1
|
Lu-Culligan WJ, Connor LJ, Xie Y, Ekundayo BE, Rose BT, Machyna M, Pintado-Urbanc AP, Zimmer JT, Vock IW, Bhanu NV, King MC, Garcia BA, Bleichert F, Simon MD. Acetyl-methyllysine marks chromatin at active transcription start sites. Nature 2023; 622:173-179. [PMID: 37731000 PMCID: PMC10845139 DOI: 10.1038/s41586-023-06565-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/23/2023] [Indexed: 09/22/2023]
Abstract
Lysine residues in histones and other proteins can be modified by post-translational modifications that encode regulatory information1. Lysine acetylation and methylation are especially important for regulating chromatin and gene expression2-4. Pathways involving these post-translational modifications are targets for clinically approved therapeutics to treat human diseases. Lysine methylation and acetylation are generally assumed to be mutually exclusive at the same residue. Here we report cellular lysine residues that are both methylated and acetylated on the same side chain to form Nε-acetyl-Nε-methyllysine (Kacme). We show that Kacme is found on histone H4 (H4Kacme) across a range of species and across mammalian tissues. Kacme is associated with marks of active chromatin, increased transcriptional initiation and is regulated in response to biological signals. H4Kacme can be installed by enzymatic acetylation of monomethyllysine peptides and is resistant to deacetylation by some HDACs in vitro. Kacme can be bound by chromatin proteins that recognize modified lysine residues, as we demonstrate with the crystal structure of acetyllysine-binding protein BRD2 bound to a histone H4Kacme peptide. These results establish Kacme as a cellular post-translational modification with the potential to encode information distinct from methylation and acetylation alone and demonstrate that Kacme has all the hallmarks of a post-translational modification with fundamental importance to chromatin biology.
Collapse
Affiliation(s)
- William J Lu-Culligan
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Leah J Connor
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Yixuan Xie
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Babatunde E Ekundayo
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Brendan T Rose
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Martin Machyna
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Andreas P Pintado-Urbanc
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Joshua T Zimmer
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Isaac W Vock
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Natarajan V Bhanu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Franziska Bleichert
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Matthew D Simon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA.
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA.
| |
Collapse
|
2
|
Tan K, Song HW, Wilkinson MF. RHOX10 drives mouse spermatogonial stem cell establishment through a transcription factor signaling cascade. Cell Rep 2021; 36:109423. [PMID: 34289349 PMCID: PMC8357189 DOI: 10.1016/j.celrep.2021.109423] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are essential for male fertility. Here, we report that mouse SSC generation is driven by a transcription factor (TF) cascade controlled by the homeobox protein, RHOX10, which acts by driving the differentiation of SSC precursors called pro-spermatogonia (ProSG). We identify genes regulated by RHOX10 in ProSG in vivo and define direct RHOX10-target genes using several approaches, including a rapid temporal induction assay: iSLAMseq. Together, these approaches identify temporal waves of RHOX10 direct targets, as well as RHOX10 secondary-target genes. Many of the RHOX10-regulated genes encode proteins with known roles in SSCs. Using an in vitro ProSG differentiation assay, we find that RHOX10 promotes mouse ProSG differentiation through a conserved transcriptional cascade involving the key germ-cell TFs DMRT1 and ZBTB16. Our study gives important insights into germ cell development and provides a blueprint for how to define TF cascades.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hye-Won Song
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Ardehali MB, Damle M, Perea-Resa C, Blower MD, Kingston RE. Elongin A associates with actively transcribed genes and modulates enhancer RNA levels with limited impact on transcription elongation rate in vivo. J Biol Chem 2020; 296:100202. [PMID: 33334895 PMCID: PMC7948453 DOI: 10.1074/jbc.ra120.015877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/06/2020] [Accepted: 12/16/2020] [Indexed: 01/08/2023] Open
Abstract
Elongin A (EloA) is an essential transcription factor that stimulates the rate of RNA polymerase II (Pol II) transcription elongation in vitro. However, its role as a transcription factor in vivo has remained underexplored. Here we show that in mouse embryonic stem cells, EloA localizes to both thousands of Pol II transcribed genes with preference for transcription start site and promoter regions and a large number of active enhancers across the genome. EloA deletion results in accumulation of transcripts from a subset of enhancers and their adjacent genes. Notably, EloA does not substantially enhance the elongation rate of Pol II in vivo. We also show that EloA localizes to the nucleoli and associates with RNA polymerase I transcribed ribosomal RNA gene, Rn45s. EloA is a highly disordered protein, which we demonstrate forms phase-separated condensates in vitro, and truncation mutations in the intrinsically disordered regions (IDR) of EloA interfere with its targeting and localization to the nucleoli. We conclude that EloA broadly associates with transcribed regions, tunes RNA Pol II transcription levels via impacts on enhancer RNA synthesis, and interacts with the rRNA producing/processing machinery in the nucleolus. Our work opens new avenues for further investigation of the role of this functionally multifaceted transcription factor in enhancer and ribosomal RNA biology.
Collapse
Affiliation(s)
- M Behfar Ardehali
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Manashree Damle
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Carlos Perea-Resa
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael D Blower
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert E Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
4
|
Lamaa A, Humbert J, Aguirrebengoa M, Cheng X, Nicolas E, Côté J, Trouche D. Integrated analysis of H2A.Z isoforms function reveals a complex interplay in gene regulation. eLife 2020; 9:53375. [PMID: 32109204 PMCID: PMC7048395 DOI: 10.7554/elife.53375] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
The H2A.Z histone variant plays major roles in the control of gene expression. In human, H2A.Z is encoded by two genes expressing two isoforms, H2A.Z.1 and H2A.Z.2 differing by three amino acids. Here, we undertook an integrated analysis of their functions in gene expression using endogenously-tagged proteins. RNA-Seq analysis in untransformed cells showed that they can regulate both distinct and overlapping sets of genes positively or negatively in a context-dependent manner. Furthermore, they have similar or antagonistic function depending on genes. H2A.Z.1 and H2A.Z.2 can replace each other at Transcription Start Sites, providing a molecular explanation for this interplay. Mass spectrometry analysis showed that H2A.Z.1 and H2A.Z.2 have specific interactors, which can mediate their functional antagonism. Our data indicate that the balance between H2A.Z.1 and H2A.Z.2 at promoters is critically important to regulate specific gene expression, providing an additional layer of complexity to the control of gene expression by histone variants.
Collapse
Affiliation(s)
- Assala Lamaa
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jonathan Humbert
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center and Oncology Division of CHU de Québec-Université Laval Research Center, Quebec, Canada
| | - Marion Aguirrebengoa
- BigA Core Facility, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Xue Cheng
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center and Oncology Division of CHU de Québec-Université Laval Research Center, Quebec, Canada
| | - Estelle Nicolas
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center and Oncology Division of CHU de Québec-Université Laval Research Center, Quebec, Canada
| | - Didier Trouche
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
5
|
Yang RM, Nanayakkara D, Kalimutho M, Mitra P, Khanna KK, Dray E, Gonda TJ. MYB regulates the DNA damage response and components of the homology-directed repair pathway in human estrogen receptor-positive breast cancer cells. Oncogene 2019; 38:5239-5249. [PMID: 30971760 DOI: 10.1038/s41388-019-0789-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 02/20/2019] [Accepted: 03/07/2019] [Indexed: 11/09/2022]
Abstract
Over 70% of human breast cancers are estrogen receptor-positive (ER+), most of which express MYB. In these and other cell types, the MYB transcription factor regulates the expression of many genes involved in cell proliferation, differentiation, tumorigenesis, and apoptosis. So far, no clear link has been established between MYB and the DNA damage response in breast cancer. Here, we found that silencing MYB in the ER+ breast cancer cell line MCF-7 led to increased DNA damage accumulation, as marked by increased γ-H2AX foci following induction of double-stranded breaks. We further found that this was likely mediated by decreased homologous recombination-mediated repair (HRR), since silencing MYB impaired the formation of RAD51 foci in response to DNA damage. Moreover, cells depleted for MYB exhibited reduced expression of several key genes involved in HRR including BRCA1, PALB2, and TOPBP1. Taken together, these data imply that MYB and its targets play an important role in the response of ER+ breast cancer cells to DNA damage, and suggest that induction of DNA damage along with inhibition of MYB activity could offer therapeutic benefits for ER+ breast cancer and possibly other cancer types.
Collapse
Affiliation(s)
- Ren-Ming Yang
- School of Pharmacy, University of Queensland, Brisbane, QLD, 4102, Australia.,Keck School of Medicine at the Children's Hospital Los Angeles Campus, University of Southern California, Los Angeles, CA, 90027, USA
| | - Devathri Nanayakkara
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Murugan Kalimutho
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Partha Mitra
- School of Pharmacy, University of Queensland, Brisbane, QLD, 4102, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, TRI, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Kum Kum Khanna
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Eloise Dray
- Institute of Health and Biomedical Innovations, QUT at the Translational Research Institute, Brisbane, QLD, 4102, Australia. .,Mater Research/UQ at the Translational Research Institute, Brisbane, QLD, 4102, Australia. .,University of Texas Health, San Antonio, Department of Biochemistry and Structural Biology, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| | - Thomas J Gonda
- School of Pharmacy, University of Queensland, Brisbane, QLD, 4102, Australia. .,University of South Australia Cancer Research Institute, Adelaide, SA, 5000, Australia.
| |
Collapse
|
6
|
Ming Z, Gong AY, Wang Y, Zhang XT, Li M, Mathy NW, Strauss-Soukup JK, Chen XM. Involvement of Cryptosporidium parvum Cdg7_FLc_1000 RNA in the Attenuation of Intestinal Epithelial Cell Migration via Trans-Suppression of Host Cell SMPD3. J Infect Dis 2019; 217:122-133. [PMID: 28961856 DOI: 10.1093/infdis/jix392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/03/2017] [Indexed: 01/05/2023] Open
Abstract
Intestinal infection by Cryptosporidium parvum causes inhibition of epithelial turnover, but underlying mechanisms are unclear. Previous studies demonstrate that a panel of parasite RNA transcripts of low protein-coding potential are delivered into infected epithelial cells. Using in vitro and in vivo models of intestinal cryptosporidiosis, we report here that host delivery of parasite Cdg7_FLc_1000 RNA results in inhibition of epithelial cell migration through suppression of the gene encoding sphingomyelinase 3 (SMPD3). Delivery of Cdg7_FLc_1000 into infected cells promotes the histone methyltransferase G9a-mediated H3K9 methylation in the SMPD3 locus. The DNA-binding transcriptional repressor, PR domain zinc finger protein 1, is required for the assembly of Cdg7_FLc_1000 into the G9a complex and associated with the enrichment of H3K9 methylation at the gene locus. Pathologically, nuclear transfer of Cryptosporidium parvum Cdg7_FLc_1000 RNA is involved in the attenuation of intestinal epithelial cell migration via trans-suppression of host cell SMPD3.
Collapse
Affiliation(s)
- Zhenping Ming
- Department of Medical Parasitology, School of Basic Medical Sciences, Wuhan University, Hubei, China.,Department of Medical Microbiology and Immunology, School of Medicine
| | - Ai-Yu Gong
- Department of Medical Microbiology and Immunology, School of Medicine
| | - Yang Wang
- Department of Medical Microbiology and Immunology, School of Medicine
| | - Xin-Tian Zhang
- Department of Medical Microbiology and Immunology, School of Medicine
| | - Min Li
- Department of Medical Microbiology and Immunology, School of Medicine
| | - Nicholas W Mathy
- Department of Medical Microbiology and Immunology, School of Medicine
| | | | - Xian-Ming Chen
- Department of Medical Microbiology and Immunology, School of Medicine
| |
Collapse
|
7
|
Mi W, Zhang Y, Lyu J, Wang X, Tong Q, Peng D, Xue Y, Tencer AH, Wen H, Li W, Kutateladze TG, Shi X. The ZZ-type zinc finger of ZZZ3 modulates the ATAC complex-mediated histone acetylation and gene activation. Nat Commun 2018; 9:3759. [PMID: 30217978 PMCID: PMC6138639 DOI: 10.1038/s41467-018-06247-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/15/2018] [Indexed: 01/05/2023] Open
Abstract
Recognition of histones by epigenetic readers is a fundamental mechanism for the regulation of chromatin and transcription. Most reader modules target specific post-translational modifications on histones. Here, we report the identification of a reader of histone H3, the ZZ-type zinc finger (ZZ) domain of ZZZ3, a subunit of the Ada-two-A-containing (ATAC) histone acetyltransferase complex. The solution NMR structure of the ZZ in complex with the H3 peptide reveals a unique binding mechanism involving caging of the N-terminal Alanine 1 of histone H3 in an acidic cavity of the ZZ domain, indicating a specific recognition of H3 versus other histones. Depletion of ZZZ3 or disruption of the ZZ-H3 interaction dampens ATAC-dependent promoter histone H3K9 acetylation and target gene expression. Overall, our study identifies the ZZ domain of ZZZ3 as a histone H3 reader that is required for the ATAC complex-mediated maintenance of histone acetylation and gene activation. Histones are recognized by epigenetic readers, which play essential roles in regulation of chromatin and transcription. Here the authors provide evidence that the ZZ-type zinc finger domain of ZZZ3 functions as a reader of histone H3, which is required for the ATAC complex-mediated maintenance of histone acetylation and gene activation.
Collapse
Affiliation(s)
- Wenyi Mi
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA.,Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, 49503, USA
| | - Yi Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Jie Lyu
- Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Xiaolu Wang
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA.,Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, 49503, USA
| | - Qiong Tong
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Danni Peng
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Yongming Xue
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Adam H Tencer
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Hong Wen
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA.,Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, 49503, USA
| | - Wei Li
- Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA.
| | - Xiaobing Shi
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA. .,Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, 49503, USA.
| |
Collapse
|
8
|
Oh DR, Yoo JS, Kim Y, Kang H, Lee H, Lm SJ, Choi EJ, Jung MA, Bae D, Oh KN, Hong JA, Jo A, Shin J, Kim J, Kim YR, Cho SS, Lee BJ, Choi CY. Vaccinium bracteatum Leaf Extract Reverses Chronic Restraint Stress-Induced Depression-Like Behavior in Mice: Regulation of Hypothalamic-Pituitary-Adrenal Axis, Serotonin Turnover Systems, and ERK/Akt Phosphorylation. Front Pharmacol 2018; 9:604. [PMID: 30038568 PMCID: PMC6047486 DOI: 10.3389/fphar.2018.00604] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/21/2018] [Indexed: 01/02/2023] Open
Abstract
The leaves of Vaccinium bracteatum Thunb. are a source of traditional herbal medicines found in East Asia. The present study aimed to evaluate the mechanisms underlying the antidepressant-like effects of water extract of V. bracteatum Thunb. leaves (VBLW) in a mouse model of chronic restraint stress (CRS) and to identify the possible molecular in vitro mechanisms of the neuroprotective effects. The CRS-exposed mice were orally administered VBLW (100 and 200 mg/kg) daily for 21 days consecutively. The behavioral effects of VBLW were assessed through the forced swim test (FST) and the open field test (OFT). The levels of serum corticosterone (CORT), corticotropin releasing hormone (CRH), and adrenocorticotropin hormone (ACTH), brain monoamines, such as serotonin, dopamine, and norepinephrine, and serotonin turnover by tryptophan hydroxylase 2 (TPH2), serotonin reuptake (SERT), and monoamine oxidase A (MAO-A) were evaluated, in addition to the extracellular signal-regulated kinases (ERKs)/protein kinase B (Akt) signaling pathway. CRS-exposed mice treated with VBLW (100 and 200 mg/kg) showed significantly reduced immobility time and increased swimming and climbing times in the FST, and increased locomotor activity in the OFT. Moreover, CRS mice treated with VBLW exhibited significantly decreased CORT and ACTH, but enhanced brain monoamine neurotransmitters. In addition, CRS mice treated with VBLW had dramatically decreased protein levels of MAO-A and SERT, but increased TPH2 protein levels in the hippocampus and the PFC. Similarly, VBLW significantly upregulated the ERKs/Akt signaling pathway in the hippocampus and the PFC. Furthermore, VBLW showed neuroprotective effects via increased CREB phosphorylation in CORT-induced cell injury that were mediated through the ERK/Akt/mTOR signaling pathways. These results suggested that the antidepressant-like effects of VBLW might be mediated by the regulation of the HPA axis, glucocorticoids, and serotonin turnover, such as TPH2, SERT, and MAO-A, as well as the concentration of monoamine neurotransmitters, and the activities of ERK and Akt phosphorylation, which were possibly associated with neuroprotective effects.
Collapse
Affiliation(s)
- Dool-Ri Oh
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea.,College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - Ji-Seok Yoo
- Bioavailability Control Laboratory, College of Pharmacy, Ajou University, Suwon, South Korea
| | - Yujin Kim
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - Huwon Kang
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - Hunmi Lee
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - So J Lm
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - Eun-Jin Choi
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - Myung-A Jung
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - Donghyuck Bae
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - Kyo-Nyeo Oh
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - Ji-Ae Hong
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - Ara Jo
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - Jawon Shin
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - Jaeyong Kim
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - Young R Kim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - Seung S Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, South Korea
| | - Beom-Jin Lee
- Bioavailability Control Laboratory, College of Pharmacy, Ajou University, Suwon, South Korea
| | - Chul Yung Choi
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| |
Collapse
|
9
|
Aksu M, Pleiner T, Karaca S, Kappert C, Dehne HJ, Seibel K, Urlaub H, Bohnsack MT, Görlich D. Xpo7 is a broad-spectrum exportin and a nuclear import receptor. J Cell Biol 2018; 217:2329-2340. [PMID: 29748336 PMCID: PMC6028547 DOI: 10.1083/jcb.201712013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/09/2018] [Accepted: 04/24/2018] [Indexed: 11/28/2022] Open
Abstract
Exportins bind cargo molecules in a RanGTP-dependent manner inside nuclei and transport them through nuclear pores to the cytoplasm. CRM1/Xpo1 is the best-characterized exportin because specific inhibitors such as leptomycin B allow straightforward cargo validations in vivo. The analysis of other exportins lagged far behind, foremost because no such inhibitors had been available for them. In this study, we explored the cargo spectrum of exportin 7/Xpo7 in depth and identified not only ∼200 potential export cargoes but also, surprisingly, ∼30 nuclear import substrates. Moreover, we developed anti-Xpo7 nanobodies that acutely block Xpo7 function when transfected into cultured cells. The inhibition is pathway specific, mislocalizes export cargoes of Xpo7 to the nucleus and import substrates to the cytoplasm, and allowed validation of numerous tested cargo candidates. This establishes Xpo7 as a broad-spectrum bidirectional transporter and paves the way for a much deeper analysis of exportin and importin function in the future.
Collapse
Affiliation(s)
- Metin Aksu
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Tino Pleiner
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Samir Karaca
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christin Kappert
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Heinz-Jürgen Dehne
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Katharina Seibel
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Markus T Bohnsack
- Institute for Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
10
|
Abstract
The ability to perform in vitro splicing assays has paved the way for in-depth studies of the mechanisms and machinery involved in the process of splicing. The in vitro splicing assay is a valuable experimental approach that combines the complexity of the spliceosome and regulatory systems with the flexibility of performing endless splicing and alternative splicing reactions. Through the use of crude nuclear extract and radiolabeled pre-mRNA, spliced mRNAs can be visualized using autoradiography for downstream analysis. This chapter describes the necessary steps to perform an in vitro splicing reaction, including the generation of the key components necessary for the splicing reaction; nuclear extract.
Collapse
|
11
|
Magnesium Lithospermate B Suppresses Lipopolysaccharide-Induced Neuroinflammation in BV2 Microglial Cells and Attenuates Neurodegeneration in Lipopolysaccharide-Injected Mice. J Mol Neurosci 2017; 64:80-92. [PMID: 29196883 DOI: 10.1007/s12031-017-1007-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/24/2017] [Indexed: 12/11/2022]
Abstract
Chronic inflammation in the brain plays a critical role in major neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Microglia, the resident macrophages and intrinsic components of the central nervous system (CNS), appear to be the main effectors in this pathological process. Magnesium lithospermate B (MLB) is one of the major bioactive components of Radix Salviae miltiorrhizae, which has been documented to protect neurons against multiple types of neuronal injury. However, its functions on microglia and the related neuroinflammation remain unknown. In the present study, BV2 microglial cells were used to assess the anti-neuroinflammatory capacity of MLB. Our data show that treatment with MLB could not only suppress lipopolysaccharide (LPS)-induced proliferation and morphological changes, but also interfere with cell cycle progression in BV2 cells. More strikingly, it attenuated the production of the inflammatory mediator nitric oxide (NO) and a panel of pro-inflammatory cytokine in LPS-stimulated BV2 cells, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1α, IL-1β, and IL-6, and also promoted a phenotypic switch from the M1 to the M2 phenotype. Additionally, an in vivo study showed that the administration of MLB could ameliorate lipopolysaccharide-induced neurodegeneration and microglial activation in the hippocampus of adult mice. Mechanistically, MLB blocked the activation of the NF-κB pathway upon LPS stimulation, indicating that the effects of MLB on microglia may be mediated by the NK-κB pathway. These results suggest the therapeutic potential of MLB as a novel anti-inflammatory and microglia-modulating drug for neurodegenerative diseases.
Collapse
|
12
|
Polycomb Repressive Complex 2 Methylates Elongin A to Regulate Transcription. Mol Cell 2017; 68:872-884.e6. [PMID: 29153392 DOI: 10.1016/j.molcel.2017.10.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 07/21/2017] [Accepted: 10/19/2017] [Indexed: 12/20/2022]
Abstract
Polycomb repressive complex 2 (PRC2-EZH2) methylates histone H3 at lysine 27 (H3K27) and is required to maintain gene repression during development. Misregulation of PRC2 is linked to a range of neoplastic malignancies, which is believed to involve methylation of H3K27. However, the full spectrum of non-histone substrates of PRC2 that might also contribute to PRC2 function is not known. We characterized the target recognition specificity of the PRC2 active site and used the resultant data to screen for uncharacterized potential targets. The RNA polymerase II (Pol II) transcription elongation factor, Elongin A (EloA), is methylated by PRC2 in vivo. Mutation of the methylated EloA residue decreased repression of a subset of PRC2 target genes as measured by both steady-state and nascent RNA levels and perturbed embryonic stem cell differentiation. We propose that PRC2 modulates transcription of a subset of low expression target genes in part via methylation of EloA.
Collapse
|
13
|
Kim J, Xu S, Xiong L, Yu L, Fu X, Xu Y. SALL4 promotes glycolysis and chromatin remodeling via modulating HP1α-Glut1 pathway. Oncogene 2017; 36:6472-6479. [DOI: 10.1038/onc.2017.265] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/18/2017] [Accepted: 06/23/2017] [Indexed: 12/17/2022]
|
14
|
Carrier-Mediated and Energy-Dependent Uptake and Efflux of Deoxynivalenol in Mammalian Cells. Sci Rep 2017; 7:5889. [PMID: 28725050 PMCID: PMC5517473 DOI: 10.1038/s41598-017-06199-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
Deoxynivalenol (DON) is one of the most abundant mycotoxins and exerts many adverse effects on humans and animals. To date, the transporting mechanism of DON in mammalian cells remains unclear. In this study, the parallel artificial membrane permeability assay (PAMPA), Transwell models and metabolic inhibitors were used to determine the possible transporting mechanisms of DON in Caco-2, MDCK and HepG2 cells. PAMPA and Transwell models showed reduced passive transport and increased intestinal absorption, indicating a carrier-mediated transporting mechanism. Furthermore, higher unidirectional transport of DON was observed in the basolateral-to-apical direction than in the apical-to-basolateral direction, indicating the existence of efflux proteins. Interestingly, DON was accumulated in the nucleus, and no DON was detected in mitochondria, indicating that the nucleus may be the main target organelle of DON. Moreover, the use of various transporter inhibitors in different cells shows that organic anion transporters, organic cation transporters, and organic anion-transporting polypeptides participate in DON uptake, and P-glycoprotein is the major efflux protein. Importantly, DON uptake is strongly inhibited by metabolic inhibitors and is highly dependent on temperature. In summary, carrier-mediated and energy-dependent uptake and efflux mechanisms for DON in mammalian cells are reported, aiding in improving our understanding of its toxicological mechanisms.
Collapse
|
15
|
Wang Y, Gong AY, Ma S, Chen X, Strauss-Soukup JK, Chen XM. Delivery of parasite Cdg7_Flc_0990 RNA transcript into intestinal epithelial cells during Cryptosporidium parvum infection suppresses host cell gene transcription through epigenetic mechanisms. Cell Microbiol 2017; 19. [PMID: 28655069 DOI: 10.1111/cmi.12760] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/02/2017] [Accepted: 06/22/2017] [Indexed: 02/06/2023]
Abstract
Cryptosporidial infection causes dysregulated transcription of host genes key to intestinal epithelial homeostasis, but the underlying mechanisms remain obscure. Previous studies demonstrate that several Cryptosporidium parvum (C. parvum) RNA transcripts are selectively delivered into epithelial cells during host cell invasion and may modulate gene transcription in infected cells. We report here that C. parvum infection suppresses the transcription of LRP5, SLC7A8, and IL33 genes in infected intestinal epithelium. Trans-suppression of these genes in infected host cells is associated with promoter enrichment of suppressive epigenetic markers (i.e., H3K9me3). Cdg7_FLc_0990, a C. parvum RNA that has previously demonstrated to be delivered into the nuclei of infected epithelial cells, is recruited to the promoter regions of LRP5, SLC7A8, and IL33 genes. Cdg7_FLc_0990 appears to be recruited to their promoter regions together with G9a, a histone methyltransferase for H3K9 methylation. The PR domain zinc finger protein 1, a G9a-interacting protein, is required for the assembly of Cdg7_FLc_0990 to the G9a complex and gene-specific enrichment of H3K9 methylation. Our data demonstrate that cryptosporidial infection induces epigenetic histone methylations in infected cells through nuclear transfer of parasite Cdg7_Flc_0990 RNA transcript, resulting in transcriptional suppression of the LRP5, SLC7A8, and IL33 genes.
Collapse
Affiliation(s)
- Yang Wang
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA
| | - Ai-Yu Gong
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA
| | - Shibin Ma
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA
| | - Xiqiang Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA
| | | | - Xian-Ming Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
16
|
Wani AH, Boettiger AN, Schorderet P, Ergun A, Münger C, Sadreyev RI, Zhuang X, Kingston RE, Francis NJ. Chromatin topology is coupled to Polycomb group protein subnuclear organization. Nat Commun 2016; 7:10291. [PMID: 26759081 PMCID: PMC4735512 DOI: 10.1038/ncomms10291] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/26/2015] [Indexed: 12/21/2022] Open
Abstract
The genomes of metazoa are organized at multiple scales. Many proteins that regulate genome architecture, including Polycomb group (PcG) proteins, form subnuclear structures. Deciphering mechanistic links between protein organization and chromatin architecture requires precise description and mechanistic perturbations of both. Using super-resolution microscopy, here we show that PcG proteins are organized into hundreds of nanoscale protein clusters. We manipulated PcG clusters by disrupting the polymerization activity of the sterile alpha motif (SAM) of the PcG protein Polyhomeotic (Ph) or by increasing Ph levels. Ph with mutant SAM disrupts clustering of endogenous PcG complexes and chromatin interactions while elevating Ph level increases cluster number and chromatin interactions. These effects can be captured by molecular simulations based on a previously described chromatin polymer model. Both perturbations also alter gene expression. Organization of PcG proteins into small, abundant clusters on chromatin through Ph SAM polymerization activity may shape genome architecture through chromatin interactions.
Collapse
Affiliation(s)
- Ajazul H. Wani
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Alistair N. Boettiger
- Howard Hughes Medical Institute, Harvard University Cambridge, Cambridge, Massachusetts 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Patrick Schorderet
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Ayla Ergun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Christine Münger
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Ruslan I. Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Harvard University Cambridge, Cambridge, Massachusetts 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Robert E. Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicole J. Francis
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Département de biochimie et medécine moléculaire, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
17
|
Kırlı K, Karaca S, Dehne HJ, Samwer M, Pan KT, Lenz C, Urlaub H, Görlich D. A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning. eLife 2015; 4:e11466. [PMID: 26673895 PMCID: PMC4764573 DOI: 10.7554/elife.11466] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/13/2015] [Indexed: 12/23/2022] Open
Abstract
CRM1 is a highly conserved, RanGTPase-driven exportin that carries proteins and RNPs from the nucleus to the cytoplasm. We now explored the cargo-spectrum of CRM1 in depth and identified surprisingly large numbers, namely >700 export substrates from the yeast S. cerevisiae, ≈1000 from Xenopus oocytes and >1050 from human cells. In addition, we quantified the partitioning of ≈5000 unique proteins between nucleus and cytoplasm of Xenopus oocytes. The data suggest new CRM1 functions in spatial control of vesicle coat-assembly, centrosomes, autophagy, peroxisome biogenesis, cytoskeleton, ribosome maturation, translation, mRNA degradation, and more generally in precluding a potentially detrimental action of cytoplasmic pathways within the nuclear interior. There are also numerous new instances where CRM1 appears to act in regulatory circuits. Altogether, our dataset allows unprecedented insights into the nucleocytoplasmic organisation of eukaryotic cells, into the contributions of an exceedingly promiscuous exportin and it provides a new basis for NES prediction.
Collapse
Affiliation(s)
- Koray Kırlı
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Samir Karaca
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Heinz Jürgen Dehne
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Matthias Samwer
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Kuan Ting Pan
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
18
|
Long L, Furgason M, Yao T. Generation of nonhydrolyzable ubiquitin-histone mimics. Methods 2014; 70:134-8. [PMID: 25063569 DOI: 10.1016/j.ymeth.2014.07.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/02/2014] [Accepted: 07/11/2014] [Indexed: 12/30/2022] Open
Abstract
Histone proteins undergo various types of post-translational modifications (PTMs) to regulate dynamic processes in the cell, including replication, transcription and DNA damage repair. One type of histone PTM is the attachment of a small protein, ubiquitin (Ub). In eukaryotic organisms, a single Ub is attached to specific lysine residues of histones H2A and H2B in a modification that, unlike many other forms of ubiquitination in the cell, does not signal degradation. Instead, both attachment and removal of Ub to these histones has been shown to affect gene transcription, pre-mRNA splicing, and DNA damage repair, but the mechanisms by which histone ubiquitination governs these processes are not well understood. In an effort to identify "readers" of Ub-histones, we developed a straightforward crosslinking strategy to generate nonhydrolyzable Ub-histone mimics. These mimics were assembled into Ub-histone-containing dimers or nucleosomes. We demonstrate that they can be used in pulldown assays to identify proteins that differentiate unmodified and ubiquitinated histones.
Collapse
Affiliation(s)
- Lindsey Long
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, United States
| | - Melonnie Furgason
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, United States
| | - Tingting Yao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, United States.
| |
Collapse
|
19
|
Xu J, Wu F, Tian D, Wang J, Zheng Z, Xia N. Open reading frame 3 of genotype 1 hepatitis E virus inhibits nuclear factor-κappa B signaling induced by tumor necrosis factor-α in human A549 lung epithelial cells. PLoS One 2014; 9:e100787. [PMID: 24959724 PMCID: PMC4069097 DOI: 10.1371/journal.pone.0100787] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 05/28/2014] [Indexed: 12/17/2022] Open
Abstract
Hepatitis E virus (HEV) is one of the primary causative agents of acute hepatitis, and represents a major cause of severe public health problems in developing countries. The pathogenesis of HEV is not well characterized, however, primarily due to the lack of well-defined cell and animal models. Here, we investigated the effects of genotype 1 HEV open reading frame 3 (ORF3) on TNF-α-induced nucleus factor-κappa B (NF-κB) signaling. Human lung epithelial cells (A549) were transiently transfected with ORF3 containing plasmids. These cells were then stimulated with TNF-α and the nucleus translocation of the p65 NF-κB subunit was assessed using western blot and laser confocal microscopy. DNA-binding activity of p65 was also examined using electrophoretic mobility shift assay (EMSA), and the suppression of NF-κB target genes were detected using real-time RT-PCR and ELISA. These results enabled us to identify the decreased phosphorylation levels of IKBα. We focused on the gene of negative regulation of NF-κB, represented by TNF-α-induced protein 3 (TNFAIP3, also known as A20). Reducing the levels of A20 with siRNAs significantly enhances luciferase activation of NF-κB. Furthermore, HEV ORF3 regulated A20 primarily via activating transcription factor 6 (ATF6), involved in unfolded protein response (UPR), resulting in the degradation or inactivation of the receptor interacting protein 1 (RIP1), a major upstream activator of IKB kinase compounds (IKKs). Consequently, the phosphorylation of IKBα and the nucleus translocation of p65 are blocked, which contributes to diminished NF-κB DNA-binding activation and NF-κB-dependent gene expression. The findings suggest that genotype 1 HEV, through ORF3, may transiently activate NF-κB through UPR in early stage, and subsequently inhibit TNF-α-induced NF-κB signaling in late phase so as to create a favorable virus replication environment.
Collapse
Affiliation(s)
- Jian Xu
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Wu
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Deying Tian
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| | - Jingjing Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zizheng Zheng
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, China
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
20
|
Wen H, Li Y, Xi Y, Jiang S, Stratton S, Peng D, Tanaka K, Ren Y, Xia Z, Wu J, Li B, Barton MC, Li W, Li H, Shi X. ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Nature 2014; 508:263-8. [PMID: 24590075 DOI: 10.1038/nature13045] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 01/20/2014] [Indexed: 12/31/2022]
Abstract
Recognition of modified histones by 'reader' proteins plays a critical role in the regulation of chromatin. H3K36 trimethylation (H3K36me3) is deposited onto the nucleosomes in the transcribed regions after RNA polymerase II elongation. In yeast, this mark in turn recruits epigenetic regulators to reset the chromatin to a relatively repressive state, thus suppressing cryptic transcription. However, much less is known about the role of H3K36me3 in transcription regulation in mammals. This is further complicated by the transcription-coupled incorporation of the histone variant H3.3 in gene bodies. Here we show that the candidate tumour suppressor ZMYND11 specifically recognizes H3K36me3 on H3.3 (H3.3K36me3) and regulates RNA polymerase II elongation. Structural studies show that in addition to the trimethyl-lysine binding by an aromatic cage within the PWWP domain, the H3.3-dependent recognition is mediated by the encapsulation of the H3.3-specific 'Ser 31' residue in a composite pocket formed by the tandem bromo-PWWP domains of ZMYND11. Chromatin immunoprecipitation followed by sequencing shows a genome-wide co-localization of ZMYND11 with H3K36me3 and H3.3 in gene bodies, and its occupancy requires the pre-deposition of H3.3K36me3. Although ZMYND11 is associated with highly expressed genes, it functions as an unconventional transcription co-repressor by modulating RNA polymerase II at the elongation stage. ZMYND11 is critical for the repression of a transcriptional program that is essential for tumour cell growth; low expression levels of ZMYND11 in breast cancer patients correlate with worse prognosis. Consistently, overexpression of ZMYND11 suppresses cancer cell growth in vitro and tumour formation in mice. Together, this study identifies ZMYND11 as an H3.3-specific reader of H3K36me3 that links the histone-variant-mediated transcription elongation control to tumour suppression.
Collapse
Affiliation(s)
- Hong Wen
- 1] Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Center for Cancer Epigenetics, Center for Genetics and Genomics, and Center for Stem Cell and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [3]
| | - Yuanyuan Li
- 1] MOE Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China [2] Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China [3]
| | - Yuanxin Xi
- 1] Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA [2]
| | - Shiming Jiang
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sabrina Stratton
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Danni Peng
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kaori Tanaka
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yongfeng Ren
- 1] MOE Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China [2] Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zheng Xia
- Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jun Wu
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Bing Li
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Michelle C Barton
- 1] Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Center for Cancer Epigenetics, Center for Genetics and Genomics, and Center for Stem Cell and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [3] Genes and Development Graduate Program, The University of Texas Graduate School of Biomedical Sciences, Houston, Teaxs 77030, USA
| | - Wei Li
- Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Haitao Li
- 1] MOE Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China [2] Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaobing Shi
- 1] Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Center for Cancer Epigenetics, Center for Genetics and Genomics, and Center for Stem Cell and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [3] Genes and Development Graduate Program, The University of Texas Graduate School of Biomedical Sciences, Houston, Teaxs 77030, USA
| |
Collapse
|
21
|
Radtke K, Anderson F, Sodeik B. A precipitation-based assay to analyze interactions of viral particles with cytosolic host factors. Methods Mol Biol 2014; 1144:191-208. [PMID: 24671685 DOI: 10.1007/978-1-4939-0428-0_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Since viruses are obligate intracellular parasites, viral particles, subviral structures, and viral proteins enlist the support of host proteins to foster intracellular transport, viral gene expression, replication, and evasion from antiviral host responses. We have devised a biochemical in vitro method to analyze specific interactions of cytosolic factors with capsids of herpes simplex virus and to characterize host proteins that specifically coprecipitate with different types of viral particles by immunoblotting, mass spectrometry, and immunoelectron microscopy. Our method bridges the gap between assays such as co-immunoprecipitation and yeast-two-hybrid approaches that determine direct binding between individual subunits of protein complexes and microscopy methods that analyze the dynamic interplay between intact viral particles and host factor complexes in intact cells. Our protocol can be extended to functional analyses of herpesvirus capsids and other viral structures with more complex host structures such as microtubule transport, genome uncoating at nuclear pores, or capsid envelopment at host membranes.
Collapse
Affiliation(s)
- Kerstin Radtke
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, 2900 Blvd. Édouard-Montpetit Montréal, QC, Canada
| | | | | |
Collapse
|
22
|
Giambruno R, Grebien F, Stukalov A, Knoll C, Planyavsky M, Rudashevskaya EL, Colinge J, Superti-Furga G, Bennett KL. Affinity purification strategies for proteomic analysis of transcription factor complexes. J Proteome Res 2013; 12:4018-27. [PMID: 23937658 PMCID: PMC3768224 DOI: 10.1021/pr4003323] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Affinity purification (AP) coupled
to mass spectrometry (MS) has
been successful in elucidating protein molecular networks of mammalian
cells. These approaches have dramatically increased the knowledge
of the interconnectivity present among proteins and highlighted biological
functions within different protein complexes. Despite significant
technical improvements reached in the past years, it is still challenging
to identify the interaction networks and the subsequent associated
functions of nuclear proteins such as transcription factors (TFs).
A straightforward and robust methodology is therefore required to
obtain unbiased and reproducible interaction data. Here we present
a new approach for TF AP-MS, exemplified with the CCAAT/enhancer binding
protein alpha (C/EBPalpha). Utilizing the advantages of a double tag
and three different MS strategies, we conducted a total of six independent
AP-MS strategies to analyze the protein–protein interactions
of C/EBPalpha. The resultant data were combined to produce a cohesive
C/EBPalpha interactome. Our study describes a new methodology that
robustly identifies specific molecular complexes associated with transcription
factors. Moreover, it emphasizes the existence of TFs as protein complexes
essential for cellular biological functions and not as single, static
entities.
Collapse
Affiliation(s)
- Roberto Giambruno
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
NP-40 reduces contamination by endogenous biotinylated carboxylases during purification of biotin tagged nuclear proteins. Protein Expr Purif 2013; 89:80-3. [PMID: 23500724 DOI: 10.1016/j.pep.2013.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 11/21/2022]
Abstract
We describe here a simple procedure for greatly reducing contamination of nuclear extracts by naturally biotinylated cytoplasmic carboxylases, which represent a major source of non-specific background when employing BirA-mediated biotinylation tagging for the purification and characterization of nuclear protein complexes by mass spectrometry. We show that the use of 0.5% of the non-ionic detergent Nonidet-40 (NP-40) during cell lysis and nuclei isolation is sufficient to practically eliminate contamination of nuclear extracts by carboxylases and to greatly reduce background signals in downstream mass spectrometric analyses.
Collapse
|
24
|
A method to resolve the composition of heterogeneous affinity-purified protein complexes assembled around a common protein by chemical cross-linking, gel electrophoresis and mass spectrometry. Nat Protoc 2012; 8:75-97. [PMID: 23237831 DOI: 10.1038/nprot.2012.133] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein complexes form, dissociate and re-form in order to perform specific cellular functions. In this two-pronged protocol, noncovalent protein complexes are initially isolated by affinity purification for subsequent identification of the components by liquid chromatography high-resolution mass spectrometry (LC-MS) on a hybrid LTQ Orbitrap Velos. In the second prong of the approach, the affinity-purification strategy includes a chemical cross-linking step to 'freeze' a series of concurrently formed, heterogeneous protein subcomplex species that are visualized by gel electrophoresis. This branch of the methodology amalgamates standard and well-practiced laboratory methods to reveal compositional changes that occur in protein complex architecture. By using mouse N-terminally tagged streptavidin-binding peptide-hemagglutinin-TANK-binding kinase 1 (SH-TBK1), we chemically cross-linked the affinity-purified complex of SH-TBK1 with the homobifunctional lysine-specific reagent bis(sulfosuccinimidyl) suberate (BS(3)), and we separated the resultant protein complexes by denaturation and by silver-stained one- and two-dimensional SDS-PAGE. We observed a range of cross-linked TBK1 complexes of variable pI and M(r) and confirmed them by immunoblotting. LC-MS analysis of in situ-digested cross-linked proteins shows differences in the composition of the TBK1 subcomplexes. The protocol is inherently simple and can be readily extended to the investigation of a range of protein complexes. From cell lysis to data generation by LC-MS, the protocol takes approximately 2.5 to 5.5 d to perform.
Collapse
|
25
|
Abstract
Historically, rate constants were determined in vitro and it was unknown whether they were valid for in vivo biological processes. Here, we bridge this gap by measuring binding dynamics between a pair of proteins in living HeLa cells. Binding of a β-lactamase to its protein inhibitor was initiated by microinjection and monitored by Förster resonance energy transfer. Association rate constants for the wild-type and an electrostatically optimized mutant were only 25% and 50% lower than in vitro values, whereas no change in the rate constant was observed for a slower binding mutant. These changes are much smaller than might be anticipated considering the high macromolecular crowding within the cell. Single-cell analyses of association rate constants and fluorescence recovery after photobleaching reveals a naturally occurring variation in cell density, which is translated to an up to a twofold effect on binding rate constants. The data show that for this model protein interaction the intracellular environment had only a small effect on the association kinetics, justifying the extrapolation of in vitro data to processes in the cell.
Collapse
|
26
|
Jarrett HW. Proteomic methodologies to study transcription factor function. Methods Mol Biol 2012; 786:315-34. [PMID: 21938635 PMCID: PMC3324945 DOI: 10.1007/978-1-61779-292-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Transcription factors regulate transcription by binding to regulatory regions of genes including the promoter. Few of the transcription factors are well characterized, and few promoters have been described in detail. New methods have been developed to improve both transcription factor and promoter characterization, some of which are discussed here. Trapping methodology applicable to both individual transcription factors and intact transcription complexes are described, as well as 2D gel electrophoresis, Southwestern blotting, and basic liquid chromatography/tandem mass spectrometry methodology. These methods have proved useful in the study of transcriptional regulation.
Collapse
Affiliation(s)
- Harry W Jarrett
- Department of Chemistry, University of Texas San Antonio, San Antonio, TX, USA.
| |
Collapse
|
27
|
Abstract
Methylation on histone H3 lysine 4 (H3K4) correlates with actively transcribed genes. In mammalian cells, there exist multiple Set1-like histone H3K4 methyltransferase complexes, which have overlapping but distinct subunit compositions. Developing methods to isolate each of these histone H3K4 methyltransferase complexes would help understand the molecular mechanisms by which histone H3K4 methylation regulates mammalian gene expression. In this chapter, we provide a one-step affinity purification protocol on isolation of the MLL3/MLL4 histone H3K4 methyltransferase complex using FLAG-tagged PA1, a unique subunit of the MLL3/MLL4 complex.
Collapse
Affiliation(s)
- Young-Wook Cho
- Nuclear Receptor Biology Section, NIDDK, NIH, Bethesda, MD, USA
| | | | | |
Collapse
|
28
|
MEK inhibition suppresses the development of lung fibrosis in the bleomycin model. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:21-37. [PMID: 21533992 DOI: 10.1007/s00210-011-0637-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 04/06/2011] [Indexed: 12/21/2022]
Abstract
The extracellular signal-regulated kinase (ERK) cascade has long been known to be central to the activation of cellular processes such as proliferation, differentiation, and oncogenic transformation. The mitogen-activated protein (MAP) serine/threonine family of protein kinases, of which ERK is a member, is activated by a mechanism that includes protein kinase cascades. Mitogen-activated protein kinases (MAPKs) are well-conserved enzymes connecting cell surface receptors to intracellular regulatory targets; they are activated in response to a wide variety of stimuli. The aim of this study was to investigate the effects of PD98059, a highly selective inhibitor of MAP/ERK kinase1 (MEK1) activation, on the development of lung inflammation and fibrosis. Lung injury was induced by intratracheal instillation of bleomycin (1 mg/kg), and PD98059 (10 mg/kg, 10% dimethyl sulfoxide, i.p.) was administrated 1 h after bleomycin instillation and daily for 7 days. PD98059 treatment shows therapeutic effects on pulmonary damage, decreasing many inflammatory and apoptotic parameters, such as (1) cytokine production; (2) IkBα degradation and NF-kB nuclear translocation; (3) iNOS expression; (4) nitrotyrosine and PAR localization; and (5) the degree of apoptosis, as evaluated by Bax and Bcl-2 balance, FAS ligand expression, and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining. In particular, to assess whether PD98059 treatment influences MAPKs pathway, we have also investigated the expression of activated ERK and JNK after bleomycin-induced pulmonary fibrosis, showing that the inhibition of the cascade reduces the inflammatory processes that lead to the appearance of the fibrosis. Taken together, all our results clearly show that PD98059 reduces the lung injury and inflammation due to the intratracheal bleomycin administration in mice.
Collapse
|
29
|
Humphreys EH, Williams KT, Adams DH, Afford SC. Primary and malignant cholangiocytes undergo CD40 mediated Fas dependent apoptosis, but are insensitive to direct activation with exogenous Fas ligand. PLoS One 2010; 5:e14037. [PMID: 21103345 PMCID: PMC2984448 DOI: 10.1371/journal.pone.0014037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 10/18/2010] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Cholangiocarcinoma is a rare malignancy of the biliary tract, the incidence of which is rising, but the pathogenesis of which remains uncertain. No common genetic defects have been described but it is accepted that chronic inflammation is an important contributing factor. We have shown that primary human cholangiocyte and hepatocyte survival is tightly regulated via co-operative interactions between two tumour necrosis family (TNF) receptor family members; CD40 and Fas (CD95). Functional deficiency of CD154, the ligand for CD40, leads to a failure of clearance of biliary tract infections and a predisposition to cholangiocarcinoma implying a direct link between TNF receptor-mediated apoptosis and the development of cholangiocarcinoma. AIMS To determine whether malignant cholangiocytes display defects in CD40 mediated apoptosis. By comparing CD40 and Fas-mediated apoptosis and intracellular signalling in primary human cholangiocytes and three cholangiocyte cell lines. RESULTS Primary cholangiocytes and cholangiocyte cell lines were relatively insensitive to direct Fas-mediated killing with exogenous FasL when compared with Jurkat cells, which readily underwent Fas-mediated apoptosis, but were extremely sensitive to CD154 stimulation. The sensitivity of cells to CD40 activation was similar in magnitude in both primary and malignant cells and was STAT-3 and AP-1 dependent in both. CONCLUSIONS 1) Both primary and malignant cholangiocytes are relatively resistant to Fas-mediated killing but show exquisite sensitivity to CD154, suggesting that the CD40 pathway is intact and fully functional in both primary and malignant cholangiocytes 2) The relative insensitivity of cholangiocytes to Fas activation demonstrates the importance of CD40 augmentation of Fas dependent death in these cells. Agonistic therapies which target CD40 and associated intracellular signalling pathways may be effective in promoting apoptosis of malignant cholangiocytes.
Collapse
Affiliation(s)
- Elizabeth H. Humphreys
- Centre for Liver Research, MRC Centre for Immune Regulation, The Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Kevin T. Williams
- Centre for Liver Research, MRC Centre for Immune Regulation, The Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - David H. Adams
- Centre for Liver Research, MRC Centre for Immune Regulation, The Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Simon C. Afford
- Centre for Liver Research, MRC Centre for Immune Regulation, The Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|