoted neural development and vesicle trafficking. CONCLUSION Our study provides a powerful strategy for prioritizing regulatory risk variants and contributes to our understanding of the interplay between genetic and epigenetic factors in mediating SCZ or BPD susceptibility.
Collapse
Affiliation(s)
- Junping Ye
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhanwang Huang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiyang Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Rehabilitation, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Zhongwei Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuting Lan
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China
| | - Zhongju Wang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chaoying Ni
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaohui Wu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tingyun Jiang
- The Third People's Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Yujing Li
- Departments of Human Genetics, Emory University, Atlanta, GA, USA
| | - Qiong Yang
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China
| | - Junghwa Lim
- Departments of Human Genetics, Emory University, Atlanta, GA, USA
| | - Cun-Yan Ren
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Meijun Jiang
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Guangdong Mental Health Center, Southern Medical University, Guangzhou, China
| | - Shufen Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Peng Jin
- Departments of Human Genetics, Emory University, Atlanta, GA, USA
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| | - Cunyou Zhao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Department of Rehabilitation, Zhujiang Hospital of Southern Medical University, Guangzhou, China.
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Guangdong Mental Health Center, Southern Medical University, Guangzhou, China.
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Xue X, Wang Z, Wang Y, Zhou X. Disease Diagnosis Based on Nucleic Acid Modifications. ACS Chem Biol 2023; 18:2114-2127. [PMID: 37527510 DOI: 10.1021/acschembio.3c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Nucleic acid modifications include a wide range of epigenetic and epitranscriptomic factors and impact a wide range of nucleic acids due to their profound influence on biological inheritance, growth, and metabolism. The recently developed methods of mapping and characterizing these modifications have promoted their discovery as well as large-scale studies in eukaryotes, especially in humans. Because of these pioneering strategies, nucleic acid modifications have been shown to have a great impact on human disorders such as cancer. Therefore, whether nucleic acid modifications could become a new type of biomarker remains an open question. In this review, we briefly look back at classical nucleic acid modifications and then focus on the progress made in investigating these modifications as diagnostic biomarkers in clinical therapy and present our perspective on their development prospects.
Collapse
Affiliation(s)
- Xiaochen Xue
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zhiying Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Department of Chemistry, College of Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yafen Wang
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
- Cross Research Institute of Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| |
Collapse
|
11
|
Sun S, Wang H. Clocking Epilepsies: A Chronomodulated Strategy-Based Therapy for Rhythmic Seizures. Int J Mol Sci 2023; 24:4223. [PMID: 36835631 PMCID: PMC9962262 DOI: 10.3390/ijms24044223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by hypersynchronous recurrent neuronal activities and seizures, as well as loss of muscular control and sometimes awareness. Clinically, seizures have been reported to display daily variations. Conversely, circadian misalignment and circadian clock gene variants contribute to epileptic pathogenesis. Elucidation of the genetic bases of epilepsy is of great importance because the genetic variability of the patients affects the efficacies of antiepileptic drugs (AEDs). For this narrative review, we compiled 661 epilepsy-related genes from the PHGKB and OMIM databases and classified them into 3 groups: driver genes, passenger genes, and undetermined genes. We discuss the potential roles of some epilepsy driver genes based on GO and KEGG analyses, the circadian rhythmicity of human and animal epilepsies, and the mutual effects between epilepsy and sleep. We review the advantages and challenges of rodents and zebrafish as animal models for epileptic studies. Finally, we posit chronomodulated strategy-based chronotherapy for rhythmic epilepsies, integrating several lines of investigation for unraveling circadian mechanisms underpinning epileptogenesis, chronopharmacokinetic and chronopharmacodynamic examinations of AEDs, as well as mathematical/computational modeling to help develop time-of-day-specific AED dosing schedules for rhythmic epilepsy patients.
Collapse
Affiliation(s)
- Sha Sun
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| |
Collapse
|
12
|
Bone Tissue and the Nervous System: What Do They Have in Common? Cells 2022; 12:cells12010051. [PMID: 36611845 PMCID: PMC9818711 DOI: 10.3390/cells12010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022] Open
Abstract
Degenerative diseases affecting bone tissues and the brain represent important problems with high socio-economic impact. Certain bone diseases, such as osteoporosis, are considered risk factors for the progression of neurological disorders. Often, patients with neurodegenerative diseases have bone fractures or reduced mobility linked to osteoarthritis. The bone is a dynamic tissue involved not only in movement but also in the maintenance of mineral metabolism. Bone is also associated with the generation of both hematopoietic stem cells (HSCs), and thus the generation of the immune system, and mesenchymal stem cells (MSCs). Bone marrow is a lymphoid organ and contains MSCs and HSCs, both of which are involved in brain health via the production of cytokines with endocrine functions. Hence, it seems clear that bone is involved in the regulation of the neuronal system and vice versa. This review summarizes the recent knowledge on the interactions between the nervous system and bone and highlights the importance of the interaction between nerve and bone cells. In addition, experimental models that study the interaction between nerve and skeletal cells are discussed, and innovative models are suggested to better evaluate the molecular interactions between these two cell types.
Collapse
|
13
|
Aytac HM, Oyaci Y, Pehlivan M, Pehlivan S. DNA Methylation Pattern of Gene Promoters of MB-COMT, DRD2, and NR3C1 in Turkish Patients Diagnosed with Schizophrenia. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2022; 20:685-693. [PMID: 36263643 PMCID: PMC9606422 DOI: 10.9758/cpn.2022.20.4.685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVE We aim to evaluate the methylation status of membrane-bound catechol-O-methyltransferase (MB-COMT) promotor, dopamine receptor D2 (DRD2), and nuclear receptor subfamily 3 group C member 1 (NR3C1) gene in pa- tients with SCZ by comparing healthy controls. METHODS A sample of 110 patients with SCZ and 100 age- and sex-matched healthy volunteers was included in the study. The interview was started by filling out data forms that included sociodemographic and clinical information. The Structured Clinical Interview for DSM-IV Axis I Disorders was used to confirming the diagnosis according to DSM-IV-TR criteria. Then the patients were evaluated with the Positive and Negative Symptoms Scale in terms of symp- tom severity. Methylation-specific polymerase chain reaction was used to determine the methylation status of MB-COMT promotor, DRD2 , and NR3C1 gene from DNA material. RESULTS When we compared the percentages of MB-COMT promotor, DRD2, and NR3C1 gene methylation status in SCZ patients with the healthy control group, the percentages of MB-COMT promotor (OR: 0.466; 95% CI: 0.268- 0.809; p = 0.006), DRD2 (OR: 0.439; 95% CI: 0.375-0.514; p < 0.001), and NR3C1 (OR: 0.003; 95% CI: 0.001- 0.011; p < 0.001) gene methylation status of SCZ was found to be significantly different from the control group. Whereas unmethylation of MB-COMT promotor and NR3C1 genes were associated with SCZ, the partial methylation of the DRD2 gene was related to the SCZ. CONCLUSION The MB-COMT promotor, DRD2, and NR3C1 gene methylation status may be associated with the SCZ in the Turkish population.
Collapse
Affiliation(s)
- Hasan Mervan Aytac
- Department of Psychiatry, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey,Address for correspondence: Hasan Mervan Aytac Department of Psychiatry, Basaksehir Cam and Sakura City Hospital, G-434 Street, No: 2L, Basaksehir, Istanbul 34944, Turkey, E-mail: , ORCID: https://orcid.org/0000-0002-1053-6808
| | - Yasemin Oyaci
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mustafa Pehlivan
- Department of Hematology, Gaziantep University, Faculty of Medicine, Gaziantep, Turkey
| | - Sacide Pehlivan
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
14
|
McKinney BC, McClain LL, Hensler CM, Wei Y, Klei L, Lewis DA, Devlin B, Wang J, Ding Y, Sweet RA. Schizophrenia-associated differential DNA methylation in brain is distributed across the genome and annotated to MAD1L1, a locus at which DNA methylation and transcription phenotypes share genetic variation with schizophrenia risk. Transl Psychiatry 2022; 12:340. [PMID: 35987687 PMCID: PMC9392724 DOI: 10.1038/s41398-022-02071-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/21/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
DNA methylation (DNAm), the addition of a methyl group to a cytosine in DNA, plays an important role in the regulation of gene expression. Single-nucleotide polymorphisms (SNPs) associated with schizophrenia (SZ) by genome-wide association studies (GWAS) often influence local DNAm levels. Thus, DNAm alterations, acting through effects on gene expression, represent one potential mechanism by which SZ-associated SNPs confer risk. In this study, we investigated genome-wide DNAm in postmortem superior temporal gyrus from 44 subjects with SZ and 44 non-psychiatric comparison subjects using Illumina Infinium MethylationEPIC BeadChip microarrays, and extracted cell-type-specific methylation signals by applying tensor composition analysis. We identified SZ-associated differential methylation at 242 sites, and 44 regions containing two or more sites (FDR cutoff of q = 0.1) and determined a subset of these were cell-type specific. We found mitotic arrest deficient 1-like 1 (MAD1L1), a gene within an established GWAS risk locus, harbored robust SZ-associated differential methylation. We investigated the potential role of MAD1L1 DNAm in conferring SZ risk by assessing for colocalization among quantitative trait loci for methylation and gene transcripts (mQTLs and tQTLs) in brain tissue and GWAS signal at the locus using multiple-trait-colocalization analysis. We found that mQTLs and tQTLs colocalized with the GWAS signal (posterior probability >0.8). Our findings suggest that alterations in MAD1L1 methylation and transcription may mediate risk for SZ at the MAD1L1-containing locus. Future studies to identify how SZ-associated differential methylation affects MAD1L1 biological function are indicated.
Collapse
Affiliation(s)
- Brandon C McKinney
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Lora L McClain
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christopher M Hensler
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yue Wei
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lambertus Klei
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiebiao Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert A Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Alameda L, Trotta G, Quigley H, Rodriguez V, Gadelrab R, Dwir D, Dempster E, Wong CCY, Forti MD. Can epigenetics shine a light on the biological pathways underlying major mental disorders? Psychol Med 2022; 52:1645-1665. [PMID: 35193719 PMCID: PMC9280283 DOI: 10.1017/s0033291721005559] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/30/2021] [Accepted: 12/29/2021] [Indexed: 12/27/2022]
Abstract
A significant proportion of the global burden of disease can be attributed to mental illness. Despite important advances in identifying risk factors for mental health conditions, the biological processing underlying causal pathways to disease onset remain poorly understood. This represents a limitation to implement effective prevention and the development of novel pharmacological treatments. Epigenetic mechanisms have emerged as mediators of environmental and genetic risk factors which might play a role in disease onset, including childhood adversity (CA) and cannabis use (CU). Particularly, human research exploring DNA methylation has provided new and promising insights into the role of biological pathways implicated in the aetio-pathogenesis of psychiatric conditions, including: monoaminergic (Serotonin and Dopamine), GABAergic, glutamatergic, neurogenesis, inflammatory and immune response and oxidative stress. While these epigenetic changes have been often studied as disease-specific, similarly to the investigation of environmental risk factors, they are often transdiagnostic. Therefore, we aim to review the existing literature on DNA methylation from human studies of psychiatric diseases (i) to identify epigenetic modifications mapping onto biological pathways either transdiagnostically or specifically related to psychiatric diseases such as Eating Disorders, Post-traumatic Stress Disorder, Bipolar and Psychotic Disorder, Depression, Autism Spectrum Disorder and Anxiety Disorder, and (ii) to investigate a convergence between some of these epigenetic modifications and the exposure to known risk factors for psychiatric disorders such as CA and CU, as well as to other epigenetic confounders in psychiatry research.
Collapse
Affiliation(s)
- Luis Alameda
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Departamento de Psiquiatría, Centro Investigación Biomedica en Red de Salud Mental (CIBERSAM), Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla, Spain
| | - Giulia Trotta
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
| | - Harriet Quigley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Victoria Rodriguez
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Romayne Gadelrab
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Daniella Dwir
- Department of Psychiatry, Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Emma Dempster
- University of Exeter Medical School, University of Exeter, Barrack Road, Exeter, UK
| | - Chloe C. Y. Wong
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
| | - Marta Di Forti
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
16
|
Shirvani-Farsani Z, Maloum Z, Bagheri-Hosseinabadi Z, Vilor-Tejedor N, Sadeghi I. DNA methylation signature as a biomarker of major neuropsychiatric disorders. J Psychiatr Res 2021; 141:34-49. [PMID: 34171761 DOI: 10.1016/j.jpsychires.2021.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/27/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
DNA methylation is a broadly-investigated epigenetic modification that has been considered as a heritable and reversible change. Previous findings have indicated that DNA methylation regulates gene expression in the central nervous system (CNS). Also, disturbance of DNA methylation patterns has been associated with destructive consequences that lead to human brain diseases such as neuropsychiatric disorders (NPDs). In this review, we comprehensively discuss the mechanism and function of DNA methylation and its most recent associations with the pathology of NPDs-including major depressive disorder (MDD), schizophrenia (SZ), autism spectrum disorder (ASD), bipolar disorder (BD), and attention/deficit hyperactivity disorder (ADHD). We also discuss how heterogeneous findings demand further investigations. Finally, based on the recent studies we conclude that DNA methylation status may have implications in clinical diagnostics and therapeutics as a potential epigenetic biomarker of NPDs.
Collapse
Affiliation(s)
- Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, IR, Iran.
| | - Zahra Maloum
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, IR, Iran.
| | - Zahra Bagheri-Hosseinabadi
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Natalia Vilor-Tejedor
- BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Carrer Wellington 30, 08005, Barcelona, Spain; Center for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain; Erasmus University Medical Center, Department of Clinical Genetics, Rotterdam, the Netherlands; Pompeu Fabra University, Barcelona, Spain.
| | - Iman Sadeghi
- BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Carrer Wellington 30, 08005, Barcelona, Spain; Center for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.
| |
Collapse
|
17
|
Kantrowitz JT, Dong Z, Milak MS, Rashid R, Kegeles LS, Javitt DC, Lieberman JA, John Mann J. Ventromedial prefrontal cortex/anterior cingulate cortex Glx, glutamate, and GABA levels in medication-free major depressive disorder. Transl Psychiatry 2021; 11:419. [PMID: 34354048 PMCID: PMC8342485 DOI: 10.1038/s41398-021-01541-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Glutamate (Glu) and gamma-aminobutyric acid (GABA) are implicated in the pathophysiology of major depressive disorder (MDD). GABA levels or GABAergic interneuron numbers are generally low in MDD, potentially disinhibiting Glu release. It is unclear whether Glu release or turnover is increased in depression. Conversely, a meta-analysis of prefrontal proton magnetic resonance spectroscopy (1H MRS) studies in MDD finds low Glx (combination of glutamate and glutamine) in medicated MDD. We hypothesize that elevated Glx or Glu may be a marker of more severe, untreated MDD. We examined ventromedial prefrontal cortex/anterior cingulate cortex (vmPFC/ACC) Glx and glutamate levels using 1H MRS in 34 medication-free, symptomatic, chronically ill MDD patients and 32 healthy volunteers, and GABA levels in a subsample. Elevated Glx and Glu were observed in MDD compared with healthy volunteers, with the highest levels seen in males with MDD. vmPFC/ACC GABA was low in MDD. Higher Glx levels correlated with more severe depression and lower GABA. MDD severity and diagnosis were both linked to higher Glx in vmPFC/ACC. Low GABA in a subset of these patients is consistent with our hypothesized model of low GABA leading to glutamate disinhibition in MDD. This finding and model are consistent with our previously reported findings that the NMDAR-antagonist antidepressant effect is proportional to the reduction of vmPFC/ACC Glx or Glu levels.
Collapse
Affiliation(s)
- Joshua T. Kantrowitz
- grid.21729.3f0000000419368729Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY USA ,grid.413734.60000 0000 8499 1112New York State Psychiatric Institute, New York, NY USA ,grid.250263.00000 0001 2189 4777Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY USA
| | - Zhengchao Dong
- grid.21729.3f0000000419368729Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY USA ,grid.413734.60000 0000 8499 1112New York State Psychiatric Institute, New York, NY USA
| | - Matthew S. Milak
- grid.21729.3f0000000419368729Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY USA ,grid.413734.60000 0000 8499 1112New York State Psychiatric Institute, New York, NY USA
| | - Rain Rashid
- grid.21729.3f0000000419368729Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY USA ,grid.413734.60000 0000 8499 1112New York State Psychiatric Institute, New York, NY USA
| | - Lawrence S. Kegeles
- grid.21729.3f0000000419368729Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY USA ,grid.413734.60000 0000 8499 1112New York State Psychiatric Institute, New York, NY USA ,grid.21729.3f0000000419368729Department of Radiology, Columbia University, College of Physicians and Surgeons, New York, NY USA
| | - Daniel C. Javitt
- grid.21729.3f0000000419368729Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY USA ,grid.413734.60000 0000 8499 1112New York State Psychiatric Institute, New York, NY USA ,grid.250263.00000 0001 2189 4777Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY USA
| | - Jeffrey A. Lieberman
- grid.21729.3f0000000419368729Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY USA ,grid.413734.60000 0000 8499 1112New York State Psychiatric Institute, New York, NY USA
| | - J. John Mann
- grid.21729.3f0000000419368729Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY USA ,grid.413734.60000 0000 8499 1112New York State Psychiatric Institute, New York, NY USA ,grid.21729.3f0000000419368729Department of Radiology, Columbia University, College of Physicians and Surgeons, New York, NY USA
| |
Collapse
|
18
|
Lin D, Chen J, Duan K, Perrone-Bizzozero N, Sui J, Calhoun V, Liu J. Network modules linking expression and methylation in prefrontal cortex of schizophrenia. Epigenetics 2021; 16:876-893. [PMID: 33079616 PMCID: PMC8331039 DOI: 10.1080/15592294.2020.1827718] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
Tremendous work has demonstrated the critical roles of genetics, epigenetics as well as their interplay in brain transcriptional regulations in the pathology of schizophrenia (SZ). There is great success currently in the dissection of the genetic components underlying risk-conferring transcriptomic networks. However, the study of regulating effect of epigenetics in the etiopathogenesis of SZ still faces many challenges. In this work, we investigated DNA methylation and gene expression from the dorsolateral prefrontal cortex (DLPFC) region of schizophrenia patients and healthy controls using weighted correlation network approach. We identified and replicated two expression and two methylation modules significantly associated with SZ. Among them, one pair of expression and methylation modules were significantly overlapped in the module genes which were significantly enriched in astrocyte-associated functional pathways, and specifically expressed in astrocytes. Another two linked expression-methylation module pairs were involved ageing process with module genes mostly related to oligodendrocyte development and myelination, and specifically expressed in oligodendrocytes. Further examination of underlying quantitative trait loci (QTLs) showed significant enrichment in genetic risk of most psychiatric disorders for expression QTLs but not for methylation QTLs. These results support the coherence between methylation and gene expression at the network level, and suggest a combinatorial effect of genetics and epigenetics in regulating gene expression networks specific to glia cells in relation to SZ and ageing process.
Collapse
Affiliation(s)
- Dongdong Lin
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): {Georgia State University, Georgia Institute of Technology, and Emory University}, Atlanta, USA
| | - Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): {Georgia State University, Georgia Institute of Technology, and Emory University}, Atlanta, USA
| | - Kuaikuai Duan
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Nora Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, USA
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Jing Sui
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): {Georgia State University, Georgia Institute of Technology, and Emory University}, Atlanta, USA
| | - Vince Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): {Georgia State University, Georgia Institute of Technology, and Emory University}, Atlanta, USA
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA
- Department of Psychology, Georgia State University, Atlanta, USA
- Department of Computer Science, Georgia State University, Atlanta, USA
| | - Jingyu Liu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): {Georgia State University, Georgia Institute of Technology, and Emory University}, Atlanta, USA
- Department of Computer Science, Georgia State University, Atlanta, USA
| |
Collapse
|
19
|
Fish KN, Rocco BR, DeDionisio AM, Dienel SJ, Sweet RA, Lewis DA. Altered Parvalbumin Basket Cell Terminals in the Cortical Visuospatial Working Memory Network in Schizophrenia. Biol Psychiatry 2021; 90:47-57. [PMID: 33892915 PMCID: PMC8243491 DOI: 10.1016/j.biopsych.2021.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/21/2021] [Accepted: 02/11/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Visuospatial working memory (vsWM), which is commonly impaired in schizophrenia, involves information processing across the primary visual cortex, association visual cortex, posterior parietal cortex, and dorsolateral prefrontal cortex (DLPFC). Within these regions, vsWM requires inhibition from parvalbumin-expressing basket cells (PVBCs). Here, we analyzed indices of PVBC axon terminals across regions of the vsWM network in schizophrenia. METHODS For 20 matched pairs of subjects with schizophrenia and unaffected comparison subjects, tissue sections from the primary visual cortex, association visual cortex, posterior parietal cortex, and DLPFC were immunolabeled for PV, the 65- and 67-kDa isoforms of glutamic acid decarboxylase (GAD65 and GAD67) that synthesize GABA (gamma-aminobutyric acid), and the vesicular GABA transporter. The density of PVBC terminals and of protein levels per terminal was quantified in layer 3 of each cortical region using fluorescence confocal microscopy. RESULTS In comparison subjects, all measures, except for GAD65 levels, exhibited a caudal-to-rostral decline across the vsWM network. In subjects with schizophrenia, the density of detectable PVBC terminals was significantly lower in all regions except the DLPFC, whereas PVBC terminal levels of PV, GAD67, and GAD65 proteins were lower in all regions. A composite measure of inhibitory strength was lower in subjects with schizophrenia, although the magnitude of the diagnosis effect was greater in the primary visual, association visual, and posterior parietal cortices than in the DLPFC. CONCLUSIONS In schizophrenia, alterations in PVBC terminals across the vsWM network suggest the presence of a shared substrate for cortical dysfunction during vsWM tasks. However, regional differences in the magnitude of the disease effect on an index of PVBC inhibitory strength suggest region-specific alterations in information processing during vsWM tasks.
Collapse
Affiliation(s)
- Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Brad R Rocco
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adam M DeDionisio
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Samuel J Dienel
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert A Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Nesbit N, Wallace R, Harihar S, Zhou M, Jung JY, Silberstein M, Lee PH. Genomewide alteration of histone H3K4 methylation underlies genetic vulnerability to psychopathology. J Genet 2021. [DOI: 10.1007/s12041-021-01294-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Zhang L, Li Z, Liu Q, Shao M, Sun F, Su X, Song M, Zhang Y, Ding M, Lu Y, Liu J, Yang Y, Li M, Li W, Lv L. Weak Association Between the Glutamate Decarboxylase 1 Gene (GAD1) and Schizophrenia in Han Chinese Population. Front Neurosci 2021; 15:677153. [PMID: 34234640 PMCID: PMC8255988 DOI: 10.3389/fnins.2021.677153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/26/2021] [Indexed: 11/15/2022] Open
Abstract
Objectives Schizophrenia (SZ) is a complex psychiatric disorder with high heritability, and genetic components are thought to be pivotal risk factors for this illness. The glutamate decarboxylase 1 gene (GAD1) was hypothesized to be a candidate risk locus for SZ given its crucial role in the GABAergic neurotransmission system, and previous studies have examined the associations of single nucleotide polymorphisms (SNPs) spanning the GAD1 gene with SZ. However, inconsistent results were obtained. We hence examined the associations between GAD1 SNPs and SZ in two independent case-control samples of Han Chinese ancestry. Materials and Methods Two Han Chinese SZ case-control samples, referred as the discovery sample and the replication sample, respectively, were recruited for the current study. The discovery sample comprised of 528 paranoid SZ cases (with age of first onset ≥ 18) and 528 healthy controls; the independent replication sample contained 1,256 early onset SZ cases (with age of first onset < 18) and 2,661 healthy controls. Logistic regression analysis was performed to examine the associations between GAD1 SNPs and SZ. Results Ten SNPs covering GAD1 gene were analyzed in the discovery sample, and two SNPs showed nominal associations with SZ (rs2241165, P = 0.0181, OR = 1.261; rs2241164, P = 0.0225, OR = 1.219). SNP rs2241164 was also nominally significant in the independent replication sample (P = 0.0462, OR = 1.110), and the significance became stronger in a subsequent meta-analysis combining both discovery and replication samples (P = 0.00398, OR = 1.138). Nevertheless, such association could not survive multiple corrections, although the effect size of rs2241164 was comparable with other SZ risk loci identified in genome-wide association studies (GWAS) in Han Chinese population. We also examined the associations between GAD1 SNPs and SZ in published datasets of SZ GWAS in East Asians and Europeans, and no significant associations were observed. Conclusion We observed weak associations between GAD1 SNPs and risk of SZ in Han Chinese populations. Further analyses in larger Han Chinese samples with more detailed phenotyping are necessary to elucidate the genetic correlation between GAD1 SNPs and SZ.
Collapse
Affiliation(s)
- Luwen Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Zhen Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Qing Liu
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Minglong Shao
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Fuping Sun
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Xi Su
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Meng Song
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Yan Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Minli Ding
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yanli Lu
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Ming Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China.,Henan Province People's Hospital, Zhengzhou, China
| |
Collapse
|
22
|
Hippocampal subfield transcriptome analysis in schizophrenia psychosis. Mol Psychiatry 2021; 26:2577-2589. [PMID: 32152472 DOI: 10.1038/s41380-020-0696-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/16/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022]
Abstract
We have previously demonstrated functional and molecular changes in hippocampal subfields in individuals with schizophrenia (SZ) psychosis associated with hippocampal excitability. In this study, we use RNA-seq and assess global transcriptome changes in the hippocampal subfields, DG, CA3, and CA1 from individuals with SZ psychosis and controls to elucidate subfield-relevant molecular changes. We also examine changes in gene expression due to antipsychotic medication in the hippocampal subfields from our SZ ON- and OFF-antipsychotic medication cohort. We identify unique subfield-specific molecular profiles in schizophrenia postmortem samples compared with controls, implicating astrocytes in DG, immune mechanisms in CA3, and synaptic scaling in CA1. We show a unique pattern of subfield-specific effects by antipsychotic medication on gene expression levels with scant overlap of genes differentially expressed by SZ disease effect versus medication effect. These hippocampal subfield changes serve to confirm and extend our previous model of SZ and can explain the lack of full efficacy of conventional antipsychotic medication on SZ symptomatology. With future characterization using single-cell studies, the identified distinct molecular profiles of the DG, CA3, and CA1 in SZ psychosis may serve to identify further potential hippocampal-based therapeutic targets.
Collapse
|
23
|
Richetto J, Meyer U. Epigenetic Modifications in Schizophrenia and Related Disorders: Molecular Scars of Environmental Exposures and Source of Phenotypic Variability. Biol Psychiatry 2021; 89:215-226. [PMID: 32381277 DOI: 10.1016/j.biopsych.2020.03.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/19/2020] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
Abstract
Epigenetic modifications are increasingly recognized to play a role in the etiology and pathophysiology of schizophrenia and other psychiatric disorders with developmental origins. Here, we summarize clinical and preclinical findings of epigenetic alterations in schizophrenia and relevant disease models and discuss their putative origin. Recent findings suggest that certain schizophrenia risk loci can influence stochastic variation in gene expression through epigenetic processes, highlighting the intricate interaction between genetic and epigenetic control of neurodevelopmental trajectories. In addition, a substantial portion of epigenetic alterations in schizophrenia and related disorders may be acquired through environmental factors and may be manifested as molecular "scars." Some of these scars can influence brain functions throughout the entire lifespan and may even be transmitted across generations via epigenetic germline inheritance. Epigenetic modifications, whether caused by genetic or environmental factors, are plausible molecular sources of phenotypic heterogeneity and offer a target for therapeutic interventions. The further elucidation of epigenetic modifications thus may increase our knowledge regarding schizophrenia's heterogeneous etiology and pathophysiology and, in the long term, may advance personalized treatments through the use of biomarker-guided epigenetic interventions.
Collapse
Affiliation(s)
- Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Noise Exposure Alters Glutamatergic and GABAergic Synaptic Connectivity in the Hippocampus and Its Relevance to Tinnitus. Neural Plast 2021; 2021:8833087. [PMID: 33510780 PMCID: PMC7822664 DOI: 10.1155/2021/8833087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 12/16/2020] [Accepted: 12/30/2020] [Indexed: 01/08/2023] Open
Abstract
Accumulating evidence implicates a role for brain structures outside the ascending auditory pathway in tinnitus, the phantom perception of sound. In addition to other factors such as age-dependent hearing loss, high-level sound exposure is a prominent cause of tinnitus. Here, we examined how noise exposure altered the distribution of excitatory and inhibitory synaptic inputs in the guinea pig hippocampus and determined whether these changes were associated with tinnitus. In experiment one, guinea pigs were overexposed to unilateral narrow-band noise (98 dB SPL, 2 h). Two weeks later, the density of excitatory (VGLUT-1/2) and inhibitory (VGAT) synaptic terminals in CA1, CA3, and dentate gyrus hippocampal subregions was assessed by immunohistochemistry. Overall, VGLUT-1 density primarily increased, while VGAT density decreased significantly in many regions. Then, to assess whether the noise-induced alterations were persistent and related to tinnitus, experiment two utilized a noise-exposure paradigm shown to induce tinnitus and assessed tinnitus development which was assessed using gap-prepulse inhibition of the acoustic startle (GPIAS). Twelve weeks after sound overexposure, changes in excitatory synaptic terminal density had largely recovered regardless of tinnitus status, but the recovery of GABAergic terminal density was dramatically different in animals expressing tinnitus relative to animals resistant to tinnitus. In resistant animals, inhibitory synapse density recovered to preexposure levels, but in animals expressing tinnitus, inhibitory synapse density remained chronically diminished. Taken together, our results suggest that noise exposure induces striking changes in the balance of excitatory and inhibitory synaptic inputs throughout the hippocampus and reveal a potential role for rebounding inhibition in the hippocampus as a protective factor leading to tinnitus resilience.
Collapse
|
25
|
Nesbit N, Wallace R, Harihar S, Zhou M, Jung JY, Silberstein M, Lee PH. Genomewide alteration of histone H3K4 methylation underlies genetic vulnerability to psychopathology. J Genet 2021; 100:44. [PMID: 34282735 PMCID: PMC8459212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dysregulated histone methylation has emerged as a recurring theme in multiple neuropsychiatric disorders. However, it is yet unclear whether the altered histone methylation is associated with aetiologic mechanisms or an outcome of disease manifestation. In this study, we examined the genomewide association studies datasets of three major psychiatric disorders, schizophrenia (SCZ), bipolar disorder (BIP), and major depression disorder (MDD), which represents a total of 231,783 cases and 425,444 controls, to clarify the relationship. Our gene-set enrichment analysis results identified statistically significant association of genes involved in three histone methylation biological processes with the three adult-onset psychiatric disorders, which is mainly driven by the histone H3K4 methylation pathway (GO: 0051568). Further analysis of histone H3K4 methylation pathway genes revealed a widespread role of the genes in brain function and disease; 29 (52%) and 41 genes (73.2%) were associated with at least one brain-related trait or brain disorder, respectively. Spatiotemporal gene expression analysis suggests that these pathway genes play a critical role during the prenatal period and are consistent regulators in the cerebral cortex throughout an individual's life. AUTS2, DNMT1 and TET2 are genes of particular interest due to their pervasive role in various aspects of brain function. Our findings support a critical aetiologic role of H3K4 methylation genes shared across SCZ, BIP and MDD, providing new direction for the development of epigenetically-focussed drugs targeting common causal factors of these devastating disorders.
Collapse
Affiliation(s)
- Nicholas Nesbit
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Coyle JT, Ruzicka WB, Balu DT. Fifty Years of Research on Schizophrenia: The Ascendance of the Glutamatergic Synapse. Am J Psychiatry 2020; 177:1119-1128. [PMID: 33256439 PMCID: PMC8011846 DOI: 10.1176/appi.ajp.2020.20101481] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Loureiro CM, Fachim HA, Corsi-Zuelli F, Shuhama R, Joca S, Menezes PR, Dalton CF, Del-Ben CM, Louzada-Junior P, Reynolds GP. Epigenetic-mediated N-methyl-D-aspartate receptor changes in the brain of isolated reared rats. Epigenomics 2020; 12:1983-1997. [PMID: 33242253 DOI: 10.2217/epi-2020-0151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: We investigated: Grin1, Grin2a, Grin2b DNA methylation; NR1 and NR2 mRNA/protein in the prefrontal cortex (PFC); and hippocampus of male Wistar rats exposed to isolation rearing. Materials & methods: Animals were kept isolated or grouped (n = 10/group) from weaning for 10 weeks. Tissues were dissected for RNA/DNA extraction and N-methyl-D-aspartate receptor subunits were analyzed using quantitative reverse transcription (RT)-PCR, ELISA and pyrosequencing. Results: Isolated-reared animals had: decreased mRNA in PFC for all markers, increased NR1 protein in hippocampus and hypermethylation of Grin1 in PFC and Grin2b in hippocampus, compared with grouped rats. Associations between mRNA/protein and DNA methylation were found for both brain areas. Conclusion: This study indicates that epigenetic DNA methylation may underlie N-methyl-D-aspartate receptor mRNA/protein expression alterations caused by isolation rearing.
Collapse
Affiliation(s)
- Camila Marcelino Loureiro
- Department of Internal Medicine, Division of Clinical Immunology. Ribeirão Preto Medical School, University of São Paulo, Brazil.,Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Helene Aparecida Fachim
- Department of Endocrinology & Metabolism, Salford Royal Foundation Trust, Salford, UK.,Department of Neurosciences & Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Fabiana Corsi-Zuelli
- Department of Neurosciences & Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Rosana Shuhama
- Department of Neurosciences & Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Sâmia Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil.,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Denmark
| | - Paulo Rossi Menezes
- Department of Preventive Medicine, Faculty of Medicine, University of São Paulo, Brazil
| | - Caroline F Dalton
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Cristina Marta Del-Ben
- Department of Neurosciences & Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Paulo Louzada-Junior
- Department of Internal Medicine, Division of Clinical Immunology. Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Gavin P Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
28
|
Smigielski L, Jagannath V, Rössler W, Walitza S, Grünblatt E. Epigenetic mechanisms in schizophrenia and other psychotic disorders: a systematic review of empirical human findings. Mol Psychiatry 2020; 25:1718-1748. [PMID: 31907379 DOI: 10.1038/s41380-019-0601-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/26/2022]
Abstract
Schizophrenia and other psychotic disorders are highly debilitating psychiatric conditions that lack a clear etiology and exhibit polygenic inheritance underlain by pleiotropic genes. The prevailing explanation points to the interplay between predisposing genes and environmental exposure. Accumulated evidence suggests that epigenetic regulation of the genome may mediate dynamic gene-environment interactions at the molecular level by modulating the expression of psychiatric phenotypes through transcription factors. This systematic review summarizes the current knowledge linking schizophrenia and other psychotic disorders to epigenetics, based on PubMed and Web of Science database searches conducted according to the PRISMA guidelines. Three groups of mechanisms in case-control studies of human tissue (i.e., postmortem brain and bio-fluids) were considered: DNA methylation, histone modifications, and non-coding miRNAs. From the initial pool of 3,204 records, 152 studies met our inclusion criteria (11,815/11,528, 233/219, and 2,091/1,827 cases/controls for each group, respectively). Many of the findings revealed associations with epigenetic modulations of genes regulating neurotransmission, neurodevelopment, and immune function, as well as differential miRNA expression (e.g., upregulated miR-34a, miR-7, and miR-181b). Overall, actual evidence moderately supports an association between epigenetics and schizophrenia and other psychotic disorders. However, heterogeneous results and cross-tissue extrapolations call for future work. Integrating epigenetics into systems biology may critically enhance research on psychosis and thus our understanding of the disorder. This may have implications for psychiatry in risk stratification, early recognition, diagnostics, precision medicine, and other interventional approaches targeting epigenetic fingerprints.
Collapse
Affiliation(s)
- Lukasz Smigielski
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland. .,The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland.
| | - Vinita Jagannath
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,Merck Sharp & Dohme (MSD) R&D Innovation Centre, London, UK
| | - Wulf Rössler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland.,Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland.,Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany.,Laboratory of Neuroscience, Institute of Psychiatry, Universidade de São Paulo, São Paulo, Brazil
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Neuray C, Maroofian R, Scala M, Sultan T, Pai GS, Mojarrad M, Khashab HE, deHoll L, Yue W, Alsaif HS, Zanetti MN, Bello O, Person R, Eslahi A, Khazaei Z, Feizabadi MH, Efthymiou S, El-Bassyouni HT, Soliman DR, Tekes S, Ozer L, Baltaci V, Khan S, Beetz C, Amr KS, Salpietro V, Jamshidi Y, Alkuraya FS, Houlden H. Early-infantile onset epilepsy and developmental delay caused by bi-allelic GAD1 variants. Brain 2020; 143:2388-2397. [PMID: 32705143 PMCID: PMC7447512 DOI: 10.1093/brain/awaa178] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 01/31/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) and glutamate are the most abundant amino acid neurotransmitters in the brain. GABA, an inhibitory neurotransmitter, is synthesized by glutamic acid decarboxylase (GAD). Its predominant isoform GAD67, contributes up to ∼90% of base-level GABA in the CNS, and is encoded by the GAD1 gene. Disruption of GAD1 results in an imbalance of inhibitory and excitatory neurotransmitters, and as Gad1-/- mice die neonatally of severe cleft palate, it has not been possible to determine any potential neurological dysfunction. Furthermore, little is known about the consequence of GAD1 disruption in humans. Here we present six affected individuals from six unrelated families, carrying bi-allelic GAD1 variants, presenting with developmental and epileptic encephalopathy, characterized by early-infantile onset epilepsy and hypotonia with additional variable non-CNS manifestations such as skeletal abnormalities, dysmorphic features and cleft palate. Our findings highlight an important role for GAD1 in seizure induction, neuronal and extraneuronal development, and introduce GAD1 as a new gene associated with developmental and epileptic encephalopathy.
Collapse
Affiliation(s)
- Caroline Neuray
- UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
| | - Reza Maroofian
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Marcello Scala
- UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Tipu Sultan
- Department of Pediatric Neurology, Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | | | - Majid Mojarrad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Genetic Center of Khorasan Razavi, Mashhad, Iran
| | - Heba El Khashab
- Department of Pediatrics, Children's Hospital, Ain Shams University, Cairo, Egypt
- Department of Pediatrics, Dr. Suliman Al Habib Medical Group, Riyadh, Saudi Arabia
| | | | - Wyatt Yue
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, UK
| | - Hessa S Alsaif
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maria N Zanetti
- Department of Clinical and Experimental Epilepsy, University College London, London, UK
| | - Oscar Bello
- Department of Clinical and Experimental Epilepsy, University College London, London, UK
| | | | - Atieh Eslahi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Masoumeh H Feizabadi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Stephanie Efthymiou
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | | | - Doaa R Soliman
- Department of Pediatrics, Faculty of Medicine, Benha University, Benha, Egypt
| | - Selahattin Tekes
- Dicle University, School of Medicine, Department of Medical Genetics, Diyarbakir, Turkey
| | - Leyla Ozer
- Yuksek Ihtisas University, School of Medicine, Department of Medical Genetics, Ankara, Turkey
| | | | | | | | - Khalda S Amr
- Molecular Genetics Department, National Research Centre, Cairo, Egypt
| | - Vincenzo Salpietro
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Yalda Jamshidi
- Molecular and Clinical Sciences Institute St George's, University of London, UK
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center Riyadh, Saudi Arabia
| | - Henry Houlden
- UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
30
|
Watkeys OJ, Cohen-Woods S, Quidé Y, Cairns MJ, Overs B, Fullerton JM, Green MJ. Derivation of poly-methylomic profile scores for schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109925. [PMID: 32194204 DOI: 10.1016/j.pnpbp.2020.109925] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022]
Abstract
Schizophrenia and bipolar disorder share biological features and environmental risk factors that may be associated with altered DNA methylation. In this study we sought to: 1) construct a novel 'Poly-Methylomic Profile Score (PMPS)' by transforming schizophrenia-associated epigenome-wide methylation from a previously published epigenome-wide association study (EWAS) into a single quantitative metric; and 2) examine associations between the PMPS and clinical status in an independent sample of 57 schizophrenia (SZ) cases, 59 bipolar disorder (BD) cases and 55 healthy controls (HC) for whom blood-derived DNA methylation was quantified using the Illumina 450 K methylation beadchip. We constructed five PMPSs at different p-value thresholds by summing methylation beta-values weighted by individual-CpG effect sizes from the meta-analysis of a previously published schizophrenia EWAS (comprising three separate cohorts with 675 [353 SZ and 322 HC] discovery cohort participants, 847 [414 SZ and 433 HC] replication cohort participants, and 96 monozygotic twin-pairs discordant for SZ). All SZ PMPSs were elevated in SZ participants relative to HCs, with the score calculated at a p-value threshold of 1 × 10-5 accounting for the greatest amount of variance. All PMPSs were elevated in SZ relative to BD and none of the PMPSs were increased in BD, or in a combined cohort of BD and SZ cases, relative to HCs. PMPSs were also not associated with positive or negative symptom severity. That this SZ-derived PMPSs was elevated in SZ, but not BD, suggests that epigenome-wide methylation patterns may represent distinct pathophysiology that is yet to be elucidated.
Collapse
Affiliation(s)
- Oliver J Watkeys
- School of Psychiatry, University of New South Wales (UNSW Sydneey), Sydney, NSW, Australia; Neuroscience Research Australia, Sydney, NSW, Australia
| | - Sarah Cohen-Woods
- Discipline of Psychology, Flinders University, Adelaide, SA, Australia; Flinders Centre for Innovation in Cancer, Adelaide, SA, Australia; Centre for Neuroscience, Adelaide, SA, Australia
| | - Yann Quidé
- School of Psychiatry, University of New South Wales (UNSW Sydneey), Sydney, NSW, Australia; Neuroscience Research Australia, Sydney, NSW, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Bronwyn Overs
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Janice M Fullerton
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Medical Sciences, University of New South Wales (UNSW Sydney), Sydney, NSW, Australia
| | - Melissa J Green
- School of Psychiatry, University of New South Wales (UNSW Sydneey), Sydney, NSW, Australia; Neuroscience Research Australia, Sydney, NSW, Australia.
| |
Collapse
|
31
|
Zhu Y, Sun D, Jakovcevski M, Jiang Y. Epigenetic mechanism of SETDB1 in brain: implications for neuropsychiatric disorders. Transl Psychiatry 2020; 10:115. [PMID: 32321908 PMCID: PMC7176658 DOI: 10.1038/s41398-020-0797-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/13/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Neuropsychiatric disorders are a collective of cerebral conditions with a multifactorial and polygenetic etiology. Dysregulation of epigenetic profiles in the brain is considered to play a critical role in the development of neuropsychiatric disorders. SET domain, bifurcate 1 (SETDB1), functioning as a histone H3K9 specific methyltransferase, is not only critically involved in transcriptional silencing and local heterochromatin formation, but also affects genome-wide neuronal epigenetic profiles and is essential for 3D genome integrity. Here, we provide a review of recent advances towards understanding the role of SETDB1 in the central nervous system during early neurodevelopment as well as in the adult brain, with a particular focus on studies that link its functions to neuropsychiatric disorders and related behavioral changes, and the exploration of novel therapeutic strategies targeting SETDB1.
Collapse
Affiliation(s)
- Yueyan Zhu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Fudan University, 200032, Shanghai, China
| | - Daijing Sun
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Fudan University, 200032, Shanghai, China
| | - Mira Jakovcevski
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Yan Jiang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
32
|
Bobilev AM, Perez JM, Tamminga CA. Molecular alterations in the medial temporal lobe in schizophrenia. Schizophr Res 2020; 217:71-85. [PMID: 31227207 DOI: 10.1016/j.schres.2019.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 11/30/2022]
Abstract
The medial temporal lobe (MTL) and its individual structures have been extensively implicated in schizophrenia pathophysiology, with considerable efforts aimed at identifying structural and functional differences in this brain region. The major structures of the MTL for which prominent differences have been revealed include the hippocampus, the amygdala and the superior temporal gyrus (STG). The different functions of each of these regions have been comprehensively characterized, and likely contribute differently to schizophrenia. While neuroimaging studies provide an essential framework for understanding the role of these MTL structures in various aspects of the disease, ongoing efforts have sought to employ molecular measurements in order to elucidate the biology underlying these macroscopic differences. This review provides a summary of the molecular findings in three major MTL structures, and discusses convergent findings in cellular architecture and inter-and intra-cellular networks. The findings of this effort have uncovered cell-type, network and gene-level specificity largely unique to each brain region, indicating distinct molecular origins of disease etiology. Future studies should test the functional implications of these molecular changes at the circuit level, and leverage new advances in sequencing technology to further refine our understanding of the differential contribution of MTL structures to schizophrenia.
Collapse
Affiliation(s)
- Anastasia M Bobilev
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| | - Jessica M Perez
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| |
Collapse
|
33
|
Gaine ME, Seifuddin F, Sabunciyan S, Lee RS, Benke KS, Monson ET, Zandi PP, Potash JB, Willour VL. Differentially methylated regions in bipolar disorder and suicide. Am J Med Genet B Neuropsychiatr Genet 2019; 180:496-507. [PMID: 31350827 PMCID: PMC8375453 DOI: 10.1002/ajmg.b.32754] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/24/2019] [Accepted: 07/15/2019] [Indexed: 12/29/2022]
Abstract
The addition of a methyl group to, typically, a cytosine-guanine dinucleotide (CpG) creates distinct DNA methylation patterns across the genome that can regulate gene expression. Aberrant DNA methylation of CpG sites has been associated with many psychiatric disorders including bipolar disorder (BD) and suicide. Using the SureSelectXT system, Methyl-Seq, we investigated the DNA methylation status of CpG sites throughout the genome in 50 BD individuals (23 subjects who died by suicide and 27 subjects who died from other causes) and 31 nonpsychiatric controls. We identified differentially methylated regions (DMRs) from three analyses: (a) BD subjects compared to nonpsychiatric controls (BD-NC), (b) BD subjects who died by suicide compared to nonpsychiatric controls (BDS-NC), and (c) BDS subjects compared to BD subjects who died from other causes (BDS-BDNS). One DMR from the BDS-NC analysis, located in ARHGEF38, was significantly hypomethylated (23.4%) in BDS subjects. This finding remained significant after multiple testing (PBootstrapped = 9.0 × 10-3 ), was validated using pyrosequencing, and was more significant in males. A secondary analysis utilized Ingenuity Pathway Analysis to identify enrichment in nominally significant DMRs. This identified an association with several pathways including axonal guidance signaling, calcium signaling, β-adrenergic signaling, and opioid signaling. Our comprehensive study provides further support that DNA methylation alterations influence the risk for BD and suicide. However, further investigation is required to confirm these associations and identify their functional consequences.
Collapse
Affiliation(s)
- Marie E. Gaine
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Fayaz Seifuddin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sarven Sabunciyan
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland,Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Richard S. Lee
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Kelly S. Benke
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Eric T. Monson
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Peter P. Zandi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland,Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - James B. Potash
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Virginia L. Willour
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
34
|
Kato T. Current understanding of bipolar disorder: Toward integration of biological basis and treatment strategies. Psychiatry Clin Neurosci 2019; 73:526-540. [PMID: 31021488 DOI: 10.1111/pcn.12852] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/18/2022]
Abstract
Biological studies of bipolar disorder initially focused on the mechanism of action for antidepressants and antipsychotic drugs, and the roles of monoamines (e.g., serotonin, dopamine) have been extensively studied. Thereafter, based on the mechanism of action of lithium, intracellular signal transduction systems, including inositol metabolism and intracellular calcium signaling, have drawn attention. Involvement of intracellular calcium signaling has been supported by genetics and cellular studies. Elucidation of the neural circuits affected by calcium signaling abnormalities is critical, and our previous study suggested a role of the paraventricular thalamic nucleus. The genetic vulnerability of mitochondria causes calcium dysregulation and results in the hyperexcitability of serotonergic neurons, which are suggested to be susceptible to oxidative stress. Efficacy of anticonvulsants, animal studies of candidate genes, and studies using induced pluripotent stem cell-derived neurons have suggested a relation between bipolar disorder and the hyperexcitability of neurons. Recent genetic findings suggest the roles of polyunsaturated acids. At the systems level, social rhythm therapy targets circadian rhythm abnormalities, and cognitive behavioral therapy may target emotion/cognition (E/C) imbalance. In the future, pharmacological and psychosocial treatments may be combined and optimized based on the biological basis of each patient, which will realize individualized treatment.
Collapse
Affiliation(s)
- Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
35
|
Yu B, Jin Y, Shen Y, Yang Y, Wang G, Zhu H, Yu Y, Wang J. Loss of homeoprotein Msx1 and Msx2 leading to athletic and kinematic impairment related to the increasing neural excitability of neurons in aberrant neocortex in mice. Biochem Biophys Res Commun 2019; 516:229-235. [PMID: 31221479 DOI: 10.1016/j.bbrc.2019.05.170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 10/26/2022]
Abstract
Although homeoproteins Msx1 and Msx2, the cell-specific transcription regulators, have been proven to play multiple roles in the embryogenesis of bone, muscle and tooth, the functions and mechanisms of Msx1 and Msx2 in the development of the central nervous system of mice after birth are not clear because of the death of Msx1 and Msx1/2 germline-deleted embryo at late gestation of mouse. In current research, Nestin-Cre mice was introduced to generate the central nervous system-specific knockout mice (Nestin-Cre;Msx1,Msx2fl/fl). We found that besides the falling of the body mass and the brain volume, the cortical tissue sections and staining showed the decreasing thickness of layer II-IV and declining number of vertebral cells in layer V resulting from Msx1/2 deletion. In addition, electrophysiological tests revealed the aberrant action potential parameters of deep pyramidal neurons in Nestin-Cre;Msx1,2 fl/fl mice, which may be related with the ethology impairment displayed in further experiments. We discovered Nestin-Cre;Msx1,2 fl/fl mice had severe impairment in their athletic ability and kinematic learning ability in rotate test, and exhibited hyperactivity in open-field test. Above all, our results revealed that deletion of homeoproteins Msx1 and Msx2 could lead to behavioral disorders and suggested that Msx1 and Msx2 played a crucial role in regulating the development and function of the neocortex. In addition, our current research provided a new mouse model for understanding the pathogenesis of human central nervous system disease.
Collapse
Affiliation(s)
- Bin Yu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics, and Development, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yuqing Jin
- State Key Laboratory of Medical Neurobiology, School of Life Science and Human Phenome Institute, Institute of Brain Science, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Yi Shen
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics, and Development, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yenan Yang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics, and Development, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Gang Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics, and Development, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Haiying Zhu
- Department of Cell Biology, Second Military Medical University, Shanghai, China.
| | - Yuguo Yu
- State Key Laboratory of Medical Neurobiology, School of Life Science and Human Phenome Institute, Institute of Brain Science, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
| | - Jingqiang Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics, and Development, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
36
|
Egervari G, Kozlenkov A, Dracheva S, Hurd YL. Molecular windows into the human brain for psychiatric disorders. Mol Psychiatry 2019; 24:653-673. [PMID: 29955163 PMCID: PMC6310674 DOI: 10.1038/s41380-018-0125-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/14/2018] [Accepted: 06/05/2018] [Indexed: 12/20/2022]
Abstract
Delineating the pathophysiology of psychiatric disorders has been extremely challenging but technological advances in recent decades have facilitated a deeper interrogation of molecular processes in the human brain. Initial candidate gene expression studies of the postmortem brain have evolved into genome wide profiling of the transcriptome and the epigenome, a critical regulator of gene expression. Here, we review the potential and challenges of direct molecular characterization of the postmortem human brain, and provide a brief overview of recent transcriptional and epigenetic studies with respect to neuropsychiatric disorders. Such information can now be leveraged and integrated with the growing number of genome-wide association databases to provide a functional context of trait-associated genetic variants linked to psychiatric illnesses and related phenotypes. While it is clear that the field is still developing and challenges remain to be surmounted, these recent advances nevertheless hold tremendous promise for delineating the neurobiological underpinnings of mental diseases and accelerating the development of novel medication strategies.
Collapse
Affiliation(s)
- Gabor Egervari
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Addiction Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, School of Medicine at Mount Sinai, New York, NY, USA
- Epigenetics Institute and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alexey Kozlenkov
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Stella Dracheva
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Yasmin L Hurd
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Addiction Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
37
|
Zhang Q, Zhang H, Liu F, Yang Q, Chen K, Liu P, Sun T, Ma C, Qiu W, Qian X. Comparison of Reference Genes for Transcriptional Studies in Postmortem Human Brain Tissue Under Different Conditions. Neurosci Bull 2019; 35:225-228. [PMID: 30406345 PMCID: PMC6426908 DOI: 10.1007/s12264-018-0309-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/28/2018] [Indexed: 11/30/2022] Open
Affiliation(s)
- Qing Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Hanlin Zhang
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
- Eight-Year MD Program, Peking Union Medical College, Beijing, 100730, China
| | - Fan Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Qian Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Kang Chen
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
- Eight-Year MD Program, Peking Union Medical College, Beijing, 100730, China
| | - Pan Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Tianyi Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Wenying Qiu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Xiaojing Qian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| |
Collapse
|
38
|
Arrúe A, González-Torres MA, Basterreche N, Arnaiz A, Olivas O, Zamalloa MI, Erkoreka L, Catalán A, Zumárraga M. GAD1 gene polymorphisms are associated with bipolar I disorder and with blood homovanillic acid levels but not with plasma GABA levels. Neurochem Int 2019; 124:152-161. [PMID: 30625343 DOI: 10.1016/j.neuint.2019.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/18/2018] [Accepted: 01/04/2019] [Indexed: 11/16/2022]
Affiliation(s)
- Aurora Arrúe
- Departamento de Investigación Neuroquímica, Hospital de Zamudio, Red de Salud Mental de Bizkaia, Zamudio, Spain; BioCruces Health Research Institute, Barakaldo, Spain.
| | - Miguel Angel González-Torres
- BioCruces Health Research Institute, Barakaldo, Spain; Servicio de Psiquiatría, Hospital Universitario Basurto, Bilbao, Spain; Departamento de Neurociencias, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Nieves Basterreche
- BioCruces Health Research Institute, Barakaldo, Spain; Departamento de Neurociencias, University of the Basque Country (UPV/EHU), Leioa, Spain; Unidad de Hospitalización de Corta Estancia, Hospital de Zamudio, Red de Salud Mental de Bizkaia, Zamudio, Spain
| | - Ainara Arnaiz
- BioCruces Health Research Institute, Barakaldo, Spain; Servicio de Rehabilitación, Hospital de Zamudio, Red de Salud Mental de Bizkaia, Zamudio, Spain
| | - Olga Olivas
- BioCruces Health Research Institute, Barakaldo, Spain; Centro de Salud Mental de Gernika, Red de Salud Mental de Bizkaia, Gernika, Spain
| | - M Isabel Zamalloa
- Departamento de Investigación Neuroquímica, Hospital de Zamudio, Red de Salud Mental de Bizkaia, Zamudio, Spain; BioCruces Health Research Institute, Barakaldo, Spain
| | - Leire Erkoreka
- BioCruces Health Research Institute, Barakaldo, Spain; Departamento de Neurociencias, University of the Basque Country (UPV/EHU), Leioa, Spain; Centro de Salud Mental Barakaldo, Red de Salud Mental de Bizkaia, Barakaldo, Spain
| | - Ana Catalán
- BioCruces Health Research Institute, Barakaldo, Spain; Servicio de Psiquiatría, Hospital Universitario Basurto, Bilbao, Spain; Departamento de Neurociencias, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Mercedes Zumárraga
- Departamento de Investigación Neuroquímica, Hospital de Zamudio, Red de Salud Mental de Bizkaia, Zamudio, Spain; BioCruces Health Research Institute, Barakaldo, Spain
| |
Collapse
|
39
|
Ruzicka WB, Subburaju S, Coyle JT, Benes FM. Location matters: distinct DNA methylation patterns in GABAergic interneuronal populations from separate microcircuits within the human hippocampus. Hum Mol Genet 2019; 27:254-265. [PMID: 29106556 DOI: 10.1093/hmg/ddx395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/31/2017] [Indexed: 12/31/2022] Open
Abstract
Recent studies describe distinct DNA methylomes among phenotypic subclasses of neurons in the human brain, but variation in DNA methylation between common neuronal phenotypes distinguished by their function within distinct neural circuits remains an unexplored concept. Studies able to resolve epigenetic profiles at the level of microcircuits are needed to illuminate chromatin dynamics in the regulation of specific neuronal populations and circuits mediating normal and abnormal behaviors. The Illumina HumanMethylation450 BeadChip was used to assess genome-wide DNA methylation in stratum oriens GABAergic interneurons sampled by laser-microdissection from two discrete microcircuits along the trisynaptic pathway in postmortem human hippocampus from eight control, eight schizophrenia, and eight bipolar disorder subjects. Data were analysed using the minfi Bioconductor package in R software version 3.3.2. We identified 11 highly significant differentially methylated regions associated with a group of genes with high construct-validity, including multiple zinc finger of the cerebellum gene family members and WNT signaling factors. Genomic locations of differentially methylated regions were highly similar between diagnostic categories, with a greater number of differentially methylated individual cytosine residues between circuit locations in bipolar disorder cases than in schizophrenia or control (42, 7, and 7 differentially methylated positions, respectively). These findings identify distinct DNA methylomes among phenotypically similar populations of GABAergic interneurons functioning within separate hippocampal subfields. These data compliment recent studies describing diverse epigenotypes among separate neuronal subclasses, extending this concept to distinct epigenotypes within similar neuronal phenotypes from separate microcircuits within the human brain.
Collapse
Affiliation(s)
- W Brad Ruzicka
- Program in Structural and Molecular Neuroscience, McLean Hospital, Belmont, MA 02478, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Sivan Subburaju
- Program in Structural and Molecular Neuroscience, McLean Hospital, Belmont, MA 02478, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph T Coyle
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA.,Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, Belmont, MA 02478, USA.,Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Francine M Benes
- Program in Structural and Molecular Neuroscience, McLean Hospital, Belmont, MA 02478, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA.,Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
40
|
Dong E, Locci V, Gatta E, Grayson DR, Guidotti A. N-Phthalyl-l-Tryptophan (RG108), like Clozapine (CLO), Induces Chromatin Remodeling in Brains of Prenatally Stressed Mice. Mol Pharmacol 2019; 95:62-69. [PMID: 30397000 PMCID: PMC6277925 DOI: 10.1124/mol.118.113415] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/19/2018] [Indexed: 12/30/2022] Open
Abstract
Schizophrenia (SZ), schizoaffective (SZA), and bipolar (BP) disorder are neurodevelopmental psychopathological conditions related, in part, to genetic load and, in part, to environmentally induced epigenetic dysregulation of chromatin structure and function in neocortical GABAergic, glutamatergic, and monoaminergic neurons. To test the above hypothesis, we targeted our scientific efforts on identifying whether the molecular epigenetic signature of postmortem brains of patients with SZ, SZA, and BP disorder are also present in the brains of adult mice born from dams prenatally restraint stressed (PRS) during gestation. The brains of PRS mice, which are similar to the brains of patients with SZ and BP disorder, show an ∼2-fold increased binding of DNMT1 to psychiatric candidate promoters (glutamic acid decarboxylase 67, Reelin, and brain-derived neurotrophic factor), leading to their hypermethylation, reduced expression, as well as the behavioral endophenotypes reminiscent of those observed in the above psychiatric disorders. To establish whether clozapine (CLO) produces its behavioral and molecular action through a causal involvement of DNA methylation/demethylation processes, we compared the epigenetic action of CLO with that of the DNMT1 competitive inhibitor N-phthalyl-l-tryptophan (RG108). The intracerebroventricular injection of RG108 (20 nmol/day per 5 days), similar to the systemic administration of CLO, corrects the altered behavioral and molecular endophenotypes that are typical of PRS mice. These results are consistent with an epigenetic etiology underlying the behavioral endophenotypic profile in PRS mice. Further, it suggests that PRS mice may be useful in the preclinical screening of antipsychotic drugs acting to correct altered epigenetic mechanisms.
Collapse
Affiliation(s)
- Erbo Dong
- The Psychiatric Institute, Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Valentina Locci
- The Psychiatric Institute, Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Eleonora Gatta
- The Psychiatric Institute, Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Dennis R Grayson
- The Psychiatric Institute, Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Alessandro Guidotti
- The Psychiatric Institute, Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
41
|
Wang Z, Li P, Wu T, Zhu S, Deng L, Cui G. Axon guidance pathway genes are associated with schizophrenia risk. Exp Ther Med 2018; 16:4519-4526. [PMID: 30542400 PMCID: PMC6257106 DOI: 10.3892/etm.2018.6781] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/11/2018] [Indexed: 01/09/2023] Open
Abstract
In the present study, we analyzed schizophrenia (SCZ)-related genome-wide association studies (GWAS) to identify genes and pathways associated with SCZ. We identified 1,098 common genes (1,098/9,468) and 20 shared KEGG pathways (both P<0.01) by integrating candidate genes from the European and American SCZ-related GWAS. The pathways related to axon guidance, long term potentiation and arrhythmogenic right ventricular cardiomyopathy (ARVC) were highly significant (P<10-3). Moreover, 15 axon guidance pathway-related genes were associated with SCZ. The association between axon guidance pathway genes and SCZ was validated by a two-stage case-control study on Shandong migrants in northeastern China. Moreover, individuals with the rs9944880 TT polymorphism in the deleted in colorectal cancer (DCC) gene were associated with SCZ. These findings indicate that the axon guidance pathway genes and the rs9944880 SNP in DCC gene are associated with SCZ pathogenesis.
Collapse
Affiliation(s)
- Zhichao Wang
- Department of Academic Research, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Ping Li
- Department of Psychiatry and Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Tong Wu
- Department of Psychiatry and Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Shuangyue Zhu
- Department of Psychiatry, Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang 310007, P.R. China
| | - Libin Deng
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Guangcheng Cui
- Department of Psychiatry and Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
42
|
McGarrity S, Mason R, Fone KC, Pezze M, Bast T. Hippocampal Neural Disinhibition Causes Attentional and Memory Deficits. Cereb Cortex 2018; 27:4447-4462. [PMID: 27550864 DOI: 10.1093/cercor/bhw247] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 07/18/2016] [Indexed: 12/18/2022] Open
Abstract
Subconvulsive hippocampal neural disinhibition, that is reduced GABAergic inhibition, has been implicated in neuropsychiatric disorders characterized by attentional and memory deficits, including schizophrenia and age-related cognitive decline. Considering that neural disinhibition may disrupt both intra-hippocampal processing and processing in hippocampal projection sites, we hypothesized that hippocampal disinhibition disrupts hippocampus-dependent memory performance and, based on strong hippocampo-prefrontal connectivity, also prefrontal-dependent attention. In support of this hypothesis, we report that acute hippocampal disinhibition by microinfusion of the GABA-A receptor antagonist picrotoxin in rats impaired hippocampus-dependent everyday-type rapid place learning performance on the watermaze delayed-matching-to-place test and prefrontal-dependent attentional performance on the 5-choice-serial-reaction-time test, which does not normally require the hippocampus. For comparison, we also examined psychosis-related sensorimotor effects, using startle/prepulse inhibition (PPI) and locomotor testing. Hippocampal picrotoxin moderately increased locomotion and slightly reduced startle reactivity, without affecting PPI. In vivo electrophysiological recordings in the vicinity of the infusion site showed that picrotoxin mainly enhanced burst firing of hippocampal neurons. In conclusion, hippocampal neural disinhibition disrupts hippocampus-dependent memory performance and also manifests through deficits in not normally hippocampus-dependent attentional performance. These behavioral deficits may reflect a disrupted control of burst firing, which may disrupt hippocampal processing and cause aberrant drive to hippocampal projection sites.
Collapse
Affiliation(s)
- Stephanie McGarrity
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, UK.,Neuroscience@Nottingham, University of Nottingham, Nottingham NG7 2RD, UK
| | - Rob Mason
- Neuroscience@Nottingham, University of Nottingham, Nottingham NG7 2RD, UK.,School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Kevin C Fone
- Neuroscience@Nottingham, University of Nottingham, Nottingham NG7 2RD, UK.,School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Marie Pezze
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, UK.,Neuroscience@Nottingham, University of Nottingham, Nottingham NG7 2RD, UK
| | - Tobias Bast
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, UK.,Neuroscience@Nottingham, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
43
|
Tao R, Davis KN, Li C, Shin JH, Gao Y, Jaffe AE, Gondré-Lewis MC, Weinberger DR, Kleinman JE, Hyde TM. GAD1 alternative transcripts and DNA methylation in human prefrontal cortex and hippocampus in brain development, schizophrenia. Mol Psychiatry 2018; 23:1496-1505. [PMID: 28485403 PMCID: PMC7564279 DOI: 10.1038/mp.2017.105] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/20/2017] [Accepted: 04/04/2017] [Indexed: 12/25/2022]
Abstract
Genetic variations and adverse environmental events in utero or shortly after birth can lead to abnormal brain development and increased risk of schizophrenia. γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the mammalian brain, plays a vital role in normal brain development. GABA synthesis is controlled by enzymes derived from two glutamic acid decarboxylase (GAD) genes, GAD1 and GAD2, both of which produce transcript isoforms. While the full-length GAD1 transcript (GAD67) has been implicated in the neuropathology of schizophrenia, the transcript structure of GAD1 in the human brain has not been fully characterized. In this study, with the use of RNA sequencing and PCR technologies, we report the discovery of 10 novel transcripts of GAD1 in the human brain. Expression levels of four novel GAD1 transcripts (8A, 8B, I80 and I86) showed a lifespan trajectory expression pattern that is anticorrelated with the expression of the full-length GAD1 transcript. In addition, methylation levels of two CpG loci within the putative GAD1 promoter were significantly associated with the schizophrenia-risk SNP rs3749034 and with the expression of GAD25 in dorsolateral prefrontal cortex (DLPFC). Moreover, schizophrenia patients who had completed suicide and/or were positive for nicotine exposure had significantly higher full-length GAD1 expression in the DLPFC. Alternative splicing of GAD1 and epigenetic state appear to play roles in the developmental profile of GAD1 expression and may contribute to GABA dysfunction in the PFC and hippocampus of patients with schizophrenia.
Collapse
Affiliation(s)
- Ran Tao
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Kasey N. Davis
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA,Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington D.C., USA
| | - Chao Li
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Joo Heon Shin
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Yuan Gao
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Andrew E. Jaffe
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Marjorie C. Gondré-Lewis
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington D.C., USA
| | - Daniel R. Weinberger
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA,Department of Psychiatry and Behavior Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,McKusick Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joel E. Kleinman
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA,Department of Psychiatry and Behavior Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Thomas M. Hyde
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA,Department of Psychiatry and Behavior Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
44
|
Peedicayil J, Kumar A. Epigenetic Drugs for Mood Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:151-174. [PMID: 29933949 DOI: 10.1016/bs.pmbts.2018.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is increasing evidence that changes in epigenetic mechanisms of gene expression are involved in the pathogenesis of mood disorders. Such evidence stems from studies conducted on postmortem brain tissues and peripheral cells or tissues of patients with mood disorders. This article describes and discusses the epigenetic changes in the mood disorders (major depressive disorder and bipolar disorder) found to date. The article also describes and discusses preclinical drug trials of epigenetic drugs for treating mood disorders. In addition, nonrandomized and randomized controlled trials of nutritional drugs with effects on epigenetic mechanisms of gene expression in patients with major depressive disorder and bipolar disorder are discussed. Trials of epigenetic drugs and nutritional drugs with epigenetic effects are showing promising results for the treatment of mood disorders. Thus, epigenetic drugs and nutritional drugs with epigenetic effects could be useful in the treatment of patients with these disorders.
Collapse
|
45
|
Liu C, Jiao C, Wang K, Yuan N. DNA Methylation and Psychiatric Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:175-232. [PMID: 29933950 DOI: 10.1016/bs.pmbts.2018.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
DNA methylation has been an important area of research in the study of molecular mechanism to psychiatric disorders. Recent evidence has suggested that abnormalities in global methylation, methylation of genes, and pathways could play a role in the etiology of many forms of mental illness. In this article, we review the mechanisms of DNA methylation, including the genetic and environmental factors affecting methylation changes. We report and discuss major findings regarding DNA methylation in psychiatric patients, both within the context of global methylation studies and gene-specific methylation studies. Finally, we discuss issues surrounding data quality improvement, the limitations of current methylation analysis methods, and the possibility of using DNA methylation-based treatment for psychiatric disorders in the future.
Collapse
Affiliation(s)
- Chunyu Liu
- University of Illinois, Chicago, IL, United States; School of Life Science, Central South University, Changsha, China.
| | - Chuan Jiao
- School of Life Science, Central South University, Changsha, China
| | - Kangli Wang
- School of Life Science, Central South University, Changsha, China
| | - Ning Yuan
- Hunan Brain Hospital, Changsha, China
| |
Collapse
|
46
|
Chromosomal Conformations and Epigenomic Regulation in Schizophrenia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:21-40. [PMID: 29933951 DOI: 10.1016/bs.pmbts.2017.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chromosomal conformations, including promoter-enhancer loops, provide a critical regulatory layer for the transcriptional machinery. Therefore, schizophrenia, a common psychiatric disorder associated with broad changes in neuronal gene expression in prefrontal cortex and other brain regions implicated in psychosis, could be associated with alterations in higher-order chromatin. Here, we review early studies on spatial genome organization in the schizophrenia postmortem brain and discuss how integrative approaches using cell culture and animal model systems could gain deeper insight into the potential roles of higher-order chromatin for the neurobiology of and novel treatment avenues for common psychiatric disease.
Collapse
|
47
|
Kim H, Wang X, Jin P. Developing DNA methylation-based diagnostic biomarkers. J Genet Genomics 2018; 45:87-97. [PMID: 29496486 DOI: 10.1016/j.jgg.2018.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 02/06/2023]
Abstract
An emerging paradigm shift for disease diagnosis is to rely on molecular characterization beyond traditional clinical and symptom-based examinations. Although genetic alterations and transcription signature were first introduced as potential biomarkers, clinical implementations of these markers are limited due to low reproducibility and accuracy. Instead, epigenetic changes are considered as an alternative approach to disease diagnosis. Complex epigenetic regulation is required for normal biological functions and it has been shown that distinctive epigenetic disruptions could contribute to disease pathogenesis. Disease-specific epigenetic changes, especially DNA methylation, have been observed, suggesting its potential as disease biomarkers for diagnosis. In addition to specificity, the feasibility of detecting disease-associated methylation marks in the biological specimens collected noninvasively, such as blood samples, has driven the clinical studies to validate disease-specific DNA methylation changes as a diagnostic biomarker. Here, we highlight the advantages of DNA methylation signature for diagnosis in different diseases and discuss the statistical and technical challenges to be overcome before clinical implementation.
Collapse
Affiliation(s)
- Hyerim Kim
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Xudong Wang
- Department of Gastroenterological Surgery, The Second Hospital, Jilin University, Changchun 130041, China.
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
48
|
Ovenden ES, McGregor NW, Emsley RA, Warnich L. DNA methylation and antipsychotic treatment mechanisms in schizophrenia: Progress and future directions. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:38-49. [PMID: 29017764 DOI: 10.1016/j.pnpbp.2017.10.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 12/15/2022]
Abstract
Antipsychotic response in schizophrenia is a complex, multifactorial trait influenced by pharmacogenetic factors. With genetic studies thus far providing little biological insight or clinical utility, the field of pharmacoepigenomics has emerged to tackle the so-called "missing heritability" of drug response in disease. Research on psychiatric disorders has only recently started to assess the link between epigenetic alterations and treatment outcomes. DNA methylation, the best characterised epigenetic mechanism to date, is discussed here in the context of schizophrenia and antipsychotic treatment outcomes. The majority of published studies have assessed the influence of antipsychotics on methylation levels in specific neurotransmitter-associated candidate genes or at the genome-wide level. While these studies illustrate the epigenetic modifications associated with antipsychotics, very few have assessed clinical outcomes and the potential of differential DNA methylation profiles as predictors of antipsychotic response. Results from other psychiatric disorder studies, such as depression and bipolar disorder, provide insight into what may be achieved by schizophrenia pharmacoepigenomics. Other aspects that should be addressed in future research include methodological challenges, such as tissue specificity, and the influence of genetic variation on differential methylation patterns.
Collapse
Affiliation(s)
- Ellen S Ovenden
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Nathaniel W McGregor
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Robin A Emsley
- Department of Psychiatry, Stellenbosch University, Tygerberg 7505, South Africa
| | - Louise Warnich
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
49
|
Peedicayil J, Grayson DR. An epigenetic basis for an omnigenic model of psychiatric disorders. J Theor Biol 2018; 443:52-55. [PMID: 29378208 DOI: 10.1016/j.jtbi.2018.01.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Jacob Peedicayil
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, India.
| | - Dennis R Grayson
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, The Psychiatric Institute, College of Medicine, University of Illinois, Chicago 60612, USA.
| |
Collapse
|
50
|
Wang Y, Liu X, Li P, Zhou H, Yang L, Zheng L, Xie P, Li L, Liao DJ, Liu Q, Fang D. Regional Cerebral Blood Flow in Mania: Assessment Using 320-Slice Computed Tomography. Front Psychiatry 2018; 9:296. [PMID: 30034350 PMCID: PMC6043786 DOI: 10.3389/fpsyt.2018.00296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/15/2018] [Indexed: 11/21/2022] Open
Abstract
Objectives: While evidence that episodes of mania in bipolar I are associated with changes in bioenergetic and regional cerebral blood flow (rCBF) and cerebral blood flow velocity (rCBFV), both the regions and the extent of these changes have not yet been defined. Therefore, we determined the pattern of regional cerebral perfusion mania patients and using patients with major depressive disorder (MDD) as positive controls and healthy participants as negative controls. Methods: Twenty participants with mania, together with 22 MDD patients and 24 healthy volunteers, were recruited for this study. On all participants, Transcranial Doppler (TCD) was conducted to measure rCBFV parameters, 320-slice CT was conducted to measure rCBF in the different cerebral artery regions, and hematological parameters were assessed. ANOVA and Pearson's tests were used for the statistical analysis. Results: Our data indicated that rCBF in the medial temporal lobe and hippocampus, especially in the left medial temporal lobe and the right hippocampus, was increased in the mania group compared with the control and MDD groups (p < 0.01). In contrast, rCBF in the medial temporal lobe and hippocampus was decreased in the depression group (p < 0.01) compared with healthy controls. In addition, values of rCBFV in the bilateral internal carotid arteries (ICAs) and middle cerebral arteries (MCA) were increased in mania (p < 0.01) in comparison to the MDD group. Whole blood viscosity and hematocrit as well as red blood cell sedimentation rate remained unchanged in all group (p > 0.05). Conclusions: In mania, rCBF is increased in the medial temporal lobe and hippocampus, with a corresponding increase in rCBFV in the same regions.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Neuroelectrophysiological Testing Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,College Students' Mental Health Education and Counseling Center, Guizhou Medical University, Guiyang, China
| | - Xingde Liu
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Peifan Li
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Haiyan Zhou
- Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lixia Yang
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lei Zheng
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Pingxia Xie
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lingjiang Li
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - D Joshua Liao
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qianqian Liu
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|