1
|
Kumar A, Ojha PK, Roy K. Safer and greener chemicals for the aquatic ecosystem: Chemometric modeling of the prolonged and chronic aquatic toxicity of chemicals on Oryzias latipes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:106985. [PMID: 38875952 DOI: 10.1016/j.aquatox.2024.106985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/16/2024]
Abstract
In the modern era, chemicals and their products have been used everywhere like agriculture, healthcare, food, cosmetics, pharmaceuticals, household products, clothing industry, etc. These chemicals find their way to reach the aquatic ecosystem (directly/indirectly) and cause severe chronic and prolonged toxic effects to aquatic species which is also then translated to human beings. Prolonged and chronic toxicity data of many chemicals that are used daily is not available due to high experimentation testing costs, time investment, and the requirement of a large number of animal sacrifices. Thus, in silico approaches (e.g., QSAR (quantitative structure-activity relationship)) are the best alternative for chronic and prolonged toxicity predictions. The present work offers multi-endpoint (five endpoints: chronic_LOEC, prolonged_14D_LC50, prolonged_14D_NOEC, prolonged_21D_LC50, prolonged_21D_NOEC) QSAR models for addressing the prolonged and chronic aquatic toxicity of chemicals toward fish (O. latipes). The statistical results (R2 =0.738-0.869, QLOO2 =0.712-0.831, Q(F1)2 =0.618-0.731) of the developed models show that they were robust, reliable, reproducible, accurate, and predictive. Some of the features that are responsible for prolonged and chronic toxicity of chemicals towards O. latipes are as follows: the presence of substituted benzene, hydrophobicity, unsaturation, electronegativity, the presence of long-chain fragments, the presence of a greater number of atoms at conjugation, and the presence of halogen atoms. On the other hand, hydrophilicity and graph density descriptors retard the aquatic chronic and prolonged toxicity of chemicals toward O. latipes. The PPDB (pesticide properties database) and experimental and investigational classes of drugs from the DrugBank database were also screened using the developed model. Thus, these multi-endpoint models will be helpful for data-gap filling and provide a broad range of applicability. Therefore, this research will aid in the in silico QSAR (quantitative structure-activity relationship) prediction (non-animal testing) of the prolonged and chronic toxicity of untested and new toxic chemicals/drugs/pesticides, design and development of eco-friendly, novel, and safer chemicals, and help to protect the aquatic ecosystem from exposure to toxic and hazardous chemicals.
Collapse
Affiliation(s)
- Ankur Kumar
- Drug Discovery and Development Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Probir Kumar Ojha
- Drug Discovery and Development Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Kunal Roy
- Drug Theoretics and Cheminformatics (DTC) Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
2
|
Yoon Y, Cho M. Detrimental impacts and QSAR baseline toxicity assessment of Japanese medaka embryos exposed to methylparaben and its halogenated byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171448. [PMID: 38453088 DOI: 10.1016/j.scitotenv.2024.171448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Despite the theoretical risk of forming halogenated methylparabens (halo-MePs) during water chlorination in the absence or presence of bromide ions, there remains a lack of in vivo toxicological assessments on vertebrate organisms for halo-MePs. This research addresses these gaps by investigating the lethal (assessed by embryo coagulation) or sub-lethal (assessed by hatching success/heartbeat rate) toxicity and teratogenicity (assessed by deformity rate) of MeP and its mono- and di-halogen derivatives (Cl- or Br-) using Japanese medaka embryos. In assessing selected apical endpoints to discern patterns in physiological or biochemical alterations, heightened toxic impacts were observed for halo-MePs compared to MeP. These include a higher incidence of embryo coagulation (4-36 fold), heartbeat rate decrement (11-36 fold), deformity rate increment (32-223 fold), hatching success decrement (11-59 fold), and an increase in Reactive Oxygen Species (ROS) level (1.2-7.4 fold)/Catalase (CAT) activity (1.7-2.8 fold). Experimentally determined LC50 values are correlated and predicted using a Quantitative Structure Activity Relationship (QSAR) based on the speciation-corrected liposome-water distribution ratio (Dlipw, pH 7.5). The QSAR baseline toxicity aligns well with (sub)lethal toxicity and teratogenicity, as evidenced by toxic ratio (TR) analysis showing TR < 10 for MeP exposure in all cases, while significant specific or reactive toxicity was found for halo-MeP exposure, with TR > 10 observed (excepting three values). Our extensive findings contribute novel insights into the intricate interplay of embryonic toxicity during the early-life-stage of Japanese medaka, with a specific focus on highlighting the potential hazards associated with halo-MePs compared to the parent compound MeP.
Collapse
Affiliation(s)
- Younggun Yoon
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology (KIT), Gyeongsangnam-do, 52834, South Korea; Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea.
| | - Min Cho
- Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea.
| |
Collapse
|
3
|
Schkoda S, Horman B, Witchey SK, Jansson A, Macari S, Patisaul HB. Skeletal effects following developmental flame-retardant exposure are specific to sex and chemical class in the adult Wistar rat. FRONTIERS IN TOXICOLOGY 2023; 5:1216388. [PMID: 37577032 PMCID: PMC10414991 DOI: 10.3389/ftox.2023.1216388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/22/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction: Accumulating evidence reveals that endocrine disrupting chemicals (EDCs) can disrupt aspects of metabolic programming, suggesting that skeletal development may be at risk, a possibility that is rarely examined. The commercial flame retardant (FR) mixture, Firemaster 550 (FM 550), has repeatedly been shown to negatively influence metabolic programming, raising concerns that skeletal integrity may consequently be impaired. We have previously shown that gestational and lactational exposure to 1,000 µg FM 550 negatively affected sex-specific skeletal traits in male, but not female, rats assessed at 6 months of age. Whether this outcome is primarily driven by the brominated (BFR) or organophosphate ester (OPFR) portions of the mixture or the effects persist to older ages is unknown. Materials and methods: To address this, in the present study, dams were orally exposed throughout gestation and lactation to either 1,000 μg BFR, 1,000 µg OPFR, or 2,000 µg FM 550. Offspring (n = 8/sex/exposure) were weaned at PND 21 and assessed for femoral cortical and trabecular bone parameters at 8 months of age by high-resolution X-ray micro-computed tomography (micro-CT). Serum levels of serotonin, osteocalcin, alkaline phosphatase, and calcium were quantified. Results: FM 550 affected both sexes, but the females were more appreciably impacted by the OPFRs, while the males were more vulnerable to the BFRs. Conclusion: Although sex specificity was expected due to the sexual dimorphic nature of skeletal physiology, the mechanisms accounting for the male- and female-specific phenotypes remain to be determined. Future work aims to clarify these unresolved issues.
Collapse
Affiliation(s)
- Stacy Schkoda
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Brian Horman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Shannah K. Witchey
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Anton Jansson
- Analytical Instrumentation Facility, North Carolina State University, Raleigh, NC, United States
| | - Soraia Macari
- Department of Restorative Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Heather B. Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
4
|
Reis R, Dhawle R, Du Pasquier D, Tindall AJ, Frontistis Z, Mantzavinos D, de Witte P, Cabooter D. Electrochemical degradation of 17α-ethinylestradiol: Transformation products, degradation pathways and in vivo assessment of estrogenic activity. ENVIRONMENT INTERNATIONAL 2023; 176:107992. [PMID: 37244003 DOI: 10.1016/j.envint.2023.107992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Conventional water treatment methods are not efficient in eliminating endocrine disrupting compounds (EDCs) in wastewater. Electrochemical Advanced Oxidation Processes (eAOPs) offer a promising alternative, as they electro-generate highly reactive species that oxidize EDCs. However, these processes produce a wide spectrum of transformation products (TPs) with unknown chemical and biological properties. Therefore, a comprehensive chemical and biological evaluation of these remediation technologies is necessary before they can be safely applied in real-life situations. In this study, 17α-ethinylestradiol (EE2), a persistent estrogen, was electrochemically degraded using a boron doped diamond anode with sodium sulfate (Na2SO4) and sodium chloride (NaCl) as supporting electrolytes. Ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry was used for the quantification of EE2 and the identification of TPs. Estrogenic activity was assessed using a transgenic medaka fish line. At optimal operating conditions, EE2 removal reached over 99.9% after 120 min and 2 min, using Na2SO4 and NaCl, respectively. The combined EE2 quantification and in vivo estrogenic assessment demonstrated the overall estrogenic activity was consistently reduced with the degradation of EE2, but not completely eradicated. The identification and time monitoring of TPs showed that the radical agents readily oxidized the phenolic A-ring of EE2, leading to the generation of hydroxylated and/or halogenated TPs and ring-opening products. eAOP revealed to be a promising technique for the removal of EE2 from water. However, caution should be exercised with respect to the generation of potentially toxic TPs.
Collapse
Affiliation(s)
- Rafael Reis
- Laboratory of Pharmaceutical Analysis, Department for Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Leuven, Belgium
| | - Rebecca Dhawle
- Department of Chemical Engineering, University of Patras, 26500 Patras, Greece
| | - David Du Pasquier
- Laboratoire WatchFrog, Bâtiment Genavenir 3, 1 Rue Pierre Fontaine, 91000 Evry, France
| | - Andrew J Tindall
- Laboratoire WatchFrog, Bâtiment Genavenir 3, 1 Rue Pierre Fontaine, 91000 Evry, France
| | - Zacharias Frontistis
- Department of Chemical Engineering, University of Western Macedonia, GR-50132 Kozani, Greece; School of Sciences and Engineering, University of Nicosia, 2417 Nicosia, Cyprus
| | | | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Leuven, Belgium
| | - Deirdre Cabooter
- Laboratory of Pharmaceutical Analysis, Department for Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Leuven, Belgium.
| |
Collapse
|
5
|
Fu B, Wu D, Yasumasu S, Hane M, Sato C, Kitajima K. Critical Role of the Cortical Alveolus Protease Alveolin in Chorion Hardening In Vivo at Medaka Fertilization. Biomolecules 2023; 13:146. [PMID: 36671531 PMCID: PMC9855834 DOI: 10.3390/biom13010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Alveolin is a cortical alveolus proteinase that is secreted in the perivitelline space (PVS) at fertilization to act on the chorion. Purified alveolin is known to induce chorion hardening in vitro by processing zona pellucida B (ZPB), a major chorion component. However, in vivo function of alveolin remains unclear; thus, in this study, the effects of alveolin efficiency (Alv-/-) at the organism level were investigated using the medaka, Oryzias latipes. The Alv-/- fertilized eggs were mechanically fragile; however, they developed normally and left offspring as long as they were carefully handled before hatching. A mechanical press test showed that the Alv-/- fertilized eggs were six times more fragile than the wild-type eggs. They were 35% larger owing to the enlarged PVS, 34% thinner, and permeable to even 10 kDa FITC-dextran. These results are consistent with the transmission electron microscopy observation that the periphery of the inner layers was highly porous in the Alv-/- chorion. In chorion hardening, the alveolin-mediated processing of ZPB and the transglutaminase (TGase)-mediated crosslinking of chorion components are the key steps. This study was the first to show that alveolin also processed TGase concomitantly with ZPB, which greatly facilitated the crosslinking. Thus, alveolin was concluded to be the primary trigger for chorion hardening in vivo. Furthermore, fertilization in a balanced salt solution could partially improve the impaired chorion hardening of the Alv-/- eggs fertilized in water, probably through an alveolin-independent mechanism.
Collapse
Affiliation(s)
- Bo Fu
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Di Wu
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Institute of Glyco-core Research, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Shigeki Yasumasu
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| | - Masaya Hane
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Institute of Glyco-core Research, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Institute of Glyco-core Research, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Institute of Glyco-core Research, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
6
|
Mason MW, Parrott BB. Acute Copper Toxicity Displays a Nonmonotonic Relationship with Age Across the Medaka (Oryzias latipes) Life Span. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2999-3006. [PMID: 36102844 PMCID: PMC9828168 DOI: 10.1002/etc.5481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/26/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
The ability of an organism to cope with environmental stressors varies across the life span because of developmental stage-specific responses and age-related functional declines. In the present study, we examined the effect of age on acute copper toxicity in Japanese medaka (Oryzias latipes). We first determined the median lethal concentration (LC50) at 96 h for embryos, 7-day-old fry, and 6-month-old medaka. Embryos were exposed to 0, 15, 30, 60, 125, 250, and 500 ppb CuSO4 through hatching. Fry were exposed to 0, 20, 50, 75, 100, 150, 250, and 500 ppb CuSO4 for 96 h. Adult fish were exposed to 0, 100, 150, 200, 250, and 300 ppb CuSO4 for 96 h. The 96-h LC50 was 804 ppb for embryos, 262 ppb for embryonically exposed larvae, 60.3 ppb for 7-day-old fry, and 226 ppb for adults. We then challenged cohorts of fish aged 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, and 16 months with a 225-ppb CuSO4 exposure to determine the acute toxicity across the life span. The fish exhibited a bimodal tolerance to copper, with tolerance peaking in 2- and 3-month-old fish and again at 10 and 11 months of age. Our data demonstrate that copper sensitivity is dynamic throughout the medaka life span and may be influenced by trade-offs with reproduction. Environ Toxicol Chem 2022;41:2999-3006. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Marilyn W. Mason
- Savannah River Ecology LaboratoryUniversity of GeorgiaAikenSouth CarolinaUSA
| | - Benjamin B. Parrott
- Savannah River Ecology LaboratoryUniversity of GeorgiaAikenSouth CarolinaUSA
- Eugene P. Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
7
|
Hsu YC, Thia E, Chen PJ. Monitoring of ion release, bioavailability and ecotoxicity of thallium in contaminated paddy soils under rice cultivation conditions. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:126513. [PMID: 34246523 DOI: 10.1016/j.jhazmat.2021.126513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Paddy soils contaminated by thallium (Tl) have been frequently reported; however, their ecotoxicological impact in the paddy field is less known. We used a novel soil-fish exposure system with larvae of rice fish medaka (Oryzias latipes) to assess the bioavailability of Tl from soils to fish and causal toxicity under simulated conditions of rice cultivation. Two acidic soils [Pingzhen (Pc) and Sankengtzu (Sk)] spiked with monovalent Tl [Tl(I), 75-250 mg/kg] released higher Tl+ into pore or overlying waters than neutral soils [Sangkang (Su)], which resulted in higher mortality to exposed fish. The addition of K fertilizers into the system did not significantly reduce Tl release and fish mortality, but a drainage/re-flooding treatment worked effectively. The acidic Pc soil contaminated with low Tl(I) (2.5 and 15 mg/kg) caused higher sublethal toxicity in medaka than the neutral Su soil, including altered growth and swimming behavior with increased Tl body burden. These Tl-induced effects by low-Tl soils were significantly alleviated by K addition. The Tl/K ratios in aqueous phases were correlated with the mortality or Tl body burden in exposed fish. This study provides useful bio-analytical evidence that can help assess the ecological risks of Tl pollution in paddy field-related ecosystems.
Collapse
Affiliation(s)
- Yu-Chang Hsu
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Eveline Thia
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Pei-Jen Chen
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
8
|
In Vitro and In Vivo Toxicity Evaluation of Natural Products with Potential Applications as Biopesticides. Toxins (Basel) 2021; 13:toxins13110805. [PMID: 34822589 PMCID: PMC8617648 DOI: 10.3390/toxins13110805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 12/28/2022] Open
Abstract
The use of natural products in agriculture as pesticides has been strongly advocated. However, it is necessary to assess their toxicity to ensure their safe use. In the present study, mammalian cell lines and fish models of the zebrafish (Danio rerio) and medaka (Oryzias latipes) have been used to investigate the toxic effects of ten natural products which have potential applications as biopesticides. The fungal metabolites cavoxin, epi-epoformin, papyracillic acid, seiridin and sphaeropsidone, together with the plant compounds inuloxins A and C and ungeremine, showed no toxic effects in mammalian cells and zebrafish embryos. Conversely, cyclopaldic and α-costic acids, produced by Seiridium cupressi and Dittrichia viscosa, respectively, caused significant mortality in zebrafish and medaka embryos as a result of yolk coagulation. However, both compounds showed little effect in zebrafish or mammalian cell lines in culture, thus highlighting the importance of the fish embryotoxicity test in the assessment of environmental impact. Given the embryotoxicity of α-costic acid and cyclopaldic acid, their use as biopesticides is not recommended. Further ecotoxicological studies are needed to evaluate the potential applications of the other compounds.
Collapse
|
9
|
Kawashima Y, Onishi Y, Tatarazako N, Yamamoto H, Koshio M, Oka T, Horie Y, Watanabe H, Nakamoto T, Yamamoto J, Ishikawa H, Sato T, Yamazaki K, Iguchi T. Summary of 17 chemicals evaluated by OECD TG229 using Japanese Medaka, Oryzias latipes in EXTEND 2016. J Appl Toxicol 2021; 42:750-777. [PMID: 34725835 PMCID: PMC9297976 DOI: 10.1002/jat.4255] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/13/2021] [Accepted: 09/25/2021] [Indexed: 11/07/2022]
Abstract
In June 2016, the Ministry of the Environment of Japan announced a program "EXTEND2016" on the implementation of testing and assessment for endocrine active chemicals, consisting of a two-tiered strategy. The aim of the Tier 1 screening and the Tier 2 testing is to identify the impacts on the endocrine system and to characterize the adverse effects to aquatic animals by endocrine disrupting chemicals detected in the aquatic environment in Japan. For the consistent assessment of the effects on reproduction associated with estrogenic, anti-estrogenic, androgenic, and/or anti-androgenic activities of chemicals throughout Tier 1 screening to Tier 2 testing, a unified test species, Japanese medaka (Oryzias latipes), has been used. For Tier 1 screening, the in vivo Fish Short-Term Reproduction Assay (OECD test guideline No. 229) was conducted for 17 chemicals that were nominated based on the results of environmental monitoring, existing knowledge obtained from a literature survey, and positive results in reporter gene assays using the estrogen receptor of Japanese medaka. In the 17 assays using Japanese medaka, adverse effects on reproduction (i.e., reduction in fecundity and/or fertility) were suggested for 10 chemicals, and a significant increase of hepatic vitellogenin in males, indicating estrogenic (estrogen receptor agonistic) potency, was found for eight chemicals at the concentrations in which no overt toxicity was observed. Based on these results, and the frequency and the concentrations detected in the Japanese environment, estrone, 4-nonylphenol (branched isomers), 4-tert-octylphenol, triphenyl phosphate, and bisphenol A were considered as high priority candidate substances for the Tier 2 testing.
Collapse
Affiliation(s)
- Yukio Kawashima
- Environmental Consulting Department, Japan NUS Co., Tokyo, Japan
| | - Yuta Onishi
- Institute of Environmental Ecology, IDEA Consultants, Inc., Shizuoka, Japan
| | - Norihisa Tatarazako
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Matsuyama, Japan.,Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | | | - Masaaki Koshio
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Tomohiro Oka
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan.,Resources Recycling Center, Japan Environmental Management Association for Industry, Tokyo, Japan
| | - Yoshifumi Horie
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan.,Research Center for Inland Sea (KURCIS), Kobe University, Kobe, Japan
| | - Haruna Watanabe
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Takashi Nakamoto
- Institute of Environmental Ecology, IDEA Consultants, Inc., Shizuoka, Japan
| | - Jun Yamamoto
- Institute of Environmental Ecology, IDEA Consultants, Inc., Shizuoka, Japan
| | - Hidenori Ishikawa
- Institute of Environmental Ecology, IDEA Consultants, Inc., Shizuoka, Japan
| | - Tomomi Sato
- Nanobioscience Department, Yokohama City University, Yokohama, Japan
| | - Kunihiko Yamazaki
- Environmental Health Department, Ministry of the Environment of Japan, Tokyo, Japan
| | - Taisen Iguchi
- Nanobioscience Department, Yokohama City University, Yokohama, Japan
| |
Collapse
|
10
|
Malhotra N, Chen KHC, Huang JC, Lai HT, Uapipatanakul B, Roldan MJM, Macabeo APG, Ger TR, Hsiao CD. Physiological Effects of Neonicotinoid Insecticides on Non-Target Aquatic Animals-An Updated Review. Int J Mol Sci 2021; 22:9591. [PMID: 34502500 PMCID: PMC8431157 DOI: 10.3390/ijms22179591] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 12/21/2022] Open
Abstract
In this paper, we review the effects of large-scale neonicotinoid contaminations in the aquatic environment on non-target aquatic invertebrate and vertebrate species. These aquatic species are the fauna widely exposed to environmental changes and chemical accumulation in bodies of water. Neonicotinoids are insecticides that target the nicotinic type acetylcholine receptors (nAChRs) in the central nervous systems (CNS) and are considered selective neurotoxins for insects. However, studies on their physiologic impacts and interactions with non-target species are limited. In researches dedicated to exploring physiologic and toxic outcomes of neonicotinoids, studies relating to the effects on vertebrate species represent a minority case compared to invertebrate species. For aquatic species, the known effects of neonicotinoids are described in the level of organismal, behavioral, genetic and physiologic toxicities. Toxicological studies were reported based on the environment of bodies of water, temperature, salinity and several other factors. There exists a knowledge gap on the relationship between toxicity outcomes to regulatory risk valuation. It has been a general observation among studies that neonicotinoid insecticides demonstrate significant toxicity to an extensive variety of invertebrates. Comprehensive analysis of data points to a generalization that field-realistic and laboratory exposures could result in different or non-comparable results in some cases. Aquatic invertebrates perform important roles in balancing a healthy ecosystem, thus rapid screening strategies are necessary to verify physiologic and toxicological impacts. So far, much of the studies describing field tests on non-target species are inadequate and in many cases, obsolete. Considering the current literature, this review addresses important information gaps relating to the impacts of neonicotinoids on the environment and spring forward policies, avoiding adverse biological and ecological effects on a range of non-target aquatic species which might further impair the whole of the aquatic ecological web.
Collapse
Affiliation(s)
- Nemi Malhotra
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
| | - Kelvin H.-C. Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan; (K.H.-C.C.); (J.-C.H.)
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan; (K.H.-C.C.); (J.-C.H.)
| | - Hong-Thih Lai
- Department of Aquatic Biosciences, National Chiayi University, 300 University Rd., Chiayi 60004, Taiwan;
| | - Boontida Uapipatanakul
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi 12110, Thailand;
| | - Marri Jmelou M. Roldan
- Faculty of Pharmacy, The Graduate School, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines;
| | - Allan Patrick G. Macabeo
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
| | - Tzong-Rong Ger
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Chung-Der Hsiao
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| |
Collapse
|
11
|
Kim JH, Jeong SH, Kim SY, Kwon YS, Hwang KH, Lim JS, Seo JS. Bioconcentration and Metabolism of the New Herbicide Methiozolin in Ricefish ( Oryzias latipes). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9536-9544. [PMID: 34293861 DOI: 10.1021/acs.jafc.1c02621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Methiozolin is a novel herbicide used to control annual bluegrass. It has low vapor pressure and high hydrophobicity, which could result in persistence in water and bioaccumulation. We measured the bioconcentration factors (BCFs) of methiozolin in ricefish (Oryzias latipes). Two radiolabels were used to quantify the parent compound and identify its metabolites. Ricefish were exposed to 2.0 and 20.0 ng/L methiozolin for 28 days in the uptake phase with a 96-h LC50 of 2.2 mg/L(95% confidence limit: 2.1-2.5 mg/L) and water solubility of 4.2 mg/L after 48 h was observed. On the basis of total radioactivity residues (TRRs), BCFss and BCFk values of 797.0-851.9 and 992.9-1077.4 were observed, respectively, while BCFss values for methiozolin were 251.9-257.5. Several minor metabolites with TRR < 3.4% were detected. Among them, 4-(2,6-difluorobenzyloxy-methyl)-3-hydroxy-3-methyl-1-(3-methylthiophen-2-yl)butan-1-one, 2,6-difluorobenzyl alcohol, and 4,5-dihydro-5-methyl-3-(3-methylthiophen-2-yl)isoxazol-5-yl)methanol were identified. Methiozolin is metabolized into numerous minor metabolites with potentially low bioaccumulation capacity in ricefish. These findings can facilitate risk assessments regarding methiozolin use, particularly its movements and final stages in aquatic environments.
Collapse
Affiliation(s)
- Jong-Hwan Kim
- Environmental Chemistry Research Group, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Seong-Hoon Jeong
- Environmental Chemistry Research Group, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Soo-Yeon Kim
- Environmental Chemistry Research Group, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Young-Sang Kwon
- Environmental Chemistry Research Group, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Ki-Hwan Hwang
- Moghu Research Center Ltd, B-228, Gajeong-ro 99, Yuseong, Daejeon 34115, Republic of Korea
| | - Jong-Soo Lim
- Moghu Research Center Ltd, B-228, Gajeong-ro 99, Yuseong, Daejeon 34115, Republic of Korea
| | - Jong-Su Seo
- Environmental Chemistry Research Group, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| |
Collapse
|
12
|
Orrego R, Guchardi J, Beyger L, Barra R, Hewitt LM, Holdway D. Sex-Related Embryotoxicity of Pulp Mill Effluent Extracts in Medaka (Oryzias latipes) Female Leucophore-free FLFII Strain. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2297-2305. [PMID: 33978263 DOI: 10.1002/etc.5115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
The aim of the present study was to evaluate the effects of exposure to Chilean pulp mill effluent extracts on developing postfertilized medaka embryos before and after sex definition relative to sex steroids (testosterone and 17beta-estradiol) and a wood phytoestrogen (beta-sitosterol). Our study included 2 waterborne semichronic exposure experiments, using a 24-h post fertilization (hpf) unknown-sex FLFII (female leucophore free) group and a second 72-hpf FLFII phenotypic sex-identified group (male autofluorescence leucophore) strain of medaka embryos. Chronic exposure of both FLFII strain embryo groups showed similar delay in time to hatch and decreased hatchability. Teratogenic responses such as vertebral malformation (fusion, incomplete formation, and lack of vertebral formation process) and pericardial edema were observed in both experiments, with a high percentage related to FLFII fluorescent leucophore-identified males. In addition, high mortality associated with severe malformations was observed in male and female embryos exposed to testosterone. Our research has demonstrated that exposure to Chilean mill effluent extracts caused severe male medaka embryotoxicity (in postfertilized embryos) before and after sex definition and, irrespective of the experimental group and effluent treatment, suggests partial removal following secondary treatment. Furthermore, differences in the severity and type of teratogenic effects with previous experiments (d-rR medaka strain), are associated with the unique phenotypes of this medaka mutant strain. Environ Toxicol Chem 2021;40:2297-2305. © 2021 SETAC.
Collapse
Affiliation(s)
- Rodrigo Orrego
- Aquatic Toxicology Laboratory, Faculty of Marine Sciences and Biological Resources, Natural Science Institute Alexander von Humboldt, University of Antofagasta, Antofagasta, Chile
- Aquatic Toxicology Laboratory, Faculty of Science, Ontario Tech University, Oshawa, Ontario, Canada
| | - John Guchardi
- Aquatic Toxicology Laboratory, Faculty of Science, Ontario Tech University, Oshawa, Ontario, Canada
| | - Lindsay Beyger
- Aquatic Toxicology Laboratory, Faculty of Science, Ontario Tech University, Oshawa, Ontario, Canada
| | - Ricardo Barra
- Department of Aquatic Systems, Faculty of Environmental Sciences and EULA-Chile Centre, University of Concepción, Concepción, Chile
| | - L Mark Hewitt
- Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Douglas Holdway
- Aquatic Toxicology Laboratory, Faculty of Science, Ontario Tech University, Oshawa, Ontario, Canada
| |
Collapse
|
13
|
Onishi Y, Tatarazako N, Koshio M, Okamura T, Watanabe H, Sawai A, Yamamoto J, Ishikawa H, Sato T, Kawashima Y, Yamazaki K, Iguchi T. Summary of reference chemicals evaluated by the fish short-term reproduction assay, OECD TG229, using Japanese Medaka, Oryzias latipes. J Appl Toxicol 2021; 41:1200-1221. [PMID: 33486801 PMCID: PMC8359193 DOI: 10.1002/jat.4104] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
Under the Organisation for Economic Co-operation and Development (OECD), the Ministry of the Environment of Japan (MOE) added Japanese medaka (Oryzias latipes) to the test guideline fish short-term reproduction assay (FSTRA) developed by the United States Environmental Protection Agency (US EPA) using fathead minnow (Pimephales promelas). The FSTRA was designed to detect endocrine disrupting effects of chemicals interacting with the hypothalamic-pituitary-gonadal axis (HPG axis) such as agonists or antagonists on the estrogen receptor (Esr) and/or the androgen receptor (AR) and steroidogenesis inhibitors. We conducted the FSTRA with Japanese medaka, in accordance with OECD test guideline number 229 (TG229), for 16 chemicals including four Esr agonists, two Esr antagonists, three AR agonists, two AR antagonists, two steroidogenesis inhibitors, two progesterone receptor agonists, and a negative substance, and evaluated the usability and the validity of the FSTRA (TG229) protocol. In addition, in vitro reporter gene assays (RGAs) using Esr1 and ARβ of Japanese medaka were performed for the 16 chemicals, to support the interpretation of the in vivo effects observed in the FSTRA. In the present study, all the test chemicals, except an antiandrogenic chemical and a weak Esr agonist, significantly reduced the reproductive status of the test fish, that is, fecundity or fertility, at concentrations where no overt toxicity was observed. Moreover, vitellogenin (VTG) induction in males and formation of secondary sex characteristics (SSC), papillary processes on the anal fin, in females was sensitive endpoints to Esr and AR agonistic effects, respectively, and might be indicators of the effect concentrations in long-term exposure. Overall, it is suggested that the in vivo FSTRA supported by in vitro RGA data can adequately detect effects on the test fish, O. latipes, and probably identify the mode of action (MOA) of the chemicals tested.
Collapse
Affiliation(s)
- Yuta Onishi
- Institute of Environmental EcologyIDEA Consultants, Inc.YaizuJapan
| | - Norihisa Tatarazako
- Department of Science and Technology for Biological Resources and Environment, Graduate School of AgricultureEhime UniversityMatsuyamaJapan
- Center for Environmental Risk ResearchNational Institute for Environmental StudiesTsukubaJapan
| | - Masaaki Koshio
- Center for Environmental Risk ResearchNational Institute for Environmental StudiesTsukubaJapan
| | - Tetsuro Okamura
- Institute of Environmental EcologyIDEA Consultants, Inc.YaizuJapan
| | - Haruna Watanabe
- Center for Environmental Risk ResearchNational Institute for Environmental StudiesTsukubaJapan
| | - Atsushi Sawai
- Institute of Environmental EcologyIDEA Consultants, Inc.YaizuJapan
| | - Jun Yamamoto
- Institute of Environmental EcologyIDEA Consultants, Inc.YaizuJapan
| | | | - Tomomi Sato
- NanobioscienceYokohama City UniversityYokohamaJapan
| | | | - Kunihiko Yamazaki
- Environmental Health DepartmentMinistry of the EnvironmentTokyoJapan
| | | |
Collapse
|
14
|
Matias Nascimento Maia W, Das Chagas Pereira de Andrade F, Alves Filgueiras L, Nogueira Mendes A, Fonseca Costa Assunção A, Davidson Sérvulo Rodrigues N, Brandim Marques R, Luiz Martins Maia Filho A, Pergentino de Sousa D, Da Silva Lopes L. Antidepressant activity of rose oxide essential oil: possible involvement of serotonergic transmission. Heliyon 2021; 7:e06620. [PMID: 33948502 PMCID: PMC8080052 DOI: 10.1016/j.heliyon.2021.e06620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/02/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Rose oxide (RO) is a monoterpene found in rose oil fragrances. This monoterpene has been reported to possess anti-inflammatory activity, however, little is known regarding its pharmacological activity. The present study was carried out to evaluate its antidepressant action and possible mechanisms of action. Analysis of ADMET pharmacokinetic properties (absorption, distribution, metabolism, excretion and toxicity) of rose oxide was performed by computational prediction analysis. Behavioral tests were performed to assess the interaction between rose oxide and the central nervous system and antidepressant effect that includes: forced swim test (FST), tail suspension test (TST), open field test (OFT) and rota-rod test. The results of pharmacokinetic and toxicological properties indicate that rose oxide could be used orally, since it has good intestinal absorption as well as pharmacological and toxicological properties that can be similar to pharmacological compounds (regular hepatic metabolism and low toxicity). Treatment with 50 mg/kg of rose oxide was able to decrease the immobility time of animals not affected by FST and TST and was not able to alter the motor activity of the OFT and rota-rod test, suggesting modulation and antidepressant activity. Docking data suggest that rose oxide can bind to receptors in the serotonergic pathway. The results described here suggest that rose oxide has antidepressant activity, modulating the serotonergic pathway.
Collapse
Affiliation(s)
- Wcleubianne Matias Nascimento Maia
- Postgraduate Programs in Pharmaceutical Sciences and Laboratory of Research in Experimental Neurochemistry (LAPNEX), Federal University of Piauí, 64049-550, Teresina, Brazil
| | - Francisco Das Chagas Pereira de Andrade
- Laboratory of Innovation in Science and Technology, LACITEC, Department of Biophysics and Physiology, Federal University of Piauí, 64049-550, Teresina, Piauí, Brazil
| | - Livia Alves Filgueiras
- Laboratory of Innovation in Science and Technology, LACITEC, Department of Biophysics and Physiology, Federal University of Piauí, 64049-550, Teresina, Piauí, Brazil
| | - Anderson Nogueira Mendes
- Laboratory of Innovation in Science and Technology, LACITEC, Department of Biophysics and Physiology, Federal University of Piauí, 64049-550, Teresina, Piauí, Brazil
| | | | | | - Rosemarie Brandim Marques
- Nucleus of Biotechnology and Biodiversity of the State University of Piauí, 64003-120, Teresina, Piauí, Brazil
| | | | | | - Luciano Da Silva Lopes
- Postgraduate Programs in Pharmaceutical Sciences and Laboratory of Research in Experimental Neurochemistry (LAPNEX), Federal University of Piauí, 64049-550, Teresina, Brazil
- Corresponding author.
| |
Collapse
|
15
|
Ishibashi H, Uchida M, Hirano M, Hayashi T, Yamamoto R, Kubota A, Ichikawa N, Ishibashi Y, Tominaga N, Arizono K. In vivo and in silico analyses of estrogenic potential of equine estrogens in medaka (Oryzias latipes). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144379. [PMID: 33421642 DOI: 10.1016/j.scitotenv.2020.144379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Equine estrogens (EEs) are widely used in hormone replacement therapy pharmaceuticals for postmenopausal women. Previous studies have shown that EEs occur in the aquatic environment; however, the potential estrogenicity and risk of EEs in aquatic organisms, including fish, have yet to be studied in detail. Therefore, we evaluated the estrogenic potential of major EEs, namely equilin (Eq), 17α-dihydroequilin (17α-Eq), 17β-dihydroequilin (17β-Eq), equilenin (Eqn), 17α-dihydroequilenin (17α-Eqn), and 17β-dihydroequilenin (17β-Eqn), on medaka (Oryzias latipes) using in vivo and in silico assays. Quantitative real-time RT-PCR analyses revealed that expression levels of choriogenin L (ChgL) and choriogenin H (ChgH) in medaka embryos responded to various types and concentrations of EEs in a concentration-dependent manner, whereas transcription levels of vitellogenin 1 were not significantly affected by any of the EEs in the concentration range tested. The order of the in vivo estrogenic potencies of EEs was as follows: 17β-Eq > Eq > 17β-Eqn > Eqn > 17α-Eqn > 17α-Eq. Additionally, the 50% effective concentrations (EC50) of 17β-Eq was lower than that of 17β-estradiol. We also investigated the interaction potential of EEs with medaka estrogen receptor (ER) subtypes in silico using a three-dimensional model of the ligand-binding domain (LBD) for each ER and docking simulations. All six EEs were found to interact with the LBDs of ERα, ERβ1, and ERβ2. The order of the in silico interaction potentials of EEs with each ER LBD was as follows: 17β-Eq > 17α-Eq > Eq > 17β-Eqn > 17α-Eqn > Eqn. Furthermore, we identified the key amino acids that interact with EEs in each ER LBD; our findings suggest that amino acids and/or their hydrogen bonding may be responsible for the ligand-specific interactions with each ER. This study is the first to comprehensively analyze the estrogenic potential of EEs in medaka both in vivo and in silico.
Collapse
Affiliation(s)
- Hiroshi Ishibashi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan.
| | - Masaya Uchida
- Department of Creative Engineering, National Institute of Technology, Ariake College, 150 Higashi-Hagio, Omuta, Fukuoka 836-8585, Japan
| | - Masashi Hirano
- Department of Biological and Chemical Systems Engineering, National Institute of Technology, Kumamoto College, 2627 Hirayama-shinmachi, Yatsushiro, Kumamoto 866-8501, Japan
| | - Taka Hayashi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Ryoko Yamamoto
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Akira Kubota
- Laboratory of Toxicology, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho Nishi, Obihiro 080-8555, Hokkaido, Japan
| | - Nobuhiro Ichikawa
- College of Pharmaceutical Sciences, Department of Pharmacy, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Yasuhiro Ishibashi
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100 Tsukide, Higashi-ku, Kumamoto 862-8502, Japan
| | - Nobuaki Tominaga
- Department of Creative Engineering, National Institute of Technology, Ariake College, 150 Higashi-Hagio, Omuta, Fukuoka 836-8585, Japan
| | - Koji Arizono
- Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
16
|
Harraka GT, Magnuson JT, Du B, Wong CS, Maruya K, Schlenk D. Evaluating the estrogenicity of an effluent-dominated river in California, USA: Comparisons of in vitro and in vivo bioassays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143965. [PMID: 33321365 DOI: 10.1016/j.scitotenv.2020.143965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
Estrogenically active compounds (EACs) in surface waters can disrupt the endocrine system of biota, raising concern for aquatic species. Concentrations of EACs are generally higher in effluent-dominated aquatic systems, such as California's Santa Ana River (SAR). Addressing estrogenicity of effluent-dominated waters is increasingly important due to both increasing urbanization and climate change. To this end, water samples were collected from multiple sites downstream of wastewater treatment plants (WWTPs) and intermittent points along the SAR during 2018-2019 and cell-based bioassays were used to determine estrogen receptor activity. During baseflow conditions, the highest estradiol equivalencies (EEQs) from all SAR water between summer (August and September) and fall (November) sampling events in 2018 were from Yorba Linda (EEQ = 1.36 ± 0.38 ng/L) and Prado (1.14 ± 0.13 ng/L), respectively. Water extracts in January 2019 following a major rainfall generally had higher EEQs with the highest EEQ of 10.0 ± 0.69 ng/L observed at Yorba Linda. During low flow conditions in November 2018, male Japanese medaka (Oryzias latipes) fish were exposed to SAR water to compare to cell bioassay responses and targeted analytical chemistry for 5 steroidal estrogens. Chemical-based EEQ correlations with in vitro EEQs were statistically significant. However, vitellogenin (vtg) mRNA expression in the livers of medaka exposed to SAR water was not significantly different compared to controls. These results indicate that seasonal variation and surface water runoff events influence estrogenic activity in the SAR and may induce estrogenic effects to native fish populations in wastewater-dominated streams in general.
Collapse
Affiliation(s)
- Gary T Harraka
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA
| | - Jason T Magnuson
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA.
| | - Bowen Du
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, USA
| | - Charles S Wong
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, USA
| | - Keith Maruya
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA; Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Viana Nunes AM, das Chagas Pereira de Andrade F, Filgueiras LA, de Carvalho Maia OA, Cunha RLOR, Rodezno SVA, Maia Filho ALM, de Amorim Carvalho FA, Braz DC, Mendes AN. preADMET analysis and clinical aspects of dogs treated with the Organotellurium compound RF07: A possible control for canine visceral leishmaniasis? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103470. [PMID: 32814174 DOI: 10.1016/j.etap.2020.103470] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Tellurium compounds have been described as potential leishmanicides, bearing promising leishmanicidal and antimalarial effects. Therefore, the present study investigated the pharmacological potential of the organotellurane compound RF07 through preADMET parameters, such as absorption, distribution, metabolism and excretion. After studying the pharmacokinetic properties of RF07, studies were carried out on dogs naturally infected with visceral leishmaniasis after the administration of RF07, in order to assess pathophysiological parameters. Thus, dogs were divided into 4 groups with administration of daily intraperitoneal injections for 3 weeks (containing RF07 or placebo). During the trial, hematological parameters, renal and hepatic toxicity were evaluated. Serum urea, creatinine, alkaline phosphatase, transaminases (GOT and GPT), as well as hemogram results, were evaluated before the first administration and during the second and third weeks after the start of the treatment. In dogs with VL, RF07 improved liver damage, regulated GPT levels and significantly decreased leukocyte count, promoting its regularization. These phenomena occurred at the end of the third week of treatment. The administration of RF07 promoted a significant decrease in the average levels of GOT and GPT after the third week of treatment and did not significantly alter the hematological parameters. The application of RF07 in the treatment of visceral leishmaniasis suggests that it is an alternative to the disease, since the reversal of clinical signs in dogs with VL requires the use of 0.6 mg/kg.
Collapse
Affiliation(s)
| | | | - Lívia Alves Filgueiras
- Departament of Biophysics and Physiology, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | - Rodrigo L O R Cunha
- Laboratory of Chemical Biology, Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Santo André, São Paulo, Brazil
| | - Sindy V A Rodezno
- Laboratory of Chemical Biology, Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Santo André, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
18
|
Kwon YS, Jung JW, Kim YJ, Park CB, Shon JC, Kim JH, Park JW, Kim SG, Seo JS. Proteomic analysis of whole-body responses in medaka ( Oryzias latipes) exposed to benzalkonium chloride. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1387-1397. [PMID: 32693679 DOI: 10.1080/10934529.2020.1796117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Benzalkonium chloride (BAC) is a cationic surfactant commonly used as a disinfectant, and is discharged into the aquatic environment by various water sources such as wastewater. BAC may also interact with potentially toxic substances such as persistent organic chemicals. Although studies of BAC contamination toxicity and bioaccumulation have been widely reported, the biochemical responses to BAC toxicity remain incompletely understood, and the detailed molecular mechanisms are largely unknown. In this study, two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry-based proteomic approaches were applied to investigate the protein profiles in Oryzias latipes (medaka) chronically exposed to BAC. Fish were exposed to three different concentrations of BAC, 0.05, 0.1, and 0.2 mg/L, for 21 days. A total of 20 proteins involved in the cytoskeleton, the oxidative stress response, the nervous and endocrine systems, signaling pathways, and cellular proteolysis were significantly upregulated by BAC exposure. The proteomic information obtained in the present study will be useful in identification of potential biomarkers for BAC toxicity, and begins to elucidate its molecular mechanisms, providing new insights into the ecotoxicity of BAC.
Collapse
Affiliation(s)
- Young Sang Kwon
- Environmental Chemistry Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Jae-Woong Jung
- Environmental Biology Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Yeong Jin Kim
- Environmental Chemistry Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Chang-Beom Park
- Ecotoxicology Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Jong Cheol Shon
- Environmental Chemistry Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Jong-Hwan Kim
- Environmental Chemistry Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - June-Woo Park
- Environmental Biology Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Sang Gon Kim
- Gyeongnam Oriental Anti-aging Institute, Sancheong, Republic of Korea
| | - Jong-Su Seo
- Environmental Chemistry Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| |
Collapse
|
19
|
Capela R, Garric J, Castro LFC, Santos MM. Embryo bioassays with aquatic animals for toxicity testing and hazard assessment of emerging pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135740. [PMID: 31838430 DOI: 10.1016/j.scitotenv.2019.135740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
This review article gathers the available information on the use of embryo-tests as high-throughput tools for toxicity screening, hazard assessment and prioritization of new and existing chemical compounds. The approach is contextualized considering the new legal trends for animal experimentation, fostering the 3R policy, with reduction of experimental animals, addressing the potential of embryo-tests as high-throughput toxicity screening and prioritizing tools. Further, the current test guidelines, such as the ones provided by OECD and EPA, focus mainly in a limited number of animal lineages, particularly vertebrates and arthropods. To extrapolate hazard assessment to the ecosystem scale, a larger diversity of taxa should be tested. The use of new experimental animal models in toxicity testing, from a representative set of taxa, was thoroughly revised and discussed in this review. Here, we critically review current tools and the main advantages and drawbacks of different animal models and set researcher priorities.
Collapse
Affiliation(s)
- Ricardo Capela
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; IRSTEA - National Research Institute of Science and Technology for Environment and Agriculture - Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS20244, 69625 Villeurbanne Cedex, Lyon-Villeurbanne, France
| | - Jeanne Garric
- IRSTEA - National Research Institute of Science and Technology for Environment and Agriculture - Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS20244, 69625 Villeurbanne Cedex, Lyon-Villeurbanne, France.
| | - Luís Filipe Costa Castro
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Miguel Machado Santos
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
20
|
Tarasco M, Martins G, Gavaia PJ, Bebianno MJ, Cancela ML, Laizé V. ZEB316: A Small Stand-Alone Housing System to Study Microplastics in Small Teleosts. Zebrafish 2020; 17:18-26. [PMID: 31994994 DOI: 10.1089/zeb.2019.1801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many anthropogenic chemicals and plastic debris end up in the aquatic ecosystem worldwide, representing a major concern for the environment and human health. Small teleosts, such as zebrafish (Danio rerio) and Japanese medaka (Oryzias latipes), offer significant advantages over classical animal models and are currently used as first-line organisms to assess environmental risks associated with many aquatic toxicants. Toxicological studies require the use of inert materials and controlled conditions. Yet, none of the available commercialized systems is adequate to assess the toxic effect of microplastics, because they contain components made of plastic polymers that may release micrometric plastic particles, leach manufacturing compounds, or adsorb chemicals. The ZEB316 stand-alone housing system presented in this study is meant to be a cost-effective and easy-to-built solution to perform state-of-the-art toxicological studies. It is built with inert and corrosion-resistant materials and provides good housing conditions through efficient recirculation and filtration systems. Assessment of water parameters and fish growth performance showed that the ZEB316 provides housing conditions comparable to those available from commercial housing systems.
Collapse
Affiliation(s)
- Marco Tarasco
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Gil Martins
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Paulo J Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.,Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - Maria J Bebianno
- Centre for Marine and Environmental Research (CIMA), University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.,Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal.,Algarve Biomedical Centre (ABC) and Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| |
Collapse
|
21
|
Yuen BBH, Qiu AB, Chen BH. Transient exposure to environmentally realistic concentrations of di-(2-ethylhexyl)-phthalate during sensitive windows of development impaired larval survival and reproduction success in Japanese medaka. Toxicol Rep 2020; 7:200-208. [PMID: 32042598 PMCID: PMC7000553 DOI: 10.1016/j.toxrep.2020.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/03/2020] [Accepted: 01/22/2020] [Indexed: 12/28/2022] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a well-known endocrine disruptor and it is ubiquitously distributed in the environment. However, very few studies have investigated the effects of short-term exposure to environmentally realistic concentrations of DEHP during early developmental stages and its chronic effects. This study monitored the long-term effects of transient exposure to DEHP in early life stages (F0 generation) and its subsequent fertilization success in F1 generation using Japanese medaka, Oryzias latipes, as model organism. Embryos (4 h post-fertilization, 4 hpf) of Japanese medaka were exposed to 0.001 ppb, 0.1 ppb, or 10 ppb DEHP for 21 days and returned to control water (without DEHP) for maturation (4 months old). At day 9 of the exposure study, mortality was significantly increased in medaka embryos (before hatching) treated with 0.001 ppb and 10 ppb DEHP. Continual exposure of young hatchlings for an additional 12 days (a total of 21 days of exposure) resulted in a significant increase in mortality in fish exposed to 0.001 ppb, 0.1 and 10 ppb DEHP. Significant reduction in egg production was observed in adult female medaka (4 months old) with prior exposure to 0.1 ppb and 10 ppb DEHP for 21 days during early development. Fertilization and hatching success were also significantly reduced in breeding pairs with prior exposure to 0.001 ppb, 0.1 ppb and 10 ppb DEHP during early life stage. Histological analysis of adult male gonads revealed a significant decline in mature sperm count accompanied by an increase in interstitial space in fish exposed to 0.1 ppb and 10 ppb DEHP during early development. Likewise, the amount of vitellogenic (mature) oocytes observed in the ovaries of adult female with transient exposure to 0.1 ppb and 10 ppb DEHP was significantly reduced when compared with the solvent control group. Our data suggest that transient exposure to ultra low concentrations of DEHP during sensitive time windows of development results in irreversible reproductive impairment which may impact fish populations negatively.
Collapse
Affiliation(s)
- Bonny Bun Ho Yuen
- Environmental Science Programme, Division of Science and Technology, Beijing Normal University, Hong Kong Baptist University, United International College, 2000 Jintong Road, Tangjiawan, Zhuhai, Guangdong Province, PR China
| | | | | |
Collapse
|
22
|
Sayed AH, Kitamura D, Oda S, Kashiwada S, Mitani H. Cytotoxic and genotoxic effects of arsenic on erythrocytes of Oryzias latipes: Bioremediation using Spirulina platensis. J Trace Elem Med Biol 2019; 55:82-88. [PMID: 31345371 DOI: 10.1016/j.jtemb.2019.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/28/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Exposure to the environmental pollutants poses a serious threat to aquatic organism. The arsenic exposure in fish increases the risk of developing serious alterations from embryo to adult. OBJECTIVES The present investigation was done to study the toxic effects of heavy metal arsenic [As(III)] on medaka (Oryzias latipes). Morphological alterations, apoptosis, nuclear abnormalities, and genotoxic biomarkers in erythrocytes were used to determine the stress caused by arsenic (As) exposure. METHODS Medaka was exposed to As for 15 days at two toxic sublethal concentrations (7 ppm and 10 ppm) in combination with Spirulina platensis (SP) treatment as antioxidant algae at 200 mg/L. RESULTS Results were consistent with a previous study results on tilapia. Exposure of medaka to As resulted in a dose-dependent increase in most the biomarkers used in the current study. Fish exposed to10 ppm As showed highest level of DNA damage. For the first time to our knowledge, using SP to counter the As toxicity in medaka, DNA damage restored to control levels. CONCLUSION Accordingly, those results suggests that SP can protect medaka in aquaculture against As-induced damage by its ability as reactive oxygen species (ROS) reducer, antioxidant role, and DNA damage scavenger.
Collapse
Affiliation(s)
- Alaa H Sayed
- Zoology department, Faculty of Science, Assiut University, 71516 Assiut, Egypt.
| | - Daiki Kitamura
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| | - Shoji Oda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Shosaku Kashiwada
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
23
|
Zhu L, Gao N, Wang R, Zhang L. Proteomic and metabolomic analysis of marine medaka (Oryzias melastigma) after acute ammonia exposure. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:267-277. [PMID: 29322369 DOI: 10.1007/s10646-017-1892-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Ammonia is both a highly toxic environmental pollutant and the major nitrogenous waste produced by ammoniotelic teleosts. Although the acute toxic effects of ammonia have been widely studied in fish, the biochemical mechanisms of its toxicity have not been understood comprehensively. In this study, we performed comparative proteomic and metabolomic analysis between ammonia-challenged (1.2 and 2.6 mmol L-1 NH4Cl for 96 h) and control groups of marine medaka (Oryzias melastigma) to identify changes of the metabolite and protein profiles in response to ammonia stress. The metabolic responses included changes of multiple amino acids, carbohydrates (glucose and glycogen), energy metabolism products (ATP and creatinine), and other metabolites (choline and phosphocholine) after ammonia exposure, indicating that ammonia mainly caused disturbance in energy metabolism and amino acids metabolism. The two-dimensional electrophoresis-based proteomic study identified 23 altered proteins, which were involved in nervous system, locomotor system, cytoskeleton assembly, immune stress, oxidative stress, and signal transduction of apoptosis. These results suggested that ammonia not only induced oxidative stress, immune stress, cell injury and apoptosis but also affected the motor ability and central nervous system in marine medaka. It is the first time that metabolomic and proteomic approaches were integrated to elucidate ammonia toxicity in marine fishes. This study is of great value in better understanding the mechanisms of ammonia toxicity in marine fishes and in practical aspects of aquaculture.
Collapse
Affiliation(s)
- Limei Zhu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Na Gao
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruifang Wang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
24
|
Legradi JB, Di Paolo C, Kraak MHS, van der Geest HG, Schymanski EL, Williams AJ, Dingemans MML, Massei R, Brack W, Cousin X, Begout ML, van der Oost R, Carion A, Suarez-Ulloa V, Silvestre F, Escher BI, Engwall M, Nilén G, Keiter SH, Pollet D, Waldmann P, Kienle C, Werner I, Haigis AC, Knapen D, Vergauwen L, Spehr M, Schulz W, Busch W, Leuthold D, Scholz S, vom Berg CM, Basu N, Murphy CA, Lampert A, Kuckelkorn J, Grummt T, Hollert H. An ecotoxicological view on neurotoxicity assessment. ENVIRONMENTAL SCIENCES EUROPE 2018; 30:46. [PMID: 30595996 PMCID: PMC6292971 DOI: 10.1186/s12302-018-0173-x] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/31/2018] [Indexed: 05/04/2023]
Abstract
The numbers of potential neurotoxicants in the environment are raising and pose a great risk for humans and the environment. Currently neurotoxicity assessment is mostly performed to predict and prevent harm to human populations. Despite all the efforts invested in the last years in developing novel in vitro or in silico test systems, in vivo tests with rodents are still the only accepted test for neurotoxicity risk assessment in Europe. Despite an increasing number of reports of species showing altered behaviour, neurotoxicity assessment for species in the environment is not required and therefore mostly not performed. Considering the increasing numbers of environmental contaminants with potential neurotoxic potential, eco-neurotoxicity should be also considered in risk assessment. In order to do so novel test systems are needed that can cope with species differences within ecosystems. In the field, online-biomonitoring systems using behavioural information could be used to detect neurotoxic effects and effect-directed analyses could be applied to identify the neurotoxicants causing the effect. Additionally, toxic pressure calculations in combination with mixture modelling could use environmental chemical monitoring data to predict adverse effects and prioritize pollutants for laboratory testing. Cheminformatics based on computational toxicological data from in vitro and in vivo studies could help to identify potential neurotoxicants. An array of in vitro assays covering different modes of action could be applied to screen compounds for neurotoxicity. The selection of in vitro assays could be guided by AOPs relevant for eco-neurotoxicity. In order to be able to perform risk assessment for eco-neurotoxicity, methods need to focus on the most sensitive species in an ecosystem. A test battery using species from different trophic levels might be the best approach. To implement eco-neurotoxicity assessment into European risk assessment, cheminformatics and in vitro screening tests could be used as first approach to identify eco-neurotoxic pollutants. In a second step, a small species test battery could be applied to assess the risks of ecosystems.
Collapse
Affiliation(s)
- J. B. Legradi
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt–Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Environment and Health, VU University, 1081 HV Amsterdam, The Netherlands
| | - C. Di Paolo
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt–Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - M. H. S. Kraak
- FAME-Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
| | - H. G. van der Geest
- FAME-Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
| | - E. L. Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| | - A. J. Williams
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711 USA
| | - M. M. L. Dingemans
- KWR Watercycle Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, The Netherlands
| | - R. Massei
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, Leipzig, Germany
| | - W. Brack
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, Leipzig, Germany
| | - X. Cousin
- Ifremer, UMR MARBEC, Laboratoire Adaptation et Adaptabilités des Animaux et des Systèmes, Route de Maguelone, 34250 Palavas-les-Flots, France
- INRA, UMR GABI, INRA, AgroParisTech, Domaine de Vilvert, Batiment 231, 78350 Jouy-en-Josas, France
| | - M.-L. Begout
- Ifremer, Laboratoire Ressources Halieutiques, Place Gaby Coll, 17137 L’Houmeau, France
| | - R. van der Oost
- Department of Technology, Research and Engineering, Waternet Institute for the Urban Water Cycle, Amsterdam, The Netherlands
| | - A. Carion
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, 5000 Namur, Belgium
| | - V. Suarez-Ulloa
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, 5000 Namur, Belgium
| | - F. Silvestre
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, 5000 Namur, Belgium
| | - B. I. Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Eberhard Karls University Tübingen, Environmental Toxicology, Center for Applied Geosciences, 72074 Tübingen, Germany
| | - M. Engwall
- MTM Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| | - G. Nilén
- MTM Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| | - S. H. Keiter
- MTM Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| | - D. Pollet
- Faculty of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295 Darmstadt, Germany
| | - P. Waldmann
- Faculty of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295 Darmstadt, Germany
| | - C. Kienle
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - I. Werner
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - A.-C. Haigis
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt–Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - D. Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - L. Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - M. Spehr
- Institute for Biology II, Department of Chemosensation, RWTH Aachen University, Aachen, Germany
| | - W. Schulz
- Zweckverband Landeswasserversorgung, Langenau, Germany
| | - W. Busch
- Department of Bioanalytical Ecotoxicology, UFZ–Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - D. Leuthold
- Department of Bioanalytical Ecotoxicology, UFZ–Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - S. Scholz
- Department of Bioanalytical Ecotoxicology, UFZ–Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - C. M. vom Berg
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, 8600 Switzerland
| | - N. Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - C. A. Murphy
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, USA
| | - A. Lampert
- Institute of Physiology (Neurophysiology), Aachen, Germany
| | - J. Kuckelkorn
- Section Toxicology of Drinking Water and Swimming Pool Water, Federal Environment Agency (UBA), Heinrich-Heine-Str. 12, 08645 Bad Elster, Germany
| | - T. Grummt
- Section Toxicology of Drinking Water and Swimming Pool Water, Federal Environment Agency (UBA), Heinrich-Heine-Str. 12, 08645 Bad Elster, Germany
| | - H. Hollert
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt–Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
25
|
Flynn K, Lothenbach D, Whiteman F, Hammermeister D, Touart LW, Swintek J, Tatarazako N, Onishi Y, Iguchi T, Johnson R. Summary of the development the US Environmental Protection Agency's Medaka Extended One Generation Reproduction Test (MEOGRT) using data from 9 multigenerational medaka tests. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:3387-3403. [PMID: 28857258 PMCID: PMC6681917 DOI: 10.1002/etc.3923] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/20/2017] [Accepted: 07/20/2017] [Indexed: 05/22/2023]
Abstract
In response to various legislative mandates, the US Environmental Protection Agency (USEPA) formed its Endocrine Disruptor Screening Program (EDSP), which in turn, formed the basis of a tiered testing strategy to determine the potential of pesticides, commercial chemicals, and environmental contaminants to disrupt the endocrine system. The first tier of tests is intended to detect the potential for endocrine disruption mediated through estrogen, androgen, or thyroid pathways, whereas the second tier is intended to further characterize the effects on these pathways and to establish a dose-response relationship for adverse effects. One of these tier 2 tests, the Medaka Extended One Generation Reproduction Test (MEOGRT), was developed by the USEPA for the EDSP and, in collaboration with the Japanese Ministry of the Environment, for the Guidelines for the Testing of Chemicals of the Organisation for Economic Co-operation and Development (OECD). The MEOGRT protocol was iteratively modified based on knowledge gained after the successful completion of 9 tests with variations in test protocols. The present study describes both the final MEOGRT protocol that has been published by the USEPA and the OECD, and the iterations that provided valuable insights into nuances of the protocol. The various tests include exposure to 17β-estradiol, 4-t-octylphenol, o,p'- dichlorodiphenyltrichloroethane, 4-chloro-3-methylphenol, tamoxifen, 17β-trenbolone, vinclozolin, and prochloraz. Environ Toxicol Chem 2017;36:3387-3403. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Kevin Flynn
- US Environmental Protection Agency, Mid-Continent Ecology Division, Duluth, MN, USA
- Address correspondence to Kevin Flynn, USEPA MED, 6201 Congdon Blvd, Duluth, MN 55804, (218) 529-5120,
| | - Doug Lothenbach
- US Environmental Protection Agency, Mid-Continent Ecology Division, Duluth, MN, USA
| | - Frank Whiteman
- US Environmental Protection Agency, Mid-Continent Ecology Division, Duluth, MN, USA
| | - Dean Hammermeister
- US Environmental Protection Agency, Mid-Continent Ecology Division, Duluth, MN, USA
| | | | | | | | - Yuta Onishi
- Institute of Environmental Ecology, IDEA Consultants Inc., Shizuoka, Japan
| | - Taisen Iguchi
- National Institute for Basic Biology, Okazaki, Japan
| | - Rodney Johnson
- US Environmental Protection Agency, Mid-Continent Ecology Division, Duluth, MN, USA
| |
Collapse
|
26
|
Mu J, Chernick M, Dong W, Di Giulio RT, Hinton DE. Early life co-exposures to a real-world PAH mixture and hypoxia result in later life and next generation consequences in medaka (Oryzias latipes). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 190:162-173. [PMID: 28728047 PMCID: PMC5584607 DOI: 10.1016/j.aquatox.2017.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/21/2017] [Accepted: 06/25/2017] [Indexed: 05/12/2023]
Abstract
Acute effects of individual and complex mixtures of polycyclic aromatic hydrocarbons (PAHs) are well documented in vertebrate species. Hypoxia in fish reduces metabolic rate and reproduction. However, less is known about the later life consequences stemming from early-life exposure to PAHs or hypoxia, particularly their co-exposure. To address this, medaka (Oryzias latipes) embryos were exposed to a complex PAH mixture sediment extract from the Elizabeth River, VA (ERSE) at concentrations of 0.1, 0.5, or 1.0% or to one of three different hypoxia scenarios: continuous, nocturnal, or late stage embryogenesis hypoxia. Co-exposures with 0.1% ERSE and each of the hypoxia scenarios were conducted. Results included decreased survival with ERSE, hatching delays with hypoxia, and higher occurrences of deformities with each. The continuous hypoxia scenario caused the most significant changes in all endpoints. These early-life exposures altered later-life growth, impaired reproductive capacity, and reduced the quality of their offspring. ERSE alone resulted in a female-biased sex ratio while continuous or nocturnal hypoxia produced significantly greater numbers of males; and co-exposure produced an equal sex ratio. Exposure to a PAH mixture and hypoxia during early life stages has meaningful later-life and next generational consequences.
Collapse
Affiliation(s)
- Jingli Mu
- Nicholas School of the Environment, Duke University, Durham, NC, USA; Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Wu Dong
- Nicholas School of the Environment, Duke University, Durham, NC, USA; College of Animal Science and Technology, Inner Mongolia University for the Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao, China
| | | | - David E Hinton
- Nicholas School of the Environment, Duke University, Durham, NC, USA.
| |
Collapse
|
27
|
Anatomical features for the adequate choice of experimental animal models in biomedicine: I. Fishes. Ann Anat 2016; 205:75-84. [DOI: 10.1016/j.aanat.2016.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/01/2015] [Accepted: 02/01/2016] [Indexed: 11/21/2022]
|
28
|
Ansai S, Hosokawa H, Maegawa S, Kinoshita M. Chronic fluoxetine treatment induces anxiolytic responses and altered social behaviors in medaka, Oryzias latipes. Behav Brain Res 2016; 303:126-36. [PMID: 26821288 DOI: 10.1016/j.bbr.2016.01.050] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/17/2015] [Accepted: 01/22/2016] [Indexed: 12/13/2022]
Abstract
Medaka (Oryzias latipes) is a small freshwater teleost that is an emerging model system for neurobehavioral research and toxicological testing. The selective serotonin reuptake inhibitor class of antidepressants such as fluoxetine is one of the widely prescribed drugs, but little is known about the effects of these drugs on medaka behaviors. To assess the behavioral effects of fluoxetine, we chronically administrated fluoxetine to medaka adult fish and analyzed the anxiety-related and social behaviors using five behavioral paradigms (diving, open-field, light-dark transition, mirror-biting, and social interaction) with an automated behavioral testing system. Fish chronically treated with fluoxetine exhibited anxiolytic responses such as an overall increased time spent in the top area in the diving test and an increased time spent in center area in the open-field test. Analysis of socially evoked behavior showed that chronic fluoxetine administration decreased the number of mirror biting times in the mirror-biting test and increased latency to first contact in the social interaction test. Additionally, chronic fluoxetine administration reduced the horizontal locomotor activity in the open-field test but not the vertical activity in the diving test. These investigations are mostly consistent with previous reports in the other teleost species and rodent models. These results indicate that behavioral assessment in medaka adult fish will become useful for screening of effects of pharmaceutical and toxicological compounds in animal behaviors.
Collapse
Affiliation(s)
- Satoshi Ansai
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Hiroshi Hosokawa
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Shingo Maegawa
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
29
|
Uncommon uses for a common fish. Lab Anim (NY) 2015; 44:429. [PMID: 26484812 DOI: 10.1038/laban.896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Perrichon P, Le Bihanic F, Bustamante P, Le Menach K, Budzinski H, Cachot J, Cousin X. Influence of sediment composition on PAH toxicity using zebrafish (Danio rerio) and Japanese medaka (Oryzias latipes) embryo-larval assays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:13703-19. [PMID: 25175355 DOI: 10.1007/s11356-014-3502-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 08/21/2014] [Indexed: 05/06/2023]
Abstract
Due to hydrophobic and persistent properties, polycyclic aromatic hydrocarbons (PAHs) have a high capacity to accumulate in sediment. Sediment quality criteria, for the assessment of habitat quality and risk for aquatic life, include understanding the fate and effects of PAHs. In the context of European regulation (REACH and Water Framework Directive), the first objective was to assess the influence of sediment composition on the toxicity of two model PAHs, benzo[a]pyrene and fluoranthene using 10-day zebrafish embryo-larval assay. This procedure was undertaken with an artificial sediment in order to limit natural sediment variability. A suitable sediment composition might be then validated for zebrafish and proposed in a new OECD guideline for chemicals testing. Second, a comparative study of toxicity responses from this exposure protocol was then performed using another OECD species, the Japanese medaka. The potential toxicity of both PAHs was assessed through lethal (e.g., survival, hatching success) and sublethal endpoints (e.g., abnormalities, PMR, and EROD) measured at different developmental stages, adapted to the embryonic development time of both species. Regarding effects observed for both species, a suitable artificial sediment composition for PAH toxicity testing was set at 92.5 % dry weight (dw) silica of 0.2-0.5-mm grain size, 5 % dw kaolin clay without organic matter for zebrafish, and 2.5 % dw blond peat in more only for Japanese medaka. PAH bioavailability and toxicity were highly dependent on the fraction of organic matter in sediment and of the K ow coefficients of the tested compounds. The biological responses observed were also dependent of the species under consideration. Japanese medaka embryos appeared more robust than zebrafish embryos for understanding the toxicity of PAHs following a sediment contact test, due to the longer exposure duration and lower sensitivity of sediment physical properties.
Collapse
Affiliation(s)
- Prescilla Perrichon
- Ifremer, Laboratoire d'Ecotoxicologie, Place Gaby Coll, BP7, 17137, L'Houmeau, France,
| | | | | | | | | | | | | |
Collapse
|
31
|
Shanthanagouda AH, Guo BS, Ye RR, Chao L, Chiang MWL, Singaram G, Cheung NKM, Zhang G, Au DWT. Japanese medaka: a non-mammalian vertebrate model for studying sex and age-related bone metabolism in vivo. PLoS One 2014; 9:e88165. [PMID: 24523879 PMCID: PMC3921145 DOI: 10.1371/journal.pone.0088165] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 01/05/2014] [Indexed: 11/26/2022] Open
Abstract
Background In human, a reduction in estrogen has been proposed as one of the key contributing factors for postmenopausal osteoporosis. Rodents are conventional models for studying postmenopausal osteoporosis, but the major limitation is that ovariectomy is needed to mimic the estrogen decline after menopause. Interestingly, in medaka fish (Oryzias latipes), we observed a natural drop in plasma estrogen profile in females during aging and abnormal spinal curvature was apparent in old fish, which are similar to postmenopausal women. It is hypothesized that estrogen associated disorders in bone metabolism might be predicted and prevented by estrogen supplement in aging O. latipes, which could be corresponding to postmenopausal osteoporosis in women. Principal findings In O. latipes, plasma estrogen was peaked at 8 months old and significantly declined after 10, 11 and 22 months in females. Spinal bone mineral density (BMD) and micro-architecture by microCT measurement progressively decreased and deteriorated from 8 to 10, 12 and 14 months old, which was more apparent in females than the male counterparts. After 10 months old, O. latipes were supplemented with 17α-ethinylestradiol (EE2, a potent estrogen mimic) at 6 and 60 ng/mg fish weight/day for 4 weeks, both reduction in spinal BMD and deterioration in bone micro-architecture were significantly prevented. The estrogenic effect of EE2 in O. latipes was confirmed by significant up-regulation of four key estrogen responsive genes in the liver. In general, bone histomorphometric analyses indicated significantly lowered osteoblasts and osteoclasts numbers and surfaces on vertebrae of EE2-fed medaka. Significance We demonstrate osteoporosis development associated with natural drop in estrogen level during aging in female medaka, which could be attenuated by estrogen treatment. This small size fish is a unique alternative non-mammalian vertebrate model for studying estrogen-related molecular regulation in postmenopausal skeletal disorders in vivo without ovariectomy.
Collapse
Affiliation(s)
- Admane H. Shanthanagouda
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong
| | - Bao-Sheng Guo
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Rui R. Ye
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong
| | - Liang Chao
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Michael W. L. Chiang
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong
| | - Gopalakrishnan Singaram
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong
| | - Napo K. M. Cheung
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
- * E-mail: (DWTA); (GZ)
| | - Doris W. T. Au
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong
- * E-mail: (DWTA); (GZ)
| |
Collapse
|
32
|
Cheung NKM, Cheung ACK, Ye RR, Ge W, Giesy JP, Au DWT. Expression profile of oestrogen receptors and oestrogen-related receptors is organ specific and sex dependent: the Japanese medaka Oryzias latipes model. JOURNAL OF FISH BIOLOGY 2013; 83:295-310. [PMID: 23902307 DOI: 10.1111/jfb.12164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 05/21/2013] [Accepted: 05/01/2013] [Indexed: 06/02/2023]
Abstract
Gene expression of all known subtypes of oestrogen receptor (ER) and oestrogen-related receptor (ERR) in multiple organs and both sexes of the Japanese medaka Oryzias latipes was profiled and systematically analysed. As revealed by statistical analyses and low-dimensional projections, the expressions of ERRs proved to be organ and sex dependent, which is in contrast with the ubiquitous nature of ERs. Moreover, expressions of specific ERR isoforms (ERRγ1, ERRγ2) were strongly correlated with that of all ERs (ERα, ERβ1 and ERβ2), suggesting the existence of potential interactions. Findings of this study shed light on the co-regulatory role of particular ERRs in oestrogen-ERs signalling and highlight the potential importance of ERRs in determining organ and sex-specific oestrogen responses. Using O. latipes as an alternative vertebrate model, this study provides new directions that call for collective efforts from the scientific community to unravel the mechanistic action of ER-ERR cross-talks, and their intertwining functions, in a cell and sex-specific manner in vivo.
Collapse
Affiliation(s)
- N K M Cheung
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR
| | | | | | | | | | | |
Collapse
|
33
|
Flynn K, Swintek J, Johnson R. Use of gene expression data to determine effects on gonad phenotype in Japanese medaka after exposure to trenbolone or estradiol. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:1344-1353. [PMID: 23423942 DOI: 10.1002/etc.2186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/10/2012] [Accepted: 01/18/2013] [Indexed: 06/01/2023]
Abstract
Various aquatic bioassays using one of several fish species have been developed or are in the process of being developed by organizations like the US Environmental Protection Agency and the Office of Economic Cooperation and Development for testing potential endocrine-disrupting chemicals (EDCs). Often, these involve assessment of the gonad phenotype of individuals as a key endpoint that is inputted into a risk or hazard assessment. Typically, gonad phenotype is determined histologically, which involves specialized and time-consuming techniques. The methods detailed here utilize an entirely different methodology, reverse-transcription quantitative polymerase chain reaction, to determine the relative expression levels of 4 genes after exposure to either 17β-estradiol or 17β-trenbolone and, by extension, the effects of EDCs on the phenotypic status of the gonad. The 4 genes quantified, Sox9b, protamine, Fig1α, and ZPC1, are all involved in gonad development and maintenance in Japanese medaka (Oryzias latipes); these data were then inputted into a permutational multivariate analysis of variance to determine whether significant differences exist between treatment groups. This information in conjunction with the sexual genotype, which can be determined in medaka, can be used to determine adverse effects of exposure to EDCs in a similar fashion to the histologically determined gonad phenotype.
Collapse
Affiliation(s)
- Kevin Flynn
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, Minnesota, USA.
| | | | | |
Collapse
|
34
|
Fan CY, Simmons SO, Law SHW, Jensen K, Cowden J, Hinton D, Padilla S, Ramabhadran R. Generation and characterization of neurogenin1-GFP transgenic medaka with potential for rapid developmental neurotoxicity screening. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:127-135. [PMID: 21718657 DOI: 10.1016/j.aquatox.2011.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 05/23/2011] [Accepted: 05/28/2011] [Indexed: 05/31/2023]
Abstract
Fish models such as zebrafish and medaka are increasingly used as alternatives to rodents in developmental and toxicological studies. These developmental and toxicological studies can be facilitated by the use of transgenic reporters that permit the real-time, noninvasive observation of the fish. Here we report the construction and characterization of transgenic medaka lines expressing green fluorescent protein (GFP) under the control of the zebrafish neurogenin 1 (ngn1) gene promoter. Neurogenin (ngn1) is a helix-loop-helix transcription factor expressed in proliferating neuronal progenitor cells early in neuronal differentiation and plays a crucial role in directing neurogenesis. GFP expression was detected from 24 h post-fertilization until hatching, in a spatial pattern consistent with the previously reported zebrafish ngn1 expression. Temporal expression of the transgene parallels the expression profile of the endogenous medaka ngn1 transcript. Further, we demonstrate that embryos from the transgenic line permit the non-destructive, real-time screening of ngn1 promoter-directed GFP expression in a 96-well format, enabling higher throughput studies of developmental neurotoxicants. This strain has been deposited with and maintained by the National BioResource Project and is available on request (http://www.shigen.nig.ac.jp/medaka/strainDetailAction.do?quickSearch=true&strainId=5660).
Collapse
Affiliation(s)
- Chun-Yang Fan
- Integrated Systems Toxicology and Toxicity Assessment Divisions, National Health and Environmental Effects Research Laboratory, US EPA, Research Triangle Park, NC 27711, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Tian L, Wang M, Li X, Lam PKS, Wang M, Wang D, Chou HN, Li Y, Chan LL. Proteomic modification in gills and brains of medaka fish (Oryzias melastigma) after exposure to a sodium channel activator neurotoxin, brevetoxin-1. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 104:211-217. [PMID: 21632025 DOI: 10.1016/j.aquatox.2011.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 04/21/2011] [Accepted: 04/30/2011] [Indexed: 05/30/2023]
Abstract
Although brevetoxins (PbTxs) produced by the marine dinoflagellate Karenia brevis are known to be absorbed across gill membranes and exert their acute toxic effects through an ion-channel mediated pathway in neural tissue, the exact biochemical mechanism concerning PbTxs neurotoxicity in neural tissue and gas-exchange organs has not been well elucidated. In this study, we calculated the LC(50) value of PbTx-1 using the medaka fish model, and presented the molecular responses of sub-acute exposure to PbTx-1 with proteomic method. By adopting two-dimensional electrophoresis, the abundances of 14 and 24 proteins were found to be remarkably altered in the gills and brains, respectively, in response to toxin exposure. Thirteen gill and twenty brain proteins were identified using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry analysis. These proteins could be categorized into diverse functional classes such as cell structure, macromolecule metabolism, signal transduction and neurotransmitter release. These findings can help to elucidate the possible pathways by which aquatic toxins affect marine organisms within target organs.
Collapse
Affiliation(s)
- Li Tian
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Shen M, Xu J, Tsang TY, Au DWT. Toxicity comparison between Chattonella marina and Karenia brevis using marine medaka (Oryzias melastigma): Evidence against the suspected ichthyotoxins of Chattonella marina. CHEMOSPHERE 2010; 80:585-91. [PMID: 20444485 DOI: 10.1016/j.chemosphere.2010.03.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/20/2010] [Accepted: 03/29/2010] [Indexed: 05/25/2023]
Abstract
The marine alga Chattonella marina is often associated with massive fish mortality worldwide. Here, we challenge brevetoxins and free fatty acids as the ichthyotoxins of C. marina by comparing the toxicity of C. marina with a brevetoxins-producing alga Karenia brevis as well as their organic solvent extracts using the seawater medaka Oryzias melastigma. Opposite to K. brevis, toxicity of C. marina was highly correlated with its growth rate and exhibited no dose response relationship between cell density and fish mortality. Fish exposed to C. marina developed significant hyperventilation response, but K. brevis induced hypoventilation response in medaka. Moreover, the organic extracts from C. marina showed no toxicity to fish whereas organic extracts from K. brevis showed significantly higher toxicity than the whole K. brevis culture. The toxins produced by C. marina may be protein in nature or small and labile molecular compounds which are not able to be extracted by traditional organic extraction methods.
Collapse
Affiliation(s)
- Min Shen
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon, People's Republic of China
| | | | | | | |
Collapse
|
37
|
Flynn K, Haasch M, Shadwick DS, Johnson R. Real-time PCR-based prediction of gonad phenotype in medaka. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:589-594. [PMID: 20074805 DOI: 10.1016/j.ecoenv.2009.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 11/23/2009] [Accepted: 12/05/2009] [Indexed: 05/28/2023]
Abstract
An important endpoint in aquatic bioassays for potential endocrine disrupting chemicals (EDCs) is the gonadal phenotype of exposed fish, with special interest in intersex and sex-reversed individuals. Traditionally, the assessment of gonad phenotype is done via histology, which involves specialized and time-consuming techniques. The method detailed here increases the efficiency of the analysis by first determining the relative expression of four genes involved in gonad development/maintenance in Japanese medaka (Oryzias latipes), and then by using principal component analysis, assigning a phenotype to each gonad based upon the gene expression data. The gonad phenotype and the sexual genotype, which can be determined in medaka, can then be compared to assess potential adverse effects of exposure to endocrine disrupting chemicals.
Collapse
Affiliation(s)
- Kevin Flynn
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA.
| | | | | | | |
Collapse
|
38
|
Howarth DL, Law SHW, Law JM, Mondon JA, Kullman SW, Hinton DE. Exposure to the synthetic FXR agonist GW4064 causes alterations in gene expression and sublethal hepatotoxicity in eleutheroembryo medaka (Oryzias latipes). Toxicol Appl Pharmacol 2009; 243:111-21. [PMID: 19963001 DOI: 10.1016/j.taap.2009.11.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 11/04/2009] [Accepted: 11/06/2009] [Indexed: 02/06/2023]
Abstract
The small freshwater teleost, medaka (Oryzias latipes), has a history of usage in studies of chronic toxicity of liver and biliary system. Recent progress with this model has focused on defining the medaka hepatobiliary system. Here we investigate critical liver function and toxicity by examining the in vivo role and function of the farnesoid X receptor alpha (FXRalpha, NR1H4), a member of the nuclear receptor superfamily that plays an essential role in the regulation of bile acid homeostasis. Quantitative mRNA analysis of medaka FXRalpha demonstrates differential expression of two FXRalpha isoforms designated Fxralpha1 and Fxralpha2, in both free swimming medaka embryos with remaining yolk (eleutheroembryos, EEs) and adults. Activation of medaka Fxralpha in vivo with GW4064 (a strong FXRalpha agonist) resulted in modification of gene expression for defined FXRalpha gene targets including the bile salt export protein, small heterodimer partner, and cytochrome P450 7A1. Histological examination of medaka liver subsequent to GW4064 exposure demonstrated significant lipid accumulation, cellular and organelle alterations in both hepatocytes and biliary epithelial cells of the liver. This report of hepatobiliary injury following GW4064 exposure extends previous investigations of the intrahepatic biliary system in medaka, reveals sensitivity to toxicant exposure, and illustrates the need for added resolution in detection and interpretation of toxic responses in this vertebrate.
Collapse
Affiliation(s)
- Deanna L Howarth
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC 27708, USA
| | | | | | | | | | | |
Collapse
|