1
|
Glaros E, Foot J, Rayner B, Schilter H, Zhang Y, Paumann-Page M, Teixeira MM, Jarolimek W, Thomas SR. Targeting vascular adhesion protein-1 and myeloperoxidase with a dual inhibitor SNT-8370 in preclinical models of inflammatory disease. Nat Commun 2025; 16:3430. [PMID: 40210617 PMCID: PMC11985910 DOI: 10.1038/s41467-025-58454-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 03/20/2025] [Indexed: 04/12/2025] Open
Abstract
Inflammatory diseases are a major source of morbidity and mortality world-wide, the pathogenesis of which are characterised by the interplay of key pro-inflammatory and oxidative enzymes. Here, we report the development of a small molecule dual inhibitor targeting vascular adhesion protein-1 (VAP-1) and myeloperoxidase (MPO), two clinically relevant pro-inflammatory/oxidative enzymes that play complementary pathogenic roles in various inflammatory diseases. This agent, SNT-8370 [(E)-3-(3-((2-(aminomethyl)-3-fluoroallyl)oxy)benzyl)-2-thioxo-1,2,3,7-tetrahydro-6H-purin-6-one)], irreversibly inhibits VAP-1 and MPO activity with equivalent and enhanced nanomolar potency, respectively, when compared to benchmark clinical VAP-1 and MPO inhibitors. SNT-8370 is selective, exhibiting >100-1000-fold more potency for VAP-1 and MPO versus other mammalian (per)oxidases and shows no significant off-target activity in established preclinical screening panels. In vivo, SNT-8370 is metabolically stable, exhibits a favourable pharmacokinetic/pharmacodynamic profile without CNS penetration, and effectively inhibits VAP-1 and MPO activities. Moreover, compared to monotherapy, SNT-8370 more effectively inhibits leukocyte infiltration in mouse peritonitis, carrageenan air pouch, and lipopolysaccharide-induced lung injury models of acute inflammation. SNT-8370 is also protective in preclinical models of myocardial ischemia-reperfusion injury and unilateral-ureteral-obstruction-induced nephropathy. Collectively, our results support SNT-8370 as a first-in-class, mechanism-based dual inhibitor of VAP-1 and MPO, and as a promising therapeutic for the clinical treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Elias Glaros
- Cardiometabolic Disease Research Group, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia
| | | | - Ben Rayner
- The Heart Research Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | | | - Yunjia Zhang
- Cardiometabolic Disease Research Group, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia
- The Heart Research Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Martina Paumann-Page
- Mātai Hāora Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Mauro M Teixeira
- Center for Innovative and Advanced Therapies, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Shane R Thomas
- Cardiometabolic Disease Research Group, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Ertan MB, Ayduğan MY, Evren E, İnanç İ, Erdemli E, Erdemli B. Differences of microbial growth and biofilm formation among periprosthetic joint infection-causing species: an animal study. Int Microbiol 2025:10.1007/s10123-024-00629-0. [PMID: 39820867 DOI: 10.1007/s10123-024-00629-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/08/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
PURPOSE The most frequently used surgical procedures for periprosthetic joint infections (PJIs) are debridement, antibiotics, and implant retention (DAIR), as well as single- or two-stage revision arthroplasty. The choice of surgery is made depending on the full maturation of the biofilm layer. The purpose of this study was to evaluate the biofilm formation and microbial growth using common PJI-causing agents and compare its development on the implant surface. METHODS The in vivo study was performed using 40 Sprague-Dawley rats divided into five groups (n = 8/group): Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Candida albicans, and control. Six standard titanium alloy discs were placed into the subcutaneous air pouches of the interscapular areas of the rats. After the inoculation of microorganisms, disc and soft tissue cultures were collected at 2-week intervals for 6 weeks, and the microbial load and the microscopic appearance of the biofilm were compared. RESULTS The disc samples from the S. aureus group had the highest infection load at all time points; however, in soft tissue samples, this was only observed at week 4 and 6. Electron microscopic images showed no distinctive differences in the biofilm structures between the groups. CONCLUSION S. aureus microbial burden was significantly higher in implant cultures at week 2 compared to other PJI-causing agents examined. These results may explain the higher failure rate seen if the DAIR procedure was performed at < 3-4 weeks after the PJI symptom onset and support the observation that DAIR may not be effective against PJIs caused by S. aureus.
Collapse
Affiliation(s)
- Mehmet Batu Ertan
- Department of Orthopedics and Traumatology, Atılım Unıversity School of Medicine, Ankara, Turkey.
| | - Mehmet Yağız Ayduğan
- Department of Orthopedics and Traumatology, Ministry of Health Haymana State Hospital, Ankara, Turkey
| | - Ebru Evren
- Department of Medical Microbiology, Ankara University School of Medicine, Ankara, Turkey
| | - İrem İnanç
- Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey
| | - Esra Erdemli
- Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey
| | - Bülent Erdemli
- Department of Orthopedics and Traumatology, Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
3
|
Ozcan Tezgin D, Kurkcu S, Si D, Krucinska J, Mosley A, Mehta P, Babic I, Nurmemmedov E, Kuo A, He W, Nelson CE, Wright L, Wright DL, Giardina C. Evaluation of UCP1162, a potent propargyl-linked inhibitor of dihydrofolate reductase with potential application to cancer and autoimmune disease. Biochem Pharmacol 2024; 230:116617. [PMID: 39528074 DOI: 10.1016/j.bcp.2024.116617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Cellular resistance can limit the effectiveness of antifolate drugs for the treatment of cancer and autoimmune diseases. We examined the biochemical and cellular effects of a propargyl linked, non-classical antifolate UCP1162 that shows exceptional potency and resilience in the background of methotrexate resistance. UCP1162 inhibited the human DHFR enzyme with affinity and kinetics comparable to methotrexate (MTX). UCP1162 also inhibited cancer cell proliferation and bound cellular DHFR at low nanomolar concentrations. Leucovorin suppressed the cellular effects of UCP1162, consistent with UCP1162 working as an antifolate. Like other antifolates, UCP1162 reduced acute inflammation in mice and inhibited FLS cell growth and motility. Single cell RNA-seq showed that MTX and UCP1162 generated overlapping gene expression changes after a 48-hour exposure. However, while leukemia cells (CCRF-CEM) resistant to MTX could be readily selected, UCP1162-resistant cells could not be obtained. Long-term exposure to UCP1162 resulted in static culture expressing stem cell genes (CD34, ABCG2, ABCB1), adaptive genes (TCN2, CDKN1A), and genes that might serve as therapeutic targets (TPBG/5T4, TNFRSF10A, ACE). These findings suggest that UCP1162 is a unique tool for studying cellular responses to long-term antifolate treatment and holds promise as a lead compound capable of overcoming some forms of antifolate resistance.
Collapse
Affiliation(s)
- Didem Ozcan Tezgin
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, United States
| | - Shan Kurkcu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, United States
| | - Debjani Si
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, United States
| | - Jolanta Krucinska
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, United States
| | - Adriane Mosley
- Quercus Molecular Design, Farmington, CT 06032, United States
| | - Pratik Mehta
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, United States
| | - Ivan Babic
- CellarisBio, LLC, 9276 Scranton Rd, Suite 500, San Diego, CA 92121, United States
| | - Elmar Nurmemmedov
- CellarisBio, LLC, 9276 Scranton Rd, Suite 500, San Diego, CA 92121, United States
| | - Alan Kuo
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, United States
| | - Wu He
- Flow Cytometry Core Facility, University of Connecticut, Storrs, CT 06269, United States
| | - Craig E Nelson
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, United States
| | - Lee Wright
- Quercus Molecular Design, Farmington, CT 06032, United States
| | - Dennis L Wright
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, United States; Quercus Molecular Design, Farmington, CT 06032, United States
| | - Charles Giardina
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
4
|
Krauklis SA, Hussain J, Murphy KM, Dray EL, Ousley CG, Justyna K, Distefano MD, Steelman AJ, McKim DB. Mononuclear phagocyte morphological response to chemoattractants is dependent on geranylgeranyl pyrophosphate. Am J Physiol Endocrinol Metab 2024; 327:E55-E68. [PMID: 38717364 PMCID: PMC11390116 DOI: 10.1152/ajpendo.00359.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/25/2024] [Accepted: 04/24/2024] [Indexed: 06/22/2024]
Abstract
Statins are used to treat hypercholesterolemia and function by inhibiting the production of the rate-limiting metabolite mevalonate. As such, statin treatment not only inhibits de novo synthesis of cholesterol but also isoprenoids that are involved in prenylation, the posttranslational lipid modification of proteins. The immunomodulatory effects of statins are broad and often conflicting. Previous work demonstrated that statins increased survival and inhibited myeloid cell trafficking in a murine model of sepsis, but the exact mechanisms underlying this phenomenon were unclear. Herein, we investigated the role of prenylation in chemoattractant responses. We found that simvastatin treatment abolished chemoattractant responses induced by stimulation by C5a and FMLP. The inhibitory effect of simvastatin treatment was unaffected by the addition of either farnesyl pyrophosphate (FPP) or squalene but was reversed by restoring geranylgeranyl pyrophosphate (GGPP). Treatment with prenyltransferase inhibitors showed that the chemoattractant response to both chemoattractants was dependent on geranylgeranylation. Proteomic analysis of C15AlkOPP-prenylated proteins identified several geranylgeranylated proteins involved in chemoattractant responses, including RHOA, RAC1, CDC42, and GNG2. Chemoattractant responses in THP-1 human macrophages were also geranylgeranylation dependent. These studies provide data that help clarify paradoxical findings on the immunomodulatory effects of statins. Furthermore, they establish the role of geranylgeranylation in mediating the morphological response to chemoattractant C5a.NEW & NOTEWORTHY The immunomodulatory effect of prenylation is ill-defined. We investigated the role of prenylation on the chemoattractant response to C5a. Simvastatin treatment inhibits the cytoskeletal remodeling associated with a chemotactic response. We showed that the chemoattractant response to C5a was dependent on geranylgeranylation, and proteomic analysis identified several geranylgeranylated proteins that are involved in C5a receptor signaling and cytoskeletal remodeling. Furthermore, they establish the role of geranylgeranylation in mediating the response to chemoattractant C5a.
Collapse
Affiliation(s)
- Steven A Krauklis
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Department of Animal Sciences,University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Jamal Hussain
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Department of Animal Sciences,University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Katherine M Murphy
- Department of Animal Sciences,University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Evan L Dray
- Department of Animal Sciences,University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Carey G Ousley
- Department of Animal Sciences,University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Katarzyna Justyna
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, United States
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, United States
| | - Andrew J Steelman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Department of Animal Sciences,University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Daniel B McKim
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Department of Animal Sciences,University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| |
Collapse
|
5
|
Woitschach F, Kloss M, Kischkel S, Macháček T, Reinholdt C, Senz V, Schlodder K, Löbermann M, Grabow N, Reisinger EC, Sombetzki M. Utilization of a highly adaptable murine air pouch model for minimally invasive testing of the inflammatory potential of biomaterials. Front Bioeng Biotechnol 2024; 12:1367366. [PMID: 38737540 PMCID: PMC11082294 DOI: 10.3389/fbioe.2024.1367366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction: The biocompatibility of an implanted material strongly determines the subsequent host immune response. After insertion into the body, each medical device causes tissue reactions. How intense and long-lasting these are is defined by the material properties. The so-called foreign body reaction is a reaction leading to the inflammation and wound healing process after implantation. The constantly expanding field of implant technology and the growing areas of application make optimization and adaptation of the materials used inevitable. Methods: In this study, modified liquid silicone rubber (LSR) and two of the most commonly used thermoplastic polyurethanes (TPU) were compared in terms of induced inflammatory response in the body. We evaluated the production of inflammatory cytokines, infiltration of inflammatory cells and encapsulation of foreign bodies in a subcutaneous air-pouch model in mice. In this model, the material is applied in a minimally invasive procedure via a cannula and in one piece, which allows material testing without destroying or crushing the material and thus studying an intact implant surface. The study design includes short-term (6 h) and long-term (10 days) analysis of the host response to the implanted materials. Air-pouch-infiltrating cells were determined by flow cytometry after 6 h and 10 days. Inflammation, fibrosis and angiogenesis markers were analyzed in the capsular tissue by qPCR after 10 days. Results: The foreign body reaction was investigated by macroscopic evaluation and scanning electron microscopy (SEM). Increased leukocyte infiltration was observed in the air-pouch after 6 h, but it markedly diminished after 10 days. After 10 days, capsule formations were observed around the materials without visible inflammatory cells. Discussion: For biocompatibility testing materials are often implanted in muscle tissue. These test methods are not sufficiently conclusive, especially for materials that are intended to come into contact with blood. Our study primarily shows that the presented model is a highly adaptable and minimally invasive test system to test the inflammatory potential of and foreign body reaction to candidate materials and offers more precise analysis options by means of flow cytometry.
Collapse
Affiliation(s)
- Franziska Woitschach
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University Medical Center, Rostock, Germany
| | - Marlen Kloss
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University Medical Center, Rostock, Germany
| | - Sabine Kischkel
- Institute for Biomedical Engineering, University Medical Center Rostock, Rostock-Warnemünde, Germany
| | - Tomáš Macháček
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Cindy Reinholdt
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University Medical Center, Rostock, Germany
| | - Volkmar Senz
- Institute for Biomedical Engineering, University Medical Center Rostock, Rostock-Warnemünde, Germany
| | | | - Micha Löbermann
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University Medical Center, Rostock, Germany
| | - Niels Grabow
- Institute for Biomedical Engineering, University Medical Center Rostock, Rostock-Warnemünde, Germany
| | - Emil C. Reisinger
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University Medical Center, Rostock, Germany
| | - Martina Sombetzki
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University Medical Center, Rostock, Germany
| |
Collapse
|
6
|
Peng V, Trsan T, Sudan R, Bhattarai B, Cortez VS, Molgora M, Vacher J, Colonna M. Inositol phosphatase INPP4B sustains ILC1s and intratumoral NK cells through an AKT-driven pathway. J Exp Med 2024; 221:e20230124. [PMID: 38197946 PMCID: PMC10783437 DOI: 10.1084/jem.20230124] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 11/17/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024] Open
Abstract
Innate lymphoid cells (ILCs) are a heterogeneous population of lymphocytes that coordinate early immune responses and maintain tissue homeostasis. Type 1 innate immune responses are mediated by natural killer (NK) cells and group 1 ILCs (ILC1s). Despite their shared features, NK cells and ILC1s display profound differences among various tissue microenvironments. Here, we identify the inositol polyphosphatase INPP4B as a hallmark feature of tissue-resident ILC1s and intratumoral NK cells using an scRNA-seq atlas of tissue-associated and circulating NK/ILC1s. Conditional deletion of Inpp4b in ILC1s and NK cells reveals that it is necessary for the homeostasis of tissue-resident ILC1s but not circulating NK cells at steady-state. Inpp4b-deficient cells display increased rates of apoptosis and reduced activation of the prosurvival molecule AKT. Furthermore, expression of Inpp4b by NK/ILC1s is necessary for their presence in the intratumoral environment, and lack of Inpp4b impairs antitumor immunity. These findings highlight INPP4B as a novel regulator of tissue residency and antitumor function in ILC1s and NK cells.
Collapse
Affiliation(s)
- Vincent Peng
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tihana Trsan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Raki Sudan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bishan Bhattarai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Victor S. Cortez
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Martina Molgora
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jean Vacher
- Institut de Recherches Cliniques de Montréal, Montréal, Canada
- Département de Médecine, Université de Montréal, Montréal, Canada
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
7
|
Castro GNDS, de Souza RDN, da Silva ACM, Laureano-Melo R, da Silva Côrtes W, Capim SL, de Almeida Vasconcellos MLA, Marinho BG. Analgesic and Anti-inflammatory Potential of the New Tetrahydropyran Derivative (2s,6s)-6-ethyl-tetrahydro-2h-pyran-2-yl) Methanol. Antiinflamm Antiallergy Agents Med Chem 2024; 23:105-117. [PMID: 38409717 DOI: 10.2174/0118715230282982240202052127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND The development of analgesic and anti-inflammatory drugs plays a crucial role in modern medicine, aiming to alleviate pain and reduce inflammation in patients. Opioids and nonsteroidal anti-inflammatory drugs are groups of drugs conventionally used to treat pain and inflammation, but a wide range of adverse effects and ineffectiveness in some pathological conditions leads us to search for new drugs with analgesic and anti-inflammatory properties. OBJECTIVES In this regard, the authors intend to investigate the ((2s,6s)-6-ethyl-tetrahydro-2h-pyran- 2-yl) methanol compound (LS20) on pain and acute inflammation. METHODS Male Swiss mice were evaluated using acetic acid-induced abdominal writhing, formalin, and tail-flick as models of nociceptive evaluation and edema paw, air pouch and cell culture as models of inflammatory evaluation besides the rotarod test for assessment of motor impairment. RESULTS The compound showed an effect on the acetic acid-induced abdominal writhing, formalin and tail-flick tests. Studying the mechanism of action, reversion of the antinociceptive effect of the compound was observed from previous intraperitoneal administration of selective and non-selective opioid antagonists on the tail flick test. In addition, the compound induced an antiedematogenic effect and reduced leukocyte migration and the production of pro-inflammatory cytokines in the air pouch model. LS20 was able to maintain cell viability, in addition to reducing cell production of TNF-α and IL-6. CONCLUSION In summary, the LS20 compound presented an antinociceptive effect, demonstrating the participation of the opioid system and an anti-inflammatory effect related to the inhibition of pro-inflammatory cytokine production. The compound also demonstrated safety at the cellular level.
Collapse
Affiliation(s)
- Gustavo Nunes de Santana Castro
- Laboratório de Farmacologia da Inflamação e Nocicepção, Programa de Pós-Graduação em Medicina Veterinária, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| | - Raquel do Nascimento de Souza
- Laboratório de Cultura de Células, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| | - Alba Cenélia Matos da Silva
- Laboratório de Cultura de Células, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| | - Roberto Laureano-Melo
- Laboratório de Fisiofarmacologia Comportamental, Centro Universitário de Barra Mansa, Barra Mansa, RJ, Brasil
| | - Wellington da Silva Côrtes
- Laboratório de Psicofarmacologia e Comportamento, Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| | - Saulo Luis Capim
- Instituto Federal de Educação, Ciência e Tecnologia Baiano, Federal Institute Baiano, Campus Catu, BA, Brasil
| | | | - Bruno Guimarães Marinho
- Laboratório de Farmacologia da Inflamação e Nocicepção, Programa de Pós-Graduação em Medicina Veterinária, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
- Laboratório de Cultura de Células, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
- Laboratório de Psicofarmacologia e Comportamento, Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| |
Collapse
|
8
|
da Silva PR, Apolinário NDM, da Silva SÂS, Araruna MEC, Costa TB, e Silva YMSDM, da Silva TG, de Moura RO, dos Santos VL. Anti-Inflammatory Activity of N'-(3-(1H-indol-3-yl)benzylidene)-2-cyanoacetohydrazide Derivative via sGC-NO/Cytokine Pathway. Pharmaceuticals (Basel) 2023; 16:1415. [PMID: 37895886 PMCID: PMC10610422 DOI: 10.3390/ph16101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The N-acylhydrazone function has been reported as a pharmacophore group of molecules with diverse pharmacological activities, including anti-inflammatory effects. Therefore, this study was designed to evaluate the anti-inflammatory potential of the compound N'-(3-(1H-indol-3-yl)benzylidene)-2-cyanoacetohydrazide (JR19) in vivo. The study started with the carrageenan-induced peritonitis model, followed by an investigation of leukocyte migration using the subcutaneous air pouch test and an assessment of the antinociceptive profile using formalin-induced pain. A preliminary molecular docking study focusing on the crystallographic structures of NFκB, iNOS, and sGC was performed to determine the likely mechanism of action. The computational study revealed satisfactory interaction energies with the selected targets, and the same peritonitis model was used to validate the involvement of the nitric oxide pathway and cytokine expression in the peritoneal exudate of mice pretreated with L-NAME or methylene blue. In the peritonitis assay, JR19 (10 and 20 mg/kg) reduced leukocyte migration by 59% and 52%, respectively, compared to the vehicle group, with the 10 mg/kg dose used in subsequent assays. In the subcutaneous air pouch assay, the reduction in cell migration was 66%, and the response to intraplantar formalin was reduced by 39%, particularly during the inflammatory phase, suggesting that the compound lacks central analgesic activity. In addition, a reversal of the anti-inflammatory effect was observed in mice pretreated with L-NAME or methylene blue, indicating the involvement of iNOS and sGC in the anti-inflammatory response of JR19. The compound effectively and significantly decreased the levels of IL-6, TNF-α, IL-17, and IFN-γ, and this effect was reversed in animals pretreated with L-NAME, supporting a NO-dependent anti-inflammatory effect. In contrast, pretreatment with methylene blue only reversed the reduction in TNF-α levels. Therefore, these results demonstrate the pharmacological potential of the novel N-acylhydrazone derivative, which acts through the nitric oxide pathway and cytokine signaling, making it a strong candidate as an anti-inflammatory and immunomodulatory agent.
Collapse
Affiliation(s)
- Pablo Rayff da Silva
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Nadjaele de Melo Apolinário
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Simone Ângela Soares da Silva
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Maria Elaine Cristina Araruna
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Thássia Borges Costa
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Yvnni M. S. de Medeiros e Silva
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Teresinha Gonçalves da Silva
- Departamento de Antibióticos, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil;
| | - Ricardo Olímpio de Moura
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Vanda Lucia dos Santos
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| |
Collapse
|
9
|
Mengie Ayele T, Chekol Abebe E, Tilahun Muche Z, Mekonnen Agidew M, Shumet Yimer Y, Tesfaw Addis G, Dagnaw Baye N, Bogale Kassie A, Adela Alemu M, Gobezie Yiblet T, Ayalew Tiruneh G, Berihun Dagnew S. Evaluation of In Vivo Wound-Healing and Anti-Inflammatory Activities of Solvent Fractions of Fruits of Argemone mexicana L. (Papaveraceae). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6154560. [PMID: 36457593 PMCID: PMC9708338 DOI: 10.1155/2022/6154560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/01/2022] [Accepted: 11/16/2022] [Indexed: 09/08/2023]
Abstract
INTRODUCTION The solvent fractions of the fruits of Argemone mexicana L. (Papaveraceae) have not yet been explored scientifically for in vivo wound healing and anti-inflammatory activities. The objective of this study was, therefore, to evaluate in vivo wound healing and anti-inflammatory activities of the solvent fractions of the fruit of Argemone mexicana L. (Papaveraceae) in rats. METHOD The crude extract of Argemone mexicana was fractionated with n-hexane, ethyl acetate, and distilled water. Wound healing activity was evaluated using excision and incision wound models while anti-inflammatory activity was evaluated using carrageenan-induced rat paw and cotton pellet-induced granuloma models. The fractions were evaluated at 5 and 10% ointments using moist-exposed burn ointment as the standard drug, and 100, 200, and 400 mg/kg test doses using aspirin, and dexamethasone as standard drugs for wound healing and anti-inflammatory activities, respectively. All treatment administrations were made orally for anti-inflammatory activity and applied topically for wound healing activity. RESULT The 10% w/w ethyl acetate fraction ointment showed a significant percentage of wound contraction, reduced period of epithelialization, increased amount of fibrosis, neovascularization, and collagen tissue formation (p < 0.01). The ethyl acetate fraction also showed a significant increase in tensile strength (55%; p < 0.01) and (81.10%; p < 0.01) at the tested doses of 5 and 10% w/w ointments, which was comparable to moist-exposed burn ointment. The ethyl acetate fraction also revealed a significant percent edema inhibition (61.41%; p < 0.01), suppression of the exudate (38.09% p < 0.01), and granuloma mass formations (53.47% p < 0.01) at the tested dose of 400 mg/kg. CONCLUSION The results of this study showed that the Ethyl acetate fraction of Argemone mexicana fruit has significant wound healing and anti-inflammatory activities which support the traditional claims of the experimental plant.
Collapse
Affiliation(s)
- Teklie Mengie Ayele
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Endeshaw Chekol Abebe
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Zelalem Tilahun Muche
- Department of Medical Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Melaku Mekonnen Agidew
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Yohannes Shumet Yimer
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Getu Tesfaw Addis
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Nega Dagnaw Baye
- Department of Human Anatomy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Achenef Bogale Kassie
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Muluken Adela Alemu
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tesfagegn Gobezie Yiblet
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | | | - Samuel Berihun Dagnew
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
10
|
Kesserwan S, Lewis BE, Mao L, Sharafieh R, Atwood T, Kreutzer DL, Klueh U. Inflammation at Site of Insulin Infusion Diminishes Glycemic Control. J Pharm Sci 2022; 111:1952-1961. [PMID: 34986358 PMCID: PMC9880961 DOI: 10.1016/j.xphs.2021.12.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 01/31/2023]
Abstract
The approximation of euglycemia is the most effective means of preventing diabetic complications, which is achieved through effective insulin delivery. Recent reports indicate that insulin phenolic preservatives, which are found in all commercial insulin formulations, are cytotoxic, pro-inflammatory and induce secondary fibrosis. Therefore, we hypothesize that these preservatives induce an inflammatory response at the site of insulin infusion leading to diminished glycemic control and adverse pharmacokinetic outcomes. Insulin degradation by inflammatory cell proteases was quantitated following protease treatment in vitro. A modified murine air pouch model was utilized to evaluate the relative inflammatory responses following infusions of saline, insulin preservatives, and insulin, utilizing the adjuvant irritant thioglycolate. Blood glucose levels were monitored in diabetic mice with and without air pouch irritation. A pharmacokinetic analysis evaluated insulin effectiveness for diabetic mice between these two conditions. Inflammatory cells are significantly present in insulin preservative-induced inflammation, which effects diminished blood glucose control by both insulin uptake and degradation. Insulin containing these preservatives resulted in similar degrees of inflammation as observed with the irritant thioglycolate. These studies imply that the preservative agents found in commercial insulin formulations induce an intense localized inflammatory reaction. This inflammatory reaction may be responsible for the premature failure of insulin infusion devices. Future studies directed at reducing this inflammatory reaction may prove to be an important step in extending the lifespan of insulin infusion devices.
Collapse
Affiliation(s)
- Shereen Kesserwan
- Department of Biomedical Engineering, Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
| | - Brianne E. Lewis
- Department of Foundational Medical Studies, Oakland University, William Beaumont School of Medicine, Rochester, MI, USA
| | - Li Mao
- Department of Biomedical Engineering, Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
| | - Roshanak Sharafieh
- Department of Surgery, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Thomas Atwood
- Department of Surgery, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Donald L. Kreutzer
- Department of Surgery, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Ulrike Klueh
- Department of Biomedical Engineering, Integrative Biosciences Center, Wayne State University, Detroit, MI, USA,Corresponding Author: Ulrike Klueh Ph.D., Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, , Phone: 313-577-1359
| |
Collapse
|
11
|
Gonçalves GM, de Oliveira JM, Ferreira da Costa Fernandes T, Laureano-Melo R, da Silva Côrtes W, Capim SL, Araujo de Almeida Vasconcellos ML, Guimarães Marinho B. Evaluation of the in vivo and in vitro anti-inflammatory activity of a new hybrid NSAID tetrahydropyran derivative. Can J Physiol Pharmacol 2022; 100:341-351. [DOI: 10.1139/cjpp-2021-0437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Evaluate the anti-inflammatory activity in vivo and in vitro of cis-(±)-acetate of 4-chloro-6-(naphtalene-1-yl)-tetrahydro-2H-pyran-2-yl) methyl 2-(2-(2,6-diclorofenylamine) phenyl (LS19). Male Swiss mice were analyzed in the paw edema, ear edema, and air pouch tests, and in vitro COX inhibition, cytotoxicity evaluation, and cytokine and nitric oxide determination tests. The compound showed effect on the carrageenan- and bradykinin-induced paw edema and capsaicin-induced ear edema tests. In addition, the compound was able to inhibit leukocyte migration to decrease the levels of the pro-inflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) and to increase the levels of the anti-inflammatory cytokine IL-10. The compound was also able to reduce levels of TNF-α, IL-6, and nitric oxide in the RAW 264.7 cell line and to inhibit COX activity. LS19 did not induce any significant changes in the viability of RAW 264.7 cells, demonstrating safety for these cell lines. The compound LS19 did not reduce the production of gastric mucus and induced a smaller increase in the extent of gastric lesions than that developed by the administration of diclofenac. In summary, the new compound proved to be safer and it had additional mechanisms compared to diclofenac.
Collapse
Affiliation(s)
- Gabriela Mastrangelo Gonçalves
- Laboratório de Farmacologia da Inflamação e Nocicepção, Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| | - Joyce Mattos de Oliveira
- Laboratório de Farmacologia da Inflamação e Nocicepção, Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| | | | - Roberto Laureano-Melo
- Laboratório de Fisiofarmacologia Comportamental, Centro Universitário de Barra Mansa, Barra Mansa, RJ, Brasil
| | - Wellington da Silva Côrtes
- Laboratório de Farmacologia da Inflamação e Nocicepção, Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| | - Saulo Luis Capim
- Instituto Federal de Educação, Ciência e Tecnologia Baiano, Campus Catu, BA, Brasil
| | | | - Bruno Guimarães Marinho
- Laboratório de Farmacologia da Inflamação e Nocicepção, Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| |
Collapse
|
12
|
A mouse air pouch model for evaluating the anti-bacterial efficacy of phage MR-5 in resolving skin and soft tissue infection induced by methicillin-resistant Staphylococcus aureus. Folia Microbiol (Praha) 2021; 66:959-972. [PMID: 34255282 DOI: 10.1007/s12223-021-00895-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022]
Abstract
With the alarming rise in antimicrobial resistance, phage therapy represents a new paradigm for combating antibiotic-resistant infectious diseases that is worth exploring for its clinical success. With this scenario, the present study aimed at evaluating the in vivo potential of phage MR-5 (broad host range Staphylococcus aureus phage) against soft tissue infections induced by methicillin-resistant S. aureus (MRSA). Also, the usefulness of relatively simple murine air pouch as a dual-purpose model (to study both anti-bacterial and anti-inflammatory parameters) in the field of phage therapeutics has been put to test. Murine air pouch model was established with experimental skin infection induced by S. aureus ATCC 43,300 followed by subcutaneous administration of phage alone as well as along with linezolid. Phage MR-5 alone and in combination with linezolid (showing synergy) brought significant reduction in the bacterial load (both extracellular as well as intracellular) that led to faster resolution of pouch infection. The main conclusions surfaced from the present study include the following: (a) murine air pouch model represents a simple useful model (mimicking subcutaneous skin infection) for studying anti-bacterial potencies of drug candidates. Therefore, its use and further adaptations especially in field of phage therapeutics is highly advocated and (b) phage MR-5 proved to be a potential therapeutic candidate against treatment of MRSA-induced skin and soft tissue infections and use of combination therapy is strongly recommended.
Collapse
|
13
|
DeJulius CR, Dollinger BR, Kavanaugh TE, Dailing E, Yu F, Gulati S, Miskalis A, Zhang C, Uddin J, Dikalov S, Duvall CL. Optimizing an Antioxidant TEMPO Copolymer for Reactive Oxygen Species Scavenging and Anti-Inflammatory Effects in Vivo. Bioconjug Chem 2021; 32:928-941. [PMID: 33872001 PMCID: PMC8188607 DOI: 10.1021/acs.bioconjchem.1c00081] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Oxidative stress is broadly implicated in chronic, inflammatory diseases because it causes protein and lipid damage, cell death, and stimulation of inflammatory signaling. Supplementation of innate antioxidant mechanisms with drugs such as the superoxide dismutase (SOD) mimetic compound 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) is a promising strategy for reducing oxidative stress-driven pathologies. TEMPO is inexpensive to produce and has strong antioxidant activity, but it is limited as a drug due to rapid clearance from the body. It is also challenging to encapsulate into micellar nanoparticles or polymer microparticles, because it is a small, water soluble molecule that does not efficiently load into hydrophobic carrier systems. In this work, we pursued a polymeric form of TEMPO [poly(TEMPO)] to increase its molecular weight with the goal of improving in vivo bioavailability. High density of TEMPO on the poly(TEMPO) backbone limited water solubility and bioactivity of the product, a challenge that was overcome by tuning the density of TEMPO in the polymer by copolymerization with the hydrophilic monomer dimethylacrylamide (DMA). Using this strategy, we formed a series of poly(DMA-co-TEMPO) random copolymers. An optimal composition of 40 mol % TEMPO/60 mol % DMA was identified for water solubility and O2•- scavenging in vitro. In an air pouch model of acute local inflammation, the optimized copolymer outperformed both the free drug and a 100% poly(TEMPO) formulation in O2•- scavenging, retention, and reduction of TNFα levels. Additionally, the optimized copolymer reduced ROS levels after systemic injection in a footpad model of inflammation. These results demonstrate the benefit of polymerizing TEMPO for in vivo efficacy and could lead to a useful antioxidant polymer formulation for next-generation anti-inflammatory treatments.
Collapse
Affiliation(s)
- Carlisle R DeJulius
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Bryan R Dollinger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Taylor E Kavanaugh
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Eric Dailing
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Fang Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Shubham Gulati
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Angelo Miskalis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Caiyun Zhang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
- Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Jashim Uddin
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Sergey Dikalov
- Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
14
|
Ahn JH, Park YL, Song AY, Kim WG, Je CY, Jung DH, Kim YJ, Oh J, Cho JY, Kim DJ, Park JH. Water extract of Artemisia scoparia Waldst. & Kitam suppresses LPS-induced cytokine production and NLRP3 inflammasome activation in macrophages and alleviates carrageenan-induced acute inflammation in mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113606. [PMID: 33242622 DOI: 10.1016/j.jep.2020.113606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia scoparia Waldst. & Kitam (A. scoparia) is a perennial herbal plant that is widely used as a folk remedy in Asian countries. Several studies have demonstrated that A. scoparia has various physiological effects, including anti-inflammation, anti-hypertension, anti-obesity, anti-hepatotoxicity, and anti-oxidant effects. AIM OF THE STUDY The objective of the present study was to examine the anti-inflammatory effects of water extract of A. scoparia (WAS). MATERIALS AND METHODS Murine bone marrow-derived macrophages (BMDMs), human monocyte THP-1 and murine fibroblast 3T3-L1 cells were used for the in vitro experiments. Cell viability and cytokine production were determined by the MTT assay and ELISA, respectively. RT-PCR was performed to determine iNOS gene expression and the Griess reaction was used to measure nitrite levels. iNOS protein expression, activation of NF-κB and MAPKs, and cleavage of caspase-1 and IL-1β were determined by Western blot analysis. A carrageenan-induced mouse model of acute inflammation was used in the in vivo experiments. RESULTS Pretreatment with WAS concentration-dependently suppressed gene expression and IL-6, TNF-α, CXCL1 and iNOS protein levels in BMDMs stimulated with LPS. In addition, pretreatment with WAS inhibited LPS-induced production of IL-6 and TNF-α in THP-1 cells and CXCL1 in 3T3-L1. Furthermore, LPS induced phosphorylation of p65 in BMDMs, and this induction was dramatically suppressed by WAS pretreatment. We further investigated whether WAS regulates activation of the NLRP3 inflammasome, which is known to be essential for IL-1β processing. WAS inhibited the production of IL-1β, but not IL-6, in response to adenosine triphosphate (ATP) and monosodium uric acid (MSU) crystals in LPS-primed BMDMs. Cleavage of caspase-1 and IL-1β was also reduced by WAS. We finally evaluated the in vivo anti-inflammatory effects of WAS in a mouse model of carrageenan-induced acute inflammation. Subcutaneous administration of WAS reduced production of the inflammatory cytokines IL-6, TNF-α, CXCL1, and IL-1β. Recruitment of immune cells, mostly neutrophils, was also reduced by administration of WAS. Infiltration of inflammatory cells and edema in the submucosa of air pouch tissues were markedly improved in the WAS-treated groups. CONCLUSIONS Our results indicate that WAS possesses potent anti-inflammatory properties. These findings suggest that A. scoparia is a candidate functional food targeting several inflammatory diseases.
Collapse
Affiliation(s)
- Jae-Hun Ahn
- Laboratory Animal Medicine, College of Veterinary Medicine and BK 21 PLUS Project Team, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Yae-Lyeon Park
- Laboratory Animal Medicine, College of Veterinary Medicine and BK 21 PLUS Project Team, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - A-Young Song
- Laboratory Animal Medicine, College of Veterinary Medicine and BK 21 PLUS Project Team, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Wan-Gyu Kim
- Laboratory Animal Medicine, College of Veterinary Medicine and BK 21 PLUS Project Team, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Chang-Yun Je
- Laboratory Animal Medicine, College of Veterinary Medicine and BK 21 PLUS Project Team, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Do-Hyeon Jung
- Laboratory Animal Medicine, College of Veterinary Medicine and BK 21 PLUS Project Team, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Yeong-Jun Kim
- Laboratory Animal Medicine, College of Veterinary Medicine and BK 21 PLUS Project Team, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Jisu Oh
- Department of Food and Science and Technology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Jeong-Yong Cho
- Department of Food and Science and Technology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Dong-Jae Kim
- Laboraotry Animal Resource Center, DGIST, Daegu, Republic of Korea.
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and BK 21 PLUS Project Team, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
15
|
Oyewusi AJ, Oridupa OA, Saba AB, Oyewusi IK, Olukunle JO. Anti-inflammatory and analgesic effects of methanol extract of red cultivar Allium cepa bulbs in rats and mice. J Basic Clin Physiol Pharmacol 2021; 32:1087-1092. [PMID: 33544991 DOI: 10.1515/jbcpp-2020-0080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/04/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Several cultivars of Allium cepa L. have been studied for anti-inflammatory and analgesic activities but there is inadequate information on such biological activities of the concentrated extracts of the Nigerian grown red cultivar A. cepa bulb. METHODS The anti-inflammatory models used in this study were Carrageenan-induced paw oedema and formalin-induced paw lick in rats, while acetic acid-induced abdominal writhing, hot plate reaction, hot water tail flick tests in mice were the analgesic models. RESULTS At 30 min post-induction (pi), the inhibition of paw oedema (62.50%) by 200 mg/kg of methanol extract of red cultivar A. cepa bulb (MERCACB) was significantly (p<0.001) higher than that of indomethacin (15.63%) at 10 mg/kg. The paw oedema inhibition at 60 min pi by MERCACB (76.92%) was significantly higher than that of indomethacin (41.03%). At the early phase of formalin paw-lick test, the pain reaction time (PRT) of rat treated with MERCACB (400 mg/kg) was significantly lower than that of indomethacin and the control groups. The hotplate test revealed that PRT of mice treated with 800 mg/kg of MERCACB were significantly (p<0.01) longer in comparism to indomethacin and control groups. The PRT of mice subjected to thermal pain due to hot water and treated with 800 mg/kg of MERCACB was significantly (p<0.05) longer than that of the control group. CONCLUSIONS These findings indicate that MERCACB possesses potent anti-inflammatory and analgesic properties which confirm the traditional use of the plant for the treatment of inflammatory diseases and may be useful as a future therapeutic agent.
Collapse
Affiliation(s)
- Adeoye Joshua Oyewusi
- Department of Veterinary Pharmacology and Toxicology, Federal University of Agriculture, Abeokuta, Nigeria.,Department of Veterinary Pharmacology and Toxicology, University of Ibadan, Ibadan, Nigeria
| | | | - Adebowale Bernard Saba
- Department of Veterinary Pharmacology and Toxicology, University of Ibadan, Ibadan, Nigeria
| | | | - Jonny Olufemi Olukunle
- Department of Veterinary Pharmacology and Toxicology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
16
|
Inada T, Kamibayashi T. Protective effect of the intravenous anesthetic propofol against a local inflammation in the mouse carrageenan-induced air pouch model. Immunopharmacol Immunotoxicol 2021; 43:100-104. [PMID: 33423569 DOI: 10.1080/08923973.2020.1869256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Aim: 2,6-Di-isopropylphenol (propofol) is an intravenous general anesthetic widely used in the operating room for general anesthesia and in the intensive care unit for sedation. The mouse air pouch model is versatile in studying the anti-inflammatory effect of a drug on a local inflammation, which is induced by a variety of substances. In this study, using the carrageenan-induced air pouch inflammation model, we tested whether propofol mitigates inflammation occurring locally in the mouse air pouch. Methods: Carrageenan-induced air pouch inflammation model. Results: Propofol inhibited the production of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in the pouch. Propofol also inhibited the production of neutrophil chemokines, KC and MIP-2, and decreased the number of both Ly-6G+/CD11b+ cells (assumed to be primarily neutrophils) and Ly-6G-/CD11b+ cells (assumed to be monocytes/macrophages), recruited into the pouch at 3 h after injection of carrageenan. Conclusion: Propofol has an anti-inflammatory property in the carrageenan-induced mouse air pouch local inflammation model, by inhibiting the production of pro-inflammatory cytokines (TNF-α and IL-6), as well as by inhibiting the production of chemokines (KC and MIP-2), which might be associated with the inhibition of intra-pouch recruitment of white blood cells.
Collapse
Affiliation(s)
- Takefumi Inada
- Department of Anesthesiology, Kansai Medical University, Osaka, Japan
| | | |
Collapse
|
17
|
Kherbache A, Senator A, Laouicha S, Al-Zoubi RM, Bouriche H. Phytochemical analysis, antioxidant and anti-inflammatory activities of Helichrysum stoechas (L.) Moench extracts. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Kesserwan S, Mulka A, Sharafieh R, Qiao Y, Wu R, Kreutzer DL, Klueh U. Advancing continuous subcutaneous insulin infusion in vivo: New insights into tissue challenges. J Biomed Mater Res A 2020; 109:1065-1079. [PMID: 32896081 DOI: 10.1002/jbm.a.37097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/13/2023]
Abstract
Continuous Subcutaneous Insulin Infusion (CSII) is superior to conventional insulin therapy as it improves glycemic control thus reducing the probability of diabetic complications. Notwithstanding CSII's benefits, insulin dependent diabetic patients rarely achieve optimal glucose control. Moreover, CSII is only FDA approved for 3 days and often fails prematurely for reasons that have not been fully elucidated. We hypothesize that phenolic compounds, such as m-cresol and phenol, which are present in all commercial insulin formulations are responsible for the tissue reaction occurring at the insulin infusion site. This hypothesis was examined with in vitro cell cultures and a mouse air-pouch model to determine cellular and tissue reactions following infusions with saline, phenolic compounds, (i.e., commercial diluent), and insulin. We demonstrated that diluent and insulin were cytotoxic to cells in culture at sub-clinical concentrations (e.g., >1:10 of commercial insulin). Air pouch studies demonstrated that infusion of either diluted insulin or diluent itself induced three to five-fold level of recruited leukocytes as compared to saline. At both 3- and 7-days post infusion, these were predominantly neutrophils and macrophages. We conclude that phenolic compounds in commercial insulin preparations are cell and tissue toxic, which contributes to the failure of effective insulin infusion therapy.
Collapse
Affiliation(s)
- Shereen Kesserwan
- Integrative Biosciences Center (IBio), Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Adam Mulka
- Integrative Biosciences Center (IBio), Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Roshanak Sharafieh
- Department of Surgery, UConn Health, School of Medicine, Farmington, Connecticut, USA
| | - Yi Qiao
- Department of Surgery, UConn Health, School of Medicine, Farmington, Connecticut, USA
| | - Rong Wu
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut, USA
| | - Donald L Kreutzer
- Department of Surgery, UConn Health, School of Medicine, Farmington, Connecticut, USA
| | - Ulrike Klueh
- Integrative Biosciences Center (IBio), Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA.,Department of Surgery, UConn Health, School of Medicine, Farmington, Connecticut, USA
| |
Collapse
|
19
|
Ariyo OO, Ajayi AM, Ben-Azu B, Aderibigbe AO. Anti-nociceptive and anti-inflammatory activities of ethanol extract and fractions of Morus mesozygia Stapf (Moraceae) leaves and its underlying mechanisms in rodents. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112934. [PMID: 32387467 DOI: 10.1016/j.jep.2020.112934] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Morus mesozygia Stapf (Moraceae), commonly known as African mulberry, is traditionally used for the treatment of inflammatory disorders such as rheumatism and dermatitis. AIM This work aimed to evaluate the anti-nociceptive and anti-inflammatory effects of its ethanol (EEMm) extract, and ethylacetate fraction (EAFMm). METHODS The anti-nociceptive and anti-inflammatory effect of ethanol extracts of M. mesozygia (EEMm), and its ethylacetate (EAFMm) and residual aqueous fraction (RAFMm) was evaluated in hotplate, acetic acid and formalin tests and as well in membrane stabilizing assay and carrageenan-induced paw oedema models. Mechanism of anti-inflammation of EAFMm was investigated in the carrageenan-induced air-pouch model. RESULTS In the hot plate test of nociception, only the EAFMm showed significant (p < 0.05) anti-nociceptive activity. The extract and fractions significantly reduced number of writhing with EAFMm (400 mg/kg) showing highest inhibition (66.5%) in the acetic acid-induced writhing in mice. EEMm and EAFMm (400 mg/kg) significantly reduced the paw licking time in the early and late phases of the formalin test. The extract and fractions showed good membrane stabilizing activity comparable to indomethacin. EAFMm (100 and 400 mg/kg) showed the highest inhibition of paw oedema (53.4% and 58.1%) in the carrageenan-induced paw oedema model. The EAFMm (100 and 400 mg/kg) reduced exudate volume relative to carrageenan-control (2.64 ± 0.22, 2.08 ± 0.15 vs 3.83 ± 0.18 mL) and neutrophils (8.98 ± 1.36, 8.00 ± 0.22 vs 20.51 ± 1.14) in carrageenan-induced pouch. EAFMm significantly reduced exudate volume, pro-inflammatory cytokines and the expression of COX-2 and NFκB. CONCLUSION M. mesozygia leaves demonstrated anti-nociceptive and anti-inflammatory activities by suppressing oxidative stress, pro-inflammatory cytokines, cyclooxygenase-2, and nuclear factor kappa B.
Collapse
Affiliation(s)
- Oluwakemi O Ariyo
- Neuropharmacology Unit, Department of Pharmacology & Therapeutics, University of Ibadan, Oyo-State, Nigeria; Pharmacy Department, Health Services Directorate, Federal University of Agriculture, Abeokuta, Nigeria.
| | - Abayomi M Ajayi
- Neuropharmacology Unit, Department of Pharmacology & Therapeutics, University of Ibadan, Oyo-State, Nigeria.
| | - Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology & Therapeutics, University of Ibadan, Oyo-State, Nigeria; Department of Pharmacology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port Harcourt, Rivers State, Nigeria.
| | - Adegbuyi O Aderibigbe
- Neuropharmacology Unit, Department of Pharmacology & Therapeutics, University of Ibadan, Oyo-State, Nigeria.
| |
Collapse
|
20
|
Larsson K, Steinmetz J, Bergqvist F, Arefin S, Spahiu L, Wannberg J, Pawelzik SC, Morgenstern R, Stenberg P, Kublickiene K, Korotkova M, Jakobsson PJ. Biological characterization of new inhibitors of microsomal PGE synthase-1 in preclinical models of inflammation and vascular tone. Br J Pharmacol 2019; 176:4625-4638. [PMID: 31404942 DOI: 10.1111/bph.14827] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/18/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Microsomal PGE synthase-1 (mPGES-1), the inducible synthase that catalyses the terminal step in PGE2 biosynthesis, is of high interest as therapeutic target to treat inflammation. Inhibition of mPGES-1 is suggested to be safer than traditional NSAIDs, and recent data demonstrate anti-constrictive effects on vascular tone, indicating new therapeutic opportunities. However, there is a lack of potent mPGES-1 inhibitors lacking interspecies differences for conducting in vivo studies in relevant preclinical disease models. EXPERIMENTAL APPROACH Potency was determined based on the reduction of PGE2 formation in recombinant enzyme assays, cellular assay, human whole blood assay, and air pouch mouse model. Anti-inflammatory properties were assessed by acute paw swelling in a paw oedema rat model. Effect on vascular tone was determined with human ex vivo wire myography. KEY RESULTS We report five new mPGES-1 inhibitors (named 934, 117, 118, 322, and 323) that selectively inhibit recombinant human and rat mPGES-1 with IC50 values of 10-29 and 67-250 nM respectively. The compounds inhibited PGE2 production in a cellular assay (IC50 values 0.15-0.82 μM) and in a human whole blood assay (IC50 values 3.3-8.7 μM). Moreover, the compounds blocked PGE2 formation in an air pouch mouse model and reduced acute paw swelling in a paw oedema rat model. Human ex vivo wire myography analysis showed reduced adrenergic vasoconstriction after incubation with the compounds. CONCLUSION AND IMPLICATIONS These mPGES-1 inhibitors can be used as refined tools in further investigations of the role of mPGES-1 in inflammation and microvascular disease.
Collapse
Affiliation(s)
- Karin Larsson
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Julia Steinmetz
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Filip Bergqvist
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Samsul Arefin
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Linda Spahiu
- Biochemical Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johan Wannberg
- SciLifeLab Drug Discovery and Development Platform, Medicinal Chemistry-Lead Identification, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Sven-Christian Pawelzik
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Theme Heart and Vessels, Division of Valvular and Coronary Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Ralf Morgenstern
- Biochemical Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marina Korotkova
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
21
|
Zubaydah WOS, Wahyuni W, Sahidin S, Halik TA, Andriani R, Indalifiany A, Fristiohady A. Anti-inflammatory Activity of Pharmaceutical Gel of Ethanolic Extract from Marine Sponge Xestospongia Sp. BORNEO JOURNAL OF PHARMACY 2019. [DOI: 10.33084/bjop.v2i1.694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to determine the characteristics of the gel formula based on it�s organoleptic properties, pH, viscosity, dispersion and homogenity by stability test carried out using the cycling test method and to determine the anti-inflammatory activity of the Xestospongia Sp. in male white mice (Mus musculus) by creating an artificial edema on the mice left foot induced by 1% ?-carrageenan. The gel formula from the ethanol extract of Xestospongia Sp. sponge was physically stable in terms of its organoleptic observation, homogenity, pH and viscosity test. However, the results that were obtained after dispersion test did not fulfill the requirements. In this study, the gel formula of the ethanol extract of Xestospongia Sp. sponge was administered on the mice left foot by using the variations in extract concentration of 0.02%, 0.03%, and 0.04%, and the gel without extract as a negative control and Galtaren�gel (1% Diclofenac Sodium) as a positive control. The evaluated data were in the form of mice leg edema volume measured based on its percent of inflammation and percent of inflammatory inhibition and observed for 360 minutes. The data were analyzed by using the Kruskal-Wallis test followed by the Mann-Whitney test with a confidence level of 95%. The results of this study showed that the gel formula of ethanol extract of Xestospongia Sp. sponge has an anti-inflammatory effect on each concentration and the formula that has a large anti-inflammatory effect was obtained at extract concentration of 0.04%.
Collapse
|
22
|
Fang S, Agostinis P, Salven P, Garg AD. Decoding cancer cell death-driven immune cell recruitment: An in vivo method for site-of-vaccination analyses. Methods Enzymol 2019; 636:185-207. [PMID: 32178819 DOI: 10.1016/bs.mie.2019.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Anticancer vaccines have recently received renewed attention for immunotherapy of at least a subset of cancer-types. Such vaccines mostly involve either killed cancer or tumor cells alone, or combinations thereof with specific (co-incubated) innate immune cells. In recent years, the immunogenic characteristics of the dead or dying cancer cells have emerged as decisive factors behind the success of anticancer vaccines. This has amplified the importance of accounting for immunology of cell death while preparing anticancer vaccines. This, in turn, has increased the emphasis on the immune reactions at the site-of-vaccination since the therapeutic efficacy of the killed cancer/tumor cell vaccines is contingent upon the nature and characteristics of these reactions at the site-of-injection. In this article, we present a systematic methodology that exploits the murine ear pinna model to study differential immune cell recruitment by dead/dying cancer cells injected in vivo, thereby modeling the site-of-injection relevant for anticancer vaccines.
Collapse
Affiliation(s)
- Shentong Fang
- Wihuri Research Institute and Translational Cancer Medicine, University of Helsinki, Helsinki, Finland
| | - Patrizia Agostinis
- Department for Cellular and Molecular Medicine, Cell Death Research & Therapy (CDRT) Unit, KU Leuven, Leuven, Belgium; Center for Cancer Biology (CCB), VIB, Leuven, Belgium
| | - Petri Salven
- Department of Pathology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Abhishek D Garg
- Department for Cellular and Molecular Medicine, Cell Death Research & Therapy (CDRT) Unit, KU Leuven, Leuven, Belgium.
| |
Collapse
|
23
|
Anti-inflammatory effect of Allium hookeri on carrageenan-induced air pouch mouse model. PLoS One 2017; 12:e0190305. [PMID: 29281705 PMCID: PMC5744995 DOI: 10.1371/journal.pone.0190305] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/12/2017] [Indexed: 11/20/2022] Open
Abstract
Inflammation is a commonly observed immune reaction, and rheumatoid arthritis is a particularly severe inflammatory disease. In this study, we used an air pouch mouse model to evaluate the anti-inflammatory potential of Allium hookeri, which has both been used as a culinary material and a traditional medicine in south-eastern Asia for many years. Allium hookeri suppressed typical symptoms of inflammation, such as condensation of the air pouch membrane, and inhibited the expression of several inducible proinflammatory cytokines such as IL-1β, IL-6, IL-13, and TNF-α. In order to determine the molecules modulating the inflammatory effect of carrageenan treatment, the components in Allium hookeri were analyzed by GC-MS, and linoleic acid, which have anti-inflammatory effect, was detected. From the results, we concluded that the anti-inflammatory effect of Allium hookeri might be attributed to linoleic acid, which could be promising candidates for anti-inflammatory drugs that have no adverse effects.
Collapse
|
24
|
Bulugonda RK, Kumar KA, Gangappa D, Beeda H, Philip GH, Muralidhara Rao D, Faisal SM. Mangiferin from Pueraria tuberosa reduces inflammation via inactivation of NLRP3 inflammasome. Sci Rep 2017; 7:42683. [PMID: 28218280 PMCID: PMC5316935 DOI: 10.1038/srep42683] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/17/2017] [Indexed: 12/19/2022] Open
Abstract
Recent reports have demonstrated the role of phyto-constituents in modulating inflammatory responses. Mangiferin isolated from Mangifera indica is known to induce potent anti-oxidative, anti-diabetic and anti-inflammatory activity. However, the molecular mechanism of its anti-inflammatory activity is not properly understood. In this study we have isolated Mangiferin from the tubers of Pueraria tuberosa (PT-Mangiferin) and analysed the mechanism of its potent anti-inflammatory effects in LPS stimulated RAW 264.7 mouse macrophage cell line and in a carrageenan induced air pouch model. PT-Mangiferin was non-toxic to primary cells but showed significant toxicity and apoptotic effect on cancerous cells. It significantly reduced the production of pro-inflammatory mediators (COX-2, iNOS and TNF-α) in LPS stimulated RAW 264.7 cells. Further, it has also reduced the generation of ROS and inhibited LPS induced NF-kB translocation in these cells. Additionally, PT-Mangiferin significantly reduced inflammation in a mouse air pouch model by inhibiting the infiltration of monocytes and neutrophils and reducing the production of cytokines. These effects were mediated via inactivation of NLRP3 inflammasome complex and its downstream signalling molecules. Taken together these results suggest that PT-Mangiferin is potent anti-inflammatory compound that reduces inflammation and holds promise in development of herbal based anti-inflammatory therapeutics in future.
Collapse
Affiliation(s)
| | - Kotha Anil Kumar
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India.,School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - D Gangappa
- School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Harshavardhan Beeda
- Department of Biotechnology, Sri Krishnadevaraya University, Anantapur, India
| | | | | | - Syed M Faisal
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| |
Collapse
|
25
|
Anti-Inflammatory Activity of the Essential Oil Citral in Experimental Infection with Staphylococcus aureus in a Model Air Pouch. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2505610. [PMID: 28316634 PMCID: PMC5339496 DOI: 10.1155/2017/2505610] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/27/2016] [Indexed: 01/07/2023]
Abstract
This study proposes to implement an alternative and effective strategy for local treatment of disease provoked by S. aureus. For the analysis of possible anti-inflammatory activity of essential oil, after establishing an air pouch model, 48 male mice of Balb/c were treated, infected, and euthanized at 4 and 8 h. Thus, the total and differential white blood cells were counted in the animal's blood, and cytokines IL-1β, IL-6, and TNF-α were titrated using ELISA in the air pouch lavage. Moreover, TNF-α, IL-1β, and IL-6 gene expression was analyzed through an RT-qPCR array, and S. aureus was quantified using qPCR. Our results, p < 0.05, showed that EOC reduced the quantity of microorganisms. The group of mice treated with essential oil citral showed a significant decrease in TNF-α levels in tests demonstrating anti-inflammatory activity. There is no data about the mutual influence of the air pouch model, essential oil citral, and S. aureus. Thus, considering the interaction of these variables and the anti-inflammatory activity of the essential oil citral, we demonstrated, by alternative local treatment, a new antimicrobial agent that is not an antibiotic.
Collapse
|
26
|
Eteraf-Oskouei T, Akbarzadeh-Atashkhosrow A, Maghsudi M, Najafi M. Effects of salbutamol on the inflammatory parameters and angiogenesis in the rat air pouch model of inflammation. Res Pharm Sci 2017; 12:364-372. [PMID: 28974974 PMCID: PMC5615866 DOI: 10.4103/1735-5362.213981] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In the present study, effects of salbutamol on the inflammatory parameters, angiogenesis, interleukin-1 beta (IL-1β) and vascular endothelial growth factor (VEGF) levels were investigated in an air pouch model of inflammation. Inflammation was induced by intrapouch administration of 1% solution of sterile carrageenan in male Wistar rats. Salbutamol (125, 250 and 500 µg/rat) and salbutamol (500 µg/rat) plus propranolol (100 μg/rat) were injected intrapouch. After 6 and 72 h, fluid inside the pouches was collected to measure volume of exudates, leukocytes number and IL-1β levels. To determine angiogenesis, the granulation tissues were dissected out and weighed 3 days after carrageenan injection, then hemoglobin concentration was assessed using a hemoglobin assay kit. In addition, amount of VEGF in the exudates was measured 72 h after induction of inflammation. Leukocyte accumulation and the volume of exudates were significantly inhibited by salbutamol administration. In addition, salbutamol decreased the production of VEGF and IL-1β. Moreover, all used doses of salbutamol significantly inhibited angiogenesis. Interestingly, effects of salbutamol on the attenuation of angiogenesis and inflammatory parameters was similar to diclofenac sodium. Co-administration of propranolol with salbutamol clearly reversed anti-inflammatory effects of salbutamol. Salbutamol can decrease acute and chronic inflammation by β2-adrenergic receptors activation. The observed IL-1β and VEGF inhibitory properties of salbutamol may be responsible for anti-inflammatory and anti-angiogenic effect of the agent.
Collapse
Affiliation(s)
- Tahereh Eteraf-Oskouei
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | | | - Milad Maghsudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Moslem Najafi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| |
Collapse
|
27
|
Griffiths K, Dolezal O, Cao B, Nilsson SK, See HB, Pfleger KDG, Roche M, Gorry PR, Pow A, Viduka K, Lim K, Lu BGC, Chang DHC, Murray-Rust T, Kvansakul M, Perugini MA, Dogovski C, Doerflinger M, Zhang Y, Parisi K, Casey JL, Nuttall SD, Foley M. i-bodies, Human Single Domain Antibodies That Antagonize Chemokine Receptor CXCR4. J Biol Chem 2016; 291:12641-12657. [PMID: 27036939 DOI: 10.1074/jbc.m116.721050] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Indexed: 01/20/2023] Open
Abstract
CXCR4 is a G protein-coupled receptor with excellent potential as a therapeutic target for a range of clinical conditions, including stem cell mobilization, cancer prognosis and treatment, fibrosis therapy, and HIV infection. We report here the development of a fully human single-domain antibody-like scaffold termed an "i-body," the engineering of which produces an i-body library possessing a long complementarity determining region binding loop, and the isolation and characterization of a panel of i-bodies with activity against human CXCR4. The CXCR4-specific i-bodies show antagonistic activity in a range of in vitro and in vivo assays, including inhibition of HIV infection, cell migration, and leukocyte recruitment but, importantly, not the mobilization of hematopoietic stem cells. Epitope mapping of the three CXCR4 i-bodies AM3-114, AM4-272, and AM3-523 revealed binding deep in the binding pocket of the receptor.
Collapse
Affiliation(s)
| | - Olan Dolezal
- Biomedical Manufacturing, CSIRO Manufacturing, 343 Royal Parade, Parkville, Victoria 3052
| | - Benjamin Cao
- the Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria 3800,; Biomedical Manufacturing, CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3168
| | - Susan K Nilsson
- the Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria 3800,; Biomedical Manufacturing, CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3168
| | - Heng B See
- the Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009,; the Centre for Medical Research, University of Western Australia, Crawley, Western Australia 6009
| | - Kevin D G Pfleger
- the Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009,; the Centre for Medical Research, University of Western Australia, Crawley, Western Australia 6009,; Dimerix Bioscience Ltd., Nedlands, Western Australia 6009
| | - Michael Roche
- the Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria 3000,; the Burnet Institute, 85 Commercial Road, Melbourne, Victoria 3004
| | - Paul R Gorry
- the School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3001
| | - Andrew Pow
- From AdAlta Pty. Ltd., 15/2 Park Dr., Bundoora, Victoria 3083
| | - Katerina Viduka
- From AdAlta Pty. Ltd., 15/2 Park Dr., Bundoora, Victoria 3083
| | - Kevin Lim
- From AdAlta Pty. Ltd., 15/2 Park Dr., Bundoora, Victoria 3083
| | | | | | | | - Marc Kvansakul
- the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, and
| | - Matthew A Perugini
- the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, and
| | - Con Dogovski
- the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, and
| | | | - Yuan Zhang
- the Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Kathy Parisi
- From AdAlta Pty. Ltd., 15/2 Park Dr., Bundoora, Victoria 3083,; the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, and
| | - Joanne L Casey
- From AdAlta Pty. Ltd., 15/2 Park Dr., Bundoora, Victoria 3083
| | - Stewart D Nuttall
- Biomedical Manufacturing, CSIRO Manufacturing, 343 Royal Parade, Parkville, Victoria 3052
| | - Michael Foley
- From AdAlta Pty. Ltd., 15/2 Park Dr., Bundoora, Victoria 3083,; the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, and.
| |
Collapse
|
28
|
Ranasinghe SL, Fischer K, Zhang W, Gobert GN, McManus DP. Cloning and Characterization of Two Potent Kunitz Type Protease Inhibitors from Echinococcus granulosus. PLoS Negl Trop Dis 2015; 9:e0004268. [PMID: 26645974 PMCID: PMC4672886 DOI: 10.1371/journal.pntd.0004268] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/06/2015] [Indexed: 11/18/2022] Open
Abstract
The tapeworm Echinococcus granulosus is responsible for cystic echinococcosis (CE), a cosmopolitan disease which imposes a significant burden on the health and economy of affected communities. Little is known about the molecular mechanisms whereby E. granulosus is able to survive in the hostile mammalian host environment, avoiding attack by host enzymes and evading immune responses, but protease inhibitors released by the parasite are likely implicated. We identified two nucleotide sequences corresponding to secreted single domain Kunitz type protease inhibitors (EgKIs) in the E. granulosus genome, and their cDNAs were cloned, bacterially expressed and purified. EgKI-1 is highly expressed in the oncosphere (egg) stage and is a potent chymotrypsin and neutrophil elastase inhibitor that binds calcium and reduced neutrophil infiltration in a local inflammation model. EgKI-2 is highly expressed in adult worms and is a potent inhibitor of trypsin. As powerful inhibitors of mammalian intestinal proteases, the EgKIs may play a pivotal protective role in preventing proteolytic enzyme attack thereby ensuring survival of E. granulosus within its mammalian hosts. EgKI-1 may also be involved in the oncosphere in host immune evasion by inhibiting neutrophil elastase and cathepsin G once this stage is exposed to the mammalian blood system. In light of their key roles in protecting E. granulosus from host enzymatic attack, the EgKI proteins represent potential intervention targets to control CE. This is important as new public health measures against CE are required, given the inefficiencies of available drugs and the current difficulties in its treatment and control. In addition, being a small sized highly potent serine protease inhibitor, and an inhibitor of neutrophil chemotaxis, EgKI-1 may have clinical potential as a novel anti-inflammatory therapeutic.
Collapse
Affiliation(s)
- Shiwanthi L. Ranasinghe
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Public Health, The University of Queensland, Herston, Queensland, Australia
| | - Katja Fischer
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Wenbao Zhang
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Department of Biochemistry, Xinjiang Medical University, Urumqi, Xinjiang, China
- Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Geoffrey N. Gobert
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Donald P. McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| |
Collapse
|
29
|
Methanolic Extract of Ficus carica Linn. Leaves Exerts Antiangiogenesis Effects Based on the Rat Air Pouch Model of Inflammation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:760405. [PMID: 25977699 PMCID: PMC4419259 DOI: 10.1155/2015/760405] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/15/2015] [Accepted: 03/26/2015] [Indexed: 11/18/2022]
Abstract
The antiangiogenesis effect of Ficus carica leaves extract in an air pouch model of inflammation was investigated in rat. Inflammation was induced by injection of carrageenan into pouches. After antioxidant capacity and total phenolic content (TPC) investigations, the extract was administered at 5, 25, and 50 mg/pouch, and then the volume of exudates, the cell number, TNFα, PGE2, and VEGF levels were measured. Angiogenesis of granulation tissues was determined by measuring hemoglobin content. Based on the DPPH assay, the extract had significant antioxidant activity with TPC of 11.70 mg GAE/100 g dry sample. In addition, leukocyte accumulation and volume of exudate were significantly inhibited by the extract. Moreover, it significantly decreased the production of TNFα, PGE2, and VEGF, while angiogenesis was significantly inhibited by all administered doses. Interestingly, attenuation of angiogenesis and inflammatory parameters (except leukocyte accumulation) by the extract was similar to that shown by diclofenac. The extract has anti-inflammatory effects and ameliorated cell influx and exudation to the site of the inflammatory response which may be related to the local inhibition of TNFα, PGE2, and VEGF levels as similarly shown by diclofenac. The antiangiogenesis and anti-VEGF effects of Ficus carica may be correlated with its significant antioxidant potentials.
Collapse
|
30
|
Lima MDS, Evangelista AF, Santos GGLD, Ribeiro IM, Tomassini TCB, Pereira Soares MB, Villarreal CF. Antinociceptive properties of physalins from Physalis angulata. JOURNAL OF NATURAL PRODUCTS 2014; 77:2397-2403. [PMID: 25396337 DOI: 10.1021/np5003093] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pain is the most common reason a patient sees a physician. Nevertheless, the use of typical painkillers is not completely effective in controlling all pain syndromes; therefore further attempts have been made to develop improved analgesic drugs. The present study was undertaken to evaluate the antinociceptive properties of physalins B (1), D (2), F (3), and G (4) isolated from Physalis angulata in inflammatory and centrally mediated pain tests in mice. Systemic pretreatment with 1-4 produced dose-related antinociceptive effects on the writhing and formalin tests, traditional screening tools for the assessment of analgesic drugs. On the other hand, only 3 inhibited inflammatory parameters such as hyperalgesia, edema, and local production of TNF-α following induction with complete Freund's adjuvant. Treatment with 1, 3, and 4 produced an antinociceptive effect on the tail flick test, suggesting a centrally mediated antinociception. Reinforcing this idea, 2-4 enhanced the mice latency reaction time during the hot plate test. Mice treated with physalins did not demonstrate motor performance alterations. These results suggest that 1-4 present antinociceptive properties associated with central, but not anti-inflammatory, events and indicate a new pharmacological property of physalins.
Collapse
Affiliation(s)
- Milena da Silva Lima
- Faculdade de Farmácia, Universidade Federal da Bahia , CEP 40170-290, Salvador, BA, Brazil
| | | | | | | | | | | | | |
Collapse
|
31
|
Water-soluble phenol TS-13 combats acute but not chronic inflammation. Inflamm Res 2014; 63:729-40. [PMID: 24888323 DOI: 10.1007/s00011-014-0746-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 05/12/2014] [Accepted: 05/20/2014] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE This study was conducted to evaluate the effect of the synthetic water-soluble phenolic antioxidant TS-13 (sodium 3-(4'-methoxyphenyl)propyl thiosulfonate), an inducer of the redox-dependent Keap1/Nrf2/ARE signaling system, in experimental models of acute and chronic inflammation. METHODS Acute local inflammation was induced by intraplantar carrageenan injection into rat hind paws, and acute systemic inflammation was modeled by intravenous zymosan injection (in rats) or LPS-induced endotoxic shock (in mice). Chronic inflammation was investigated in rat models of air pouch and collagen-induced arthritis. The effects of TS-13 treatment were estimated by changes in the intensity of inflammation (paw edema, liver infiltration, animal survival, exudation, and clinical score of arthritis) and by the effects on reactive oxygen species (ROS) generation by leukocytes from peripheral blood and inflammatory exudates. RESULTS We found the significant increase in expression of mRNA, content of protein and activity of a well-characterized Nrf2 target enzyme glutathione S-transferase P1, as well as nuclear extract protein binding to the ARE consensus sequence in liver of mice fed with diet containing TS-13. TS-13 markedly attenuated carrageenan-induced paw edema, reduced blood granulocyte number and volume density of liver infiltrates in the systemic zymosan-induced inflammation model, and increased mice survival after lipopolysaccharide-induced septic shock. However, TS-13 administration did not influence cell and protein exudation into air pouches and suppressed clinical manifestation of collagen-induced polyarthritis only at early stages. Nevertheless, TS-13 inhibited the generation of ROS by leukocytes in all inflammation models. CONCLUSION The data suggest that the anti-inflammatory effects of Keap1/Nrf2/ARE system are more prominent against acute innate-mediated inflammation than chronic immune inflammation. This narrows the potential therapeutic efficacy of ARE inducers in inflammation treatment.
Collapse
|
32
|
Zamora PO, Liu Y, Guo H, Lin X. Biocompatibility and inflammation profile of B2A-coated granules used in arthrodesis. Int J Toxicol 2013; 32:154-61. [PMID: 23422080 DOI: 10.1177/1091581813476960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The biocompatibility/inflammation profile of B2A-coated ceramic granules was evaluated using a panel of standard biocompatibility protocols (International Organization for Standardization-10993) including skin irritation and delayed-type hypersensitivity (Kligman maximization test), as well as acute, subacute, and chronic toxicity. Additionally, the potential of B2A-coated granules to elicit inflammatory reactions was also assessed using in vivo air pouch models, and B2A was evaluated using in vitro models of leukocyte recruitment and endothelial cell activation. Overall, the findings demonstrate that B2A-coated ceramic granules exhibit good biocompatibility profiles in the murine air pouch model and in standard subcutaneous implant models, and B2A did not demonstrate evidence of leukocyte recruitment or endothelial cell activation. These findings suggest that B2A and B2A-coated granules have little, if any, propensity to initiate inflammation reactions based on leukocyte recruitment. Thus, traditional biocompatibility and specially designed inflammation models indicate a high degree of biocompatibility and a low possibility of toxicity, inflammation, or edema following the implant of B2A-coated granules.
Collapse
Affiliation(s)
- Paul O Zamora
- BioSurface Engineering Technologies, Inc., Rockville, MD 20850, USA.
| | | | | | | |
Collapse
|