1
|
Tian Y, Qiao H, Odamah K, Zhu LQ, Man HY. Role of androgen receptors in sexually dimorphic phenotypes in UBE3A-dependent autism spectrum disorder. iScience 2025; 28:111868. [PMID: 39991542 PMCID: PMC11847089 DOI: 10.1016/j.isci.2025.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/04/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Autism spectrum disorders (ASDs) involve social, communication, and behavioral challenges. ASDs display a remarkable sex difference with a 4:1 male to female prevalence ratio; however, the underlying mechanism remains largely unknown. Using the UBE3A-overexpressing mouse model for ASD, we studied sexually dimorphic changes at behavioral, genetic, and molecular levels. We found that male mice with extra copies of Ube3A exhibited greater impairments in social communication, long-term memory, and pain sensitivity compared to females. UBE3A-mediated degradation reduced androgen receptor (AR) levels in both sexes but only male mice showed significant dysregulation in the expression of AR target genes. Importantly, restoring AR levels in the brain normalized levels of AR target genes, and rescued the deficits in social preference, grooming, and memory in male UBE3A-overexpressing mice, without affecting females. These findings reveal the critical role of AR signaling in sex-specific changes linked to UBE3A-dependent ASD.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Hui Qiao
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - KathrynAnn Odamah
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA
| |
Collapse
|
2
|
Tuma J, Rana AN, Philip T, Park JB, Lee HY. Altered olfactory responses in Fmr1 KO mice. Sci Rep 2025; 15:2952. [PMID: 39848954 PMCID: PMC11758012 DOI: 10.1038/s41598-024-80000-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/14/2024] [Indexed: 01/25/2025] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder oftentimes associated with abnormal social behaviors and altered sensory responsiveness. It is hypothesized that the inappropriate filtering of sensory stimuli, including olfaction, can lead to aberrant social behavior in FXS. However, previous studies investigating olfaction in animal models of FXS have shown inconsistent results. Here, we found that Fmr1 knock-out (KO) mice, a mouse model of FXS, showed increased sniffing duration for non-social odors during their first exposure. Additionally, while wild-type (WT) males demonstrated differences in behavioral patterns between non-social odors while Fmr1 KO males did not show such distinction. We also showed that Fmr1 KO males spent significantly less time sniffing female urine odor compared to WT males. Moreover, we found an increased volume of the olfactory bulb in Fmr1 KO males. Overall, our findings suggest that the Fmr1 KO mice demonstrate atypical olfactory behaviors as well as structural changes in the olfactory bulb.
Collapse
Affiliation(s)
- Jan Tuma
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Amtul-Noor Rana
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Teena Philip
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jeong Ben Park
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hye Young Lee
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
3
|
Mușat MI, Cătălin B, Hadjiargyrou M, Popa-Wagner A, Greșiță A. Advancing Post-Stroke Depression Research: Insights from Murine Models and Behavioral Analyses. Life (Basel) 2024; 14:1110. [PMID: 39337894 PMCID: PMC11433193 DOI: 10.3390/life14091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Post-stroke depression (PSD) represents a significant neuropsychiatric complication that affects between 39% and 52% of stroke survivors, leading to impaired recovery, decreased quality of life, and increased mortality. This comprehensive review synthesizes our current knowledge of PSD, encompassing its epidemiology, risk factors, underlying neurochemical mechanisms, and the existing tools for preclinical investigation, including animal models and behavioral analyses. Despite the high prevalence and severe impact of PSD, challenges persist in accurately modeling its complex symptomatology in preclinical settings, underscoring the need for robust and valid animal models to better understand and treat PSD. This review also highlights the multidimensional nature of PSD, where both biological and psychosocial factors interplay to influence its onset and course. Further, we examine the efficacy and limitations of the current animal models in mimicking the human PSD condition, along with behavioral tests used to evaluate depressive-like behaviors in rodents. This review also sets a new precedent by integrating the latest findings across multidisciplinary studies, thereby offering a unique and comprehensive perspective of existing knowledge. Finally, the development of more sophisticated models that closely replicate the clinical features of PSD is crucial in order to advance translational research and facilitate the discovery of future effective therapies.
Collapse
Affiliation(s)
- Mădălina Iuliana Mușat
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Bogdan Cătălin
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Aurel Popa-Wagner
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Neurology, Vascular Neurology and Dementia, University of Medicine Essen, 45122 Essen, Germany
| | - Andrei Greșiță
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
4
|
Gorskaya AV, Vasilev DS. Problems in the Diagnosis of Dysfunctions of the Olfactory Analyzer in Laboratory Animals Based on Behavioral and Electrophysiological Study Methods. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2024; 54:990-1002. [DOI: 10.1007/s11055-024-01702-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2025]
|
5
|
Pignatelli A, Benedusi M, Barbieri M, Pecorelli A, Valacchi G. Tropospheric ozone effect on olfactory perception and olfactory bulb dopaminergic interneuron excitability. Neurotoxicology 2024; 104:36-44. [PMID: 39004287 DOI: 10.1016/j.neuro.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
Ozone (O3) forms in the Earth's atmosphere, both naturally and by reactions of man-made air pollutants. Deleterious effects of O3 have been found in the respiratory system. Here, we examine whether O3 alters olfactory behavior and cellular properties in the olfactory system. For this purpose, mice were exposed to O3 at a concentration found in highly polluted city air [0.8 ppm], and the behavior elicited by social and non-social odors in habituation/dishabituation tests was assessed. In addition, the electrical responses of dopaminergic olfactory bulb (OB) neurons were also evaluated. O3 differentially compromises olfactory perception to odors: it reduces responses to social and non-social odors in Swiss Webster mice, while this effect was observed in C57BL/6 J mice only for some non-social odors. Additionally, O3 reduced the rate of spontaneous spike firing in periglomerular dopaminergic cells (PG-DA) of the OB. Because this effect could reflect changes in excitability and/or synaptic inputs, the ability of O3 to alter PG-DA spontaneous activity was also tested together with cell membrane resistance, membrane potential, rheobase and chronaxie. Taken together, our data suggest the ability of O3 to affect olfactory perception.
Collapse
Affiliation(s)
- Angela Pignatelli
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy.
| | - Mascia Benedusi
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy.
| | - Mario Barbieri
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy.
| | - Alessandra Pecorelli
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy.
| | - Giuseppe Valacchi
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy; Dept. of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA; Dept. of Food and Nutrition, Kyung Hee University, Seoul 26723, Republic of Korea.
| |
Collapse
|
6
|
Morozova MV, Boldyreva LV, Borisova MA, Kozhevnikova EN. Investigating social communication in mice: A two-intruders test approach. J Neurosci Res 2024; 102:e25365. [PMID: 39031484 DOI: 10.1002/jnr.25365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/04/2024] [Accepted: 06/16/2024] [Indexed: 07/22/2024]
Abstract
Understanding the complex dynamics of social communication behaviors, such as exploration, communication, courtship, mating, and aggression in animal models, is crucial to reveal key neural and hormonal mechanisms underlying these behaviors. The two-intruders test is designed to investigate residents' behavior toward both male and female intruders within the home cage of the test male. During this test imitating natural conditions, several aspects of social interaction were investigated: Exploration, courtship, mating, and aggressive behavior. As mating and aggression involve overlapping neural circuits, the behavioral setup testing both behaviors is best at reflecting their competitive nature. Our findings demonstrate that resident male mice exhibit strong preference to communicate with a female intruder, which correlates with baseline testosterone levels of test males. Relevant female preference in the two-intruders test was also found in BALB/c males. Behavioral breakdown revealed the anogenital sniffing as a key behavioral feature that discriminates resident male behavior toward intruders of different sex. Furthermore, resident male interaction with female intruder was accompanied by neuronal activation in the ventromedial hypothalamus. We demonstrate that odor recognition underlies preference toward females in male residents, as experimental anosmia reduced communication with a female intruder. We conclude the two-intruders test setup to be a useful tool to study the neurological basis of social communication in animal models, which provides detailed analysis of various aspects of the laboratory animals' social behavior in the most natural conditions.
Collapse
Affiliation(s)
- Maryana V Morozova
- Scientific-Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - Lidiya V Boldyreva
- Scientific-Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - Maria A Borisova
- The Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena N Kozhevnikova
- Scientific-Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
- Novosibirsk State Agrarian University, Novosibirsk, Russia
| |
Collapse
|
7
|
Tian Y, Qiao H, Zhu LQ, Man HY. Sexually dimorphic phenotypes and the role of androgen receptors in UBE3A-dependent autism spectrum disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592248. [PMID: 38746146 PMCID: PMC11092617 DOI: 10.1101/2024.05.02.592248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Autism spectrum disorders (ASDs) are characterized by social, communication, and behavioral challenges. UBE3A is one of the most common ASD genes. ASDs display a remarkable sex difference with a 4:1 male to female prevalence ratio; however, the underlying mechanism remains largely unknown. Using the UBE3A-overexpressing mouse model for ASD, we studied sex differences at behavioral, genetic, and molecular levels. We found that male mice with extra copies of Ube3A exhibited greater impairments in social interaction, repetitive self-grooming behavior, memory, and pain sensitivity, whereas female mice with UBE3A overexpression displayed greater olfactory defects. Social communication was impaired in both sexes, with males making more calls and females preferring complex syllables. At the molecular level, androgen receptor (AR) levels were reduced in both sexes due to enhanced degradation mediated by UBE3A. However, AR reduction significantly dysregulated AR target genes only in male, not female, UBE3A-overexpressing mice. Importantly, restoring AR levels in the brain effectively normalized the expression of AR target genes, and rescued the deficits in social preference, grooming behavior, and memory in male UBE3A-overexpressing mice, without affecting females. These findings suggest that AR and its signaling cascade play an essential role in mediating the sexually dimorphic changes in UBE3A-dependent ASD.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Hui Qiao
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, Boston, MA 02215, USA
| |
Collapse
|
8
|
Panda SR, Panja P, Soni U, Naidu VGM. Neurobehavioral Analysis to Assess Olfactory and Motor Dysfunction in Parkinson's Disease. Methods Mol Biol 2024; 2761:511-528. [PMID: 38427259 DOI: 10.1007/978-1-0716-3662-6_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative condition, primarily affecting dopaminergic neurons. It is defined by motor impairments, such as bradykinesia, stiffness, resting tremor, and postural instability. The striatum, a structure essential for motor control, is impaired in function due to the significant loss of dopaminergic neurons in the substantia nigra and the development of Lewy bodies in the surviving nigral dopaminergic neurons. Olfactory impairment is one of the earliest indications of neurodegenerative disorders like PD that appear years before motor symptoms and cognitive decline development. Olfactory dysfunction is the most common nonmotor PD sign in at least 90% of cases, frequently occurring 5-10 years before motor disturbances. Surprisingly, even though olfactory impairment is intimately linked to PD and is thought to be a potential biomarker, little is known about the brain process underlying this failure. Exposure to environmental toxins has been linked to olfactory dysfunction, leading to nigral neurodegeneration and loss of motor functions. Behavioral neuroscience plays a significant role in identifying and characterizing these olfactory and motor symptoms. In preclinical research, novel treatment approaches are being evaluated in rodent models by behavioral phenotyping to ensure their efficacy. This chapter describes neurobehavioral analysis to assess olfactory and motor dysfunction in rodent models of Parkinson's disease.
Collapse
Affiliation(s)
- Samir Ranjan Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Pallabi Panja
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Ujjawal Soni
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| |
Collapse
|
9
|
Ferroni NM, Chertoff MJ, Alberca CD, Berardino BG, Gianatiempo O, Brahamian M, Levi V, Urrutia L, Falasco G, Cánepa ET, Sonzogni SV. Oxidative stress associated with spatial memory impairment and social olfactory deterioration in female mice reveals premature aging aroused by perinatal protein malnutrition. Exp Neurol 2023; 368:114481. [PMID: 37463612 DOI: 10.1016/j.expneurol.2023.114481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
Early-life adversity, like perinatal protein malnutrition, increases the vulnerability to develop long-term alterations in brain structures and function. This study aimed to determine whether perinatal protein malnutrition predisposes to premature aging in a murine model and to assess the cellular and molecular mechanisms involved. To this end, mouse dams were fed either with a normal (NP, casein 20%) or a low-protein diet (LP, casein 8%) during gestation and lactation. Female offspring were evaluated at 2, 7 and 12 months of age. Positron emission tomography analysis showed alterations in the hippocampal CA3 region and the accessory olfactory bulb of LP mice during aging. Protein malnutrition impaired spatial memory, coinciding with higher levels of reactive oxygen species in the hippocampus and sirt7 upregulation. Protein malnutrition also led to higher senescence-associated β-galactosidase activity and p21 expression. LP-12-month-old mice showed a higher number of newborn neurons that did not complete the maturation process. The social-odor discrimination in LP mice was impaired along life. In the olfactory bulb of LP mice, the senescence marker p21 was upregulated, coinciding with a downregulation of Sirt2 and Sirt7. Also, LP-12-month-old mice showed a downregulation of catalase and glutathione peroxidase, and LP-2-month-old mice showed a higher number of newborn neurons in the subventricular zone, which then returned to normal values. Our results show that perinatal protein malnutrition causes long-term impairment in cognitive and olfactory skills through an accelerated senescence phenotype accompanied by an increase in oxidative stress and altered sirtuin expression in the hippocampus and olfactory bulb.
Collapse
Affiliation(s)
- Nadina M Ferroni
- Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, C1428EGA Ciudad de Buenos Aires, Argentina
| | - Mariela J Chertoff
- Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, C1428EGA Ciudad de Buenos Aires, Argentina
| | - Carolina D Alberca
- Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, C1428EGA Ciudad de Buenos Aires, Argentina
| | - Bruno G Berardino
- Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, C1428EGA Ciudad de Buenos Aires, Argentina
| | - Octavio Gianatiempo
- Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, C1428EGA Ciudad de Buenos Aires, Argentina
| | - Martin Brahamian
- Bioterio central, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, C1428EGA Ciudad de Buenos Aires, Argentina
| | - Valeria Levi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, C1428EGA Ciudad de Buenos Aires, Argentina
| | - Leandro Urrutia
- Centro de Imágenes Moleculares, Fleni, Belén de Escobar, B1625 Buenos Aires, Argentina
| | - Germán Falasco
- Centro de Imágenes Moleculares, Fleni, Belén de Escobar, B1625 Buenos Aires, Argentina
| | - Eduardo T Cánepa
- Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, C1428EGA Ciudad de Buenos Aires, Argentina
| | - Silvina V Sonzogni
- Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, C1428EGA Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
10
|
Lang B, Kahnau P, Hohlbaum K, Mieske P, Andresen NP, Boon MN, Thöne-Reineke C, Lewejohann L, Diederich K. Challenges and advanced concepts for the assessment of learning and memory function in mice. Front Behav Neurosci 2023; 17:1230082. [PMID: 37809039 PMCID: PMC10551171 DOI: 10.3389/fnbeh.2023.1230082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The mechanisms underlying the formation and retrieval of memories are still an active area of research and discussion. Manifold models have been proposed and refined over the years, with most assuming a dichotomy between memory processes involving non-conscious and conscious mechanisms. Despite our incomplete understanding of the underlying mechanisms, tests of memory and learning count among the most performed behavioral experiments. Here, we will discuss available protocols for testing learning and memory using the example of the most prevalent animal species in research, the laboratory mouse. A wide range of protocols has been developed in mice to test, e.g., object recognition, spatial learning, procedural memory, sequential problem solving, operant- and fear conditioning, and social recognition. Those assays are carried out with individual subjects in apparatuses such as arenas and mazes, which allow for a high degree of standardization across laboratories and straightforward data interpretation but are not without caveats and limitations. In animal research, there is growing concern about the translatability of study results and animal welfare, leading to novel approaches beyond established protocols. Here, we present some of the more recent developments and more advanced concepts in learning and memory testing, such as multi-step sequential lockboxes, assays involving groups of animals, as well as home cage-based assays supported by automated tracking solutions; and weight their potential and limitations against those of established paradigms. Shifting the focus of learning tests from the classical experimental chamber to settings which are more natural for rodents comes with a new set of challenges for behavioral researchers, but also offers the opportunity to understand memory formation and retrieval in a more conclusive way than has been attainable with conventional test protocols. We predict and embrace an increase in studies relying on methods involving a higher degree of automatization, more naturalistic- and home cage-based experimental setting as well as more integrated learning tasks in the future. We are confident these trends are suited to alleviate the burden on animal subjects and improve study designs in memory research.
Collapse
Affiliation(s)
- Benjamin Lang
- Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Institute for Animal Welfare, Free University of Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
| | - Pia Kahnau
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Katharina Hohlbaum
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Paul Mieske
- Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Institute for Animal Welfare, Free University of Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Niek P. Andresen
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Computer Vision and Remote Sensing, Technical University Berlin, Berlin, Germany
| | - Marcus N. Boon
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Modeling of Cognitive Processes, Technical University of Berlin, Berlin, Germany
| | - Christa Thöne-Reineke
- Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Institute for Animal Welfare, Free University of Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
| | - Lars Lewejohann
- Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Institute for Animal Welfare, Free University of Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Kai Diederich
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
11
|
Amos C, Fox MA, Su J. Collagen XIX is required for pheromone recognition and glutamatergic synapse formation in mouse accessory olfactory bulb. Front Cell Neurosci 2023; 17:1157577. [PMID: 37091919 PMCID: PMC10113670 DOI: 10.3389/fncel.2023.1157577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/21/2023] [Indexed: 04/25/2023] Open
Abstract
In mammals, the accessory olfactory bulb (AOB) receives input from vomeronasal sensory neurons (VSN) which detect pheromones, chemical cues released by animals to regulate the physiology or behaviors of other animals of the same species. Cytoarchitecturally, cells within the AOB are segregated into a glomerular layer (GL), mitral cell layer (MCL), and granule cell layer (GCL). While the cells and circuitry of these layers has been well studied, the molecular mechanism underlying the assembly of such circuitry in the mouse AOB remains unclear. With the goal of identifying synaptogenic mechanisms in AOB, our attention was drawn to Collagen XIX, a non-fibrillar collagen generated by neurons in the mammalian telencephalon that has previously been shown to regulate the assembly of synapses. Here, we used both a targeted mouse mutant that lacks Collagen XIX globally and a conditional allele allowing for cell-specific deletion of this collagen to test if the loss of Collagen XIX causes impaired synaptogenesis in the mouse AOB. These analyses not only revealed defects in excitatory synapse distribution in these Collagen XIX-deficient mutants, but also showed that these mutant mice exhibit altered behavioral responses to pheromones. Although this collagen has been demonstrated to play synaptogenic roles in the telencephalon, those roles are at perisomatic inhibitory synapses, results here are the first to demonstrate the function of this unconventional collagen in glutamatergic synapse formation.
Collapse
Affiliation(s)
- Chase Amos
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion (VTC), Roanoke, VA, United States
| | - Michael A. Fox
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion (VTC), Roanoke, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Jianmin Su
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion (VTC), Roanoke, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
12
|
Quintrell E, Wyrwoll C, Rosenow T, Larcombe A, Kelty E. The effects of acamprosate on maternal and neonatal outcomes in a mouse model of alcohol use disorders. Physiol Behav 2023; 259:114037. [PMID: 36427542 DOI: 10.1016/j.physbeh.2022.114037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Despite the teratogenic effects of alcohol, little is known about the safety of pharmacotherapies such as acamprosate for the treatment of alcohol use disorders in pregnancy. The aims of this study were to investigate, in a mouse model, the effects of maternally administered acamprosate on maternal and neonatal health, offspring neurodevelopment and behaviour, as well as examine whether acamprosate reduces the neurological harm associated with alcohol consumption in pregnancy. METHODS Dams were randomly allocated to one of four treatment groups: (i) control (water), (ii) acamprosate (1.6 g/L), (iii) alcohol (5% v/v) or (iv) acamprosate and alcohol (1.6 g/L; 5% v/v ethanol) and exposed from 2-weeks pre-pregnancy until postpartum day 7. Gestational outcomes including litter size and sex ratio were assessed, in addition to early-life markers of neurodevelopment. At 8 weeks of age, motor coordination, anxiety, locomotion, and memory of the adult offspring were also examined. RESULTS Exposure to acamprosate did not affect maternal and birth outcomes (mating success, gestational weight gain, litter size, sex ratio), neonatal outcomes (head and body length, postnatal weight) or neurodevelopmental markers (righting reflex and negative geotaxis). Acamprosate exposure did not affect offspring motor control, locomotion or anxiety, however the effects on short-term memory remain uncertain. Prenatal alcohol exposed offspring exhibited various alterations, such as lower postnatal weight, smaller head (p = 0.04) and body lengths (p = 0.046) at postnatal day 70 (males only), increased negative geotaxis speed (p = 0.03), an increased time spent in the inner zone of the open field (p = 0.02). Acamprosate mitigated the effects of alcohol for negative geotaxis at postnatal day 7 (p = 0.01) and female offspring weight at postnatal day 70 (p = 0.03). CONCLUSIONS Overall, we show that prenatal acamprosate exposure was not associated with poor maternal or neonatal health outcomes or impaired neurodevelopment and behaviour. However, acamprosate's effects on short-term memory remain uncertain. We present preliminary evidence to suggest acamprosate displayed some neuroprotective effects against damage caused by in utero alcohol exposure.
Collapse
Affiliation(s)
- Ebony Quintrell
- School of Population and Global Health, University of Western Australia, Nedlands, Western Australia Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Caitlin Wyrwoll
- Telethon Kids Institute, Nedlands, Western Australia, Australia; School of Human Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Tim Rosenow
- The Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Alexander Larcombe
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, Western Australia, Australia; Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - Erin Kelty
- School of Population and Global Health, University of Western Australia, Nedlands, Western Australia Australia.
| |
Collapse
|
13
|
Vancamp P, Butruille L, Herranen A, Boelen A, Fini JB, Demeneix BA, Remaud S. Transient developmental exposure to low doses of bisphenol F negatively affects neurogliogenesis and olfactory behaviour in adult mice. ENVIRONMENT INTERNATIONAL 2023; 172:107770. [PMID: 36706583 DOI: 10.1016/j.envint.2023.107770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Neural stem cells in the murine subventricular zone (SVZ) reactivate during postnatal development to generate neurons and glia throughout adulthood. We previously demonstrated that a postnatal thyroid hormone (TH) peak orchestrates this remodelling, rendering this process vulnerable to endocrine disruption. We exposed mice to 2 or 200 µg/kg bw/day of the bisphenol A-replacement and suspected TH-disruptor bisphenol F (BPF) in the drinking water, from embryonic day 15 to postnatal day 21 (P21). In parallel, one group was exposed to the TH-synthesis blocker propylthiouracil (0.15 % PTU). In contrast to PTU, BPF exposure did not affect serum TH levels at P15, P21 or P60. RNA-seq on dissected SVZs at P15 revealed dysregulated neurodevelopmental genes in all treatments, although few overlapped amongst the conditions. We then investigated the phenotype at P60 to analyse long-term consequences of transient developmental exposure. As opposed to hypothyroid conditions, and despite dysregulated oligodendrogenesis-promoting genes in the P15 SVZ exposed to the highest dose of BPF, immunostainings for myelin and OLIG2/CC1 showed no impact on global myelin content nor oligodendrocyte maturation in the P60 corpus callosum, apart from a reduced thickness. The highest dose did reduce numbers of newly generated SVZ-neuroblasts with 22 %. Related to this were behavioural alterations. P60 mice previously exposed to the highest BPF dose memorized an odour less well than control animals did, although they performed better than PTU-exposed animals. All mice could discriminate new odours, but all exposed groups showed less interest in social odours. Our data indicate that perinatal exposure to low doses of BPF disrupts postnatal murine SVZ remodelling, and lowers the adult neuron/oligodendroglia output, even after exposure had been absent for 40 days. These anomalies warrant further investigation on the potential harm of alternative bisphenol compounds for human foetal brain development.
Collapse
Affiliation(s)
- Pieter Vancamp
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, F-75005 Paris, France
| | - Lucile Butruille
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, F-75005 Paris, France
| | - Anni Herranen
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, F-75005 Paris, France
| | - Anita Boelen
- Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, 1105 Amsterdam, the Netherlands
| | - Jean-Baptiste Fini
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, F-75005 Paris, France
| | - Barbara A Demeneix
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, F-75005 Paris, France
| | - Sylvie Remaud
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, F-75005 Paris, France.
| |
Collapse
|
14
|
Ahnaou A, Whim D. REM sleep behavior and olfactory dysfunction: improving the utility and translation of animal models in the search for neuroprotective therapies for Parkinson's disease. Neurosci Biobehav Rev 2022; 143:104897. [PMID: 36183864 DOI: 10.1016/j.neubiorev.2022.104897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is a heterogeneous neurodegenerative disease that belongs to the family of synucleiopathies, varying in age, symptoms and progression. Hallmark of the disease is the accumulation of misfolded α-synuclein protein (α-Syn) in neuronal and non-neuronal brain cells. In past decades, diagnosis and treatment of PD has focused on motor deficits, which for the clinical endpoint, have contributed to the prevalence of deficits in the nigrostriatal dopaminergic system and animal models related to motor behavior to study disease. However, clinical trials have failed to translate results from animal models into effective treatments. PD as a multisystem disorder therefore requires additional assessment of motor and non-motor symptoms. Braak's staging revealed early α-Syn pathology in pontine brainstem and olfactory circuits controlling rapid eye movement sleep behavior disorder (RBD) and olfaction, respectively. Recent converging evidence from multicenter clinical studies supports that RBD is the most important risk factor for prodromal PD and the conduct of neuroprotective therapeutic trials in RBD-enriched cohorts has been recommended. Animal models of RBD and olfaction dysfunction can aid to fill the gap in translational research.
Collapse
Affiliation(s)
- A Ahnaou
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV. Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - Drinkenburg Whim
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV. Turnhoutseweg 30, B-2340 Beerse, Belgium
| |
Collapse
|
15
|
Moser AY, Brown WY, Bizo LA. Use of a habituation-dishabituation test to determine canine olfactory sensitivity. J Exp Anal Behav 2022; 118:316-326. [PMID: 36121596 PMCID: PMC9804587 DOI: 10.1002/jeab.788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 01/05/2023]
Abstract
The habituation-dishabituation (H-D) paradigm is an established measure of sensory perception in animals. However, it has rarely been applied to canine olfaction. It proposes that animals will lose interest in, or habituate to, a stimulus after successive exposures but will regain interest in, or dishabituate to, a novel stimulus if they can perceive it. This study assessed an H-D test's practicability to determine dogs' olfactory detection thresholds (ODTs) for a neutral odorant. A random selection of mixed-breed pet dogs (n = 26) participated in two H-D tests in a repeated-measures crossover design. They were first habituated to a carrier odor and then presented with either ascending concentrations of n-amyl acetate in the known ODT range (experimental condition) or repeated carrier odor presentations (control condition). No single odor concentration elicited dishabituation in the majority of the dogs. However, individual dogs dishabituated at differing experimental concentrations significantly more often than in the control condition (p = .012). These findings provide some tentative support for using this method in studying canine olfaction. However, further assessment and refinement are needed before it can be a viable alternative to traditional ODT measurement.
Collapse
Affiliation(s)
- Ariella Y. Moser
- Canine and Equine Research Group, School of Environmental and Rural ScienceUniversity of New EnglandAustralia
| | - Wendy Y. Brown
- Canine and Equine Research Group, School of Environmental and Rural ScienceUniversity of New EnglandAustralia
| | - Lewis A. Bizo
- School of PsychologyUniversity of New EnglandAustralia,Faculty of Arts and Social SciencesUniversity of Technology SydneyAustralia,Faculty of Business, Justice, and Behavioural SciencesCharles Sturt UniversityAustralia
| |
Collapse
|
16
|
Olfactory Evaluation in Alzheimer’s Disease Model Mice. Brain Sci 2022; 12:brainsci12050607. [PMID: 35624994 PMCID: PMC9139301 DOI: 10.3390/brainsci12050607] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Olfactory dysfunction is considered a pre-cognitive biomarker of Alzheimer’s disease (AD). Because the olfactory system is highly conserved across species, mouse models corresponding to various AD etiologies have been bred and used in numerous studies on olfactory disorders. The olfactory behavior test is a method required for early olfactory dysfunction detection in AD model mice. Here, we review the olfactory evaluation of AD model mice, focusing on traditional olfactory detection methods, olfactory behavior involving the olfactory cortex, and the results of olfactory behavior in AD model mice, aiming to provide some inspiration for further development of olfactory detection methods in AD model mice.
Collapse
|
17
|
Al Dahhan NZ, Cox E, Nieman BJ, Mabbott DJ. Cross-translational models of late-onset cognitive sequelae and their treatment in pediatric brain tumor survivors. Neuron 2022; 110:2215-2241. [PMID: 35523175 DOI: 10.1016/j.neuron.2022.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/21/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Pediatric brain tumor treatments have a high success rate, but survivors are at risk of cognitive sequelae that impact long-term quality of life. We summarize recent clinical and animal model research addressing pathogenesis or evaluating candidate interventions for treatment-induced cognitive sequelae. Assayed interventions encompass a broad range of approaches, including modifications to radiotherapy, modulation of immune response, prevention of treatment-induced cell loss or promotion of cell renewal, manipulation of neuronal signaling, and lifestyle/environmental adjustments. We further emphasize the potential of neuroimaging as a key component of cross-translation to contextualize laboratory research within broader clinical findings. This cross-translational approach has the potential to accelerate discovery to improve pediatric cancer survivors' long-term quality of life.
Collapse
Affiliation(s)
- Noor Z Al Dahhan
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth Cox
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Brian J Nieman
- Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada; Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Donald J Mabbott
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Psychology, Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
18
|
Konkoly J, Kormos V, Gaszner B, Sándor Z, Kecskés A, Alomari A, Szilágyi A, Szilágyi B, Zelena D, Pintér E. The Role of TRPA1 Channels in the Central Processing of Odours Contributing to the Behavioural Responses of Mice. Pharmaceuticals (Basel) 2021; 14:ph14121336. [PMID: 34959735 PMCID: PMC8703823 DOI: 10.3390/ph14121336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1), a nonselective cation channel, contributes to several (patho)physiological processes. Smell loss is an early sign in several neurodegenerative disorders, such as multiple sclerosis, Parkinson’s and Alzheimer’s diseases; therefore, we focused on its role in olfaction and social behaviour with the aim to reveal its potential therapeutic use. The presence of Trpa1 mRNA was studied along the olfactory tract of mice by combined RNAscope in situ hybridisation and immunohistochemistry. The aversive effects of fox and cat odour were examined in parallel with stress hormone levels. In vitro calcium imaging was applied to test if these substances can directly activate TRPA1 receptors. The role of TRPA1 in social behaviour was investigated by comparing Trpa1 wild-type and knockout mice (KO). Trpa1 mRNA was detected in the olfactory bulb and piriform cortex, while its expression was weak in the olfactory epithelium. Fox, but not cat odour directly activated TRPA1 channels in TRPA1-overexpressing Chinese Hamster Ovary cell lines. Accordingly, KO animals showed less aversion against fox, but not cat odour. The social interest of KO mice was reduced during social habituation–dishabituation and social interaction, but not during resident–intruder tests. TRPA1 may contribute to odour processing at several points of the olfactory tract and may play an important role in shaping the social behaviour of mice. Thus, TRPA1 may influence the development of certain social disorders, serving as a potential drug target in the future.
Collapse
Affiliation(s)
- János Konkoly
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (J.K.); (V.K.); (Z.S.); (A.K.); (A.A.)
- Centre for Neuroscience, Szentágothai Research Centre of the University of Pécs, H-7624 Pécs, Hungary; (B.G.); (D.Z.)
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (J.K.); (V.K.); (Z.S.); (A.K.); (A.A.)
- Centre for Neuroscience, Szentágothai Research Centre of the University of Pécs, H-7624 Pécs, Hungary; (B.G.); (D.Z.)
- Research Group for Mood Disorders, Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Balázs Gaszner
- Centre for Neuroscience, Szentágothai Research Centre of the University of Pécs, H-7624 Pécs, Hungary; (B.G.); (D.Z.)
- Research Group for Mood Disorders, Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Zoltán Sándor
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (J.K.); (V.K.); (Z.S.); (A.K.); (A.A.)
- Centre for Neuroscience, Szentágothai Research Centre of the University of Pécs, H-7624 Pécs, Hungary; (B.G.); (D.Z.)
| | - Angéla Kecskés
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (J.K.); (V.K.); (Z.S.); (A.K.); (A.A.)
- Centre for Neuroscience, Szentágothai Research Centre of the University of Pécs, H-7624 Pécs, Hungary; (B.G.); (D.Z.)
| | - Ammar Alomari
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (J.K.); (V.K.); (Z.S.); (A.K.); (A.A.)
- Centre for Neuroscience, Szentágothai Research Centre of the University of Pécs, H-7624 Pécs, Hungary; (B.G.); (D.Z.)
| | - Alíz Szilágyi
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (A.S.); (B.S.)
- Institute of Experimental Medicine, H-1085 Budapest, Hungary
| | - Beatrix Szilágyi
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (A.S.); (B.S.)
- Institute of Experimental Medicine, H-1085 Budapest, Hungary
| | - Dóra Zelena
- Centre for Neuroscience, Szentágothai Research Centre of the University of Pécs, H-7624 Pécs, Hungary; (B.G.); (D.Z.)
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (A.S.); (B.S.)
- Institute of Experimental Medicine, H-1085 Budapest, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (J.K.); (V.K.); (Z.S.); (A.K.); (A.A.)
- Centre for Neuroscience, Szentágothai Research Centre of the University of Pécs, H-7624 Pécs, Hungary; (B.G.); (D.Z.)
- Correspondence:
| |
Collapse
|
19
|
Environmental enrichment ameliorates high-fat diet induced olfactory deficit and decrease of parvalbumin neurons in the olfactory bulb in mice. Brain Res Bull 2021; 179:13-24. [PMID: 34848271 DOI: 10.1016/j.brainresbull.2021.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/14/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022]
Abstract
Overweight induced by high-fat diet (HFD) represents one of the major health concerns in modern societies, which can cause lasting peripheral and central metabolic disorders in all age groups. Specifically, childhood obesity could lead to life-long impact on brain development and functioning. On the other hand, environmental enrichment (EE) has been demonstrated to be beneficial for learning and memory. Here, we explored the impact of high-fat diet on olfaction and organization of olfactory bulb cells in adolescent mice, and the effect of EE intervention thereon. Puberty mice (3-week-old) fed with HFD for 10 weeks exhibited poorer odor sensitivity and olfactory memory relative to controls consuming standard chows. The behavioral deficits were rescued in the HFD group with EE intervention. Neuroanatomically, parvalbumin (PV) interneurons in the olfactory bulb (OB) were reduced in the HFD-fed animals relative to control, while EE intervention also normalized this alteration. In contrast, cells expressing calbindin (CB), doublecortin (DCX) in the OB were not altered. Our findings suggest that PV interneurons may play a crucial role in mediating the HFD-induced olfactory deficit in adolescent mice, and can also serve a protective effect of EE against the functional deficit.
Collapse
|
20
|
Xie C, Habif JC, Uytingco CR, Ukhanov K, Zhang L, de Celis C, Sheffield VC, Martens JR. Gene therapy rescues olfactory perception in a clinically relevant ciliopathy model of Bardet-Biedl syndrome. FASEB J 2021; 35:e21766. [PMID: 34383976 DOI: 10.1096/fj.202100627r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 11/11/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a hereditary genetic disorder that results in numerous clinical manifestations including olfactory dysfunction. Of at least 21 BBS-related genes that can carry multiple mutations, a pathogenic mutation, BBS1M390R, is the single most common mutation of clinically diagnosed BBS outcomes. While the deletion of BBS-related genes in mice can cause variable penetrance in different organ systems, the impact of the Bbs1M390R mutation in the olfactory system remains unclear. Using a clinically relevant knock-in mouse model homozygous for Bbs1M390R, we investigated the impact of the mutation on the olfactory system and tested the potential of viral-mediated, wildtype gene replacement therapy to rescue smell loss. The cilia of olfactory sensory neurons (OSNs) in Bbs1M390R/M390R mice were significantly shorter and fewer than those of wild-type mice. Also, both peripheral cellular odor detection and synaptic-dependent activity in the olfactory bulb were significantly decreased in the mutant mice. Furthermore, to gain insight into the degree to which perceptual features are impaired in the mutant mice, we used whole-body plethysmography to quantitatively measure odor-evoked sniffing. The Bbs1M390R/M390R mice showed significantly higher odor detection thresholds (reduced odor sensitivity) compared to wild-type mice; however, their odor discrimination acuity was still well maintained. Importantly, adenoviral expression of Bbs1 in OSNs restored cilia length and re-established both peripheral odorant detection and odor perception. Together, our findings further expand our understanding for the development of gene therapeutic treatment for congenital ciliopathies in the olfactory system.
Collapse
Affiliation(s)
- Chao Xie
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA.,Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| | - Julien C Habif
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA.,Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| | - Cedric R Uytingco
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA.,Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| | - Kirill Ukhanov
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA.,Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| | - Lian Zhang
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA.,Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| | - Carlos de Celis
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA.,Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| | - Val C Sheffield
- Division of Medical Genetics and Genomics, Department of Pediatrics, University of Iowa, Iowa City, IA, USA.,Department of Ophthalmology and Vision Research, University of Iowa, Iowa City, IA, USA
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA.,Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
21
|
Do J, Perez G, Berhe B, Tayebi N, Sidransky E. Behavioral Phenotyping in a Murine Model of GBA1-Associated Parkinson Disease. Int J Mol Sci 2021; 22:ijms22136826. [PMID: 34202076 PMCID: PMC8267726 DOI: 10.3390/ijms22136826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/11/2021] [Accepted: 06/22/2021] [Indexed: 01/15/2023] Open
Abstract
Mutations in GBA1, the gene encoding glucocerebrosidase, are common genetic risk factors for Parkinson disease (PD). While the mechanism underlying this relationship is unclear, patients with GBA1-associated PD often have an earlier onset and faster progression than idiopathic PD. Previously, we modeled GBA1-associated PD by crossing gba haploinsufficient mice with mice overexpressing a human mutant α-synuclein transgene (SNCAA53T), observing an earlier demise, shorter life span and faster symptom progression, although behavioral testing was not performed. To assess whether gba+/−//SNCAA53T mice exhibit a prodromal behavioral phenotype, we studied three cardinal PD features: olfactory discrimination, memory dysfunction, and motor function. The longitudinal performance of gba+/−//SNCAA53T (n = 8), SNCAA53T (n = 9), gba+/− (n = 10) and wildtype (n = 6) mice was evaluated between ages 8 and 23 months using the buried pellet test, novel object recognition test and the beam walk. Fifteen-month-old gba+/−//SNCAA53T mice showed more olfactory and motor deficits than wildtype mice. However, differences between gba+/−//SNCAA53T and SNCAA53T mice generally did not reach statistical significance, possibly due to small sample sizes. Furthermore, while gba haploinsufficiency leads to a more rapid demise, this might not result in an earlier prodromal stage, and other factors, including aging, oxidative stress and epigenetics, may contribute to the more fulminant disease course.
Collapse
Affiliation(s)
| | | | | | - Nahid Tayebi
- Correspondence: (N.T.); (E.S.); Tel.: +1-301-496-0373 (N.T.); +1-301-451-0901 (E.S.)
| | - Ellen Sidransky
- Correspondence: (N.T.); (E.S.); Tel.: +1-301-496-0373 (N.T.); +1-301-451-0901 (E.S.)
| |
Collapse
|
22
|
Bryche B, Baly C, Meunier N. Modulation of olfactory signal detection in the olfactory epithelium: focus on the internal and external environment, and the emerging role of the immune system. Cell Tissue Res 2021; 384:589-605. [PMID: 33961125 PMCID: PMC8102665 DOI: 10.1007/s00441-021-03467-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/26/2021] [Indexed: 12/18/2022]
Abstract
Detection and discrimination of odorants by the olfactory system plays a pivotal role in animal survival. Olfactory-based behaviors must be adapted to an ever-changing environment. Part of these adaptations includes changes of odorant detection by olfactory sensory neurons localized in the olfactory epithelium. It is now well established that internal signals such as hormones, neurotransmitters, or paracrine signals directly affect the electric activity of olfactory neurons. Furthermore, recent data have shown that activity-dependent survival of olfactory neurons is important in the olfactory epithelium. Finally, as olfactory neurons are directly exposed to environmental toxicants and pathogens, the olfactory epithelium also interacts closely with the immune system leading to neuroimmune modulations. Here, we review how detection of odorants can be modulated in the vertebrate olfactory epithelium. We choose to focus on three cellular types of the olfactory epithelium (the olfactory sensory neuron, the sustentacular and microvillar cells) to present the diversity of modulation of the detection of odorant in the olfactory epithelium. We also present some of the growing literature on the importance of immune cells in the functioning of the olfactory epithelium, although their impact on odorant detection is only just beginning to be unravelled.
Collapse
Affiliation(s)
- Bertrand Bryche
- Université Paris-Saclay, INRAE, UVSQ, 78350, Jouy-en-Josas, VIM, France
| | - Christine Baly
- Université Paris Saclay, INRAE, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | - Nicolas Meunier
- Université Paris-Saclay, INRAE, UVSQ, 78350, Jouy-en-Josas, VIM, France.
| |
Collapse
|
23
|
Derkach D, Kehtari T, Renaud M, Heidari M, Lakshman N, Morshead CM. Metformin pretreatment rescues olfactory memory associated with subependymal zone neurogenesis in a juvenile model of cranial irradiation. Cell Rep Med 2021; 2:100231. [PMID: 33948569 PMCID: PMC8080112 DOI: 10.1016/j.xcrm.2021.100231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/12/2020] [Accepted: 03/09/2021] [Indexed: 01/23/2023]
Abstract
Cranial irradiation (IR) is an effective adjuvant therapy in the treatment of childhood brain tumors but results in long-lasting cognitive deficits associated with impaired neurogenesis, as evidenced in rodent models. Metformin has been shown to expand the endogenous neural stem cell (NSC) pool and promote neurogenesis under physiological conditions and in response to neonatal brain injury, suggesting a potential role in neurorepair. Here, we assess whether metformin pretreatment, a clinically feasible treatment for children receiving cranial IR, promotes neurorepair in a mouse cranial IR model. Using immunofluorescence and the in vitro neurosphere assay, we show that NSCs are depleted by cranial IR but spontaneously recover, although deficits to proliferative neuroblasts persist. Metformin pretreatment enhances the recovery of neurogenesis, attenuates the microglial response, and promotes recovery of long-term olfactory memory. These findings indicate that metformin is a promising candidate for further preclinical and clinical investigations of neurorepair in childhood brain injuries.
Collapse
Affiliation(s)
- Daniel Derkach
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Tarlan Kehtari
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Matthew Renaud
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Mohsen Heidari
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Nishanth Lakshman
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Cindi M. Morshead
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Altered gut microbiome and autism like behavior are associated with parental high salt diet in male mice. Sci Rep 2021; 11:8364. [PMID: 33863940 PMCID: PMC8052368 DOI: 10.1038/s41598-021-87678-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/30/2021] [Indexed: 12/23/2022] Open
Abstract
Neurodevelopmental disorders are conditions caused by the abnormal development of the central nervous system. Autism spectrum disorder (ASD) is currently the most common form of such disorders, affecting 1% of the population worldwide. Despite its prevalence, the mechanisms underlying ASD are not fully known. Recent studies have suggested that the maternal gut microbiome can have profound effects on neurodevelopment. Considering that the gut microbial composition is modulated by diet, we tested the hypothesis that ASD-like behavior could be linked to maternal diet and its associated gut dysbiosis. Therefore, we used a mouse model of parental high salt diet (HSD), and specifically evaluated social and exploratory behaviors in their control-fed offspring. Using 16S genome sequencing of fecal samples, we first show that (1) as expected, HSD changed the maternal gut microbiome, and (2) this altered gut microbiome was shared with the offspring. More importantly, behavioral analysis of the offspring showed hyperactivity, increased repetitive behaviors, and impaired sociability in adult male mice from HSD-fed parents. Taken together, our data suggests that parental HSD consumption is strongly associated with offspring ASD-like behavioral abnormalities via changes in gut microbiome.
Collapse
|
25
|
Butruille L, Vancamp P, Demeneix BA, Remaud S. Thyroid hormone regulation of adult neural stem cell fate: A comparative analysis between rodents and primates. VITAMINS AND HORMONES 2021; 116:133-192. [PMID: 33752817 DOI: 10.1016/bs.vh.2021.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thyroid hormone (TH) signaling, a highly conserved pathway across vertebrates, is crucial for brain development and function throughout life. In the adult mammalian brain, including that of humans, multipotent neural stem cells (NSCs) proliferate and generate neuronal and glial progenitors. The role of TH has been intensively investigated in the two main neurogenic niches of the adult mouse brain, the subventricular and the subgranular zone. A key finding is that T3, the biologically active form of THs, promotes NSC commitment toward a neuronal fate. In this review, we first discuss the roles of THs in the regulation of adult rodent neurogenesis, as well as how it relates to functional behavior, notably olfaction and cognition. Most research uncovering these roles of TH in adult neurogenesis was conducted in rodents, whose genetic background, brain structure and rate of neurogenesis are considerably different from that of humans. To bridge the phylogenetic gap, we also explore the similarities and divergences of TH-dependent adult neurogenesis in non-human primate models. Lastly, we examine how photoperiodic length changes TH homeostasis, and how that might affect adult neurogenesis in seasonal species to increase fitness. Several aspects by which TH acts on adult NSCs seem to be conserved among mammals, while we only start to uncover the molecular pathways, as well as how other in- and extrinsic factors are intertwined. A multispecies approach delivering more insights in the matter will pave the way for novel NSC-based therapies to combat neurological disorders.
Collapse
Affiliation(s)
- Lucile Butruille
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Pieter Vancamp
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Barbara A Demeneix
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Sylvie Remaud
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France.
| |
Collapse
|
26
|
Schuele LL, Glasmacher S, Gertsch J, Roggan MD, Transfeld JL, Bindila L, Lutz B, Kolbe CC, Bilkei-Gorzo A, Zimmer A, Leidmaa E. Diacylglycerol lipase alpha in astrocytes is involved in maternal care and affective behaviors. Glia 2020; 69:377-391. [PMID: 32876968 DOI: 10.1002/glia.23903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/05/2023]
Abstract
Genetic deletion of cannabinoid CB1 receptors or diacylglycerol lipase alpha (DAGLa), the main enzyme involved in the synthesis of the endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG), produced profound phenotypes in animal models of depression-related behaviors. Furthermore, clinical studies have shown that antagonists of CB1 can increase the incidence and severity of major depressive episodes. However, the underlying pathomechanisms are largely unknown. In this study, we have focused on the possible involvement of astrocytes. Using the highly sensitive RNAscope technology, we show for the first time that a subpopulation of astrocytes in the adult mouse brain expresses Dagla, albeit at low levels. Targeted lipidomics revealed that astrocytic DAGLa only accounts for a minor percentage of the steady-state brain 2-AG levels and other arachidonic acid derived lipids like prostaglandins. Nevertheless, the deletion of Dagla in adult mouse astrocytes had profound behavioral consequences with significantly increased depressive-like behavioral responses and striking effects on maternal behavior, corresponding with increased levels of serum progesterone and estradiol. Our findings therefore indicate that lipids from the DAGLa metabolic axis in astrocytes play a key regulatory role in affective behaviors.
Collapse
Affiliation(s)
- Lena-Louise Schuele
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sandra Glasmacher
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Marie Denise Roggan
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Janis-Lisa Transfeld
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | | | - Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Este Leidmaa
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
27
|
Huang AYS, Woo J, Sardar D, Lozzi B, Bosquez Huerta NA, Lin CCJ, Felice D, Jain A, Paulucci-Holthauzen A, Deneen B. Region-Specific Transcriptional Control of Astrocyte Function Oversees Local Circuit Activities. Neuron 2020; 106:992-1008.e9. [PMID: 32320644 PMCID: PMC7879989 DOI: 10.1016/j.neuron.2020.03.025] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/24/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
Astrocytes play essential roles in brain function by supporting synaptic connectivity and associated circuits. How these roles are regulated by transcription factors is unknown. Moreover, there is emerging evidence that astrocytes exhibit regional heterogeneity, and the mechanisms controlling this diversity remain nascent. Here, we show that conditional deletion of the transcription factor nuclear factor I-A (NFIA) in astrocytes in the adult brain results in region-specific alterations in morphology and physiology that are mediated by selective DNA binding. Disruptions in astrocyte function following loss of NFIA are most pronounced in the hippocampus, manifested by impaired interactions with neurons, coupled with diminution of learning and memory behaviors. These changes in hippocampal astrocytes did not affect basal neuronal properties but specifically inhibited synaptic plasticity, which is regulated by NFIA in astrocytes through calcium-dependent mechanisms. Together, our studies reveal region-specific transcriptional dependencies for astrocytes and identify astrocytic NFIA as a key transcriptional regulator of hippocampal circuits.
Collapse
Affiliation(s)
- Anna Yu-Szu Huang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Junsung Woo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Debosmita Sardar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brittney Lozzi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Navish A Bosquez Huerta
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chia-Ching John Lin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniela Felice
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
28
|
Armstrong EC, Caruso A, Servadio M, Andreae LC, Trezza V, Scattoni ML, Fernandes C. Assessing the developmental trajectory of mouse models of neurodevelopmental disorders: Social and communication deficits in mice with Neurexin 1α deletion. GENES BRAIN AND BEHAVIOR 2020; 19:e12630. [DOI: 10.1111/gbb.12630] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Emily C. Armstrong
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & NeuroscienceKing's College London London UK
- MRC Centre for Neurodevelopmental DisordersKing's College London London UK
| | - Angela Caruso
- Research Coordination and Support ServiceIstituto Superiore di Sanità Rome Italy
| | - Michela Servadio
- Department of ScienceSection of Biomedical Sciences and Technologies, University “Roma Tre” Rome Italy
| | - Laura C. Andreae
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & NeuroscienceKing's College London London UK
- MRC Centre for Neurodevelopmental DisordersKing's College London London UK
| | - Viviana Trezza
- Department of ScienceSection of Biomedical Sciences and Technologies, University “Roma Tre” Rome Italy
| | - Maria L. Scattoni
- Research Coordination and Support ServiceIstituto Superiore di Sanità Rome Italy
| | - Cathy Fernandes
- MRC Centre for Neurodevelopmental DisordersKing's College London London UK
- Social, Genetic & Developmental Psychiatry Centre, PO82, Institute of Psychiatry, Psychology & NeuroscienceKing's College London London UK
| |
Collapse
|
29
|
Hagiwara A, Sugiyama N, Ohtsuka T. Impaired experience-dependent maternal care in presynaptic active zone protein CAST-deficient dams. Sci Rep 2020; 10:5238. [PMID: 32251313 PMCID: PMC7090055 DOI: 10.1038/s41598-020-62072-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/09/2020] [Indexed: 11/24/2022] Open
Abstract
Although sociological studies affirm the importance of parental care in the survival of offspring, maltreatment—including child neglect—remains prevalent in many countries. While child neglect is well known to affect child development, the causes of maternal neglect are poorly understood. Here, we found that female mice with a deletion mutation of CAST (a presynaptic release-machinery protein) showed significantly reduced weaning rate when primiparous and a recovered rate when multiparous. Indeed, when nurturing, primiparous and nulliparous CAST knock out (KO) mice exhibited less crouching time than control mice and moved greater distances. Contrary to expectations, plasma oxytocin (OXT) was not significantly reduced in CAST KO mice even though terminals of magnocellular neurons in the posterior pituitary expressed CAST. We further found that compared with control mice, CAST KO mice drank significantly less water when nurturing and had a greater preference for sucrose during pregnancy. We suggest that deficiency in presynaptic release-machinery protein impairs the facilitation of some maternal behaviours, which can be compensated for by experience and learning.
Collapse
Affiliation(s)
- Akari Hagiwara
- Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Naoko Sugiyama
- Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Toshihisa Ohtsuka
- Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.
| |
Collapse
|
30
|
Chan J, Stout D, Pittenger ST, Picciotto MR, Lewis AS. Induction of reversible bidirectional social approach bias by olfactory conditioning in male mice. Soc Neurosci 2019; 15:25-35. [PMID: 31303111 DOI: 10.1080/17470919.2019.1644370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Social avoidance is a common component of neuropsychiatric disorders that confers substantial functional impairment. An unbiased approach to identify brain regions and neuronal circuits that regulate social avoidance might enable development of novel therapeutics. However, most paradigms that alter social avoidance are irreversible and accompanied by multiple behavioral confounds. Here we report a straightforward behavioral paradigm in male mice enabling the reversible induction of social avoidance or approach with temporal control. C57BL/6J mice repeatedly participated in both negative and positive social experiences. Negative social experience was induced by brief social defeat by an aggressive male CD-1 mouse, while positive social experience was induced by exposure to a female mouse, each conducted daily for five days. Each social experience valence was conducted in a specific odorant context (i.e. negative experience in odorant A, positive experience in odorant B). Odorants were equally preferred pre-conditioning. However, after conditioning, mice sniffed positive experience-paired odorants more than negative experience-paired odorants. Furthermore, positive- or negative-conditioned odorant contexts increased or decreased, respectively, the approach behavior of conditioned mice toward conspecifics. Because individual mice undergo both positive and negative conditioning, this paradigm may be useful to examine neural representations of social approach or avoidance within the same subject.
Collapse
Affiliation(s)
- Justin Chan
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Dawson Stout
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,The Avielle Foundation, Newtown, CT, USA
| | | | | | - Alan S Lewis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,Departments of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
31
|
Oh J, Ham J, Cho D, Park JY, Kim JJ, Lee B. The Effects of Transcranial Direct Current Stimulation on the Cognitive and Behavioral Changes After Electrode Implantation Surgery in Rats. Front Psychiatry 2019; 10:291. [PMID: 31156472 PMCID: PMC6531794 DOI: 10.3389/fpsyt.2019.00291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/15/2019] [Indexed: 11/22/2022] Open
Abstract
Postoperative delirium can lead to increased morbidity and mortality, and may even be a potentially life-threatening clinical syndrome. However, the neural mechanism underlying this condition has not been fully understood and there is little knowledge regarding potential preventive strategies. To date, investigation of transcranial direct current stimulation (tDCS) for the relief of symptoms caused by neuropsychiatric disorders and the enhancement of cognitive performance has led to promising results. In this study, we demonstrated that tDCS has a possible effect on the fast recovery from delirium in rats after microelectrode implant surgery, as demonstrated by postoperative behavior and neurophysiology compared with sham stimulation. This is the first study to describe the possible effects of tDCS for the fast recovery from delirium based on the study of both electroencephalography and behavioral changes. Postoperative rats showed decreased attention, which is the core symptom of delirium. However, anodal tDCS over the right frontal area immediately after surgery exhibited positive effects on acute attentional deficit. It was found that relative power of theta was lower in the tDCS group than in the sham group after surgery, suggesting that the decrease might be the underlying reason for the positive effects of tDCS. Connectivity analysis revealed that tDCS could modulate effective connectivity and synchronization of brain activity among different brain areas, including the frontal cortex, parietal cortex, and thalamus. It was concluded that anodal tDCS on the right frontal regions may have the potential to help patients recover quickly from delirium.
Collapse
Affiliation(s)
- Jooyoung Oh
- Department of Psychiatry, Gangnam Severance Hospital, Yonsei University Health System, Seoul, South Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jinsil Ham
- Department of Biomedical Science and Engineering (BMSE), Institute of Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Dongrae Cho
- Department of Biomedical Science and Engineering (BMSE), Institute of Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Jin Young Park
- Department of Psychiatry, Gangnam Severance Hospital, Yonsei University Health System, Seoul, South Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Jin Kim
- Department of Psychiatry, Gangnam Severance Hospital, Yonsei University Health System, Seoul, South Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Boreom Lee
- Department of Biomedical Science and Engineering (BMSE), Institute of Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| |
Collapse
|
32
|
Mullane K, Williams M. Preclinical Models of Alzheimer's Disease: Relevance and Translational Validity. ACTA ACUST UNITED AC 2019; 84:e57. [PMID: 30802363 DOI: 10.1002/cpph.57] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The only drugs currently approved for the treatment of Alzheimer's Disease (AD) are four acetylcholinesterase inhibitors and the NMDA antagonist memantine. Apart from these drugs, which have minimal to no clinical benefit, the 40-year search for effective therapeutics to treat AD has resulted in a clinical failure rate of 100% not only for compounds that prevent brain amyloid deposition or remove existing amyloid plaques but also those acting by a variety of other putative disease-associated mechanisms. This indicates that the preclinical data generated from current AD targets to support the selection, optimization, and translation of new chemical entities (NCEs) and biologics to clinical trials is seriously compromised. While many of these failures reflect flawed hypotheses or a lack of adequate characterization of the preclinical pharmacodynamic and pharmacokinetic (PD/PK) properties of lead NCEs-including their bioavailability and toxicity-the conceptualization, validation, and interrogation of the current animal models of AD represent key limitations. The overwhelming majority of these AD models are transgenic, based on aspects of the amyloid hypothesis and the genetics of the familial form of the disease. As a result, these generally lack construct and predictive validity for the sporadic form of the human disease. The 170 or so transgenic models, perhaps the largest number ever focused on a single disease, use rodents, mainly mice, and in addition to amyloid also address aspects of tau causality with more complex multigene models including other presumed causative factors together with amyloid. This overview discusses the current animal models of AD in the context of both the controversies surrounding the causative role of amyloid in the disease and the need to develop validated models of cognitive function/dysfunction that more appropriately reflect the phenotype(s) of human aged-related dementias. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | - Michael Williams
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, Ohio
| |
Collapse
|
33
|
Werner S, Nies E. Olfactory dysfunction revisited: a reappraisal of work-related olfactory dysfunction caused by chemicals. J Occup Med Toxicol 2018. [PMID: 30202422 DOI: 10.1186/s12995‐018‐0209‐6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Occupational exposure to numerous individual chemicals has been associated with olfactory dysfunction, mainly in individual case descriptions. Comprehensive epidemiological investigations into the olfactotoxic effect of working substances show that the human sense of smell may be impaired by exposure to metal compounds involving cadmium, chromium and nickel, and to formaldehyde. This conclusion is supported by the results of animal experiments. The level of evidence for a relationship between olfactory dysfunction and workplace exposure to other substances is relatively weak.
Collapse
Affiliation(s)
- Sabine Werner
- Institute for Occupational Safety and Health of the German Social Accident Insurance, Unit Toxicology of Industrial Chemicals, Alte Heerstrasse 111, 53757 Sankt Augustin, Germany
| | - Eberhard Nies
- Institute for Occupational Safety and Health of the German Social Accident Insurance, Unit Toxicology of Industrial Chemicals, Alte Heerstrasse 111, 53757 Sankt Augustin, Germany
| |
Collapse
|
34
|
Werner S, Nies E. Olfactory dysfunction revisited: a reappraisal of work-related olfactory dysfunction caused by chemicals. J Occup Med Toxicol 2018; 13:28. [PMID: 30202422 PMCID: PMC6124006 DOI: 10.1186/s12995-018-0209-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/30/2018] [Indexed: 11/10/2022] Open
Abstract
Occupational exposure to numerous individual chemicals has been associated with olfactory dysfunction, mainly in individual case descriptions. Comprehensive epidemiological investigations into the olfactotoxic effect of working substances show that the human sense of smell may be impaired by exposure to metal compounds involving cadmium, chromium and nickel, and to formaldehyde. This conclusion is supported by the results of animal experiments. The level of evidence for a relationship between olfactory dysfunction and workplace exposure to other substances is relatively weak.
Collapse
Affiliation(s)
- Sabine Werner
- Institute for Occupational Safety and Health of the German Social Accident Insurance, Unit Toxicology of Industrial Chemicals, Alte Heerstrasse 111, 53757 Sankt Augustin, Germany
| | - Eberhard Nies
- Institute for Occupational Safety and Health of the German Social Accident Insurance, Unit Toxicology of Industrial Chemicals, Alte Heerstrasse 111, 53757 Sankt Augustin, Germany
| |
Collapse
|
35
|
Liu G, Patel JM, Tepe B, McClard CK, Swanson J, Quast KB, Arenkiel BR. An Objective and Reproducible Test of Olfactory Learning and Discrimination in Mice. J Vis Exp 2018. [PMID: 29630042 DOI: 10.3791/57142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Olfaction is the predominant sensory modality in mice and influences many important behaviors, including foraging, predator detection, mating, and parenting. Importantly, mice can be trained to associate novel odors with specific behavioral responses to provide insight into olfactory circuit function. This protocol details the procedure for training mice on a Go/No-Go operant learning task. In this approach, mice are trained on hundreds of automated trials daily for 2-4 weeks and can then be tested on novel Go/No-Go odor pairs to assess olfactory discrimination, or be used for studies on how odor learning alters the structure or function of the olfactory circuit. Additionally, the mouse olfactory bulb (OB) features ongoing integration of adult-born neurons. Interestingly, olfactory learning increases both the survival and synaptic connections of these adult-born neurons. Therefore, this protocol can be combined with other biochemical, electrophysiological, and imaging techniques to study learning and activity-dependent factors that mediate neuronal survival and plasticity.
Collapse
Affiliation(s)
- Gary Liu
- Program in Developmental Biology, Baylor College of Medicine; Medical Scientist Training Program, Baylor College of Medicine;
| | - Jay M Patel
- Medical Scientist Training Program, Baylor College of Medicine; Department of Neuroscience, Baylor College of Medicine
| | - Burak Tepe
- Program in Developmental Biology, Baylor College of Medicine
| | - Cynthia K McClard
- Medical Scientist Training Program, Baylor College of Medicine; Department of Molecular and Human Genetics, Baylor College of Medicine
| | - Jessica Swanson
- Department of Molecular and Human Genetics, Baylor College of Medicine
| | - Kathleen B Quast
- Department of Molecular and Human Genetics, Baylor College of Medicine
| | - Benjamin R Arenkiel
- Program in Developmental Biology, Baylor College of Medicine; Department of Neuroscience, Baylor College of Medicine; Department of Molecular and Human Genetics, Baylor College of Medicine; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital
| |
Collapse
|
36
|
Vann KT, Xiong ZG. Acid-sensing ion channel 1 contributes to normal olfactory function. Behav Brain Res 2018; 337:246-251. [PMID: 28912013 PMCID: PMC5645255 DOI: 10.1016/j.bbr.2017.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 11/21/2022]
Abstract
Acid-sensing ion channels (ASICs) are cation channels activated by protons. ASIC1a, a primary ASIC subunit in the brain, was recently characterized in the olfactory bulb. The present study tested the hypothesis that ASIC1a is essential for normal olfactory function. Olfactory behavior of wild-type (WT) and ASIC1-/- mice was evaluated by using three standard olfactory tests: (1) the buried food test, (2) the olfactory habituation test, and (3) the olfactory preference test. In buried food test, ASIC1-/- mice had significantly longer latency to uncover buried food than WT mice. In olfactory habituation test, ASIC1-/- mice had increased sniffing time with acidic odorants. In olfactory preference test, ASIC1-/- mice did not exhibit normal avoidance behavior for 2, 5- dihydro-2, 4, 5-trimethylthiazoline (TMT). Consistent with ASIC1 knockout, ASIC1 inhibition by nasal administration of PcTX1 increased the latency for WT mice to uncover the buried food. Together, these findings suggest a key role for ASIC1a in normal olfactory function.
Collapse
Affiliation(s)
- Kiara T Vann
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia.
| | - Zhi-Gang Xiong
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia.
| |
Collapse
|
37
|
Abstract
Olfaction is a fundamental sense in most animal species. In mammals, the olfactory system comprises several subpopulations of sensory neurons located throughout the nasal cavity, which detect a variety of chemostimuli, including odorants, intraspecies and interspecies chemical communication cues. Some of these compounds are important for regulating innate and learned behaviors, and endocrine changes in response to other animals in the environment. With a particular focus on laboratory rodent species, this chapter provides a comprehensive description of the most important behavioral assays used for studying the olfactory system, and is meant to be a practical guide for those who study olfaction-mediated behaviors or who have an interest in deciphering the molecular, cellular, or neural mechanisms through which the sense of smell controls the generation of adaptive behavioral outputs.
Collapse
Affiliation(s)
- Fabio Papes
- Department of Genetics and Evolution, Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| | - Thiago S Nakahara
- Department of Genetics and Evolution, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Antonio P Camargo
- Department of Genetics and Evolution, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
38
|
Chang YC, Cole TB, Costa LG. Behavioral Phenotyping for Autism Spectrum Disorders in Mice. CURRENT PROTOCOLS IN TOXICOLOGY 2017; 72:11.22.1-11.22.21. [PMID: 28463420 PMCID: PMC5494990 DOI: 10.1002/cptx.19] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Autism spectrum disorder (ASD) represents a heterogeneous group of disorders characterized by alterations in three behavioral symptom domains: Social interactions, verbal and nonverbal communication, and repetitive behaviors. Increasing prevalence of ASD in recent years suggests that exposure to environmental toxicants may be critical in modulating etiology of this disease. As clinical diagnosis of autism still relies on behavioral evaluation, it is important to be able to assess similar behavioral traits in animal models, to provide biological plausibility of associations between environmental exposures and ASD. Rodents naturally exhibit a large number of behaviors that can be linked to similar behaviors in human. In this unit, behavioral tests are described that are relevant to the domains affected in ASD. For the repetitive domain, the T-maze spontaneous alternation test and marble burying test are described. For the communication domain, neonatal ultrasonic vocalization and olfactory habituation test toward social and non-social odor are described. Finally, for the sociability domain, the three-chambered social preference test and the reciprocal interaction test are presented. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Yu-Chi Chang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Toby B. Cole
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Center on Human Development and Disability, University of Washington, Seattle, Washington, USA
| | - Lucio G. Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Department of Neuroscience, University of Parma Medical School, Parma, Italy
| |
Collapse
|
39
|
|
40
|
Abreu MS, Giacomini AC, Rodriguez R, Kalueff AV, Barcellos LJ. Effects of ZnSO 4 -induced peripheral anosmia on zebrafish behavior and physiology. Behav Brain Res 2017; 320:275-281. [DOI: 10.1016/j.bbr.2016.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/07/2016] [Accepted: 12/12/2016] [Indexed: 12/14/2022]
|
41
|
|