1
|
Torres-Ortega PV, Smerdou C, Ansorena E, Ballesteros-Briones MC, Martisova E, Garbayo E, Blanco-Prieto MJ. Optimization of a GDNF production method based on Semliki Forest virus vector. Eur J Pharm Sci 2021; 159:105726. [PMID: 33482318 DOI: 10.1016/j.ejps.2021.105726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 11/30/2022]
Abstract
Human glial cell line-derived neurotrophic factor (hGDNF) is the most potent dopaminergic factor described so far, and it is therefore considered a promising drug for Parkinson's disease (PD) treatment. However, the production of therapeutic proteins with a high degree of purity and a specific glycosylation pattern is a major challenge that hinders its commercialization. Although a variety of systems can be used for protein production, only a small number of them are suitable to produce clinical-grade proteins. Specifically, the baby hamster kidney cell line (BHK-21) has shown to be an effective system for the expression of high levels of hGDNF, with appropriate post-translational modifications and protein folding. This system, which is based on the electroporation of BHK-21 cells using a Semliki Forest virus (SFV) as expression vector, induces a strong shut-off of host cell protein synthesis that simplify the purification process. However, SFV vector exhibits a temperature-dependent cytopathic effect on host cells, which could limit hGDNF expression. The aim of this study was to improve the expression and purification of hGDNF using a biphasic temperature cultivation protocol that would decrease the cytopathic effect induced by SFV. Here we show that an increase in the temperature from 33°C to 37°C during the "shut-off period", produced a significant improvement in cell survival and hGDNF expression. In consonance, this protocol led to the production of almost 3-fold more hGDNF when compared to the previously described methods. Therefore, a "recovery period" at 37°C before cells are exposed at 33°C is crucial to maintain cell viability and increase hGDNF expression. The protocol described constitutes an efficient and highly scalable method to produce highly pure hGDNF.
Collapse
Affiliation(s)
- Pablo Vicente Torres-Ortega
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, Universidad de Navarra, C/ Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, C/ Irunlarrea 3, 31008 Pamplona, Spain
| | - Cristian Smerdou
- Navarra Institute for Health Research, IdiSNA, C/ Irunlarrea 3, 31008 Pamplona, Spain; Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Av. Pío XII 55, 31008, Pamplona, Spain
| | - Eduardo Ansorena
- Navarra Institute for Health Research, IdiSNA, C/ Irunlarrea 3, 31008 Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - María Cristina Ballesteros-Briones
- Navarra Institute for Health Research, IdiSNA, C/ Irunlarrea 3, 31008 Pamplona, Spain; Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Av. Pío XII 55, 31008, Pamplona, Spain
| | - Eva Martisova
- Navarra Institute for Health Research, IdiSNA, C/ Irunlarrea 3, 31008 Pamplona, Spain; Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Av. Pío XII 55, 31008, Pamplona, Spain
| | - Elisa Garbayo
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, Universidad de Navarra, C/ Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, C/ Irunlarrea 3, 31008 Pamplona, Spain.
| | - María J Blanco-Prieto
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, Universidad de Navarra, C/ Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, C/ Irunlarrea 3, 31008 Pamplona, Spain.
| |
Collapse
|
2
|
Navas MC, Stoll-Keller F, Pavlovic J. Lack of expression of hepatitis C virus core protein in human monocyte-erived dendritic cells using recombinant semliki forest virus. ACTA BIOLÓGICA COLOMBIANA 2019. [DOI: 10.15446/abc.v24n3.79368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C Virus belongs to the Flaviviridae family. One proposed mechanism of HCV persistence in the ability to infect hematopoietic cells, including Dendritic cells (DCs). HCV infection of DCs could impair their functions that represent one of the mechanisms, thus hampering viral clearance by the host immune system. Among HCV-encoded proteins, the highly conserved Core protein has been suggested to be responsible for the immunomodulatory properties of this Hepacivirus. Recombinant viral vectors expressing the HCV Core protein and allowing its transduction and therefore the expression of the protein into DCs could be useful tools for the analysis of the properties of the Core protein. Vaccinia Virus and retrovirus have been used to transduce human DCs. Likewise, gene transfer into DCs using Semliki Forest Virus has been reported. This study aimed to express the HCV Core protein in human monocyte-derived DCs using an SFV vector, in which the subgenomic RNA encoding the structural proteins was replaced by the HCV Core sequence and then analyze the effects of its expression on DCs functions.
Collapse
|
3
|
Sánchez-Puig JM, Lorenzo MM, Blasco R. A vaccinia virus recombinant transcribing an alphavirus replicon and expressing alphavirus structural proteins leads to packaging of alphavirus infectious single cycle particles. PLoS One 2013; 8:e75574. [PMID: 24130722 PMCID: PMC3793997 DOI: 10.1371/journal.pone.0075574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/15/2013] [Indexed: 01/15/2023] Open
Abstract
Poxviruses and Alphaviruses constitute two promising viral vectors that have been used extensively as expression systems, or as vehicles for vaccine purposes. Poxviruses, like vaccinia virus (VV) are well-established vaccine vectors having large insertion capacity, excellent stability, and ease of administration. In turn, replicons derived from Alphaviruses like Semliki Forest virus (SFV) are potent protein expression and immunization vectors but stocks are difficult to produce and maintain. In an attempt to demonstrate the use of a Poxvirus as a means for the delivery of small vaccine vectors, we have constructed and characterized VV/SFV hybrid vectors. A SFV replicon cDNA was inserted in the VV genome and placed under the control of a VV early promoter. The replicon, transcribed from the VV genome as an early transcript, was functional, and thus capable of initiating its own replication and transcription. Further, we constructed a VV recombinant additionally expressing the SFV structural proteins under the control of a vaccinia synthetic early/late promoter. Infection with this recombinant produced concurrent transcription of the replicon and expression of SFV structural proteins, and led to the generation of replicon-containing SFV particles that were released to the medium and were able to infect additional cells. This combined VV/SFV system in a single virus allows the use of VV as a SFV delivery vehicle in vivo. The combination of two vectors, and the possibility of generating in vivo single-cycle, replicon containing alphavirus particles, may open new strategies in vaccine development or in the design of oncolytic viruses.
Collapse
Affiliation(s)
- Juana M. Sánchez-Puig
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (I.N.I.A.), Madrid, Spain
| | - María M. Lorenzo
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (I.N.I.A.), Madrid, Spain
| | - Rafael Blasco
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (I.N.I.A.), Madrid, Spain
| |
Collapse
|
4
|
Backes P, Quinkert D, Reiss S, Binder M, Zayas M, Rescher U, Gerke V, Bartenschlager R, Lohmann V. Role of annexin A2 in the production of infectious hepatitis C virus particles. J Virol 2010; 84:5775-89. [PMID: 20335258 PMCID: PMC2876593 DOI: 10.1128/jvi.02343-09] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 03/16/2010] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is an important human pathogen affecting 170 million chronically infected individuals. In search for cellular proteins involved in HCV replication, we have developed a purification strategy for viral replication complexes and identified annexin A2 (ANXA2) as an associated host factor. ANXA2 colocalized with viral nonstructural proteins in cells harboring genotype 1 or 2 replicons as well as in infected cells. In contrast, we found no obvious colocalization of ANXA2 with replication sites of other positive-strand RNA viruses. The silencing of ANXA2 expression showed no effect on viral RNA replication but resulted in a significant reduction of extra- and intracellular virus titers. Therefore, it seems likely that ANXA2 plays a role in HCV assembly rather than in genome replication or virion release. Colocalization studies with individually expressed HCV nonstructural proteins indicated that NS5A specifically recruits ANXA2, probably by an indirect mechanism. By the deletion of individual NS5A subdomains, we identified domain III (DIII) as being responsible for ANXA2 recruitment. These data identify ANXA2 as a novel host factor contributing, with NS5A, to the formation of infectious HCV particles.
Collapse
Affiliation(s)
- Perdita Backes
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| | - Doris Quinkert
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| | - Simon Reiss
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| | - Marco Binder
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| | - Margarita Zayas
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| | - Ursula Rescher
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| | - Volker Gerke
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| |
Collapse
|
5
|
Intensive pharmacological immunosuppression allows for repetitive liver gene transfer with recombinant adenovirus in nonhuman primates. Mol Ther 2010; 18:754-65. [PMID: 20087317 DOI: 10.1038/mt.2009.312] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Repeated administration of gene therapies is hampered by host immunity toward vectors and transgenes. Attempts to circumvent antivector immunity include pharmacological immunosuppression or alternating different vectors and vector serotypes with the same transgene. Our studies show that B-cell depletion with anti-CD20 monoclonal antibody and concomitant T-cell inhibition with clinically available drugs permits repeated liver gene transfer to a limited number of nonhuman primates with recombinant adenovirus. Adenoviral vector-mediated transfer of the herpes simplex virus type 1 thymidine kinase (HSV1-tk) reporter gene was visualized in vivo with a semiquantitative transgene-specific positron emission tomography (PET) technique, liver immunohistochemistry, and immunoblot for the reporter transgene in needle biopsies. Neutralizing antibody and T cell-mediated responses toward the viral capsids were sequentially monitored and found to be repressed by the drug combinations tested. Repeated liver transfer of the HSV1-tk reporter gene with the same recombinant adenoviral vector was achieved in macaques undergoing a clinically feasible immunosuppressive treatment that ablated humoral and cellular immune responses. This strategy allows measurable gene retransfer to the liver as late as 15 months following the first adenoviral exposure in a macaque, which has undergone a total of four treatments with the same adenoviral vector.
Collapse
|
6
|
García AD, Meseda CA, Mayer AE, Kumar A, Merchlinsky M, Weir JP. Characterization and use of mammalian-expressed vaccinia virus extracellular membrane proteins for quantification of the humoral immune response to smallpox vaccines. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1032-44. [PMID: 17596428 PMCID: PMC2044493 DOI: 10.1128/cvi.00050-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 05/04/2007] [Accepted: 06/19/2007] [Indexed: 11/20/2022]
Abstract
The licensed smallpox vaccine Dryvax is used as the standard in comparative immunogenicity and protection studies of new smallpox vaccine candidates. Although the correlates of protection against smallpox are unknown, recent studies have shown that a humoral response against the intracellular mature virion and extracellular enveloped virion (EV) forms of vaccinia virus is crucial for protection. Using a recombinant Semliki Forest virus (rSFV) vector system, we expressed a set of full-length EV proteins for the development of EV antigen-specific enzyme-linked immunosorbent assays (ELISAs) and the production of monospecific antisera. The EV-specific ELISAs were used to evaluate the EV humoral response elicited by Dryvax and the nonreplicating modified vaccinia virus Ankara (MVA) in mouse vaccination experiments comparing doses and routes of vaccination. Quantitatively similar titers of antibodies against EV antigens A33R, A56R, and B5R were measured in mice vaccinated with Dryvax and MVA when MVA was administered at a dose of 10(8) plaque-forming units. Further, a substantial increase in the EV-specific antibody response was induced in mice inoculated with MVA by using a prime-boost schedule. Finally, we investigated the abilities of the EV-expressing rSFV vectors to elicit the production of polyclonal monospecific antisera against the corresponding EV proteins in mice. The monospecific serum antibody levels against A33R, A56R, and B5R were measurably higher than the antibody levels induced by Dryvax. The resulting polyclonal antisera were used in Western blot analysis and immunofluorescence assays, indicating that rSFV particles are useful vectors for generating monospecific antisera.
Collapse
Affiliation(s)
- Alonzo D García
- Laboratory of DNA Viruses, Division of Viral Products, Center for Biologics and Evaluation and Research/FDA, 1401 Rockville Pike, HFM-457, Rockville, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Bouche F, Ammerlaan W, Berthet F, Houard S, Schneider F, Muller CP. Immunosorbent assay based on recombinant hemagglutinin protein produced in a high-efficiency mammalian expression system for surveillance of measles immunity. J Clin Microbiol 1998; 36:721-6. [PMID: 9508302 PMCID: PMC104615 DOI: 10.1128/jcm.36.3.721-726.1998] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recombinant hemagglutinin (H) protein of the measles virus (MV) was produced in mammalian cells with a high-yield expression system based on the Semliki Forest virus replicon. Crude membrane preparations of H protein-transfected BHK-21 cells were used to coat microtiter plates to measure specific immunoglobulin G antibodies in 228 serologically defined serum samples mainly from measles late-convalescent adults. The titers by the enzyme-linked immunosorbent assay for the H protein (H-ELISA) closely correlated with neutralization test (NT) titers (R2 = 0.66), hemagglutination inhibition test (HI) titers (R2 = 0.64), with the titers from a certified commercial ELISA based on whole MV-infected cells (MV-ELISA; R2 = 0.45). The correlations described above were better than those of the commercial MV-ELISA titers with the NT (R2 = 0.52) or HI (R2 = 0.48) titers. By using the 2nd International Standard for anti-measles serum, the detection level of the assay corresponds to 215 mIU/ml for undiluted serum, which corresponds to the estimated threshold for protective immunity. The specificity, accuracy, and positive predictive value were, in general, better for the H-ELISA than for a commercial MV-ELISA, independent of whether HI, NT, or HI and NT were used as "gold standards." In contrast, the H-ELISA proved to be slightly less sensitive than the MV-ELISA (sensitivities, 98.6 versus 99.5%, respectively; P was not significant). The assays did not differ significantly in the number of serum samples with positive HI and NT results (n = 212) which measured false negative (H-ELISA, 2 of 212 [0.94%]; MV-ELISA, 1 of 212 [0.47%]), but the H-ELISA detected significantly more measles-susceptible individuals than the MV-ELISA (10 of 11 versus 3 of 11, respectively; P < 0.05) among the individuals whose sera had negative HI and NT results. Our data demonstrate that the H-protein preparation that we describe could be a cost-effective alternative to current whole-virus-based ELISAs for surveillance for immunity to measles and that such an assay could be more efficient in detecting susceptibility to measles. Furthermore, unlike whole MV-based antigens, H-protein would also be suitable for use in the development of a simple field test for the diagnosis of measles.
Collapse
Affiliation(s)
- F Bouche
- Laboratoire National de Santé, Luxembourg, Luxembourg
| | | | | | | | | | | |
Collapse
|