1
|
Sadhukhan J, Mandal P, Pramanik S, Guria S, Kabir AS, Das D, Adhikari SS. Recognition of GC base pairs of B-DNA by coumarin-based benzimidazopyrimidines. Org Biomol Chem 2025. [PMID: 40198158 DOI: 10.1039/d4ob02055c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
A novel series of Fe(III)-catalyzed crescent-shaped coumarin-appended benzo[4,5]imidazo[1,2-a]pyrimidines has been generated using a single-step multi-component approach that includes a coumarin-derived β keto ester, 2-aminobenzimidazole, and various aldehydes. The mild eco-friendly reaction conditions allowed us, for the first time, to construct a library of highly substituted benzo[4,5]imidazo[1,2-a]pyrimidine (CBPy) heterocycles with a wide range of substrate compatibility and excellent yields. This one-pot synthesis is green in nature and conforms to atom economy. The structure of one representative compound (4a) was established by X-ray crystallographic analysis. Our designed CBPys are bent in shape and capable of fitting into the minor groove of the B-DNA structure. Among all the CBPys, compound 4a exhibited the strongest binding interaction (Kd = 2.9 μM) with calf thymus DNA (ctDNA), which is known to form the B-DNA structure under the experimental conditions. A competitive binding study confirmed that the location of 4a was 43.77 Å away from the AT-rich region in the minor groove of B-DNA. It was also established that the crescent shape and the presence of coumarin were crucial for the binding of CBPys with B-DNA structures. Our results with DNA oligonucleotides of variable GC content suggest that compound 4a specifically recognizes and binds to the GC base pairs of the B-DNA structure. Thus, the CBPy class of molecules may open a new avenue for the development of novel therapeutic drugs through GC recognition.
Collapse
Affiliation(s)
- Juheli Sadhukhan
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India.
| | - Pabitra Mandal
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India.
| | - Smritimoy Pramanik
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India.
| | - Subhajit Guria
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India.
| | - Alomgir Shah Kabir
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India.
| | - Debojyoti Das
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India.
| | | |
Collapse
|
2
|
Pasangha CH, Kishore N. Unveiling the multifaceted interactions of antitumor drug mitoxantrone with ct-DNA through biophysical and in silico studies. Int J Biol Macromol 2024; 280:135813. [PMID: 39306167 DOI: 10.1016/j.ijbiomac.2024.135813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
Mitoxantrone, an anthraquinone derivative, is a widely used anticancer drug with its well-known ability to engage in complex interactions with DNA. Although known for its intercalating ability, the enigma surrounding its binding modes with DNA persists. The existing corpus of literature primarily focuses on mitoxantrone-DNA interactions with short DNA sequences, thereby yielding insights into its interactive nature is limited to this specific sequence. This study aims to elucidate the diverse modes with which mitoxantrone interacts with calf thymus DNA using a combination of spectroscopy, calorimetry and in silico studies. The findings from spectroscopic, calorimetric and molecular dynamic results in correlation with existing literature, unveil a fascinating narrative: mitoxantrone intercalates at lower concentrations but promotes condensation at higher concentrations. Although intercalation with side chains positioned in the minor/major groove is the major binding mode in GC-rich sequences, molecular modelling studies hint at an alternative binding mode in AT-rich sequences where it exclusively displays pure electrostatic interaction. These findings underscore the pivotal role of both drug structure and base sequence in dictating binding mode and affinity. Such insights not only deepen the understanding of structure-activity relationships but also hold promise for guiding future drug design strategies.
Collapse
Affiliation(s)
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| |
Collapse
|
3
|
Ogbonna EN, Terrell JR, Paul A, Farahat AA, Poon GMK, Boykin DW, Wilson WD. Single GC base pair recognition by a heterocyclic diamidine: structures, affinities, and dynamics. RSC Adv 2024; 14:29675-29682. [PMID: 39297050 PMCID: PMC11408989 DOI: 10.1039/d4ra05957c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/21/2024] Open
Abstract
The recognition of specific genomic arrangements by rationally designed small molecules is fundamental for the expansion of targeted gene expression. Here, we report the first X-ray crystal structures that demonstrate single G (guanine) recognition by a highly selective diamidine (DB2447) in a mixed DNA sequence. The study presents detailed structural information on the mechanism of single G recognition by D2447 and its various interactions in the DNA minor groove. Molecular dynamics and binding studies were used to evaluate the details of our reported structures. The study provides structural insight and resources necessary for understanding single G selection in genomic sequences.
Collapse
Affiliation(s)
- Edwin N Ogbonna
- Department of Chemistry and Centre of Diagnostics and Therapeutics, Georgia State University Atlanta GA 30303-3083 USA +1 404-413-5505 +1 404-413-5503
| | - J Ross Terrell
- Department of Chemistry and Centre of Diagnostics and Therapeutics, Georgia State University Atlanta GA 30303-3083 USA +1 404-413-5505 +1 404-413-5503
| | - Ananya Paul
- Department of Chemistry and Centre of Diagnostics and Therapeutics, Georgia State University Atlanta GA 30303-3083 USA +1 404-413-5505 +1 404-413-5503
| | - Abdelbasset A Farahat
- Department of Chemistry and Centre of Diagnostics and Therapeutics, Georgia State University Atlanta GA 30303-3083 USA +1 404-413-5505 +1 404-413-5503
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
- Master of Pharmaceutical Science Program, California North State University Elk Grove CA 95757 USA
| | - Gregory M K Poon
- Department of Chemistry and Centre of Diagnostics and Therapeutics, Georgia State University Atlanta GA 30303-3083 USA +1 404-413-5505 +1 404-413-5503
| | - David W Boykin
- Department of Chemistry and Centre of Diagnostics and Therapeutics, Georgia State University Atlanta GA 30303-3083 USA +1 404-413-5505 +1 404-413-5503
| | - W David Wilson
- Department of Chemistry and Centre of Diagnostics and Therapeutics, Georgia State University Atlanta GA 30303-3083 USA +1 404-413-5505 +1 404-413-5503
| |
Collapse
|
4
|
Bal M, Köse A, Güngör SA. Investigation of photoluminescence and DNA binding properties of benzimidazole compounds containing benzophenone group. J Biomol Struct Dyn 2024; 42:7847-7859. [PMID: 37526238 DOI: 10.1080/07391102.2023.2242496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
The synthesis of benzimidazole compounds containing benzophenone group in accordance with the literature and the investigation of DNA binding properties of these compounds by using UV-vis and photoluminescence spectroscopy methods constitute the basis of this research. The structures of the compounds were determined by methods such as FT-IR, 1H, 13C NMR, UV-vis, Photoluminescence spectroscopy, and X-ray crystallography. By using methods such as UV-vis, Photoluminescence spectroscopy, and viscosity tests, information were collected about the binding types, binding mode, and binding energies of the compounds with DNA. In addition, the binding interactions of the compounds with DNA were investigated using the molecular docking technique. Using this information, calibration equations, correlation coefficients (r2), and DNA binding constants (Kb) were calculated for their compounds. The binding constants (Kb) calculated for substances A, B, and C were found to be 3.0 × 104, 7.0 × 104, and 3.0 × 104 M-1, respectively. UV-vis, EB competitive binding, and viscosity tests showed that the compounds tended to bind to the DNA structure via the groove binding mode. At the end of molecular docking studies, it was determined that compound B showed the best DNA binding activity in in vitro studies. Compared with the studies in the literature, it is thought that the synthesized compounds can take place in cancer drug research as DNA binding agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mustafa Bal
- Department of Materials Science and Engineering, Kahramanmaras Sütcü Imam University, Kahramanmaraş, Turkey
| | - Ayşegül Köse
- Department of Property Protection and Safety, Elbistan Vocational School, Kahramanmaras Istiklal University, Kahramanmaraş, Turkey
| | - Seyit Ali Güngör
- Department of Chemistry, Faculty of Science, Kahramanmaras Sütcü Imam University, Kahramanmaraş, Turkey
| |
Collapse
|
5
|
Yusuf TL, Akintayo DC, Oladipo SD, Adeleke AA, Olofinsan K, Vatsha B, Mabuba N. The effect of structural configuration on the DNA binding and in vitro antioxidant properties of new copper( ii) N 2O 2 Schiff base complexes. NEW J CHEM 2022. [DOI: 10.1039/d2nj01477g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA interaction with cis and trans-copper NO complexes favours the cis configuration due to low energies observed in the cis configuration.
Collapse
Affiliation(s)
- Tunde Lewis Yusuf
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, P.O. BOX 17011, 2028 Johannesburg, South Africa
| | - Damilola Caleb Akintayo
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| | - Segun Daniel Oladipo
- Department of Chemical Sciences, Olabisi Onabanjo University, PMB 2002, Ago-Iwoye, Nigeria
| | | | - Kolawole Olofinsan
- Department of Biochemistry, Faculty of Natural and Applied Sciences, Nile University of Nigeria, Abuja, Nigeria
| | - Banele Vatsha
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, P.O. BOX 17011, 2028 Johannesburg, South Africa
| | - Nonhlagabezo Mabuba
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, P.O. BOX 17011, 2028 Johannesburg, South Africa
| |
Collapse
|
6
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
7
|
Hadwiger LA. Nonhost Disease Resistance in Pea: Chitosan's Suggested Role in DNA Minor Groove Actions Relative to Phytoalexin-Eliciting Anti-Cancer Compounds. Molecules 2020; 25:E5913. [PMID: 33327391 PMCID: PMC7764892 DOI: 10.3390/molecules25245913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022] Open
Abstract
A stable intense resistance called "nonhost resistance" generates a complete multiple-gene resistance against plant pathogenic species that are not pathogens of pea such as the bean pathogen, Fusarium solani f. sp. phaseoli (Fsph). Chitosan is a natural nonhost resistance response gene activator of defense responses in peas. Chitosan may share with cancer-treatment compounds, netropsin and some anti-cancer drugs, a DNA minor groove target in plant host tissue. The chitosan heptamer and netropsin have the appropriate size and charge to reside in the DNA minor groove. The localization of a percentage of administered radio-labeled chitosan in the nucleus of plant tissue in vivo indicates its potential to transport to site(s) within the nuclear chromatin (1,2). Other minor groove-localizing compounds administered to pea tissue activate the same secondary plant pathway that terminates in the production of the anti-fungal isoflavonoid, pisatin an indicator of the generated resistance response. Some DNA minor groove compounds also induce defense genes designated as "pathogenesis-related" (PR) genes. Hypothetically, DNA targeting components alter host DNA in a manner enabling the transcription of defense genes previously silenced or minimally expressed. Defense-response-elicitors can directly (a) target host DNA at the site of transcription or (b) act by a series of cascading events beginning at the cell membrane and indirectly influence transcription. A single defense response, pisatin induction, induced by chitosan and compounds with known DNA minor groove attachment potential was followed herein. A hypothesis is formulated suggesting that this DNA target may be accountable for a portion of the defense response generated in nonhost resistance.
Collapse
Affiliation(s)
- Lee A Hadwiger
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| |
Collapse
|
8
|
Adeleke AA, Islam MS, Sanni O, Mocktar C, Zamisa SJ, Omondi B. Aryl variation and anion effect on CT-DNA binding and in vitro biological studies of pyridinyl Ag(I) complexes. J Inorg Biochem 2020; 214:111266. [PMID: 33166866 DOI: 10.1016/j.jinorgbio.2020.111266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/28/2022]
Abstract
Synthesis and spectroscopic characterization of five ligands ((E)-2-((pyridin-2-ylmethylene)amino)phenol L1, 2-(pyridin-2-yl)benzo[d]thiazole L2, (E)-N-(2-fluorophenyl)-1-(pyridin-2-yl)methanimine L3, (E)-1-(pyridin-2-yl)-N-(p-tolyl)methanimine L4 and (E)-1-(pyridin-2-yl)-N-(thiophen-2-ylmethyl)methanimine L5 along with fifteen silver(I) complexes of L1 - L5, with a general formula [AgL2]+X- (L = Schiff base and X = NO3-, ClO4- or CF3SO3-) is reported. The structures of complexes [Ag(L4)2]NO3, [Ag(L5)2]NO3, [Ag(L3)2]ClO4, [Ag(L4)2]ClO4 and [Ag(L5)2]CF3SO3 were determined unequivocally by single crystal X-ray diffraction analysis. Calf-thymus deoxyribonucleic acid (CT-DNA), bovine serum albumin (BSA) binding studies, antioxidant, and antibacterial studies were performed for all complexes. Complexes [Ag(L2)2]NO3, [Ag(L5)2]NO3, [Ag(L1)2]ClO4 and [Ag(L3)2]ClO4 whose ligands have an OH- and F- as substituents or with a thiophene or thiazole moiety showed better antibacterial activities with lower minimum inhibitory concentration (MIC) values compared to the standard ciprofloxacin, against most of the bacterial strains tested. Similarly, complexes [Ag(L1)2]NO3,[Ag(L2)2]NO3,[Ag(L3)2]NO3 and [Ag(L5)2]NO3 with the NO3- anion, [Ag(L1)2]ClO4 and [Ag(L2)2]ClO4 with ClO4- anion, and [Ag(L5)2]CF3SO3 with CF3SO3- anion showed higher activities for antioxidant studies. Complexes [Ag(L4)2]ClO4 and [Ag(L4)2]CF3SO3 with the Methyl substituent and CF3SO3- as the anion, displayed high antioxidant activities in FRAP (ferric reducing antioxidant power) than the standard ascorbic acid. Spectroscopic studies of all the complexes revealed their moderate to high interaction with calf thymus DNA via an intercalation mode. In addition, the relatively moderate interaction of most of the complexes with BSA was through a static quenching mechanism.
Collapse
Affiliation(s)
- Adesola Abimbola Adeleke
- School of Chemistry and Physics, University of Kwazulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville 3209, South Africa
| | - Md Shahidul Islam
- Discipline of Biochemistry, School of Life Sciences, University of Kwazulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| | - Olakunle Sanni
- Discipline of Biochemistry, School of Life Sciences, University of Kwazulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of Kwazulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| | - Sizwe J Zamisa
- School of Chemistry and Physics, University of Kwazulu-Natal, Westville Campus, Private Bag X54001, Westville 4001, South Africa
| | - Bernard Omondi
- School of Chemistry and Physics, University of Kwazulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville 3209, South Africa.
| |
Collapse
|
9
|
Molecular mechanism of antimutagenicity by an ethoxy-substituted phylloquinone (vitamin K1 derivative) from spinach (Spinacea oleracea L.). Chem Biol Interact 2020; 330:109216. [PMID: 32810488 DOI: 10.1016/j.cbi.2020.109216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 11/23/2022]
Abstract
In our previous study, an antimutagenic compound from spinach (Spinacea oleracea L.), ethoxy-substituted phylloquinone (ESP) was isolated and characterized. The current study deals with elucidation of the possible mechanism of antimutagenicity of ESP against ethyl methanesulfonate (EMS) deploying model systems such as human lymphoblast (TK+/- or TK6) cell line (thymidine kinase gene mutation assay) and Escherichia coli MG1655 (rifampicin resistance assay). Findings of the study ruled out the possibility of direct inactivation of EMS by ESP. DAPI competitive binding assay indicated the DNA minor groove binding activity of ESP. Interestingly, ESP did not display major groove binding or intercalating abilities. Further, proteomics study using 2-D gel electrophoresis in E. coli and subsequent studies involving single gene knockout strains revealed the possible role of tnaA (tryptophanase) and dgcP (diguanylate cyclase) genes in observed antimutagenicity. These genes have been reported to be involved in indole and cyclic-di-GMP biosynthesis, respectively, which eventually lead to cell division inhibition. In case of TK+/- cell line system, ADCY genes (adenylate cyclase), a functional analogue of dgcP gene, were found to be transcriptionally up-regulated. The generation/doubling time were significantly higher in E. coli or TK+/- cells treated with ESP than control cells. The findings indicated inhibition of cell proliferation by ESP through gene regulation as a possible mechanism of antimutagenicity across the biological system. Cell division inhibition actually provides additional time for the repair of damaged DNA leading to antimutagenicity.
Collapse
|
10
|
Kolade SO, Izunobi JU, Hosten EC, Olasupo IA, Ogunlaja AS, Familoni OB. Synthesis, crystal structure and docking studies of tetracyclic 10-iodo-1,2-dihydroisoquinolino[2,1-b][1,2,4]benzothiadiazine 12,12-dioxide and its precursors. Acta Crystallogr C Struct Chem 2020; 76:810-820. [PMID: 32756044 DOI: 10.1107/s2053229620009626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/15/2020] [Indexed: 11/10/2022] Open
Abstract
The title compound, 10-iodo-1,2-dihydroisoquinolino[2,1-b][1,2,4]benzothiadiazine 12,12-dioxide, C15H11IN2O2S (8), was synthesized via the metal-free intramolecular N-iodosuccinimide (NIS)-mediated radical oxidative sp3-C-H aminative cyclization of 2-(2'-aminobenzenesulfonyl)-1,3,4-trihydroisoquinoline, C15H16N2O2S (7). The amino adduct 7 was prepared via a two-step reaction, starting from the condensation of 2-nitrobenzenesulfonyl chloride (4) with 1,2,3,4-tetrahydroisoquinoline (5), to afford 2-(2'-nitrobenzenesulfonyl)-1,3,4-trihydroisoquinoline, C15H14N2O4S (6), in 82% yield. The catalytic hydrogenation of 6 with hydrogen gas, in the presence of 10% palladium-on-charcoal catalyst, furnished 7. Products 6-8 were characterized by their melting points, IR and NMR (1H and 13C) spectroscopy, and single-crystal X-ray diffraction. The three compounds crystallized in the monoclinic space group, with 7 exhibiting classical intramolecular hydrogen bonds of 2.16 and 2.26 Å. All three crystal structures exhibit centrosymmetric pairs of intermolecular C-H...π(ring) and/or π-π stacking interactions. The docking studies of molecules 6, 7 and 8 with deoxyribonucleic acid (PDB id: 1ZEW) revealed minor-groove binding behaviours without intercalation, with 7 presenting the most favourable global energy of the three molecules. Nonetheless, molecule 8 interacted strongly with the DNA macromolecule, with an attractive van der Waals energy of -15.53 kcal mol-1.
Collapse
Affiliation(s)
- Sherif O Kolade
- Chemistry, University of Lagos, Akoka-Yaba, Lagos 100001, Nigeria
| | | | - Eric C Hosten
- Chemistry, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa
| | - Idris A Olasupo
- Chemistry, University of Lagos, Akoka-Yaba, Lagos 100001, Nigeria
| | - Adeniyi S Ogunlaja
- Chemistry, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa
| | | |
Collapse
|
11
|
Non-cytotoxic photostable monomethine cyanine platforms: Combined paradigm of nucleic acid staining and in vivo imaging. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Farahat AA, Guo P, Shoeib H, Paul A, Boykin DW, Wilson WD. Small Sequence-Sensitive Compounds for Specific Recognition of the G⋅C Base Pair in DNA Minor Groove. Chemistry 2020; 26:4539-4551. [PMID: 31884714 PMCID: PMC7265973 DOI: 10.1002/chem.201904396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/10/2019] [Indexed: 12/24/2022]
Abstract
A series of small diamidines with thiophene and modified N-alkylbenzimidazole σ-hole module represent specific binding to single G⋅C base pair (bp) DNA sequence. The variation of N-alkyl or aromatic rings were sensitive to microstructures of the DNA minor groove. Thirteen new compounds were synthesized to test their binding affinity and selectivity. The dicyanobenzimidazoles needed to synthesize the target diamidines were made via condensation/cyclization reactions of different aldehydes with different 3-amino-4-(alkyl- or phenyl-amino) benzonitriles. The final diamidines were synthesized using lithium bis-trimethylsilylamide (LiN[Si(CH3 )3 ]2 ) or Pinner methods. The newly synthesized compounds showed strong binding and selectivity to AAAGTTT compared to similar sequences AAATTT and AAAGCTTT investigated by several biophysical methods including biosensor-SPR, fluorescence spectroscopy, DNA thermal melting, ESI-MS spectrometry, circular dichroism, and molecular dynamics. The binding affinity results determined by fluorescence spectroscopy are in accordance with those obtained by biosensor-SPR. These small size single G⋅C bp highly specific binders extend the compound database for future biological applications.
Collapse
Affiliation(s)
- Abdelbasset A. Farahat
- Department of Chemistry and Center for Diagnostics and Therapeutics Georgia State University, 50 Decatur St SE, Atlanta, GA 30303, USA
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Pu Guo
- Department of Chemistry and Center for Diagnostics and Therapeutics Georgia State University, 50 Decatur St SE, Atlanta, GA 30303, USA
| | - Hadir Shoeib
- Department of Chemistry and Center for Diagnostics and Therapeutics Georgia State University, 50 Decatur St SE, Atlanta, GA 30303, USA
| | - Ananya Paul
- Department of Chemistry and Center for Diagnostics and Therapeutics Georgia State University, 50 Decatur St SE, Atlanta, GA 30303, USA
| | - David W. Boykin
- Department of Chemistry and Center for Diagnostics and Therapeutics Georgia State University, 50 Decatur St SE, Atlanta, GA 30303, USA
| | - W. David Wilson
- Department of Chemistry and Center for Diagnostics and Therapeutics Georgia State University, 50 Decatur St SE, Atlanta, GA 30303, USA
| |
Collapse
|
13
|
Sánchez MI, Rama G, Calo-Lapido R, Ucar K, Lincoln P, López MV, Melle-Franco M, Mascareñas JL, Vázquez ME. Canonical DNA minor groove insertion of bisbenzamidine-Ru(ii) complexes with chiral selectivity. Chem Sci 2019; 10:8668-8674. [PMID: 31803441 PMCID: PMC6849638 DOI: 10.1039/c9sc03053k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/30/2019] [Indexed: 11/24/2022] Open
Abstract
We report the first Ru(ii) coordination compounds that interact with DNA through a canonical minor groove insertion mode and with selectivity for A/T rich sites. This was made possible by integrating a bis-benzamidine minor groove DNA-binding agent with a ruthenium(ii) complex. Importantly, one of the enantiomers (Δ-[Ru(bpy)2 b4bpy]2+, Δ-4Ru) shows a considerably higher DNA affinity than the parent organic ligand and the other enantiomer, particularly for the AATT sequence, while the other enantiomer preferentially targets long AAATTT sites with overall lower affinity. Finally, we demonstrate that the photophysical properties of these new binders can be exploited for DNA cleavage using visible light.
Collapse
Affiliation(s)
- Mateo I Sánchez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain .
| | - Gustavo Rama
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) , Departamento de Química Inorgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain
| | - Renata Calo-Lapido
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain .
| | - Kübra Ucar
- Department of Chemistry and Chemical Engineering , Chalmers University of Technology , SE 412 96 Gothenburg , Sweden
| | - Per Lincoln
- Department of Chemistry and Chemical Engineering , Chalmers University of Technology , SE 412 96 Gothenburg , Sweden
| | - Miguel Vázquez López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) , Departamento de Química Inorgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain
| | - Manuel Melle-Franco
- Ciceco - Aveiro Institute of Materials , University of Aveiro Campus Universitario de Santiago , Aveiro , 3810-193 , Portugal
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain .
| | - M Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain .
| |
Collapse
|
14
|
Satange R, Chang CK, Hou MH. A survey of recent unusual high-resolution DNA structures provoked by mismatches, repeats and ligand binding. Nucleic Acids Res 2019; 46:6416-6434. [PMID: 29945186 PMCID: PMC6061790 DOI: 10.1093/nar/gky561] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
The structure of the DNA duplex is arguably one of the most important biological structures elucidated in modern history. DNA duplex structure is closely associated with essential biological functions such as DNA replication and RNA transcription. In addition to the classical A-, B- and Z-DNA conformations, DNA duplexes are capable of assuming a variety of alternative conformations depending on the sequence and environmental context. A considerable number of these unusual DNA duplex structures have been identified in the past decade, and some of them have been found to be closely associated with different biological functions and pathological conditions. In this manuscript, we review a selection of unusual DNA duplex structures, particularly those originating from base pair mismatch, repetitive sequence motifs and ligand-induced structures. Although the biological significance of these novel structures has not yet been established in most cases, the illustrated conformational versatility of DNA could have relevance for pharmaceutical or nanotechnology development. A perspective on the future directions of this field is also presented.
Collapse
Affiliation(s)
- Roshan Satange
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan.,Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Chung-Ke Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Hon Hou
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan.,Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
15
|
Padroni G, Parkinson JA, Fox KR, Burley GA. Structural basis of DNA duplex distortion induced by thiazole-containing hairpin polyamides. Nucleic Acids Res 2019; 46:42-53. [PMID: 29194552 PMCID: PMC5758887 DOI: 10.1093/nar/gkx1211] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/28/2017] [Indexed: 01/05/2023] Open
Abstract
This manuscript reports the molecular basis for double-stranded DNA (dsDNA) binding of hairpin polyamides incorporating a 5-alkyl thiazole (Nt) unit. Hairpin polyamides containing an N-terminal Nt unit induce higher melting stabilisation of target dsDNA sequences relative to an archetypical hairpin polyamide incorporating an N-terminal imidazole (Im) unit. However, modification of the N-terminus from Im to Nt-building blocks results in an increase in dsDNA binding affinity but lower G-selectivity. A general G-selectivity trend is observed for Nt-containing polyamide analogues. G-selectivity increases as the steric bulk in the Nt 5-position increases. Solution-based NMR structural studies reveal differences in the modulation of the target DNA duplex of Nt-containing hairpin polyamides relative to the Im-containing archetype. A structural hallmark of an Nt polyamide•dsDNA complex is a more significant degree of major groove compression of the target dsDNA sequence relative to the Im-containing hairpin polyamide.
Collapse
Affiliation(s)
- Giacomo Padroni
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - John A Parkinson
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Keith R Fox
- Centre for Biological Sciences, University of Southampton, Life Sciences Building 85, Southampton SO17 1BJ, UK
| | - Glenn A Burley
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| |
Collapse
|
16
|
A New Generation of Minor-Groove-Binding-Heterocyclic Diamidines That Recognize G·C Base Pairs in an AT Sequence Context. Molecules 2019; 24:molecules24050946. [PMID: 30866557 PMCID: PMC6429135 DOI: 10.3390/molecules24050946] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/17/2022] Open
Abstract
We review the preparation of new compounds with good solution and cell uptake properties that can selectively recognize mixed A·T and G·C bp sequences of DNA. Our underlying aim is to show that these new compounds provide important new biotechnology reagents as well as a new class of therapeutic candidates with better properties and development potential than other currently available agents. In this review, entirely different ways to recognize mixed sequences of DNA by modifying AT selective heterocyclic cations are described. To selectively recognize a G·C base pair an H-bond acceptor must be incorporated with AT recognizing groups as with netropsin. We have used pyridine, azabenzimidazole and thiophene-N-methylbenzimidazole GC recognition units in modules crafted with both rational design and empirical optimization. These modules can selectively and strongly recognize a single G·C base pair in an AT sequence context. In some cases, a relatively simple change in substituents can convert a heterocyclic module from AT to GC recognition selectivity. Synthesis and DNA interaction results for initial example lead modules are described for single G·C base pair recognition compounds. The review concludes with a description of the initial efforts to prepare larger compounds to recognize sequences of DNA with more than one G·C base pairs. The challenges and initial successes are described along with future directions.
Collapse
|
17
|
DNA recognition by linear indole-biphenyl DNA minor groove ligands. Biophys Chem 2018; 245:6-16. [PMID: 30513446 DOI: 10.1016/j.bpc.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 11/21/2022]
Abstract
Linear heterocyclic cations are interesting DNA minor groove ligands due to their lack of isohelical curvature classically associated with groove-binding compounds. We determined the DNA binding properties of four related dications harboring a linear indole-biphenyl core: the diamidine DB1883, a ditetrahydropyrimidine derivative (DB1804), and their monocationic counterparts (DB1944 and DB2627). These compounds exhibit heterogeneity in binding in accordance with their structures. Whereas the monocations exhibit salt-sensitive 1:1 binding to the duplex 5'-CGCGAATTCGCG-3' (A2T2), the dications show a marked preference for a salt-insensitive 2:1 complex. The two binding modes are differentially modulated by salt and specific non-ionic co-solutes. For both dications, 2-methyl-2,4-pentanediol enforces 1:1 binding as observed crystallographically. Fluorescence quenching studies show self-association without DNA in a relative order that is correlated with preference for the 2:1 complex. The data support a structure-binding relationship in which favorable cation-π interactions drive dimer formation via antiparallel stacking of the linear indole-biphenyl cation motif.
Collapse
|
18
|
Guo P, Paul A, Kumar A, Harika NK, Wang S, Farahat AA, Boykin DW, Wilson WD. A modular design for minor groove binding and recognition of mixed base pair sequences of DNA. Chem Commun (Camb) 2017; 53:10406-10409. [PMID: 28880316 PMCID: PMC5616130 DOI: 10.1039/c7cc06246j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The design and synthesis of compounds that target mixed, AT/GC, DNA sequences is described. The design concept connects two N-methyl-benzimidazole-thiophene single GC recognition units with a flexible linker that lets the compound fit the shape and twist of the DNA minor groove while covering a full turn of the double helix.
Collapse
Affiliation(s)
- Pu Guo
- Department of Chemistry and Center for Diagnostics and Therapeutics Georgia State University, 50 Decatur St Se, Atlanta, GA 30303-3083, USA.
| | - Ananya Paul
- Department of Chemistry and Center for Diagnostics and Therapeutics Georgia State University, 50 Decatur St Se, Atlanta, GA 30303-3083, USA.
| | - Arvind Kumar
- Department of Chemistry and Center for Diagnostics and Therapeutics Georgia State University, 50 Decatur St Se, Atlanta, GA 30303-3083, USA.
| | - Narinder K Harika
- Department of Chemistry and Center for Diagnostics and Therapeutics Georgia State University, 50 Decatur St Se, Atlanta, GA 30303-3083, USA.
| | - Siming Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics Georgia State University, 50 Decatur St Se, Atlanta, GA 30303-3083, USA.
| | - Abdelbasset A Farahat
- Department of Chemistry and Center for Diagnostics and Therapeutics Georgia State University, 50 Decatur St Se, Atlanta, GA 30303-3083, USA.
| | - David W Boykin
- Department of Chemistry and Center for Diagnostics and Therapeutics Georgia State University, 50 Decatur St Se, Atlanta, GA 30303-3083, USA.
| | - W David Wilson
- Department of Chemistry and Center for Diagnostics and Therapeutics Georgia State University, 50 Decatur St Se, Atlanta, GA 30303-3083, USA.
| |
Collapse
|
19
|
Guo P, Paul A, Kumar A, Farahat AA, Kumar D, Wang S, Boykin DW, Wilson WD. The Thiophene "Sigma-Hole" as a Concept for Preorganized, Specific Recognition of G⋅C Base Pairs in the DNA Minor Groove. Chemistry 2016; 22:15404-15412. [PMID: 27624927 PMCID: PMC5214980 DOI: 10.1002/chem.201603422] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 11/10/2022]
Abstract
In spite of its importance in cell function, targeting DNA is under-represented in the design of small molecules. A barrier to progress in this area is the lack of a variety of modules that recognize G⋅C base pairs (bp) in DNA sequences. To overcome this barrier, an entirely new design concept for modules that can bind to mixed G⋅C and A⋅T sequences of DNA is reported herein. Because of their successes in biological applications, minor-groove-binding heterocyclic cations were selected as the platform for design. Binding to A⋅T sequences requires hydrogen-bond donors whereas recognition of the G-NH2 requires an acceptor. The concept that we report herein uses pre-organized N-methylbenzimidazole (N-MeBI) thiophene modules for selective binding with mixed bp DNA sequences. The interaction between the thiophene sigma hole (positive electrostatic potential) and the electron-donor nitrogen of N-MeBI preorganizes the conformation for accepting an hydrogen bond from G-NH2 . The compound-DNA interactions were evaluated with a powerful array of biophysical methods and the results show that N-MeBI-thiophene monomer compounds can strongly and selectively recognize single G⋅C bp sequences. Replacing the thiophene with other moieties significantly reduces binding affinity and specificity, as predicted by the design concept. These results show that the use of molecular features, such as sigma-holes, can lead to new approaches for small molecules in biomolecular interactions.
Collapse
Affiliation(s)
- Pu Guo
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303-3083, USA
| | - Ananya Paul
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303-3083, USA
| | - Arvind Kumar
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303-3083, USA
| | - Abdelbasset A Farahat
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303-3083, USA
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Dhiraj Kumar
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303-3083, USA
| | - Siming Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303-3083, USA
| | - David W Boykin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303-3083, USA
| | - W David Wilson
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303-3083, USA.
| |
Collapse
|
20
|
Butko MT, Moree B, Mortensen RB, Salafsky J. Detection of Ligand-Induced Conformational Changes in Oligonucleotides by Second-Harmonic Generation at a Supported Lipid Bilayer Interface. Anal Chem 2016; 88:10482-10489. [PMID: 27696827 DOI: 10.1021/acs.analchem.6b02498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is a high demand for characterizing oligonucleotide structural changes associated with binding interactions as well as identifying novel binders that modulate their structure and function. In this study, second-harmonic generation (SHG) was used to study RNA and DNA oligonucleotide conformational changes associated with ligand binding. For this purpose, we developed an avidin-based biotin capture surface based on a supported lipid bilayer membrane. The technique was applied to two well-characterized aptamers, both of which undergo conformational changes upon binding either a protein or a small molecule ligand. In both cases, SHG was able to resolve conformational changes in these oligonucleotides sensitively and specifically, in solution and in real time, using nanogram amounts of material. In addition, we developed a competition assay for the oligonucleotides between the specific ligands and known, nonspecific binders, and we demonstrated that intercalators and minor groove binders affect the conformation of the DNA and RNA oligonucleotides in different ways upon binding and subsequently block specific ligand binding in all cases. Our work demonstrates the broad potential of SHG for studying oligonucleotides and their conformational changes upon interaction with ligands. As SHG offers a powerful, high-throughput screening approach, our results here also open an important new avenue for identifying novel chemical probes or sequence-targeted drugs that disrupt or modulate DNA or RNA structure and function.
Collapse
Affiliation(s)
- Margaret T Butko
- Biodesy, Inc. , 384 Oyster Point Boulevard, Suite No. 8, South San Francisco, California 94080, United States
| | - Ben Moree
- Biodesy, Inc. , 384 Oyster Point Boulevard, Suite No. 8, South San Francisco, California 94080, United States
| | - Richard B Mortensen
- Biodesy, Inc. , 384 Oyster Point Boulevard, Suite No. 8, South San Francisco, California 94080, United States
| | - Joshua Salafsky
- Biodesy, Inc. , 384 Oyster Point Boulevard, Suite No. 8, South San Francisco, California 94080, United States
| |
Collapse
|
21
|
Antiprion Activity of DB772 and Related Monothiophene- and Furan-Based Analogs in a Persistently Infected Ovine Microglia Culture System. Antimicrob Agents Chemother 2016; 60:5467-82. [PMID: 27381401 PMCID: PMC4997874 DOI: 10.1128/aac.00811-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/26/2016] [Indexed: 01/26/2023] Open
Abstract
The transmissible spongiform encephalopathies are fatal neurodegenerative disorders characterized by the misfolding of the native cellular prion protein (PrPC) into the accumulating, disease-associated isoform (PrPSc). Despite extensive research into the inhibition of prion accumulation, no effective treatment exists. Previously, we demonstrated the inhibitory activity of DB772, a monocationic phenyl-furan-benzimidazole, against PrPSc accumulation in sheep microglial cells. In an effort to determine the effect of structural substitutions on the antiprion activity of DB772, we employed an in vitro strategy to survey a library of structurally related, monothiophene- and furan-based compounds for improved inhibitory activity. Eighty-nine compounds were screened at 1 μM for effects on cell viability and prion accumulation in a persistently infected ovine microglia culture system. Eleven compounds with activity equivalent to or higher than that of DB772 were identified as preliminary hit compounds. For the preliminary hits, cytotoxicities and antiprion activities were compared to calculate the tissue culture selectivity index. A structure-activity relationship (SAR) analysis was performed to determine molecular components contributing to antiprion activity. To investigate potential mechanisms of inhibition, effects on PrPC and PrPSc were examined. While inhibition of total PrPC was not observed, the results suggest that a potential target for inhibition at biologically relevant concentrations is through PrPC misfolding to PrPSc. Further, SAR analysis suggests that two structural elements were associated with micromolar antiprion activity. Taken together, the described data provide a foundation for deeper investigation into untested DB compounds and in the design of effective therapeutics.
Collapse
|
22
|
Generating Crystallographic Models of DNA Dodecamers from Structures of RNase H:DNA Complexes. Methods Mol Biol 2016; 1320:111-26. [PMID: 26227040 DOI: 10.1007/978-1-4939-2763-0_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The DNA dodecamer 5'-d(CGCGAATTCGCG)-3' is arguably the best studied oligonucleotide and crystal structures of duplexes with this sequence account for a considerable portion of the total number of oligo-2'-deoxynucleotide structures determined over the last 30 years. The dodecamer has commonly served as a template to analyze the effects of sequence on DNA conformation, the conformational properties of chemically modified nucleotides, DNA-ligand interactions as well as water structure and DNA-cation binding. Although molecular replacement is the phasing method of choice given the large number of available models of the dodecamer, this strategy often fails as a result of conformational changes caused by chemical modification, mismatch pairs, or differing packing modes. Here, we describe an alternative approach to determine crystal structures of the dodecamer in cases where molecular replacement does not produce a solution or when crystals of the DNA alone cannot be grown. It is based on the discovery that many dodecamers of the above sequence can be readily co-crystallized with Bacillus halodurans RNase H, whereby the enzyme is unable to cleave the DNA. Determination of the structure of the complex using the protein portion as the search model yields a structural model of the DNA. Provided crystals of the DNA alone are also available, the DNA model from the complex then enables phasing their structures by molecular replacement.
Collapse
|
23
|
Harika NK, Paul A, Stroeva E, Chai Y, Boykin DW, Germann MW, Wilson WD. Imino proton NMR guides the reprogramming of A•T specific minor groove binders for mixed base pair recognition. Nucleic Acids Res 2016; 44:4519-27. [PMID: 27131382 PMCID: PMC4889958 DOI: 10.1093/nar/gkw353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/17/2016] [Indexed: 12/19/2022] Open
Abstract
Sequence-specific binding to DNA is crucial for targeting transcription factor-DNA complexes to modulate gene expression. The heterocyclic diamidine, DB2277, specifically recognizes a single G•C base pair in the minor groove of mixed base pair sequences of the type AAAGTTT. NMR spectroscopy reveals the presence of major and minor species of the bound compound. To understand the principles that determine the binding affinity and orientation in mixed sequences of DNA, over thirty DNA hairpin substrates were examined by NMR and thermal melting. The NMR exchange dynamics between major and minor species shows that the exchange is much faster than compound dissociation determined from biosensor–surface plasmon resonance. Extensive modifications of DNA sequences resulted in a unique DNA sequence with binding site AAGATA that binds DB2277 in a single orientation. A molecular docking result agrees with the model representing rapid flipping of DB2277 between major and minor species. Imino spectral analysis of a 15N-labeled central G clearly shows the crucial role of the exocyclic amino group of G in sequence-specific recognition. Our results suggest that this approach can be expanded to additional modules for recognition of more sequence-specific DNA complexes. This approach provides substantial information about the sequence-specific, highly efficient, dynamic nature of minor groove binding agents.
Collapse
Affiliation(s)
- Narinder K Harika
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Ananya Paul
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Ekaterina Stroeva
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Yun Chai
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| | - David W Boykin
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Markus W Germann
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| | - W David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| |
Collapse
|
24
|
Tumir LM, Šupljika F, Piantanida I. Bis-phenanthridinium–adenine conjugates as fluorescent and CD reporters for fine structural differences in ds-DNA/RNA and ss-RNA structures. Supramol Chem 2015. [DOI: 10.1080/10610278.2015.1099655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Lidija-Marija Tumir
- Laboratory for Study of Interactions of Biomacromolecules, Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Filip Šupljika
- Laboratory for Study of Interactions of Biomacromolecules, Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivo Piantanida
- Laboratory for Study of Interactions of Biomacromolecules, Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
25
|
Paul A, Chai Y, Boykin DW, Wilson WD. Understanding mixed sequence DNA recognition by novel designed compounds: the kinetic and thermodynamic behavior of azabenzimidazole diamidines. Biochemistry 2014; 54:577-87. [PMID: 25495885 PMCID: PMC4303320 DOI: 10.1021/bi500989r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sequence-specific recognition of DNA by small organic molecules offers a potentially effective approach for the external regulation of gene expression and is an important goal in cell biochemistry. Rational design of compounds from established modules can potentially yield compounds that bind strongly and selectively with specific DNA sequences. An initial approach is to start with common A·T bp recognition molecules and build in G·C recognition units. Here we report on the DNA interaction of a synthetic compound that specifically binds to a G·C bp in the minor groove of DNA by using an azabenzimidazole moiety. The detailed interactions were evaluated with biosensor-surface plasmon resonance (SPR), isothermal calorimetric (ITC), and mass spectrometry (ESI-MS) methods. The compound, DB2277, binds with single G·C bp containing sequences with sub-nanomolar potency and displays slow dissociation kinetics and high selectivity. A detailed thermodynamic and kinetic study at different experimental salt concentrations and temperatures shows that the binding free energy is salt concentration dependent but essentially temperature independent under our experimental conditions, and binding enthalpy is temperature dependent but salt concentration independent. The results show that in the proper compound structural context novel heterocyclic cations can be designed to strongly recognize complex DNA sequences.
Collapse
Affiliation(s)
- Ananya Paul
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30303-3083, United States
| | | | | | | |
Collapse
|
26
|
Chai Y, Paul A, Rettig M, Wilson WD, Boykin DW. Design and synthesis of heterocyclic cations for specific DNA recognition: from AT-rich to mixed-base-pair DNA sequences. J Org Chem 2014; 79:852-66. [PMID: 24422528 PMCID: PMC3985508 DOI: 10.1021/jo402599s] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Indexed: 01/18/2023]
Abstract
The compounds synthesized in this research were designed with the goal of establishing a new paradigm for mixed-base-pair DNA sequence-specific recognition. The design scheme starts with a cell-permeable heterocyclic cation that binds to AT base pair sites in the DNA minor groove. Modifications were introduced in the original compound to include an H-bond accepting group to specifically recognize the G-NH that projects into the minor groove. Therefore, a series of heterocyclic cations substituted with an azabenzimidazole ring has been designed and synthesized for mixed-base-pair DNA recognition. The most successful compound, 12a, had an azabenzimidazole to recognize G and additional modifications for general minor groove interactions. It binds to the DNA site -AAAGTTT- more strongly than the -AAATTT- site without GC and indicates the design success. Structural modifications of 12a generally weakened binding. The interactions of the new compound with a variety of DNA sequences with and without GC base pairs were evaluated by thermal melting analysis, circular dichroism, fluorescence emission spectroscopy, surface plasmon resonance, and molecular modeling.
Collapse
Affiliation(s)
- Yun Chai
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ananya Paul
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Michael Rettig
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - W. David Wilson
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - David W. Boykin
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|