1
|
Gutmann DH, Anastasaki C, Gupta A, Hou Y, Morris SM, Payne JM, Raber J, Tomchik SM, Van Aelst L, Walker JA, Yohay KH. Cognition and behavior in neurofibromatosis type 1: report and perspective from the Cognition and Behavior in NF1 (CABIN) Task Force. Genes Dev 2025; 39:541-554. [PMID: 40127956 PMCID: PMC12047663 DOI: 10.1101/gad.352629.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Individuals with neurofibromatosis type 1 (NF1) are prone to the evolution of neurodevelopmental symptomatology including motor delays, learning disabilities, autism, and attention deficits. Caused by heterozygous germline mutations in the NF1 gene, this monogenic condition offers unique opportunities to study the genetic etiologies for neurodevelopmental disorders and the mechanisms that underlie their formation. Although numerous small animal models have been generated to elucidate the causes of these alterations, there is little consensus on how to align preclinical observations with clinical outcomes, harmonize findings across species, and consolidate these insights to chart a cohesive path forward. Capitalizing on expertise from clinicians; human, animal, and cellular model research scientists; and bioinformatics researchers, the first Cognition and Behavior in NF1 (CABIN) meeting was convened at the Banbury Center of Cold Spring Harbor Laboratory in October 2024. This Perspective summarizes the state of our understanding and a proposed plan for future investigation and exploration to improve the quality of life of those with NF1.
Collapse
Affiliation(s)
- David H Gutmann
- Department of Neurology, Data Science, and Biostatistics, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Corina Anastasaki
- Department of Neurology, Data Science, and Biostatistics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Aditi Gupta
- Institute for Informatics, Data Science, and Biostatistics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Yang Hou
- Department of Behavioral Sciences and Social Medicine, Florida State University, Tallahassee, Florida 32306, USA
| | - Stephanie M Morris
- Center for Autism Services, Science, and Innovation (CASSI), Kennedy Krieger Institute, Baltimore, Maryland 21211, USA
| | - Jonathan M Payne
- Murdoch Children's Research Institute, Department of Paediatrics, Faculty of Medicine, Dentistry, and Health Sciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jacob Raber
- Department of Behavioral Neuroscience, Division of Neuroscience, Oregon National Primate Research Center (ONPRC), Oregon Health Sciences University, Portland, Oregon 97296, USA
- Department of Neurology, Division of Neuroscience, Oregon National Primate Research Center (ONPRC), Oregon Health Sciences University, Portland, Oregon 97296, USA
- Department of Radiation Medicine, Division of Neuroscience, Oregon National Primate Research Center (ONPRC), Oregon Health Sciences University, Portland, Oregon 97296, USA
| | - Seth M Tomchik
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - James A Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 12114, USA
| | - Kaleb H Yohay
- Department of Neurology, New York University Langone, New York, New York 10017, USA
| |
Collapse
|
2
|
Suarez GO, Kumar DS, Brunner H, Knauss A, Barrios J, Emel J, Teel J, Botero V, Broyles CN, Stahl A, Bidaye SS, Tomchik SM. Neurofibromin Deficiency Alters the Patterning and Prioritization of Motor Behaviors in a State-Dependent Manner. J Neurosci 2025; 45:e1531242025. [PMID: 39965929 PMCID: PMC12005242 DOI: 10.1523/jneurosci.1531-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
Genetic disorders such as neurofibromatosis type 1 (Nf1) increase vulnerability to cognitive and behavioral disorders, such as autism spectrum disorder and attention-deficit/hyperactivity disorder. Nf1 results from mutations in the neurofibromin gene that can reduce levels of the neurofibromin protein. While the mechanisms have yet to be fully elucidated, loss of Nf1 may alter neuronal circuit activity leading to changes in behavior and susceptibility to cognitive and behavioral comorbidities. Here we show that mutations decreasing Nf1 expression alter motor behaviors, impacting the patterning, prioritization, and behavioral state dependence in a Drosophila model of Nf1. Loss of Nf1 increased spontaneous grooming in male and female flies. This followed a nonlinear spatial pattern, with Nf1 deficiency increasing grooming of certain body parts differentially, including the abdomen, head, and wings. The increase in grooming could be overridden by hunger in foraging animals, demonstrating that the Nf1 effect is plastic and internal state dependent. Stimulus-evoked grooming patterns were altered as well, suggesting that hierarchical recruitment of grooming command circuits was altered. Yet loss of Nf1 in sensory neurons and/or grooming command neurons did not alter grooming frequency, suggesting that Nf1 affects grooming via higher-order circuit alterations. Changes in grooming coincided with alterations in walking. Flies lacking Nf1 walked with increased forward velocity on a spherical treadmill, yet there was no detectable change in leg kinematics or gait. These results demonstrate that loss of Nf1 alters the patterning and prioritization of repetitive behaviors, in a state-dependent manner, without affecting low-level motor functions.
Collapse
Affiliation(s)
- Genesis Omana Suarez
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242
- H.L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida 33458
| | - Divya S Kumar
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Hannah Brunner
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242
| | - Anneke Knauss
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242
| | - Jenifer Barrios
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242
| | - Jalen Emel
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242
| | - Jensen Teel
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Valentina Botero
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242
| | - Connor N Broyles
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242
| | - Aaron Stahl
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242
| | - Salil S Bidaye
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Seth M Tomchik
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
3
|
Wang YX, Fei CJ, Shen C, Ou YN, Liu WS, Yang L, Wu BS, Deng YT, Feng JF, Cheng W, Yu JT. Exome sequencing identifies protein-coding variants associated with loneliness and social isolation. J Affect Disord 2025; 375:192-204. [PMID: 39842675 DOI: 10.1016/j.jad.2025.01.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/31/2024] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Loneliness and social isolation are serious yet underappreciated public health problems, with their genetic underpinnings remaining largely unknown. We aimed to explore the role of protein-coding variants in the manifestation of loneliness and social isolation. METHODS We conducted the first exome-wide association analysis on loneliness and social isolation, utilizing 336,115 participants of white-British ancestry for loneliness and 346,115 for social isolation. Sensitivity analyses were performed to validate the genetic findings. We estimated the genetic burden heritability of loneliness and social isolation and provided biological insights into them. RESULTS We identified six novel risk genes (ANKRD12, RIPOR2, PTEN, ARL8B, NF1, and PIMREG) associated with loneliness and two (EDARADD and GIGYF1) with social isolation through analysis of rare coding variants. Brain-wide association analysis uncovered 47 associations between identified genes and brain structure phenotypes, many of which are critical for social processing and interaction. Phenome-wide association analysis established significant links between these genes and phenotypes across five categories, mostly blood biomarkers and cognitive measures. LIMITATIONS The measurements of loneliness and social isolation in UK Biobank are brief for these multi-layer social factors, some relevant aspects may be missed. CONCLUSIONS Our study revealed 13 risk genes associated with loneliness and 6 with social isolation, with the majority being novel discoveries. These findings advance our understanding of the genetic basis of these two traits. The study provides a foundation for future studies aimed at exploring the functional mechanisms of these genes and their potential implications for public health interventions targeting loneliness and social isolation.
Collapse
Affiliation(s)
- Yi-Xuan Wang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Chen-Jie Fei
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Chun Shen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei-Shi Liu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China; Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China; Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Hou Y, Yu L, Liu D, Wilson-Lemoine E, Wu X, Moreira JP, Mujica BF, Mukhopadhyay ES, Novotney AN, Payne JM. Systematic Review and Meta-Analysis: Attention-Deficit/Hyperactivity Disorder Symptoms in Children With Neurofibromatosis Type 1. J Am Acad Child Adolesc Psychiatry 2025; 64:447-462. [PMID: 39709008 DOI: 10.1016/j.jaac.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/30/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVE This meta-analysis aimed to robustly estimate differences in attention-deficit/hyperactivity disorder (ADHD) symptoms between children and adolescents with and without neurofibromatosis type 1 (NF1). METHOD Systematic literature searches were conducted in Scopus, PsycINFO, Web of Science, PubMed, and ProQuest in September 2022, with a supplemental search conducted in Google Scholar in February 2023. The searches identified 2,153 unique articles. Screening identified 114 academic journal articles that assessed parent/caregiver- or teacher-reported ADHD symptoms for children/adolescents with NF1. Two researchers independently screened articles and extracted data. The primary outcome was group differences in ADHD symptoms between children/adolescents with and without NF1 (Hedges g). Data were analyzed using robust variance estimation and random-effects models. RESULTS The meta-analysis included 70 studies (138 effect sizes), involving 3,653 children/adolescents with NF1 (46% female; mean age = 9.69 years, SD = 2.60 years) and 4,895 children/adolescents without NF1 (48% female; mean age = 10.03 years, SD = 3.10 years). According to parent/caregiver reports, children/adolescents with NF1 exhibited more severe inattentive symptoms (g = 1.20; 95% CI = 1.06-1.35), hyperactive/impulsive symptoms (g = 0.85; 95% CI = 0. 68-1.03), and combined ADHD symptoms (g = 1.02; 95% CI = 0.87-1.17) than unaffected controls. Inattentive ADHD symptoms were more elevated than hyperactivity/impulsivity for children/adolescents with NF1. Larger effect sizes for inattention and hyperactivity/impulsivity were associated with older age, lower intelligence quotient (IQ), and parent/caregiver vs teacher reports. CONCLUSION NF1 is a monogenic condition that has strong associations with elevated ADHD symptoms. Findings highlight the importance of early intervention and targeted support for ADHD-related problems in children with NF1. PLAIN LANGUAGE SUMMARY Increasing evidence has suggested a higher risk for attention-deficit/hyperactivity disorder (ADHD) in individuals with neurofibromatosis type 1 (NF1). In this study of ADHD symptom severity in youth with NF1, the authors analyzed data from 70 articles. The authors found much more severe ADHD symptoms in children and adolescents with NF1 compared to youth without NF1. Inattentive symptoms were more pronounced in children with NIF who were older or had a lower IQ. STUDY PREREGISTRATION INFORMATION Compare the ADHD problems between NF1 and control groups; https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=462063.
Collapse
Affiliation(s)
- Yang Hou
- Florida State University, Tallahassee, Florida, USA.
| | - Liyan Yu
- Florida State University, Tallahassee, Florida, USA
| | - Dan Liu
- Florida State University, Tallahassee, Florida, USA
| | | | - Xian Wu
- University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | | - Jonathan M Payne
- Murdoch Children's Research Institute, Australia and The University of Melbourne, Australia
| |
Collapse
|
5
|
Begum-Ali J, Mason L, Charman T, Johnson MH, Green J, Garg S, Jones EJH. Disrupted visual attention relates to cognitive development in infants with Neurofibromatosis Type 1. J Neurodev Disord 2025; 17:12. [PMID: 40087579 PMCID: PMC11907931 DOI: 10.1186/s11689-025-09599-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/13/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Neurofibromatosis Type 1 is a genetic condition diagnosed in infancy that substantially increases the likelihood of a child experiencing cognitive and developmental difficulties, including Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). Children with NF1 show clear differences in attention, but whether these differences emerge in early development and how they relate to broader difficulties with cognitive and learning skills is unclear. To address this question requires longitudinal prospective studies from infancy, where the relation between domains of visual attention (including exogenous and endogenous shifting) and cognitive development can be mapped over time. METHODS We report data from 28 infants with NF1 tested longitudinally at 5, 10 and 14 months compared to cohorts of 29 typical likelihood infants (with no history of NF1 or ASD and/or ADHD), and 123 infants with a family history of ASD and/or ADHD. We used an eyetracking battery to measure both exogenous and endogenous control of visual attention. RESULTS Infants with NF1 demonstrated intact social orienting, but slower development of endogenous visual foraging. This slower development presented as prolonged engagement with a salient stimulus in a static display relative to typically developing infants. In terms of exogenous attention shifting, NF1 infants showed faster saccadic reaction times than typical likelihood infants. However, the NF1 group demonstrated a slower developmental improvement from 5 to 14 months of age. Individual differences in foraging and saccade times were concurrently related to visual reception abilities within the full infant cohort (NF1, typical likelihood and those with a family history of ASD/ADHD). CONCLUSIONS Our results provide preliminary evidence that alterations in saccadic reaction time and visual foraging may contribute to learning difficulties in infants with NF1.
Collapse
Affiliation(s)
- Jannath Begum-Ali
- Centre for Brain and Cognitive Development, School of Psychological Sciences, Faculty of Science, Henry Wellcome Building, Birkbeck, University of London, Malet Street, London, UK.
| | - Luke Mason
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King'S College London, London, UK
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King'S College London, London, UK
| | - Mark H Johnson
- Centre for Brain and Cognitive Development, School of Psychological Sciences, Faculty of Science, Henry Wellcome Building, Birkbeck, University of London, Malet Street, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Jonathan Green
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Shruti Garg
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Emily J H Jones
- Centre for Brain and Cognitive Development, School of Psychological Sciences, Faculty of Science, Henry Wellcome Building, Birkbeck, University of London, Malet Street, London, UK.
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King'S College London, London, UK.
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King'S College London, London, UK.
| |
Collapse
|
6
|
Siqueiros-Sanchez M, Serur Y, McGhee CA, Smith TF, Green T. Social Communication in Ras Pathway Disorders: A Comprehensive Review From Genetics to Behavior in Neurofibromatosis Type 1 and Noonan Syndrome. Biol Psychiatry 2025; 97:461-498. [PMID: 39366539 PMCID: PMC11805629 DOI: 10.1016/j.biopsych.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 10/06/2024]
Abstract
Neurofibromatosis type 1 (NF1) and Noonan syndrome (NS) are neurogenetic syndromes caused by pathogenetic variants encoding components of the Ras-ERK-MAPK (Ras/extracellular signal-regulated kinase/mitogen-activated protein kinase) signaling pathway (Ras pathway). NF1 and NS are associated with differences in social communication and related neuropsychiatric risks. During the last decade, there has been growing interest in Ras-linked syndromes as models to understand social communication deficits and autism spectrum disorder. We systematically review the literature between 2010 and 2023 focusing on the social communication construct of the Research Domain Criteria framework. We provide an integrative summary of the research on facial and nonfacial social communication processes in NF1 and NS across molecular, cellular, neural circuitry, and behavioral domains. At the molecular and cellular levels, dysregulation in the Ras pathway is intricately tied to variations in social communication through changes in GABAergic (gamma-aminobutyric acidergic), glutamatergic, and serotonergic transmission, as well as inhibitory/excitatory imbalance. Neural circuitry typically associated with learning, attention, and memory in NF1 and NS (e.g., corticostriatal connectivity) is also implicated in social communication. We highlight less-researched potential mechanisms for social communication, such as white matter connectivity and the default mode network. Finally, key gaps in NF1 and NS literature are identified, and a roadmap for future research is provided. By leveraging genetic syndrome research, we can understand the mechanisms associated with behaviors and psychiatric disorders.
Collapse
Affiliation(s)
- Monica Siqueiros-Sanchez
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California.
| | - Yaffa Serur
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Chloe A McGhee
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Taylor F Smith
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, California
| | - Tamar Green
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
7
|
Cole JJ, Ferner RE, Gutmann DH. Neurofibromatosis type 1. ROSENBERG'S MOLECULAR AND GENETIC BASIS OF NEUROLOGICAL AND PSYCHIATRIC DISEASE 2025:231-249. [DOI: 10.1016/b978-0-443-19176-3.00017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Lubbers K, Hiralal KR, Dieleman GC, Hagenaar DA, Dierckx B, Legerstee JS, de Nijs PFA, Rietman AB, Oostenbrink R, Bindels-de Heus KGCB, de Wit MCY, Hillegers MHJ, Ten Hoopen LW, Mous SE. Autism Spectrum Disorder Symptom Profiles in Fragile X Syndrome, Angelman Syndrome, Tuberous Sclerosis Complex and Neurofibromatosis Type 1. J Autism Dev Disord 2024:10.1007/s10803-024-06557-2. [PMID: 39395123 DOI: 10.1007/s10803-024-06557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/14/2024]
Abstract
Studying Autism Spectrum Disorder (ASD) heterogeneity in biologically homogeneous samples may increase our knowledge of ASD etiology. Fragile X syndrome (FXS), Angelman syndrome (AS), Tuberous Sclerosis Complex (TSC), and Neurofibromatosis type 1 (NF1) are monogenic disorders with high a prevalence of ASD symptomatology. This study aimed to identify ASD symptom profiles in a large group of children and adolescents (0;9-28 years) with FXS, AS, TSC, and NF1. Data on ASD symptomatology (Autism Diagnostic Observation Scale (ADOS-2) & Social Responsiveness Scale (SRS-2)) were collected from children and adolescents with FXS (n = 54), AS (n = 93), TSC (n = 112), and NF1 (n = 278). To identify groups of individuals with similar ASD profiles, we performed two latent profile analyses. We identified a four-profile model based on the ADOS-2, with a (1) 'Non-spectrum symptom profile', (2) 'Social Affect symptom profile', (3)'Restricted/Repetitive Behaviors symptom profile', and (4)'ASD symptom profile'. We also identified a four-profile model based on the SRS, with a (1)'Non-clinical symptom profile', (2)'Mild symptom profile', (3)'Moderate symptom profile', and (4)'Severe symptom profile'. Although each syndrome group exhibited varying degrees of severity, they also displayed heterogeneity in the profiles in which they were classified. We found distinct ASD symptom profiles in a population consisting of children and adolescents with FXS, AS, TSC, and NF1. Our study highlights the importance of a personalized approach to the identification and management of ASD symptoms in rare genetic syndromes. Future studies should aim to include more domains of functioning and investigate the stability of latent profiles over time.
Collapse
Affiliation(s)
- Kyra Lubbers
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
| | - Kamil R Hiralal
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
| | - Gwendolyn C Dieleman
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
| | - Doesjka A Hagenaar
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, Rotterdam, The Netherlands
| | - Bram Dierckx
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
| | - Jeroen S Legerstee
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
- Research Institute of Child Development and Education, University of Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry, Amsterdam University Medical Center/Levvel, Amsterdam, The Netherlands
| | - Pieter F A de Nijs
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
| | - André B Rietman
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
| | - Rianne Oostenbrink
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, Rotterdam, The Netherlands
- Full Member of the European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS)-Project ID No 739547, Amsterdam, The Netherlands
| | - Karen G C B Bindels-de Heus
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, Rotterdam, The Netherlands
| | - Marie-Claire Y de Wit
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Manon H J Hillegers
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
| | - Leontine W Ten Hoopen
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
| | - Sabine E Mous
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands.
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands.
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
9
|
Botero V, Tomchik SM. Unraveling neuronal and metabolic alterations in neurofibromatosis type 1. J Neurodev Disord 2024; 16:49. [PMID: 39217323 PMCID: PMC11365184 DOI: 10.1186/s11689-024-09565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Neurofibromatosis type 1 (OMIM 162200) affects ~ 1 in 3,000 individuals worldwide and is one of the most common monogenetic neurogenetic disorders that impacts brain function. The disorder affects various organ systems, including the central nervous system, resulting in a spectrum of clinical manifestations. Significant progress has been made in understanding the disorder's pathophysiology, yet gaps persist in understanding how the complex signaling and systemic interactions affect the disorder. Two features of the disorder are alterations in neuronal function and metabolism, and emerging evidence suggests a potential relationship between them. This review summarizes neurofibromatosis type 1 features and recent research findings on disease mechanisms, with an emphasis on neuronal and metabolic features.
Collapse
Affiliation(s)
- Valentina Botero
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- Department of Neuroscience, Scripps Research, Scripps Florida, Jupiter, FL, USA
- Skaggs School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA, USA
| | - Seth M Tomchik
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA.
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52242, USA.
- Hawk-IDDRC, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Neuroscience, Scripps Research, Scripps Florida, Jupiter, FL, USA.
| |
Collapse
|
10
|
Suarez GO, Kumar DS, Brunner H, Emel J, Teel J, Knauss A, Botero V, Broyles CN, Stahl A, Bidaye SS, Tomchik SM. Neurofibromin deficiency alters the patterning and prioritization of motor behaviors in a state-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607070. [PMID: 39149363 PMCID: PMC11326213 DOI: 10.1101/2024.08.08.607070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Genetic disorders such as neurofibromatosis type 1 increase vulnerability to cognitive and behavioral disorders, such as autism spectrum disorder and attention-deficit/hyperactivity disorder. Neurofibromatosis type 1 results from loss-of-function mutations in the neurofibromin gene and subsequent reduction in the neurofibromin protein (Nf1). While the mechanisms have yet to be fully elucidated, loss of Nf1 may alter neuronal circuit activity leading to changes in behavior and susceptibility to cognitive and behavioral comorbidities. Here we show that mutations decreasing Nf1 expression alter motor behaviors, impacting the patterning, prioritization, and behavioral state dependence in a Drosophila model of neurofibromatosis type 1. Loss of Nf1 increases spontaneous grooming in a nonlinear spatial and temporal pattern, differentially increasing grooming of certain body parts, including the abdomen, head, and wings. This increase in grooming could be overridden by hunger in food-deprived foraging animals, demonstrating that the Nf1 effect is plastic and internal state-dependent. Stimulus-evoked grooming patterns were altered as well, with nf1 mutants exhibiting reductions in wing grooming when coated with dust, suggesting that hierarchical recruitment of grooming command circuits was altered. Yet loss of Nf1 in sensory neurons and/or grooming command neurons did not alter grooming frequency, suggesting that Nf1 affects grooming via higher-order circuit alterations. Changes in grooming coincided with alterations in walking. Flies lacking Nf1 walked with increased forward velocity on a spherical treadmill, yet there was no detectable change in leg kinematics or gait. Thus, loss of Nf1 alters motor function without affecting overall motor coordination, in contrast to other genetic disorders that impair coordination. Overall, these results demonstrate that loss of Nf1 alters the patterning and prioritization of repetitive behaviors, in a state-dependent manner, without affecting motor coordination.
Collapse
Affiliation(s)
- Genesis Omana Suarez
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- H.L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Divya S. Kumar
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Hannah Brunner
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Jalen Emel
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Jensen Teel
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Anneke Knauss
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Valentina Botero
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Connor N. Broyles
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Aaron Stahl
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Salil S. Bidaye
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Seth M. Tomchik
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- H.L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
11
|
Hocking MC, Albee MV, Kim M, Berman JI, Fisher MJ, Roberts TP, Blaskey L. Social challenges, autism spectrum disorder, and attention deficit/hyperactivity disorder in youth with neurofibromatosis type I. APPLIED NEUROPSYCHOLOGY. CHILD 2024:1-9. [PMID: 38864448 PMCID: PMC11635006 DOI: 10.1080/21622965.2024.2365383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
OBJECTIVE Youth with neurofibromatosis type I (NF1) demonstrate high rates of Autism Spectrum Disorder (ASD) and Attention Deficit/Hyperactivity Disorder (ADHD), which often have overlapping behaviors. Diagnostic clarity is important to guide services. This study evaluated ASD classification in NF1 using various methods and whether those with ADHD suspicion have more social challenges associated with ASD. METHOD 34 youth with NF1 (Mage = 10.5 ± 1.6 years), completed ASD assessments that combined direct observation and informant ratings to yield a Clinician Best Estimate (CBE) classification. Caregivers rated ASD-related social challenges using the Social Responsiveness Scale- 2nd Edition (SRS-2). RESULTS ASD classification varied depending on the method, ranging from 32% using low-threshold SRS-2 cut-scores (T ≥ 60) to under 6% when combining cut scores for diagnostic observational tools and stringent SRS-2 cut-scores (T ≥ 70). 14.7% had a CBE ASD classification. 44% were judged to have autism traits associated with a non-ASD diagnosis. The 52.9% with a suspicion of ADHD had higher SRS-2 scores than those without ADHD, F (7, 26) = 3.45, p < .05, Wilk's lambda = 0.518, partial eta squared = 0.482. CONCLUSIONS Findings highlight the importance of rigorous diagnostic methodology when evaluating ASD in NF1 to inform the selection of targeted interventions for socialization challenges in NF1.
Collapse
Affiliation(s)
- Matthew C. Hocking
- Children’s Hospital of Philadelphia
- Perelman School of Medicine at The University of Pennsylvania
| | | | - Mina Kim
- Children’s Hospital of Philadelphia
| | - Jeffrey I. Berman
- Children’s Hospital of Philadelphia
- Perelman School of Medicine at The University of Pennsylvania
| | - Michael J. Fisher
- Children’s Hospital of Philadelphia
- Perelman School of Medicine at The University of Pennsylvania
| | - Timothy P.L. Roberts
- Children’s Hospital of Philadelphia
- Perelman School of Medicine at The University of Pennsylvania
| | - Lisa Blaskey
- Children’s Hospital of Philadelphia
- Perelman School of Medicine at The University of Pennsylvania
| |
Collapse
|
12
|
Swier VJ, White KA, Negrão de Assis PL, Johnson TB, Leppert HG, Rechtzigel MJ, Meyerholz DK, Dodd RD, Quelle DE, Khanna R, Rogers CS, Weimer JM. NF1 +/ex42del miniswine model the cellular disruptions and behavioral presentations of NF1-associated cognitive and motor impairment. Clin Transl Sci 2024; 17:e13858. [PMID: 38932491 PMCID: PMC11208292 DOI: 10.1111/cts.13858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Cognitive or motor impairment is common among individuals with neurofibromatosis type 1 (NF1), an autosomal dominant tumor-predisposition disorder. As many as 70% of children with NF1 report difficulties with spatial/working memory, attention, executive function, and fine motor movements. In contrast to the utilization of various Nf1 mouse models, here we employ an NF1+/ex42del miniswine model to evaluate the mechanisms and characteristics of these presentations, taking advantage of a large animal species more like human anatomy and physiology. The prefrontal lobe, anterior cingulate, and hippocampus from NF1+/ex42del and wild-type miniswine were examined longitudinally, revealing abnormalities in mature oligodendrocytes and astrocytes, and microglial activation over time. Imbalances in GABA: Glutamate ratios and GAD67 expression were observed in the hippocampus and motor cortex, supporting the role of disruption in inhibitory neurotransmission in NF1 cognitive impairment and motor dysfunction. Moreover, NF1+/ex42del miniswine demonstrated slower and shorter steps, indicative of a balance-preserving response commonly observed in NF1 patients, and progressive memory and learning impairments. Collectively, our findings affirm the effectiveness of NF1+/ex42del miniswine as a valuable resource for assessing cognitive and motor impairments associated with NF1, investigating the involvement of specific neural circuits and glia in these processes, and evaluating potential therapeutic interventions.
Collapse
Affiliation(s)
- Vicki J. Swier
- Pediatrics and Rare Diseases GroupSanford ResearchSioux FallsSouth DakotaUSA
| | - Katherine A. White
- Pediatrics and Rare Diseases GroupSanford ResearchSioux FallsSouth DakotaUSA
| | | | - Tyler B. Johnson
- Pediatrics and Rare Diseases GroupSanford ResearchSioux FallsSouth DakotaUSA
| | - Hannah G. Leppert
- Pediatrics and Rare Diseases GroupSanford ResearchSioux FallsSouth DakotaUSA
| | | | | | - Rebecca D. Dodd
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
- Holden Comprehensive Cancer CenterUniversity of IowaIowa CityIowaUSA
| | - Dawn E. Quelle
- Department of Neuroscience and PharmacologyUniversity of IowaIowa CityIowaUSA
| | - Rajesh Khanna
- Department of Pharmacology and Therapeutics, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | | | - Jill M. Weimer
- Pediatrics and Rare Diseases GroupSanford ResearchSioux FallsSouth DakotaUSA
- Department of PediatricsUniversity of South DakotaSioux FallsSouth DakotaUSA
| |
Collapse
|
13
|
Hocking DR, Sun X, Haebich K, Darke H, North KN, Vivanti G, Payne JM. Delineating Visual Habituation Profiles in Preschoolers with Neurofibromatosis Type 1 and Autism Spectrum Disorder: A Cross-Syndrome Study. J Autism Dev Disord 2024; 54:1998-2011. [PMID: 36877426 DOI: 10.1007/s10803-023-05913-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2023] [Indexed: 03/07/2023]
Abstract
Atypical habituation to repetitive information has been commonly reported in Autism Spectrum Disorder (ASD) but it is not yet clear whether similar abnormalities are present in Neurofibromatosis Type 1 (NF1). We employed a cross-syndrome design using a novel eye tracking paradigm to measure habituation in preschoolers with NF1, children with idiopathic ASD and typically developing (TD) children. Eye movements were recorded to examine fixation duration to simultaneously presented repeating and novel stimuli. Children with NF1 showed a bias for longer look durations to repeating stimuli at the expense of novel stimuli, and slower habituation in NF1 was associated with elevated ASD traits. These findings could indicate aberrant modulation of bottom-up attentional networks that interact with the emergence of ASD phenotypes.
Collapse
Affiliation(s)
- Darren R Hocking
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia.
| | - Xiaoyun Sun
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Kristina Haebich
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Hayley Darke
- Murdoch Children's Research Institute, Parkville, Australia
| | - Kathryn N North
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Giacomo Vivanti
- A.J. Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, 19104-3734, Philadelphia, PA, USA
| | - Jonathan M Payne
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
14
|
Atsoniou K, Giannopoulou E, Georganta EM, Skoulakis EMC. Drosophila Contributions towards Understanding Neurofibromatosis 1. Cells 2024; 13:721. [PMID: 38667335 PMCID: PMC11048932 DOI: 10.3390/cells13080721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Neurofibromatosis 1 (NF1) is a multisymptomatic disorder with highly variable presentations, which include short stature, susceptibility to formation of the characteristic benign tumors known as neurofibromas, intense freckling and skin discoloration, and cognitive deficits, which characterize most children with the condition. Attention deficits and Autism Spectrum manifestations augment the compromised learning presented by most patients, leading to behavioral problems and school failure, while fragmented sleep contributes to chronic fatigue and poor quality of life. Neurofibromin (Nf1) is present ubiquitously during human development and postnatally in most neuronal, oligodendrocyte, and Schwann cells. Evidence largely from animal models including Drosophila suggests that the symptomatic variability may reflect distinct cell-type-specific functions of the protein, which emerge upon its loss, or mutations affecting the different functional domains of the protein. This review summarizes the contributions of Drosophila in modeling multiple NF1 manifestations, addressing hypotheses regarding the cell-type-specific functions of the protein and exploring the molecular pathways affected upon loss of the highly conserved fly homolog dNf1. Collectively, work in this model not only has efficiently and expediently modelled multiple aspects of the condition and increased understanding of its behavioral manifestations, but also has led to pharmaceutical strategies towards their amelioration.
Collapse
Affiliation(s)
- Kalliopi Atsoniou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Athens, Greece; (K.A.); (E.G.)
- Laboratory of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eleni Giannopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Athens, Greece; (K.A.); (E.G.)
| | - Eirini-Maria Georganta
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Athens, Greece; (K.A.); (E.G.)
| | - Efthimios M. C. Skoulakis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Athens, Greece; (K.A.); (E.G.)
| |
Collapse
|
15
|
Rodríguez-Martín M, Báez-Flores J, Ribes V, Isidoro-García M, Lacal J, Prieto-Matos P. Non-Mammalian Models for Understanding Neurological Defects in RASopathies. Biomedicines 2024; 12:841. [PMID: 38672195 PMCID: PMC11048513 DOI: 10.3390/biomedicines12040841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
RASopathies, a group of neurodevelopmental congenital disorders stemming from mutations in the RAS/MAPK pathway, present a unique opportunity to delve into the intricacies of complex neurological disorders. Afflicting approximately one in a thousand newborns, RASopathies manifest as abnormalities across multiple organ systems, with a pronounced impact on the central and peripheral nervous system. In the pursuit of understanding RASopathies' neurobiology and establishing phenotype-genotype relationships, in vivo non-mammalian models have emerged as indispensable tools. Species such as Danio rerio, Drosophila melanogaster, Caenorhabditis elegans, Xenopus species and Gallus gallus embryos have proven to be invaluable in shedding light on the intricate pathways implicated in RASopathies. Despite some inherent weaknesses, these genetic models offer distinct advantages over traditional rodent models, providing a holistic perspective on complex genetics, multi-organ involvement, and the interplay among various pathway components, offering insights into the pathophysiological aspects of mutations-driven symptoms. This review underscores the value of investigating the genetic basis of RASopathies for unraveling the underlying mechanisms contributing to broader neurological complexities. It also emphasizes the pivotal role of non-mammalian models in serving as a crucial preliminary step for the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Mario Rodríguez-Martín
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain; (M.R.-M.); (J.B.-F.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
| | - Juan Báez-Flores
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain; (M.R.-M.); (J.B.-F.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
| | - Vanessa Ribes
- Institut Jacques Monod, Université Paris Cité, CNRS, F-75013 Paris, France;
| | - María Isidoro-García
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
- Clinical Biochemistry Department, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Clinical Rare Diseases Reference Unit DiERCyL, 37007 Castilla y León, Spain
- Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Jesus Lacal
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain; (M.R.-M.); (J.B.-F.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
| | - Pablo Prieto-Matos
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
- Clinical Rare Diseases Reference Unit DiERCyL, 37007 Castilla y León, Spain
- Department of Pediatrics, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Department of Biomedical and Diagnostics Science, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
16
|
Kerashvili N, Gutmann DH. The management of neurofibromatosis type 1 (NF1) in children and adolescents. Expert Rev Neurother 2024; 24:409-420. [PMID: 38406862 DOI: 10.1080/14737175.2024.2324117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/23/2024] [Indexed: 02/27/2024]
Abstract
INTRODUCTION Neurofibromatosis type 1 (NF1) is a rare neurogenetic disorder characterized by multiple organ system involvement and a predisposition to benign and malignant tumor development. With revised NF1 clinical criteria and the availability of germline genetic testing, there is now an opportunity to render an early diagnosis, expedite medical surveillance, and initiate treatment in a prompt and targeted manner. AREAS COVERED The authors review the spectrum of medical problems associated with NF1, focusing specifically on children and young adults. The age-dependent appearance of NF1-associated features is highlighted, and the currently accepted medical treatments are discussed. Additionally, future directions for optimizing the care of this unique population of children are outlined. EXPERT OPINION The appearance of NF1-related medical problems is age dependent, requiring surveillance for those features most likely to occur at any given age during childhood. As such, we advocate a life stage-focused screening approach beginning in infancy and continuing through the transition to adult care. With early detection, it becomes possible to promptly institute therapies and reduce patient morbidity. Importantly, with continued advancement in our understanding of disease pathogenesis, future improvements in the care of children with NF1 might incorporate improved risk assessments and more personalized molecularly targeted treatments.
Collapse
Affiliation(s)
- Nino Kerashvili
- Department of Neurology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
17
|
Debbaut E, Steyaert J, El Bakkali M. Autism spectrum disorder profiles in RASopathies: A systematic review. Mol Genet Genomic Med 2024; 12:e2428. [PMID: 38581124 PMCID: PMC10997847 DOI: 10.1002/mgg3.2428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND RASopathies are associated with an increased risk of autism spectrum disorder (ASD). For neurofibromatosis type 1 (NF1) there is ample evidence for this increased risk, while for other RASopathies this association has been studied less. No specific ASD profile has been delineated so far for RASopathies or a specific RASopathy individually. METHODS We conducted a systematic review to investigate whether a specific RASopathy is associated with a specific ASD profile, or if RASopathies altogether have a distinct ASD profile compared to idiopathic ASD (iASD). We searched PubMed, Web of Science, and Open Grey for data about ASD features in RASopathies and potential modifiers. RESULTS We included 41 articles on ASD features in NF1, Noonan syndrome (NS), Costello syndrome (CS), and cardio-facio-cutaneous syndrome (CFC). Individuals with NF1, NS, CS, and CFC on average have higher ASD symptomatology than healthy controls and unaffected siblings, though less than people with iASD. There is insufficient evidence for a distinct ASD phenotype in RASopathies compared to iASD or when RASopathies are compared with each other. We identified several potentially modifying factors of ASD symptoms in RASopathies. CONCLUSIONS Our systematic review found no convincing evidence for a specific ASD profile in RASopathies compared to iASD, or in a specific RASopathy compared to other RASopathies. However, we identified important limitations in the research literature which may also account for this result. These limitations are discussed and recommendations for future research are formulated.
Collapse
Affiliation(s)
- Edward Debbaut
- Center for Developmental Psychiatry, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Leuven Autism Research (LAuRes)KU LeuvenLeuvenBelgium
| | - Jean Steyaert
- Center for Developmental Psychiatry, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Leuven Autism Research (LAuRes)KU LeuvenLeuvenBelgium
| | | |
Collapse
|
18
|
Durkin J, Poe AR, Belfer SJ, Rodriguez A, Tang SH, Walker JA, Kayser MS. Neurofibromin 1 regulates early developmental sleep in Drosophila. Neurobiol Sleep Circadian Rhythms 2023; 15:100101. [PMID: 37593040 PMCID: PMC10428071 DOI: 10.1016/j.nbscr.2023.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/30/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023] Open
Abstract
Sleep disturbances are common in neurodevelopmental disorders, but knowledge of molecular factors that govern sleep in young animals is lacking. Evidence across species, including Drosophila, suggests that juvenile sleep has distinct functions and regulatory mechanisms in comparison to sleep in maturity. In flies, manipulation of most known adult sleep regulatory genes is not associated with sleep phenotypes during early developmental (larval) stages. Here, we examine the role of the neurodevelopmental disorder-associated gene Neurofibromin 1 (Nf1) in sleep during numerous developmental periods. Mutations in Neurofibromin 1 (Nf1) are associated with sleep and circadian disorders in humans and adult flies. We find in flies that Nf1 acts to regulate sleep across the lifespan, beginning during larval stages. Nf1 is required in neurons for this function, as is signaling via the Alk pathway. These findings identify Nf1 as one of a small number of genes positioned to regulate sleep across developmental periods.
Collapse
Affiliation(s)
- Jaclyn Durkin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Amy R. Poe
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Samuel J. Belfer
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anyara Rodriguez
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Si Hao Tang
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James A. Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Matthew S. Kayser
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
19
|
Lalancette E, Charlebois-Poirier AR, Agbogba K, Knoth IS, Côté V, Perreault S, Lippé S. Time-frequency analyses of repetition suppression and change detection in children with neurofibromatosis type 1. Brain Res 2023; 1818:148512. [PMID: 37499730 DOI: 10.1016/j.brainres.2023.148512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/26/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Children with neurofibromatosis type 1 (NF1) are at increased risk of developing cognitive problems, including attention deficits and learning difficulties. Alterations in brain response to repetition and change have been evidenced in other genetic conditions associated with cognitive dysfunctions. Whether the integrity of these fundamental neural responses is compromised in school-aged children with NF1 is still unknown. In this study, we examined the repetition suppression (RS) and change detection responses in children with NF1 (n = 36) and neurotypical controls (n = 41) aged from 4 to 13 years old, using a simple sequence of vowels. We performed time-frequency analyses to compare spectral power and phase synchronization between groups, in the theta, alpha and beta frequency bands. Correlational analyses were performed between the neural responses and the level of intellectual functioning, as well as with behavioral symptoms of comorbid neurodevelopmental disorders measured through parental questionnaires. Children with NF1 showed preserved RS, but increased spectral power in the change detection response. Correlational analyses performed with measures of change detection revealed a negative association between the alpha-band spectral power and symptoms of inattention and hyperactivity. These findings suggest atypical neural response to change in children with NF1. Further studies should be conducted to clarify the interaction with comorbid neurodevelopmental disorders and the possible role of altered inhibitory mechanisms in this enhanced neural response.
Collapse
Affiliation(s)
- Eve Lalancette
- Department of Psychology, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, Quebec H2V 2S9, Canada; CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| | - Audrey-Rose Charlebois-Poirier
- Department of Psychology, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, Quebec H2V 2S9, Canada; CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| | - Kristian Agbogba
- CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada
| | - Inga Sophia Knoth
- CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| | - Valérie Côté
- Department of Psychology, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, Quebec H2V 2S9, Canada; CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada
| | - Sébastien Perreault
- Department of Neurosciences, Division of Child Neurology, CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| | - Sarah Lippé
- Department of Psychology, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, Quebec H2V 2S9, Canada; CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| |
Collapse
|
20
|
Guan L, Li J, Zhang Z, Huang A, Ke X. Neurofibromatosis Type I and autism spectrum disorder caused by deletion of the NF1 gene: A case report. Asian J Psychiatr 2023; 84:103544. [PMID: 37031525 DOI: 10.1016/j.ajp.2023.103544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023]
Affiliation(s)
- Luyang Guan
- Child Mental Health Research Center, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jinhui Li
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ziyi Zhang
- Child Mental Health Research Center, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Anqi Huang
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaoyan Ke
- Child Mental Health Research Center, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
21
|
Frazier TW, Chetcuti L, Al‐Shaban FA, Haslam N, Ghazal I, Klingemier EW, Aldosari M, Whitehouse AJO, Youngstrom EA, Hardan AY, Uljarević M. Categorical versus dimensional structure of autism spectrum disorder: A multi-method investigation. JCPP ADVANCES 2023; 3:e12142. [PMID: 37753161 PMCID: PMC10519739 DOI: 10.1002/jcv2.12142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/08/2023] [Indexed: 02/23/2023] Open
Abstract
Background A key question for any psychopathological diagnosis is whether the condition is continuous or discontinuous with typical variation. The primary objective of this study was to use a multi-method approach to examine the broad latent categorical versus dimensional structure of autism spectrum disorder (ASD). Method Data were aggregated across seven independent samples of participants with ASD, other neurodevelopmental disorders (NDD), and non-ASD/NDD controls (aggregate Ns = 512-16,755; ages 1.5-22). Scores from four distinct phenotype measures formed composite "indicators" of the latent ASD construct. The primary indicator set included eye gaze metrics from seven distinct social stimulus paradigms. Logistic regressions were used to combine gaze metrics within/across paradigms, and derived predicted probabilities served as indicator values. Secondary indicator sets were constructed from clinical observation and parent-report measures of ASD symptoms. Indicator sets were submitted to taxometric- and latent class analyses. Results Across all indicator sets and analytic methods, there was strong support for categorical structure corresponding closely to ASD diagnosis. Consistent with notions of substantial phenotypic heterogeneity, the ASD category had a wide range of symptom severity. Despite the examination of a large sample with a wide range of IQs in both genders, males and children with lower IQ were over-represented in the ASD category, similar to observations in diagnosed cases. Conclusions Our findings provide strong support for categorical structure corresponding closely to ASD diagnosis. The present results bolster the use of well-diagnosed and representative ASD groups within etiologic and clinical research, motivating the ongoing search for major drivers of the ASD phenotype. Despite the categorical structure of ASD, quantitative symptom measurements appear more useful for examining relationships with other factors.
Collapse
Affiliation(s)
- Thomas W. Frazier
- Department of PsychologyJohn Carroll UniversityUniversity HeightsOhioUSA
| | - Lacey Chetcuti
- Olga Tennison Autism Research CentreSchool of Psychology and Public HealthLa Trobe UniversityMelbourneVictoriaAustralia
| | - Fouad A. Al‐Shaban
- Neurological Disorders Research CenterQatar Biomedical Research InstituteHamad Bin Khalifa UniversityDohaQatar
| | - Nick Haslam
- Melbourne School of Psychological SciencesUniversity of MelbourneMelbourneVictoriaAustralia
| | - Iman Ghazal
- Neurological Disorders Research CenterQatar Biomedical Research InstituteHamad Bin Khalifa UniversityDohaQatar
| | | | | | | | - Eric A. Youngstrom
- Department of Psychology and NeuroscienceUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Antonio Y. Hardan
- Department of Psychiatry and Behavioral SciencesStanford UniversityStanfordCaliforniaUSA
| | - Mirko Uljarević
- Melbourne School of Psychological SciencesUniversity of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
22
|
Angelova-Toshkina D, Decker JA, Traunwieser T, Holzapfel J, Bette S, Huber S, Schimmel M, Vollert K, Bison B, Kröncke T, Bramswig NC, Wieczorek D, Gnekow AK, Frühwald MC, Kuhlen M. Comprehensive neurological evaluation of a cohort of patients with neurofibromatosis type 1 from a single institution. Eur J Paediatr Neurol 2023; 43:52-61. [PMID: 36905830 DOI: 10.1016/j.ejpn.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/05/2023] [Accepted: 02/26/2023] [Indexed: 03/13/2023]
Abstract
Neurofibromatosis type 1 (NF1) is a phenotypically heterogenous multisystem cancer predisposition syndrome manifesting in childhood and adolescents. Central nervous system (CNS) manifestations include structural, neurodevelopmental, and neoplastic disease. We aimed to (1) characterize the spectrum of CNS manifestations of NF1 in a paediatric population, (2) explore radiological features in the CNS by image analyses, and (3) correlate genotype with phenotypic expression for those with a genetic diagnosis. We performed a database search in the hospital information system covering the period between January 2017 and December 2020. We evaluated the phenotype by retrospective chart review and imaging analysis. 59 patients were diagnosed with NF1 [median age 10.6 years (range, 1.1-22.6); 31 female] at last follow-up, pathogenic NF1 variants were identified in 26/29. 49/59 patients presented with neurological manifestations including 28 with structural and neurodevelopmental findings, 16 with neurodevelopmental, and 5 with structural findings only. Focal areas of signal intensity (FASI) were identified in 29/39, cerebrovascular anomalies in 4/39. Neurodevelopmental delay was reported in 27/59 patients, learning difficulties in 19/59. Optic pathway gliomas (OPG) were diagnosed in 18/59 patients, 13/59 had low-grade gliomas outside the visual pathways. 12 patients received chemotherapy. Beside the established NF1 microdeletion, neither genotype nor FASI were associated with the neurological phenotype. NF1 was associated with a spectrum of CNS manifestations in at least 83.0% of patients. Regular neuropsychological assessment complementing frequent clinical and ophthalmologic testing for OPG is necessary in the care of each child with NF1.
Collapse
Affiliation(s)
- Daniela Angelova-Toshkina
- Paediatric and Adolescent Medicine, University Medical Centre, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Josua A Decker
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Medical Centre, Stenglinstraße 2, 86156, Augsburg, Germany.
| | - Thomas Traunwieser
- Paediatric and Adolescent Medicine, University Medical Centre, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Johannes Holzapfel
- Paediatric and Adolescent Medicine, University Medical Centre, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Stefanie Bette
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Medical Centre, Stenglinstraße 2, 86156, Augsburg, Germany.
| | - Simon Huber
- Paediatric and Adolescent Medicine, University Medical Centre, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Mareike Schimmel
- Paediatric and Adolescent Medicine, University Medical Centre, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Kurt Vollert
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Medical Centre, Stenglinstraße 2, 86156, Augsburg, Germany.
| | - Brigitte Bison
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Thomas Kröncke
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Medical Centre, Stenglinstraße 2, 86156, Augsburg, Germany.
| | - Nuria C Bramswig
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40255, Düsseldorf, Germany.
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40255, Düsseldorf, Germany.
| | - Astrid K Gnekow
- Paediatric and Adolescent Medicine, University Medical Centre, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Michael C Frühwald
- Paediatric and Adolescent Medicine, University Medical Centre, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Michaela Kuhlen
- Paediatric and Adolescent Medicine, University Medical Centre, Stenglinstr. 2, 86156, Augsburg, Germany.
| |
Collapse
|
23
|
Fournier H, Calcagni N, Morice-Picard F, Quintard B. Psychosocial implications of rare genetic skin diseases affecting appearance on daily life experiences, emotional state, self-perception and quality of life in adults: a systematic review. Orphanet J Rare Dis 2023; 18:39. [PMID: 36823650 PMCID: PMC9951542 DOI: 10.1186/s13023-023-02629-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Since the beginning of human genetic research, there are very few publications sharing insights of the negative impact of rare genetic skin diseases (RGSD) on patients' experiences. This systematic review assessed the psychosocial implications of these conditions in terms of daily life experiences, emotional state, self-perception, and Quality of Life (QoL). METHODOLOGY A systematic review was carried out on albinism, neurofibromatosis type 1 (NF1), birthmarks and inherited ichthyosis. The PubMed, Scopus, PsycArticle, PsychInfo, Psychology and Behavioral Sciences Collection, and SOCindex databases were queried. Inclusion criteria were adult patients with one of these RGSDs. Simple descriptive statistics and qualitative content analysis were conducted to summarize the main results reported by the authors. RESULTS Of the 9987 articles retrieved, 48 articles were included: albinism (16), NF1 (16), inherited ichthyosis (10), birthmarks (6). The majority of the studies on albinism were conducted in Africa. Twenty-seven studies quantitatively assessed diverse psychological parameters: 13 showed a significant impact of the disease on QoL, five on emotional state, two on self-representation and two others on psychiatric comorbidities. Disease severity and visibility were good predictors of QoL (except for albinism). Body image and appearance concerns were also associated with QoL and emotional state. The 19 qualitative studies highlighted recurring themes across each of these diseases: discrimination and stigma during childhood and adolescence, discomfort in social interactions, guilt of transmission, the importance of social support from family and friends, altered daily life functioning, altered romantic and sex life, limited academic and professional aspirations, lack of interest and support from the medical field, and the unpredictability of the evolution of the disease. The only two mixed-method studies in this review were unable to contribute to any inferential analyses but could corroborate some of the qualitative findings. CONCLUSION These results showed that RGSDs have a significant impact on different aspects of patients' lives. This review has demonstrated that there is a real need for support systems for patients with these diseases. Such systems should be developed to provide them with necessary information and to guide them through an appropriate care pathway.
Collapse
Affiliation(s)
- Hugo Fournier
- Laboratoire de Psychologie (LabPsy) EA4139, Univ. Bordeaux, 3 ter Place de la Victoire, Bâtiment A - 1er étage, 33000 Bordeaux, France
| | | | | | - Bruno Quintard
- Laboratoire de Psychologie (LabPsy) EA4139, Univ. Bordeaux, 3 ter Place de la Victoire, Bâtiment A - 1er étage, 33000 Bordeaux, France
| |
Collapse
|
24
|
Dyson A, Ryan M, Garg S, Evans DG, Baines RA. Loss of NF1 in Drosophila Larvae Causes Tactile Hypersensitivity and Impaired Synaptic Transmission at the Neuromuscular Junction. J Neurosci 2022; 42:9450-9472. [PMID: 36344265 PMCID: PMC9794380 DOI: 10.1523/jneurosci.0562-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition in which the mechanisms underlying its core symptomatology are largely unknown. Studying animal models of monogenic syndromes associated with ASD, such as neurofibromatosis type 1 (NF1), can offer insights into its etiology. Here, we show that loss of function of the Drosophila NF1 ortholog results in tactile hypersensitivity following brief mechanical stimulation in the larva (mixed sexes), paralleling the sensory abnormalities observed in individuals with ASD. Mutant larvae also exhibit synaptic transmission deficits at the glutamatergic neuromuscular junction (NMJ), with increased spontaneous but reduced evoked release. While the latter is homeostatically compensated for by a postsynaptic increase in input resistance, the former is consistent with neuronal hyperexcitability. Indeed, diminished expression of NF1 specifically within central cholinergic neurons induces both excessive neuronal firing and tactile hypersensitivity, suggesting the two may be linked. Furthermore, both impaired synaptic transmission and behavioral deficits are fully rescued via knock-down of Ras proteins. These findings validate NF1 -/- Drosophila as a tractable model of ASD with the potential to elucidate important pathophysiological mechanisms.SIGNIFICANCE STATEMENT Autism spectrum disorder (ASD) affects 1-2% of the overall population and can considerably impact an individual's quality of life. However, there are currently no treatments available for its core symptoms, largely because of a poor understanding of the underlying mechanisms involved. Examining how loss of function of the ASD-associated NF1 gene affects behavior and physiology in Drosophila may shed light on this. In this study, we identify a novel, ASD-relevant behavioral phenotype in NF1 -/- larvae, namely an enhanced response to mechanical stimulation, which is associated with Ras-dependent synaptic transmission deficits indicative of neuronal hyperexcitability. Such insights support the use of Drosophila neurofibromatosis type 1 (NF1) models in ASD research and may provide outputs for genetic or pharmacological screens in future studies.
Collapse
Affiliation(s)
- Alex Dyson
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
| | - Megan Ryan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
| | - Shruti Garg
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
- Child & Adolescent Mental Health Services, Royal Manchester Children's Hospital, Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, United Kingdom
| | - D Gareth Evans
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
| | - Richard A Baines
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
25
|
Lalancette E, Charlebois-Poirier AR, Agbogba K, Knoth IS, Jones EJH, Mason L, Perreault S, Lippé S. Steady-state visual evoked potentials in children with neurofibromatosis type 1: associations with behavioral rating scales and impact of psychostimulant medication. J Neurodev Disord 2022; 14:42. [PMID: 35869419 PMCID: PMC9306184 DOI: 10.1186/s11689-022-09452-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
Background Neurofibromatosis type 1 (NF1) is a genetic disorder often associated with cognitive dysfunctions, including a high occurrence of deficits in visuoperceptual skills. The neural underpinnings of these visuoperceptual deficits are not fully understood. We used steady-state visual evoked potentials (SSVEPs) to investigate possible alterations in the synchronization of neural activity in the occipital cortex of children with NF1. Methods SSVEPs were measured using electroencephalography and compared between children with NF1 (n = 28) and neurotypical controls (n = 28) aged between 4 and 13 years old. SSVEPs were recorded during visual stimulation with coloured icons flickering at three different frequencies (6 Hz, 10 Hz, and 15 Hz) and analyzed in terms of signal-to-noise ratios. A mixed design ANCOVA was performed to compare SSVEP responses between groups at the three stimulation frequencies. Pearson’s correlations with levels of intellectual functioning as well as with symptoms of ADHD, ASD and emotional/behavioral problems were performed. The impact of psychostimulant medication on the SSVEP responses was analyzed in a subset of the NF1 group (n = 8) with paired t-tests. Results We observed reduced signal-to-noise ratios of the SSVEP responses in children with NF1. The SSVEP responses were negatively correlated with symptoms of inattention and with symptoms of emotional/behavioral problems in the NF1 group. The SSVEP response generated by the lowest stimulation frequency (i.e., 6 Hz) was rescued with the intake of psychostimulant medication. Conclusions Impaired processing of rhythmic visual stimulation was evidenced in children with NF1 through measures of SSVEP responses. Those responses seem to be more reduced in children with NF1 who exhibit more symptoms of inattention and emotional/behavioral problems in their daily life. SSVEPs are potentially sensitive electrophysiological markers that could be included in future studies investigating the impact of medication on brain activity and cognitive functioning in children with NF1. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-022-09452-y.
Collapse
|
26
|
Dougherty JD, Marrus N, Maloney SE, Yip B, Sandin S, Turner TN, Selmanovic D, Kroll KL, Gutmann DH, Constantino JN, Weiss LA. Can the "female protective effect" liability threshold model explain sex differences in autism spectrum disorder? Neuron 2022; 110:3243-3262. [PMID: 35868305 PMCID: PMC9588569 DOI: 10.1016/j.neuron.2022.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/09/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022]
Abstract
Male sex is a strong risk factor for autism spectrum disorder (ASD). The leading theory for a "female protective effect" (FPE) envisions males and females have "differing thresholds" under a "liability threshold model" (DT-LTM). Specifically, this model posits that females require either a greater number or larger magnitude of risk factors (i.e., greater liability) to manifest ASD, which is supported by the finding that a greater proportion of females with ASD have highly penetrant genetic mutations. Herein, we derive testable hypotheses from the DT-LTM for ASD, investigating heritability, familial recurrence, correlation between ASD penetrance and sex ratio, population traits, clinical features, the stability of the sex ratio across diagnostic changes, and highlight other key prerequisites. Our findings reveal that several key predictions of the DT-LTM are not supported by current data, requiring us to establish a different conceptual framework for evaluating alternate models that explain sex differences in ASD.
Collapse
Affiliation(s)
- Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA.
| | - Natasha Marrus
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Benjamin Yip
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Sven Sandin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Seaver Autism Center for Research and Treatment at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tychele N Turner
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Din Selmanovic
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristen L Kroll
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - John N Constantino
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Lauren A Weiss
- Institute for Human Genetics, Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
27
|
Rosen KL, Cobb O, Gavney D, Morris SM, Gutmann DH. Predictors of Patient Return to a Tertiary Neurofibromatosis Subspecialty Clinic. J Pediatr 2022; 248:94-99.e1. [PMID: 35561805 DOI: 10.1016/j.jpeds.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To evaluate sociodemographic and medical predictors of patient return to a neurofibromatosis subspecialty clinic. STUDY DESIGN Data were collected from the Washington University Neurofibromatosis Clinical Program electronic medical records. A total of 713 subjects with initial visits to the Washington University Neurofibromatosis Clinical Program between July 1, 2005 and December 18, 2020 were included. Variables collected included sex, race, ethnicity, age, date of first visit, place of residence, diagnosis, insurance payer, physician recommendation for return, and subject return. Return rates for each demographic group were calculated. Bivariate analyses were performed to inform variable inclusion in the model, and a binary logistic regression model was calculated to predict subject return. RESULTS The overall return rate was 76%. The binary logistic regression model was statistically significant (χ29 = 131.094; P < .001) and showed that subjects who self-identified as Black and/or African American, presented with or received a diagnosis of café-au-lait macules at their initial visit, were from a rural area, were older, or who lived farther from the Washington University Neurofibromatosis Clinical Program were less likely to return to clinic. CONCLUSIONS These findings support the implementation of tailored communication and monitoring interventions to improve the care for children with neurofibromatosis type 1.
Collapse
Affiliation(s)
- Kyra L Rosen
- Department of Neurology, Washington University School of Medicine, St Louis, MO
| | - Olivia Cobb
- Department of Neurology, Washington University School of Medicine, St Louis, MO
| | - Deann Gavney
- Department of Neurology, Washington University School of Medicine, St Louis, MO
| | - Stephanie M Morris
- Department of Neurology, Washington University School of Medicine, St Louis, MO
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St Louis, MO.
| |
Collapse
|
28
|
Sex- and age-related differences in autistic behaviours in children with neurofibromatosis type 1. J Autism Dev Disord 2022:10.1007/s10803-022-05571-6. [PMID: 35445370 DOI: 10.1007/s10803-022-05571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
This study investigated sex and age differences in autistic behaviours in children with neurofibromatosis type 1 (NF1) who scored within the clinical range on the Social Responsiveness Scale - Second Edition (T score ≥ 60). Thirty-four males and 28 females (3-16 years) were assessed with the Autism Diagnostic Observation Schedule - Second Edition and Autism Diagnostic Interview - Revised. Across both measures, males exhibited greater social communication deficits relative to females. Age-related abatement of social communication difficulties was observed for males but not females. Conversely, no sex differences were found for restricted/repetitive behaviours, which were stable over time for both males and females. The findings are discussed within the context of broader neurodevelopmental considerations that are common in NF1.
Collapse
|
29
|
Doldur-Balli F, Imamura T, Veatch OJ, Gong NN, Lim DC, Hart MP, Abel T, Kayser MS, Brodkin ES, Pack AI. Synaptic dysfunction connects autism spectrum disorder and sleep disturbances: A perspective from studies in model organisms. Sleep Med Rev 2022; 62:101595. [PMID: 35158305 PMCID: PMC9064929 DOI: 10.1016/j.smrv.2022.101595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/24/2021] [Accepted: 01/19/2022] [Indexed: 01/03/2023]
Abstract
Sleep disturbances (SD) accompany many neurodevelopmental disorders, suggesting SD is a transdiagnostic process that can account for behavioral deficits and influence underlying neuropathogenesis. Autism Spectrum Disorder (ASD) comprises a complex set of neurodevelopmental conditions characterized by challenges in social interaction, communication, and restricted, repetitive behaviors. Diagnosis of ASD is based primarily on behavioral criteria, and there are no drugs that target core symptoms. Among the co-occurring conditions associated with ASD, SD are one of the most prevalent. SD often arises before the onset of other ASD symptoms. Sleep interventions improve not only sleep but also daytime behaviors in children with ASD. Here, we examine sleep phenotypes in multiple model systems relevant to ASD, e.g., mice, zebrafish, fruit flies and worms. Given the functions of sleep in promoting brain connectivity, neural plasticity, emotional regulation and social behavior, all of which are of critical importance in ASD pathogenesis, we propose that synaptic dysfunction is a major mechanism that connects ASD and SD. Common molecular targets in this interplay that are involved in synaptic function might be a novel avenue for therapy of individuals with ASD experiencing SD. Such therapy would be expected to improve not only sleep but also other ASD symptoms.
Collapse
Affiliation(s)
- Fusun Doldur-Balli
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Toshihiro Imamura
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Olivia J Veatch
- Department of Psychiatry and Behavioral Sciences, School of Medicine, The University of Kansas Medical Center, Kansas City, USA
| | - Naihua N Gong
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Diane C Lim
- Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Department of Medicine, Miller School of Medicine, University of Miami, Miami, USA
| | - Michael P Hart
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ted Abel
- Iowa Neuroscience Institute and Department of Neuroscience & Pharmacology, University of Iowa, Iowa City, USA
| | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Edward S Brodkin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Allan I Pack
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
30
|
Nussinov R, Tsai CJ, Jang H. How can same-gene mutations promote both cancer and developmental disorders? SCIENCE ADVANCES 2022; 8:eabm2059. [PMID: 35030014 PMCID: PMC8759737 DOI: 10.1126/sciadv.abm2059] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/22/2021] [Indexed: 05/05/2023]
Abstract
The question of how same-gene mutations can drive both cancer and neurodevelopmental disorders has been puzzling. It has also been puzzling why those with neurodevelopmental disorders have a high risk of cancer. Ras, MEK, PI3K, PTEN, and SHP2 are among the oncogenic proteins that can harbor mutations that encode diseases other than cancer. Understanding why some of their mutations can promote cancer, whereas others promote neurodevelopmental diseases, and why even the same mutations may promote both phenotypes, has important clinical ramifications. Here, we review the literature and address these tantalizing questions. We propose that cell type–specific expression of the mutant protein, and of other proteins in the respective pathway, timing of activation (during embryonic development or sporadic emergence), and the absolute number of molecules that the mutations activate, alone or in combination, are pivotal in determining the pathological phenotypes—cancer and (or) developmental disorders.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
31
|
Morris SM, Gupta A, Kim S, Foraker RE, Gutmann DH, Payne PRO. Predictive Modeling for Clinical Features Associated With Neurofibromatosis Type 1. Neurol Clin Pract 2022; 11:497-505. [PMID: 34987881 PMCID: PMC8723929 DOI: 10.1212/cpj.0000000000001089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/25/2021] [Indexed: 12/23/2022]
Abstract
Objective To perform a longitudinal analysis of clinical features associated with
neurofibromatosis type 1 (NF1) based on demographic and clinical
characteristics and to apply a machine learning strategy to determine
feasibility of developing exploratory predictive models of optic pathway
glioma (OPG) and attention-deficit/hyperactivity disorder (ADHD) in a
pediatric NF1 cohort. Methods Using NF1 as a model system, we perform retrospective data analyses using a
manually curated NF1 clinical registry and electronic health record (EHR)
information and develop machine learning models. Data for 798 individuals
were available, with 578 comprising the pediatric cohort used for
analysis. Results Males and females were evenly represented in the cohort. White children were
more likely to develop OPG (odds ratio [OR]: 2.11, 95% confidence interval
[CI]: 1.11–4.00, p = 0.02) relative to their
non-White peers. Median age at diagnosis of OPG was 6.5 years
(1.7–17.0), irrespective of sex. Males were more likely than females
to have a diagnosis of ADHD (OR: 1.90, 95% CI: 1.33–2.70,
p < 0.001), and earlier diagnosis in males
relative to females was observed. The gradient boosting classification model
predicted diagnosis of ADHD with an area under the receiver operator
characteristic (AUROC) of 0.74 and predicted diagnosis of OPG with an AUROC
of 0.82. Conclusions Using readily available clinical and EHR data, we successfully recapitulated
several important and clinically relevant patterns in NF1 semiology
specifically based on demographic and clinical characteristics. Naive
machine learning techniques can be potentially used to develop and validate
predictive phenotype complexes applicable to risk stratification and disease
management in NF1.
Collapse
Affiliation(s)
- Stephanie M Morris
- Department of Neurology (DHG), Washington University, St. Louis, MO; and Institute for Informatics (SMM, AG, SK, REF, PROP), Washington University, St. Louis, MO
| | - Aditi Gupta
- Department of Neurology (DHG), Washington University, St. Louis, MO; and Institute for Informatics (SMM, AG, SK, REF, PROP), Washington University, St. Louis, MO
| | - Seunghwan Kim
- Department of Neurology (DHG), Washington University, St. Louis, MO; and Institute for Informatics (SMM, AG, SK, REF, PROP), Washington University, St. Louis, MO
| | - Randi E Foraker
- Department of Neurology (DHG), Washington University, St. Louis, MO; and Institute for Informatics (SMM, AG, SK, REF, PROP), Washington University, St. Louis, MO
| | - David H Gutmann
- Department of Neurology (DHG), Washington University, St. Louis, MO; and Institute for Informatics (SMM, AG, SK, REF, PROP), Washington University, St. Louis, MO
| | - Philip R O Payne
- Department of Neurology (DHG), Washington University, St. Louis, MO; and Institute for Informatics (SMM, AG, SK, REF, PROP), Washington University, St. Louis, MO
| |
Collapse
|
32
|
Chisholm AK, Haebich KM, Pride NA, Walsh KS, Lami F, Ure A, Maloof T, Brignell A, Rouel M, Granader Y, Maier A, Barton B, Darke H, Dabscheck G, Anderson VA, Williams K, North KN, Payne JM. Delineating the autistic phenotype in children with neurofibromatosis type 1. Mol Autism 2022; 13:3. [PMID: 34983638 PMCID: PMC8729013 DOI: 10.1186/s13229-021-00481-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022] Open
Abstract
Background Existing research has demonstrated elevated autistic behaviours in children with neurofibromatosis type 1 (NF1), but the autistic phenotype and its relationship to other neurodevelopmental manifestations of NF1 remains unclear. To address this gap, we performed detailed characterisation of autistic behaviours in children with NF1 and investigated their association with other common NF1 child characteristics. Methods Participants were drawn from a larger cross-sectional study examining autism in children with NF1. The population analysed in this study scored above threshold on the Social Responsiveness Scale-Second Edition (T-score ≥ 60; 51% larger cohort) and completed the Autism Diagnostic Interview-Revised (ADI-R) and/or the Autism Diagnostic Observation Schedule-Second Edition (ADOS-2). All participants underwent evaluation of their intellectual function, and behavioural data were collected via parent questionnaires. Results The study cohort comprised 68 children (3–15 years). Sixty-three per cent met the ADOS-2 ‘autism spectrum’ cut-off, and 34% exceeded the more stringent threshold for ‘autistic disorder’ on the ADI-R. Social communication symptoms were common and wide-ranging, while restricted and repetitive behaviours (RRBs) were most commonly characterised by ‘insistence on sameness’ (IS) behaviours such as circumscribed interests and difficulties with minor changes. Autistic behaviours were weakly correlated with hyperactive/impulsive attention deficit hyperactivity disorder (ADHD) symptoms but not with inattentive ADHD or other behavioural characteristics. Language and verbal IQ were weakly related to social communication behaviours but not to RRBs. Limitations Lack of genetic validation of NF1, no clinical diagnosis of autism, and a retrospective assessment of autistic behaviours in early childhood. Conclusions Findings provide strong support for elevated autistic behaviours in children with NF1. While these behaviours were relatively independent of other NF1 comorbidities, the importance of taking broader child characteristics into consideration when interpreting data from autism-specific measures in this population is highlighted. Social communication deficits appear similar to those observed in idiopathic autism and are coupled with a unique RRB profile comprising prominent IS behaviours. This autistic phenotype and its relationship to common NF1 comorbidities such as anxiety and executive dysfunction will be important to examine in future research. Current findings have important implications for the early identification of autism in NF1 and clinical management. Supplementary Information The online version contains supplementary material available at 10.1186/s13229-021-00481-3.
Collapse
Affiliation(s)
- Anita K Chisholm
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia.,The Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Kristina M Haebich
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Natalie A Pride
- Kids Neuroscience Centre, The Children's Hospital at Westmead, 178A Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Karin S Walsh
- Center for Neuroscience and Behavioral Medicine, Children's National Hospital, Michigan Avenue NW, Washington, DC, 20310, USA
| | - Francesca Lami
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alex Ure
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, School of Clinical Sciences, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia.,Developmental Paediatrics, Monash Children's Hospital, 246 Clayton Road, Clayton, VIC, 3168, Australia
| | - Tiba Maloof
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia.,The Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Amanda Brignell
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, School of Clinical Sciences, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia
| | - Melissa Rouel
- Kids Neuroscience Centre, The Children's Hospital at Westmead, 178A Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Yael Granader
- Center for Neuroscience and Behavioral Medicine, Children's National Hospital, Michigan Avenue NW, Washington, DC, 20310, USA
| | - Alice Maier
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Belinda Barton
- Kids Neuroscience Centre, The Children's Hospital at Westmead, 178A Hawkesbury Road, Westmead, NSW, 2145, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, 2050, Australia.,Children's Hospital Education Research Institute, The Children's Hospital at Westmead, 178A Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Hayley Darke
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Gabriel Dabscheck
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia.,The Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Vicki A Anderson
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia.,The Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Katrina Williams
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Paediatrics, School of Clinical Sciences, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia.,Developmental Paediatrics, Monash Children's Hospital, 246 Clayton Road, Clayton, VIC, 3168, Australia
| | - Kathryn N North
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jonathan M Payne
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia. .,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia. .,The Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia.
| |
Collapse
|
33
|
Lubbers K, Stijl EM, Dierckx B, Hagenaar DA, Ten Hoopen LW, Legerstee JS, de Nijs PFA, Rietman AB, Greaves-Lord K, Hillegers MHJ, Dieleman GC, Mous SE. Autism Symptoms in Children and Young Adults With Fragile X Syndrome, Angelman Syndrome, Tuberous Sclerosis Complex, and Neurofibromatosis Type 1: A Cross-Syndrome Comparison. Front Psychiatry 2022; 13:852208. [PMID: 35651825 PMCID: PMC9149157 DOI: 10.3389/fpsyt.2022.852208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/26/2022] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The etiology of autism spectrum disorder (ASD) remains unclear, due to genetic heterogeneity and heterogeneity in symptoms across individuals. This study compares ASD symptomatology between monogenetic syndromes with a high ASD prevalence, in order to reveal syndrome specific vulnerabilities and to clarify how genetic variations affect ASD symptom presentation. METHODS We assessed ASD symptom severity in children and young adults (aged 0-28 years) with Fragile X Syndrome (FXS, n = 60), Angelman Syndrome (AS, n = 91), Neurofibromatosis Type 1 (NF1, n = 279) and Tuberous Sclerosis Complex (TSC, n = 110), using the Autism Diagnostic Observation Schedule and Social Responsiveness Scale. Assessments were part of routine clinical care at the ENCORE expertise center in Rotterdam, the Netherlands. First, we compared the syndrome groups on the ASD classification prevalence and ASD severity scores. Then, we compared individuals in our syndrome groups with an ASD classification to a non-syndromic ASD group (nsASD, n = 335), on both ASD severity scores and ASD symptom profiles. Severity scores were compared using MANCOVAs with IQ and gender as covariates. RESULTS Overall, ASD severity scores were highest for the FXS group and lowest for the NF1 group. Compared to nsASD, individuals with an ASD classification in our syndrome groups showed less problems on the instruments' social domains. We found a relative strength in the AS group on the social cognition, communication and motivation domains and a relative challenge in creativity; a relative strength of the NF1 group on the restricted interests and repetitive behavior scale; and a relative challenge in the FXS and TSC groups on the restricted interests and repetitive behavior domain. CONCLUSION The syndrome-specific strengths and challenges we found provide a frame of reference to evaluate an individual's symptoms relative to the larger syndromic population and to guide treatment decisions. Our findings support the need for personalized care and a dimensional, symptom-based diagnostic approach, in contrast to a dichotomous ASD diagnosis used as a prerequisite for access to healthcare services. Similarities in ASD symptom profiles between AS and FXS, and between NF1 and TSC may reflect similarities in their neurobiology. Deep phenotyping studies are required to link neurobiological markers to ASD symptomatology.
Collapse
Affiliation(s)
- Kyra Lubbers
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Eefje M Stijl
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Bram Dierckx
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Doesjka A Hagenaar
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of General Paediatrics, Erasmus MC, Rotterdam, Netherlands
| | - Leontine W Ten Hoopen
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeroen S Legerstee
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Pieter F A de Nijs
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - André B Rietman
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Kirstin Greaves-Lord
- Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Clinical Psychology and Experimental Psychopathology Unit, Department of Psychology, Rijksuniversiteit Groningen, Groningen, Netherlands.,Yulius Mental Health, Dordrecht, Netherlands.,Jonx Autism Team Northern-Netherlands, Lentis Mental Health, Groningen, Netherlands
| | - Manon H J Hillegers
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Gwendolyn C Dieleman
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sabine E Mous
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | | |
Collapse
|
34
|
Dissociated Deficits between Explicit and Implicit Empathetic Pain Perception in Neurofibromatosis Type 1. Brain Sci 2021; 11:brainsci11121591. [PMID: 34942892 PMCID: PMC8699130 DOI: 10.3390/brainsci11121591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/09/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Cognitive impairments and social-function deficits are severe complaints in neurofibromatosis type 1 (NF1) patients. Empathetic pain perception may be disrupted in NF1 patients because of high-level cognitive deficits. This study investigated the empathy profiles of adult patients with NF1, especially concerning whether explicit and implicit empathetic pain perception are abnormal in this population. We examined empathetic pain perception through a paradigm based on perceiving another person’s pain; in this task, patients were required to make judgments about the presence of pain or the laterality of the body part, as shown in a picture. Twenty NF1 patients without obvious social or communication difficulties completed the task, and the results were compared with results from the normal controls (NCs). Regarding explicit empathetic pain processing, i.e., judging the presence of “pain” or “no pain”, there were no significant differences between patients and controls in accuracy or reaction time. However, in implicit empathetic processing, i.e., judging the laterality of “pain” or “no-pain” pictures, NF1 patients had significantly lower accuracy (p = 0.038) and significantly higher reaction times (p = 0.004) than the NCs. These results were consistent with those of a previous study showing that high-level cognitive deficits were prominent in NF1 patients when performing challenging tasks. The mechanisms and related brain network activity underlying these deficits should receive attention in the future.
Collapse
|
35
|
Kehrer-Sawatzki H, Wahlländer U, Cooper DN, Mautner VF. Atypical NF1 Microdeletions: Challenges and Opportunities for Genotype/Phenotype Correlations in Patients with Large NF1 Deletions. Genes (Basel) 2021; 12:genes12101639. [PMID: 34681033 PMCID: PMC8535936 DOI: 10.3390/genes12101639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Patients with neurofibromatosis type 1 (NF1) and type 1 NF1 deletions often exhibit more severe clinical manifestations than patients with intragenic NF1 gene mutations, including facial dysmorphic features, overgrowth, severe global developmental delay, severe autistic symptoms and considerably reduced cognitive abilities, all of which are detectable from a very young age. Type 1 NF1 deletions encompass 1.4 Mb and are associated with the loss of 14 protein-coding genes, including NF1 and SUZ12. Atypical NF1 deletions, which do not encompass all 14 protein-coding genes located within the type 1 NF1 deletion region, have the potential to contribute to the delineation of the genotype/phenotype relationship in patients with NF1 microdeletions. Here, we review all atypical NF1 deletions reported to date as well as the clinical phenotype observed in the patients concerned. We compare these findings with those of a newly identified atypical NF1 deletion of 698 kb which, in addition to the NF1 gene, includes five genes located centromeric to NF1. The atypical NF1 deletion in this patient does not include the SUZ12 gene but does encompass CRLF3. Comparative analysis of such atypical NF1 deletions suggests that SUZ12 hemizygosity is likely to contribute significantly to the reduced cognitive abilities, severe global developmental delay and facial dysmorphisms observed in patients with type 1 NF1 deletions.
Collapse
Affiliation(s)
- Hildegard Kehrer-Sawatzki
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
- Correspondence: ; Tel.: +49-731-500-65421
| | - Ute Wahlländer
- Kliniken des Bezirks Oberbayern (KBO), Children Clinical Center Munich, 81377 Munich, Germany;
| | - David N. Cooper
- Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Victor-Felix Mautner
- Department of Neurology, University Hospital Hamburg Eppendorf, 20246 Hamburg, Germany;
| |
Collapse
|
36
|
Haebich KM, Dao DP, Pride NA, Barton B, Walsh KS, Maier A, Chisholm AK, Darke H, Catroppa C, Malarbi S, Wilkinson JC, Anderson VA, North KN, Payne JM. The mediating role of ADHD symptoms between executive function and social skills in children with neurofibromatosis type 1. Child Neuropsychol 2021; 28:318-336. [PMID: 34587865 DOI: 10.1080/09297049.2021.1976129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Children with neurofibromatosis type 1 (NF1) often experience executive dysfunction, attention deficit/hyperactivity disorder (ADHD) symptoms and poor social skills, however, the nature of the relationships between these domains in children with NF1 is unclear. This study investigated these relationships using primary caregiver ratings of executive functions, ADHD symptoms and social skills in children with NF1. Participants were 136 children with NF1 and 93 typically developing (TD) controls aged 3-15 years recruited from 3 multidisciplinary neurofibromatosis clinics in Melbourne and Sydney, Australia, and Washington DC, USA. Mediation analysis was performed on primary outcome variables: parent ratings of executive functions (Behavior Rating Inventory of Executive Function, Metacognition Index), ADHD symptoms (Conners-3/Conners ADHD Diagnostic and Statistical Manual for Mental Disorders Scales) and social skills (Social Skills Improvement System-Rating Scale), adjusting for potential confounders (full scale IQ, sex, and social risk). Results revealed significantly poorer executive functions, elevated ADHD symptoms and reduced social skills in children with NF1 compared to controls. Poorer executive functions significantly predicted elevated ADHD symptoms and poorer social skills. Elevated ADHD symptoms significantly mediated the relationship between executive functions and social skills problems although did not fully account for social dysfunction. This study provides evidence for the importance of targeting ADHD symptoms as part of future interventions aimed at promoting prosocial behaviors in children with NF1.
Collapse
Affiliation(s)
- Kristina M Haebich
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences,University of Melbourne, Melbourne, Australia
| | - Duy P Dao
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Australia
| | - Natalie A Pride
- Kids Ne Uroscience Centre, the Children's Hospital at Westmead, Sydney, Australia.,Discipline of Paediatrics & Child Health, University of Sydney, Sydney, Australia
| | - Belinda Barton
- Kids Ne Uroscience Centre, the Children's Hospital at Westmead, Sydney, Australia.,Discipline of Paediatrics & Child Health, University of Sydney, Sydney, Australia.,Children's Hospital Education Research Institute, the Children's Hospital at Westmead, Sydney, Australia
| | - Karin S Walsh
- Center for Neuroscience and Behavioral Medicine, Children's National Hospital, Washington, DC, USA.,Departments of Pediatrics and Psychiatry, The George Washington University School of Medicine, Washington, DC, USA
| | - Alice Maier
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Australia
| | - Anita K Chisholm
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences,University of Melbourne, Melbourne, Australia
| | - Hayley Darke
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Australia
| | - Cathy Catroppa
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences,University of Melbourne, Melbourne, Australia
| | - Stephanie Malarbi
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences,University of Melbourne, Melbourne, Australia
| | - Jake C Wilkinson
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Australia.,School of Psychology, Cardiff University, Cardiff, UK
| | - Vicki A Anderson
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences,University of Melbourne, Melbourne, Australia
| | - Kathryn N North
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences,University of Melbourne, Melbourne, Australia
| | - Jonathan M Payne
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences,University of Melbourne, Melbourne, Australia
| |
Collapse
|
37
|
Janusz JA, Klein-Tasman BP, Payne JM, Wolters PL, Thompson HL, Martin S, de Blank P, Ullrich N, Del Castillo A, Hussey M, Hardy KK, Haebich K, Rosser T, Toledo-Tamula MA, Walsh KS. Recommendations for Social Skills End Points for Clinical Trials in Neurofibromatosis Type 1. Neurology 2021; 97:S73-S80. [PMID: 34230205 PMCID: PMC8594002 DOI: 10.1212/wnl.0000000000012422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/07/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To review parent-report social skills measures to identify and recommend consensus outcomes for use in clinical trials of social deficit in children and adolescents (ages 6-18 years) with neurofibromatosis type 1 (NF1). METHODS Searches were conducted via PubMed and ClinicalTrials.gov to identity social skills outcome measures with English language versions used in clinical trials in the past 5 years with populations with known social skills deficits, including attention-deficit/hyperactivity disorder and autism spectrum disorder (ASD). Measures were rated by the Response Evaluation in Neurofibromatosis and Schwannomatosis (REiNS) Neurocognitive Committee on patient characteristics, use in published studies, domains assessed, availability of standard scores, psychometric properties, and feasibility to determine their appropriateness for use in NF1 clinical trials. RESULTS Two measures were ultimately recommended by the committee: the Social Responsiveness Scale-2 (SRS-2) and the Social Skills Improvement System-Rating Scale (SSIS-RS). CONCLUSIONS Each of the 2 measures assesses different aspects of social functioning. The SSIS-RS is appropriate for studies focused on broader social functioning; the SRS-2 is best for studies targeting problematic social behaviors associated with ASD. Researchers will need to consider the goals of their study when choosing a measure, and specific recommendations for their use are provided.
Collapse
Affiliation(s)
- Jennifer A Janusz
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD.
| | - Bonita P Klein-Tasman
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Jonathan M Payne
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Pamela L Wolters
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Heather L Thompson
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Staci Martin
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Peter de Blank
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Nicole Ullrich
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Allison Del Castillo
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Maureen Hussey
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Kristina K Hardy
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Kristina Haebich
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Tena Rosser
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Mary Anne Toledo-Tamula
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Karin S Walsh
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| |
Collapse
|
38
|
Geoffray MM, Robinson L, Ramamurthy K, Manderson L, O'Flaherty J, Lehtonen A, Tordjman S, Green J, Vassallo G, Garg S. Predictors of cognitive, behavioural and academic difficulties in NF1. J Psychiatr Res 2021; 140:545-550. [PMID: 34182240 DOI: 10.1016/j.jpsychires.2021.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/17/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022]
Abstract
The impact of the Neurofibromatosis type 1 (NF1) on cognition have been subject to much clinical investigation, but environmental modifiers of disease expression have not yet been systematically investigated. The aim of this paper is to determine the role of demographic and environmental factors such as age, sex, socioeconomic status, parental NF1 status and neurological complications on the cognitive, behavioural and academic outcomes in NF1. Participants included 206 children aged 4-18 years seen within the Manchester clinical research NF1 service. Multiple linear regression models were used to study the effect of the hypothesized predictor variables on cognitive, behavioural and academic outcomes. Relative to population norms, 80% of the NF1 sample demonstrated significantly lower scores in at least one cognitive, behavioural or academic domains. Family history of NF1 and lower SES were independently associated with poorer cognitive, behavioural and academic outcomes. Neurological problems such as epilepsy and hydrocephalus were associated with lower IQ and academic skills. Cognitive and behavioural phenotypes emerge commonly via a complex interplay between genes and environmental factors, and this is true also of a monogenic condition such as NF1. Early interventions and remedial education may be targeted to risk groups such those with familial NF1, families with lower SES and those with associated neurological comorbidities.
Collapse
Affiliation(s)
- Marie-Maude Geoffray
- Centre Hospitalier le Vinatier, 95 Bd Pinel, 69500 Bron, France; Division of Neuroscience and Experimental Psychology, Faculty of Biological Medical & Health Sciences, University of Manchester, Oxford Road, M13 9PL, UK
| | - Louise Robinson
- Dept of Child and Adolescent Mental Health, Manchester University NHS Foundation Trust, Manchester, UK
| | - Kavitha Ramamurthy
- Dept of Child and Adolescent Mental Health, Manchester University NHS Foundation Trust, Manchester, UK
| | - Lauren Manderson
- Dept of Child and Adolescent Mental Health, Manchester University NHS Foundation Trust, Manchester, UK
| | - Julieta O'Flaherty
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, University of Manchester, UK
| | | | - Sylvie Tordjman
- Pôle Hospitalo-Unuversitaire de Psychiatrie de l'Enfant et de l'Adolescent, Université de Rennes 1, Centre Hospitalier Guilllaume Régnier, 35703, Rennes, France; Integrative Neuroscience and Cognition Center (INCC), CNRS UMR 8002, Université de Paris, France
| | - Jonathan Green
- Division of Neuroscience and Experimental Psychology, Faculty of Biological Medical & Health Sciences, University of Manchester, Oxford Road, M13 9PL, UK; Dept of Child and Adolescent Mental Health, Manchester University NHS Foundation Trust, Manchester, UK; Manchester Academic Health Sciences Centre, Manchester, M13 9PL, UK
| | - Grace Vassallo
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, M13 9PL, UK
| | - Shruti Garg
- Division of Neuroscience and Experimental Psychology, Faculty of Biological Medical & Health Sciences, University of Manchester, Oxford Road, M13 9PL, UK; Dept of Child and Adolescent Mental Health, Manchester University NHS Foundation Trust, Manchester, UK; Manchester Academic Health Sciences Centre, Manchester, M13 9PL, UK.
| |
Collapse
|
39
|
Kenborg L, Andersen EW, Duun-Henriksen AK, Jepsen JRM, Doser K, Dalton SO, Bidstrup PE, Krøyer A, Frederiksen LE, Johansen C, Østergaard JR, Hove H, Sørensen SA, Riccardi VM, Mulvihill JJ, Winther JF. Psychiatric disorders in individuals with neurofibromatosis 1 in Denmark: A nationwide register-based cohort study. Am J Med Genet A 2021; 185:3706-3716. [PMID: 34327813 DOI: 10.1002/ajmg.a.62436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/01/2021] [Accepted: 07/10/2021] [Indexed: 12/19/2022]
Abstract
The aim of this study was to assess the risks of psychiatric disorders in a large cohort of 905 individuals with NF1 and 7614 population comparisons matched on sex and year of birth. The cohort was linked to the Danish Psychiatric Central Research Register to ascertain information on hospital contacts for psychiatric disorders based on the International Classification of Diseases version 8 and 10. The hazard ratio (HR) for a first psychiatric hospital contact was higher in girls (4.19, 95% confidence interval [CI] 1.81-9.69) and boys with NF1 (5.02, 95% CI 3.27-7.69) <7 years of age than in the population comparisons. Both sexes had increased HRs for developmental disorders, including attention deficit/hyperactivity disorders, autism spectrum disorders, and intellectual disabilities in childhood. Females with NF1 had also increased HRs for unipolar depression, other emotional and behavioral disorders, and severe stress reaction and adjustment disorders in early adulthood. The HRs for psychoses, schizophrenia, bipolar disorders, and substance abuse were similar in individuals with NF1 and the population comparisons. Finally, the cumulative incidence of a first hospital contact due to any psychiatric disorder by age 30 years was 35% (95% CI 29-41) in females and 28% (95% CI 19-37) in males with NF1. Thus, screening for psychiatric disorders may be important for early diagnosis and facilitation of appropriate and effective treatment in individuals with NF1.
Collapse
Affiliation(s)
- Line Kenborg
- Childhood Cancer Research Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Elisabeth W Andersen
- Statistics and Data Analysis, Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Jens R M Jepsen
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research and Center for Neuropsychiatric Schizophrenia Research, Mental Health Service Capital Region, University of Copenhagen, Copenhagen, Denmark.,Child and Adolescent Mental Health Centre, Mental Health Services Capital Region, University of Copenhagen, Copenhagen, Denmark
| | - Karoline Doser
- Childhood Cancer Research Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Susanne O Dalton
- Survivorship and Inequality in Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Naestved, Denmark
| | - Pernille E Bidstrup
- Psychological Aspects of Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Anja Krøyer
- Childhood Cancer Research Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Line E Frederiksen
- Childhood Cancer Research Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Christoffer Johansen
- Psychological Aspects of Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - John R Østergaard
- Department of Pediatrics, Centre for Rare Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Hanne Hove
- Department of Pediatrics, Centre for Rare Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,The RareDis Database, Section of Rare Diseases, Department of Clinical Genetics and Pediatrics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sven Asger Sørensen
- Department of Neurogenetics, Institute of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - John J Mulvihill
- Department of Pediatrics, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Jeanette F Winther
- Childhood Cancer Research Group, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University and University Hospital, Aarhus, Denmark
| |
Collapse
|
40
|
Borrie SC, Plasschaert E, Callaerts-Vegh Z, Yoshimura A, D'Hooge R, Elgersma Y, Kushner SA, Legius E, Brems H. MEK inhibition ameliorates social behavior phenotypes in a Spred1 knockout mouse model for RASopathy disorders. Mol Autism 2021; 12:53. [PMID: 34311771 PMCID: PMC8314535 DOI: 10.1186/s13229-021-00458-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/12/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND RASopathies are a group of disorders that result from mutations in genes coding for proteins involved in regulating the Ras-MAPK signaling pathway, and have an increased incidence of autism spectrum disorder (ASD). Legius syndrome is a rare RASopathy caused by loss-of-function mutations in the SPRED1 gene. The patient phenotype is similar to, but milder than, Neurofibromatosis type 1-another RASopathy caused by loss-of-function mutations in the NF1 gene. RASopathies exhibit increased activation of Ras-MAPK signaling and commonly manifest with cognitive impairments and ASD. Here, we investigated if a Spred1-/- mouse model for Legius syndrome recapitulates ASD-like symptoms, and whether targeting the Ras-MAPK pathway has therapeutic potential in this RASopathy mouse model. METHODS We investigated social and communicative behaviors in Spred1-/- mice and probed therapeutic mechanisms underlying the observed behavioral phenotypes by pharmacological targeting of the Ras-MAPK pathway with the MEK inhibitor PD325901. RESULTS Spred1-/- mice have robust increases in social dominance in the automated tube test and reduced adult ultrasonic vocalizations during social communication. Neonatal ultrasonic vocalization was also altered, with significant differences in spectral properties. Spred1-/- mice also exhibit impaired nesting behavior. Acute MEK inhibitor treatment in adulthood with PD325901 reversed the enhanced social dominance in Spred1-/- mice to normal levels, and improved nesting behavior in adult Spred1-/- mice. LIMITATIONS This study used an acute treatment protocol to administer the drug. It is not known what the effects of longer-term treatment would be on behavior. Further studies titrating the lowest dose of this drug that is required to alter Spred1-/- social behavior are still required. Finally, our findings are in a homozygous mouse model, whereas patients carry heterozygous mutations. These factors should be considered before any translational conclusions are drawn. CONCLUSIONS These results demonstrate for the first time that social behavior phenotypes in a mouse model for RASopathies (Spred1-/-) can be acutely reversed. This highlights a key role for Ras-MAPK dysregulation in mediating social behavior phenotypes in mouse models for ASD, suggesting that proper regulation of Ras-MAPK signaling is important for social behavior.
Collapse
Affiliation(s)
- Sarah C Borrie
- Department of Human Genetics, KU Leuven, O&N1 Herestraat 49, Box 607, 3000, Leuven, Belgium
| | - Ellen Plasschaert
- Department of Human Genetics, KU Leuven, O&N1 Herestraat 49, Box 607, 3000, Leuven, Belgium
| | | | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Rudi D'Hooge
- Laboratory for Biological Psychology, KU Leuven, Leuven, Belgium
| | - Ype Elgersma
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Steven A Kushner
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Eric Legius
- Department of Human Genetics, KU Leuven, O&N1 Herestraat 49, Box 607, 3000, Leuven, Belgium
| | - Hilde Brems
- Department of Human Genetics, KU Leuven, O&N1 Herestraat 49, Box 607, 3000, Leuven, Belgium.
| |
Collapse
|
41
|
Wegscheid ML, Anastasaki C, Hartigan KA, Cobb OM, Papke JB, Traber JN, Morris SM, Gutmann DH. Patient-derived iPSC-cerebral organoid modeling of the 17q11.2 microdeletion syndrome establishes CRLF3 as a critical regulator of neurogenesis. Cell Rep 2021; 36:109315. [PMID: 34233200 PMCID: PMC8278229 DOI: 10.1016/j.celrep.2021.109315] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 04/21/2021] [Accepted: 06/04/2021] [Indexed: 12/22/2022] Open
Abstract
Neurodevelopmental disorders are often caused by chromosomal microdeletions comprising numerous contiguous genes. A subset of neurofibromatosis type 1 (NF1) patients with severe developmental delays and intellectual disability harbors such a microdeletion event on chromosome 17q11.2, involving the NF1 gene and flanking regions (NF1 total gene deletion [NF1-TGD]). Using patient-derived human induced pluripotent stem cell (hiPSC)-forebrain cerebral organoids (hCOs), we identify both neural stem cell (NSC) proliferation and neuronal maturation abnormalities in NF1-TGD hCOs. While increased NSC proliferation results from decreased NF1/RAS regulation, the neuronal differentiation, survival, and maturation defects are caused by reduced cytokine receptor-like factor 3 (CRLF3) expression and impaired RhoA signaling. Furthermore, we demonstrate a higher autistic trait burden in NF1 patients harboring a deleterious germline mutation in the CRLF3 gene (c.1166T>C, p.Leu389Pro). Collectively, these findings identify a causative gene within the NF1-TGD locus responsible for hCO neuronal abnormalities and autism in children with NF1.
Collapse
Affiliation(s)
- Michelle L Wegscheid
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kelly A Hartigan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Olivia M Cobb
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jason B Papke
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer N Traber
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephanie M Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
42
|
Agelink van Rentergem JA, Deserno MK, Geurts HM. Validation strategies for subtypes in psychiatry: A systematic review of research on autism spectrum disorder. Clin Psychol Rev 2021; 87:102033. [PMID: 33962352 DOI: 10.1016/j.cpr.2021.102033] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 02/14/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022]
Abstract
Heterogeneity within autism spectrum disorder (ASD) is recognized as a challenge to both biological and psychological research, as well as clinical practice. To reduce unexplained heterogeneity, subtyping techniques are often used to establish more homogeneous subtypes based on metrics of similarity and dissimilarity between people. We review the ASD literature to create a systematic overview of the subtyping procedures and subtype validation techniques that are used in this field. We conducted a systematic review of 156 articles (2001-June 2020) that subtyped participants (range N of studies = 17-20,658), of which some or all had an ASD diagnosis. We found a large diversity in (parametric and non-parametric) methods and (biological, psychological, demographic) variables used to establish subtypes. The majority of studies validated their subtype results using variables that were measured concurrently, but were not included in the subtyping procedure. Other investigations into subtypes' validity were rarer. In order to advance clinical research and the theoretical and clinical usefulness of identified subtypes, we propose a structured approach and present the SUbtyping VAlidation Checklist (SUVAC), a checklist for validating subtyping results.
Collapse
Affiliation(s)
- Joost A Agelink van Rentergem
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Dutch Autism & ADHD Research Center, the Netherlands.
| | - Marie K Deserno
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Dutch Autism & ADHD Research Center, the Netherlands
| | - Hilde M Geurts
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Dutch Autism & ADHD Research Center, the Netherlands; Dr. Leo Kannerhuis, the Netherlands
| |
Collapse
|
43
|
Rahn RM, Weichselbaum CT, Gutmann DH, Dougherty JD, Maloney SE. Shared developmental gait disruptions across two mouse models of neurodevelopmental disorders. J Neurodev Disord 2021; 13:10. [PMID: 33743598 PMCID: PMC7980331 DOI: 10.1186/s11689-021-09359-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/05/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Motor deficits such as abnormal gait are an underappreciated yet characteristic phenotype of many neurodevelopmental disorders (NDDs), including Williams Syndrome (WS) and Neurofibromatosis Type 1 (NF1). Compared to cognitive phenotypes, gait phenotypes are readily and comparably assessed in both humans and model organisms and are controlled by well-defined CNS circuits. Discovery of a common gait phenotype between NDDs might suggest shared cellular and molecular deficits and highlight simple outcome variables to potentially quantify longitudinal treatment efficacy in NDDs. METHODS We characterized gait using the DigiGait assay in two different murine NDD models: the complete deletion (CD) mouse, which models hemizygous loss of the complete WS locus, and the Nf1+/R681X mouse, which models a NF1 patient-derived heterozygous germline NF1 mutation. Longitudinal data were collected across four developmental time points (postnatal days 21-30) and one early adulthood time point. RESULTS Compared to wildtype littermate controls, both models displayed markedly similar spatial, temporal, and postural gait abnormalities during development. Developing CD mice also displayed significant decreases in variability metrics. Multiple gait abnormalities observed across development in the Nf1+/R681X mice persisted into early adulthood, including increased stride length and decreased stride frequency, while developmental abnormalities in the CD model largely resolved by adulthood. CONCLUSIONS These findings suggest that the subcomponents of gait affected in NDDs show overlap between disorders as well as some disorder-specific features, which may change over the course of development. Our incorporation of spatial, temporal, and postural gait measures also provides a template for gait characterization in other NDD models and a platform to examining circuits or longitudinal therapeutics.
Collapse
Affiliation(s)
- Rachel M Rahn
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.,Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.,Department of Radiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA
| | - Claire T Weichselbaum
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.,Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA
| | - David H Gutmann
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.,Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.,Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA. .,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.
| |
Collapse
|
44
|
Morris SM, Acosta MT, Garg S, Green J, Legius E, North K, Payne JM, Weiss LA, Constantino JN, Gutmann DH. Autism in neurofibromatosis type 1: misuse of covariance to dismiss autistic trait burden. Dev Med Child Neurol 2021; 63:233-234. [PMID: 32815557 DOI: 10.1111/dmcn.14653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/24/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Stephanie M Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Maria T Acosta
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shruti Garg
- Royal Manchester Children's Hospital, Manchester, UK
| | | | - Eric Legius
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Kathryn North
- Department of Pediatrics, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Vic, Australia
| | - Jonathan M Payne
- Department of Pediatrics, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Vic, Australia
| | - Lauren A Weiss
- Department of Psychiatry, Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - John N Constantino
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
45
|
Morotti H, Mastel S, Keller K, Barnard RA, Hall T, O'Roak BJ, Fombonne E. Autism and attention-deficit/hyperactivity disorders and symptoms in children with neurofibromatosis type 1. Dev Med Child Neurol 2021; 63:226-232. [PMID: 32406525 DOI: 10.1111/dmcn.14558] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2020] [Indexed: 11/30/2022]
Abstract
AIM To evaluate if autism symptoms and diagnoses are more common in children with neurofibromatosis type 1 (NF1) than in typically developing children, to which levels, and to determine if co-occurring attention-deficit/hyperactivity disorder (ADHD) symptomatology accounts for this increase. METHOD We searched hospital electronic medical records (EMR) for International Classification of Diseases, 10th Revision NF1 and co-occurring diagnoses codes. We recruited a subsample of 45 children (mean age 9y 2mo; SD 2y 7mo; range 5-12y; 22 males, 23 females) and collected parental reports of autism symptomatology, adaptive behavior, and behavioral problems that were compared to those of 360 age- and sex-matched controls from the Simons Simplex Collection (SSC) with autism spectrum disorder (ASD; SSC-ASD) or typically developing (SSC-TD). RESULTS The EMR search identified 968 children with NF1; 8.8% had ADHD and 2.1% had ASD co-occurring diagnoses. In the subsample, the mean autism scale score for participants with NF1 was below cut-off for significant autism symptoms. Participants with NF1 had significantly more autism and behavioral symptoms than SSC-TD participants, and significantly less than SSC-ASD participants, with one exception: ADHD symptom levels were similar to those of SSC-ASD participants. In analyses that controlled for internalizing, ADHD, and communication scores, the difference in autism symptom levels between participants with NF1 and typically developing controls disappeared almost entirely. INTERPRETATION Our results do not support an association between NF1 and autism, both at the symptom and disorder levels. WHAT THIS PAPER ADDS Diagnoses of attention-deficit/hyperactivity disorder (ADHD) were more common in children with neurofibromatosis type 1 (NF1) than in the general child population. Diagnoses of autism spectrum disorder were no more common in children with NF1 than in the general child population. Increases in autism symptoms did not reach clinically significant thresholds. Co-occurring ADHD symptoms accounted for increased autism questionnaire scores. Adaptive behavior in participants with NF1 showed normal socialization but lower communication proficiency.
Collapse
Affiliation(s)
- Hadley Morotti
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Sarah Mastel
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA.,Institute on Development & Disability, Oregon Health & Science University, Portland, Oregon, USA.,Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, USA
| | - Kory Keller
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Rebecca A Barnard
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Trevor Hall
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA.,Institute on Development & Disability, Oregon Health & Science University, Portland, Oregon, USA
| | - Brian J O'Roak
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Eric Fombonne
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA.,Institute on Development & Disability, Oregon Health & Science University, Portland, Oregon, USA.,Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
46
|
Klein-Tasman BP. Are the autism symptoms in neurofibromatosis type 1 actually autism? Dev Med Child Neurol 2021; 63:132. [PMID: 32614454 DOI: 10.1111/dmcn.14597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/07/2023]
|
47
|
Fombonne E, Morotti H, Mastel S, Keller K, Barnard RA, Hall T, O'Roak BJ. Autism questionnaire scores do not only rise because of autism. Dev Med Child Neurol 2021; 63:235-236. [PMID: 33118173 DOI: 10.1111/dmcn.14725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Eric Fombonne
- Department of Psychiatry, Oregon Health & Science University (OHSU), Portland, OR, USA.,Department of Pediatrics & Institute on Development & Disability, OHSU, Portland, OR, USA
| | - Hadley Morotti
- Department of Molecular and Medical Genetics, OHSU, Portland, OR, USA
| | - Sarah Mastel
- Department of Psychiatry, Oregon Health & Science University (OHSU), Portland, OR, USA.,Department of Pediatrics & Institute on Development & Disability, OHSU, Portland, OR, USA
| | - Kory Keller
- Department of Molecular and Medical Genetics, OHSU, Portland, OR, USA
| | - Rebecca A Barnard
- Department of Molecular and Medical Genetics, OHSU, Portland, OR, USA
| | - Trevor Hall
- Department of Pediatrics & Institute on Development & Disability, OHSU, Portland, OR, USA
| | - Brian J O'Roak
- Department of Molecular and Medical Genetics, OHSU, Portland, OR, USA
| |
Collapse
|
48
|
Sagata N, Kano SI, Ohgidani M, Inamine S, Sakai Y, Kato H, Masuda K, Nakahara T, Nakahara-Kido M, Ohga S, Furue M, Sawa A, Kanba S, Kato TA. Forskolin rapidly enhances neuron-like morphological change of directly induced-neuronal cells from neurofibromatosis type 1 patients. Neuropsychopharmacol Rep 2020; 40:396-400. [PMID: 33037790 PMCID: PMC7722681 DOI: 10.1002/npr2.12144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Aim Neurofibromatosis type 1 (NF1) is a multifaceted disease, and frequently comorbid with neurodevelopmental disorders such as autism spectrum disorder (ASD) and learning disorder. Dysfunction of adenylyl cyclase (AC) is one of the candidate pathways in abnormal development of neuronal cells in the brain of NF1 patients, while its dynamic abnormalities have not been observed. Direct conversion technology can generate induced‐neuronal (iN) cells directly from human fibroblasts within 2 weeks. Just recently, we have revealed that forskolin, an AC activator, rescues the gene expression pattern of iN cells derived from NF1 patients (NF1‐iN cells). In this microreport, we show the dynamic effect of forskolin on NF1‐iN cells. Methods iN cells derived from healthy control (HC‐iN cells) and NF1‐iN cells were treated with forskolin (final concentration 10 μM), respectively. Morphological changes of iN cells were captured by inverted microscope with CCD camera every 2 minutes for 90 minutes. Results Prior to forskolin treatment, neuron‐like spherical‐form cells were observed in HC‐iN cells, but most NF1‐iN cells were not spherical‐form but flatform. Only 20 minutes after forskolin treatment, the morphology of the iN cells were dramatically changed from flatform to spherical form, especially in NF1‐iN cells. Conclusion The present pilot data indicate that forskolin or AC activators may have therapeutic effects on the growth of neuronal cells in NF1 patients. Further translational research should be conducted to validate our pilot findings for future drug development of ASD. Neurofibromatosis type 1 (NF1) is highly comorbid with neurodevelopmental disorders such as autism spectrum disorder (ASD) and learning disorder, and underlying mechanisms have not been well clarified. We herein showed that forskolin, an AC activator, rapidly enhances neuron‐like morphological change of directly induced‐neuronal (iN) cells from NF1 patients. The present pilot data using the direct conversion technology indicate that forskolin or AC activators may have therapeutic effects on the growth of neuronal cells in NF1 patients.
![]()
Collapse
Affiliation(s)
- Noriaki Sagata
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shin-Ichi Kano
- Department of Psychiatry and Behavioral Neurobiology & Department of Neurobiology, The University of Alabama at Birmingham (UAB) School of Medicine, Birmingham, AL, USA.,Departments of Psychiatry, Mental Health, Neuroscience, and Biomedical Engineering, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, MD, USA
| | - Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shogo Inamine
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroki Kato
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,Division of Oral Biological Sciences, Department of Molecular Cell Biology and Oral Anatomy, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takeshi Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Makiko Nakahara-Kido
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Sawa
- Departments of Psychiatry, Mental Health, Neuroscience, and Biomedical Engineering, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, MD, USA
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
49
|
An executive functioning perspective in neurofibromatosis type 1: from ADHD and autism spectrum disorder to research domains. Childs Nerv Syst 2020; 36:2321-2332. [PMID: 32617712 DOI: 10.1007/s00381-020-04745-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/11/2020] [Indexed: 01/31/2023]
Abstract
PURPOSE Neurofibromatosis type 1 (NF1) is a rare monogenic disorder associated with executive function (EF) deficits and heightened risk for attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). The goal of this paper is to understand how EFs provide a common foundation to understand vulnerabilities for ADHD and ASD within NF1. METHODS A literature review and synthesis was conducted. RESULTS EF difficulties in working memory, inhibitory control, cognitive flexibility, and planning are evident in NF1, ADHD, and ASD. However, relatively little is known about the heterogeneity of EFs and ADHD and ASD outcomes in NF1. Assessment of ADHD and ASD in NF1 is based on behavioral symptoms without understanding neurobiological contributions. Recent efforts are promoting the use of dimensional and multidisciplinary methods to better understand normal and abnormal behavior, including integrating information from genetics to self-report measures. CONCLUSION NF1 is a monogenic disease with well-developed molecular and phenotypic research as well as complementary animal models. NF1 presents an excellent opportunity to advance our understanding of the neurobiological impact of known pathogenic variation in normal and abnormal neural pathways implicated in human psychopathology. EFs are core features of NF1, ADHD, and ASD, and these neurodevelopmental outcomes are highly prevalent in NF1. We propose a multilevel approach for understanding EFs in patients with NF1.This is essential to advance targeted interventions for NF1 patients and to advance the exciting field of research in this condition.
Collapse
|
50
|
Kehrer-Sawatzki H, Kluwe L, Salamon J, Well L, Farschtschi S, Rosenbaum T, Mautner VF. Clinical characterization of children and adolescents with NF1 microdeletions. Childs Nerv Syst 2020; 36:2297-2310. [PMID: 32533297 PMCID: PMC7575500 DOI: 10.1007/s00381-020-04717-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE An estimated 5-11% of patients with neurofibromatosis type 1 (NF1) harbour NF1 microdeletions encompassing the NF1 gene and its flanking regions. The purpose of this study was to evaluate the clinical phenotype in children and adolescents with NF1 microdeletions. METHODS We retrospectively analysed 30 children and adolescents with NF1 microdeletions pertaining to externally visible neurofibromas. The internal tumour load was determined by volumetry of whole-body magnetic resonance imaging (MRI) in 20 children and adolescents with NF1 microdeletions. Furthermore, the prevalence of global developmental delay, autism spectrum disorder and attention deficit hyperactivity disorder (ADHD) were evaluated. RESULTS Children and adolescents with NF1 microdeletions had significantly more often cutaneous, subcutaneous and externally visible plexiform neurofibromas than age-matched patients with intragenic NF1 mutations. Internal neurofibromas were detected in all 20 children and adolescents with NF1 microdeletions analysed by whole-body MRI. By contrast, only 17 (61%) of 28 age-matched NF1 patients without microdeletions had internal tumours. The total internal tumour load was significantly higher in NF1 microdeletion patients than in NF1 patients without microdeletions. Global developmental delay was observed in 28 (93%) of 30 children with NF1 microdeletions investigated. The mean full-scale intelligence quotient in our patient group was 77.7 which is significantly lower than that of patients with intragenic NF1 mutations. ADHD was diagnosed in 15 (88%) of 17 children and adolescents with NF1 microdeletion. Furthermore, 17 (71%) of the 24 patients investigated had T-scores ≥ 60 up to 75, indicative of mild to moderate autistic symptoms, which are consequently significantly more frequent in patients with NF1 microdeletions than in the general NF1 population. Also, the mean total T-score was significantly higher in patients with NF1 microdeletions than in the general NF1 population. CONCLUSION Our findings indicate that already at a very young age, NF1 microdeletions patients frequently exhibit a severe disease manifestation which requires specialized long-term clinical care.
Collapse
Affiliation(s)
- Hildegard Kehrer-Sawatzki
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Lan Kluwe
- Department of Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Salamon
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Well
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Said Farschtschi
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Victor-Felix Mautner
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|