1
|
Mella A, Calvetti R, Barreca A, Congiu G, Biancone L. Kidney transplants from elderly donors: what we have learned 20 years after the Crystal City consensus criteria meeting. J Nephrol 2024; 37:1449-1461. [PMID: 38446386 PMCID: PMC11473582 DOI: 10.1007/s40620-024-01888-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 01/03/2024] [Indexed: 03/07/2024]
Abstract
Based on the current projection of the general population and the combined increase in end-stage kidney disease with age, the number of elderly donors and recipients is increasing, raising crucial questions about how to minimize the discard rate of organs from elderly donors and improve graft and patient outcomes. In 2002, extended criteria donors were the focus of a meeting in Crystal City (VA, USA), with a goal of maximizing the use of organs from deceased donors. Since then, extended criteria donors have progressively contributed to a large number of transplanted grafts worldwide, posing specific issues for allocation systems, recipient management, and therapeutic approaches. This review analyzes what we have learned in the last 20 years about extended criteria donor utilization, the promising innovations in immunosuppressive management, and the molecular pathways involved in the aging process, which constitute potential targets for novel therapies.
Collapse
Affiliation(s)
- Alberto Mella
- Renal Transplant Center" A. Vercellone," Nephrology, Dialysis, and Renal Transplant Division, "Città Della Salute e Della Scienza" Hospital, Department of Medical Sciences, University of Turin, Corso Bramante, 88, 10126, Turin, Italy
| | - Ruggero Calvetti
- Renal Transplant Center" A. Vercellone," Nephrology, Dialysis, and Renal Transplant Division, "Città Della Salute e Della Scienza" Hospital, Department of Medical Sciences, University of Turin, Corso Bramante, 88, 10126, Turin, Italy
| | - Antonella Barreca
- Division of Pathology, "Città Della Salute e Della Scienza" Hospital, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giovanni Congiu
- Renal Transplant Center" A. Vercellone," Nephrology, Dialysis, and Renal Transplant Division, "Città Della Salute e Della Scienza" Hospital, Department of Medical Sciences, University of Turin, Corso Bramante, 88, 10126, Turin, Italy
| | - Luigi Biancone
- Renal Transplant Center" A. Vercellone," Nephrology, Dialysis, and Renal Transplant Division, "Città Della Salute e Della Scienza" Hospital, Department of Medical Sciences, University of Turin, Corso Bramante, 88, 10126, Turin, Italy.
| |
Collapse
|
2
|
Koshy P, Furian L, Nickerson P, Zaza G, Haller M, de Vries APJ, Naesens M. European Survey on Clinical Practice of Detecting and Treating T-Cell Mediated Kidney Transplant Rejection. Transpl Int 2024; 37:12283. [PMID: 38699173 PMCID: PMC11063346 DOI: 10.3389/ti.2024.12283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/11/2024] [Indexed: 05/05/2024]
Abstract
The KDIGO guideline for acute rejection treatment recommends use of corticosteroids and suggests using lymphocyte-depleting agents as second line treatment. Aim of the study was to determine the current practices of detection and treatment of TCMR of kidney allografts amongst European kidney transplant centres. An invitation was sent through ESOT/EKITA newsletters and through social media to transplant professionals in Europe for taking part in the survey. A total of 129 transplant professionals responded to the survey. There was equal representation of small and large sized transplant centres. The majority of centres treat borderline changes (BL) and TCMR (Grade IA-B, IIA-B) in indication biopsies and protocol biopsies with corticosteroids as first line treatment. Thymoglobulin is used mainly as second line treatment for TCMR Grade IA-B (80%) and TCMR IIA-B (85%). Treatment success is most often evaluated within one month of therapy. There were no differences observed between the large and small centres for the management of TCMR. This survey highlights the common practices and diversity in clinics for the management of TCMR in Europe. Testing new therapies for TCMR should be in comparison to the current standard of care in Europe. Better consensus on treatment success is crucial for robust study designs.
Collapse
Affiliation(s)
- Priyanka Koshy
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Lucrezia Furian
- Kidney and Pancreas Transplantation Unit, Department of Surgical Gastroenterological and Oncological Sciences, University Hospital of Padua, Padua, Italy
| | - Peter Nickerson
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Gianluigi Zaza
- Renal, Dialysis and Transplant Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Maria Haller
- Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems (CeMSIIS), Medical University of Vienna, Vienna, Austria
- Nephrology, Ordensklinikum Linz, Elisabethinen, Linz, Austria
| | - Aiko P. J. de Vries
- Department of Medicine, Division of Nephrology, Leiden Transplant Center, Leiden University Medical Center, Leiden, Netherlands
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Landsberg A, Raza SS, Seifert ME, Blydt-Hansen TD. Follow-up biopsies identify high rates of persistent rejection in pediatric kidney transplant recipients after treatment of T cell-mediated rejection. Pediatr Transplant 2024; 28:e14617. [PMID: 37750353 PMCID: PMC10872996 DOI: 10.1111/petr.14617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Incomplete resolution of T cell-mediated rejection (TCMR) after treatment may not be detected with serum creatinine monitoring and is associated with donor-specific antibodies and chronic rejection. We evaluate the utility of follow-up biopsies (FUB) to identify and characterize rates of persistent TCMR after treatment in pediatric kidney transplant patients. METHODS Patients from two pediatric transplant centers performing standard of care FUB at 1.5-2 months after treatment for TCMR were included. FUB were evaluated for extent of rejection resolution (complete vs. incomplete) and grade. Clinical data at time of FUB and later were reported, where available. RESULTS Fifty-eight patients underwent FUB, at mean of 1.7 months (SD 0.7) post-index biopsy. Rejection grade on index biopsy was Banff borderline (≥i1t1 and CONCLUSIONS FUB were effective at detecting persistent rejection, which was common among pediatric transplant patients after standard TCMR treatment. Until more effective rejection treatments or sensitive biomarkers are available, FUB may be effectively utilized to identify patients with ongoing rejection who would benefit from further treatment.
Collapse
Affiliation(s)
- Adina Landsberg
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - S. Sikandar Raza
- Department of Pediatrics, University of Alabama Heersink School of Medicine, Birmingham, AL, United States
| | - Michael E. Seifert
- Department of Pediatrics, University of Alabama Heersink School of Medicine, Birmingham, AL, United States
| | - Tom D. Blydt-Hansen
- BC Children’s Hospital, Division of Nephrology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Loor JM, Ford CG, Leyva Y, Swift S, Ng YH, Zhu Y, Dew MA, Peipert JD, Unruh ML, Croswell E, Kendall K, Puttarajappa C, Shapiro R, Myaskovsky L. Do pre-transplant cultural factors predict health-related quality of life after kidney transplantation? Clin Transplant 2024; 38:e15256. [PMID: 38400674 PMCID: PMC11249207 DOI: 10.1111/ctr.15256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Post-transplant health-related quality of life (HRQOL) is associated with health outcomes for kidney transplant (KT) recipients. However, pretransplant predictors of improvements in post-transplant HRQOL remain incompletely understood. Namely, important pretransplant cultural factors, such as experience of discrimination, perceived racism in healthcare, or mistrust of the healthcare system, have not been examined as potential HRQOL predictors. Also, few have examined predictors of decline in HRQOL post-transplant. METHODS Using data from a prospective cohort study, we examined HRQOL change pre- to post-transplant, and novel cultural predictors of the change. We measured physical, mental, and kidney-specific HRQOL as outcomes, and used cultural factors as predictors, controlling for demographic, clinical, psychosocial, and transplant knowledge covariates. RESULTS Among 166 KT recipients (57% male; mean age 50.6 years; 61.4% > high school graduates; 80% non-Hispanic White), we found mental and physical, but not kidney-specific, HRQOL significantly improved post-transplant. No culturally related factors outside of medical mistrust significantly predicted change in any HRQOL outcome. Instead, demographic, knowledge, and clinical factors significantly predicted decline in each HRQOL domain: physical HRQOL-older age, more post-KT complications, higher pre-KT physical HRQOL; mental HRQOL-having less information pre-KT, greater pre-KT mental HRQOL; and, kidney-specific HRQOL-poorer kidney functioning post-KT, lower expectations for physical condition to improve, and higher pre-KT kidney-specific HRQOL. CONCLUSIONS Instead of cultural factors, predictors of HRQOL decline included demographic, knowledge, and clinical factors. These findings are useful for identifying patient groups that may be at greater risk of poorer post-transplant outcomes, in order to target individualized support to patients.
Collapse
Affiliation(s)
- Jamie M Loor
- Center for Healthcare Equity in Kidney Disease (CHEK-D), University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - C Graham Ford
- Durham VA Medical Center, Durham, North Carolina, USA
| | - Yuridia Leyva
- Center for Healthcare Equity in Kidney Disease (CHEK-D), University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Samuel Swift
- College of Population Health, University of New Mexico, Albuquerque, New Mexico, USA
| | - Yue Harn Ng
- Department of Internal Medicine, University of Washington, Seattle, Washington, USA
| | - Yiliang Zhu
- Department of Internal Medicine, University of New Mexico, School of Medicine, Albuquerque, New Mexico, USA
| | - Mary Amanda Dew
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
| | - J Devin Peipert
- Department of Medical Social Sciences and Transplant Outcomes Research Collaboration, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mark L Unruh
- Department of Internal Medicine, University of New Mexico, School of Medicine, Albuquerque, New Mexico, USA
| | - Emilee Croswell
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Chethan Puttarajappa
- Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ron Shapiro
- Mount Sinai Recanati/Miller Transplantation Institute, Icahn School of Medicine, New York, USA
| | - Larissa Myaskovsky
- Center for Healthcare Equity in Kidney Disease (CHEK-D), University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
- Department of Internal Medicine, University of New Mexico, School of Medicine, Albuquerque, New Mexico, USA
| |
Collapse
|
5
|
Acharya S, Lama S, Kanigicherla DA. Anti-thymocyte globulin for treatment of T-cell-mediated allograft rejection. World J Transplant 2023; 13:299-308. [PMID: 38174145 PMCID: PMC10758678 DOI: 10.5500/wjt.v13.i6.299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 12/15/2023] Open
Abstract
Anti-thymocyte globulin (ATG) is a pivotal immunosuppressive therapy utilized in the management of T-cell-mediated rejection and steroid-resistant rejection among renal transplant recipients. Commercially available as Thymoglobulin (rabbit-derived, Sanofi, United States), ATG-Fresenius S (rabbit-derived), and ATGAM (equine-derived, Pfizer, United States), these formulations share a common mechanism of action centered on their interaction with cell surface markers of immune cells, imparting immunosuppressive effects. Although the prevailing mechanism predominantly involves T-cell depletion via the com plement-mediated pathway, alternate mechanisms have been elucidated. Optimal dosing and treatment duration of ATG have exhibited variance across ran domised trials and clinical reports, rendering the establishment of standardized guidelines a challenge. The spectrum of risks associated with ATG administration spans from transient adverse effects such as fever, chills, and skin rash in the acute phase to long-term concerns related to immunosuppression, including susceptibility to infections and malignancies. This comprehensive review aims to provide a thorough exploration of the current understanding of ATG, encom passing its mechanism of action, clinical utility in the treatment of acute renal graft rejections, specifically steroid-resistant cases, efficacy in rejection episode reversal, and a synthesis of findings from different eras of maintenance immunosuppression. Additionally, it delves into the adverse effects associated with ATG therapy and its impact on long-term graft function. Furthermore, the review underscores the existing gaps in evidence, particularly in the context of the Banff classification of rejections, and highlights the challenges faced by clinicians when navigating the available literature to strike the optimal balance between the risks and benefits of ATG utilization in renal transplantation.
Collapse
Affiliation(s)
- Sumit Acharya
- Department of Nephrology, Shahid Dharmabhakta National Transplant Center, Bhaktapur 44800, Nepal
| | - Suraj Lama
- Department of Nephrology, Shahid Dharmabhakta National Transplant Center, Bhaktapur 44800, Nepal
| | - Durga Anil Kanigicherla
- Department of Renal Medicine, Manchester University NHS Foundation Trust, Manchester M13 9WL, United Kingdom
| |
Collapse
|
6
|
Alachkar N, Alachkar N. Automating kidney transplant diagnostics. Nat Med 2023; 29:1066-1067. [PMID: 37142761 DOI: 10.1038/s41591-023-02300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Affiliation(s)
- Nissrin Alachkar
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- School of Mathematics, Faculty of Science and Engineering, University of Manchester, Manchester, UK
| | - Nada Alachkar
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Akl A, Elshayeb M, Rahim MA, Refaie AF, Ghoneim MA. Evaluation of Antithymocyte Globulin Efficacy in Reversing Refractory Graft Rejection Using Retrospective Event-Based Sequential Graft Biopsy Analysis in Living Related Donor Renal Transplant. EXP CLIN TRANSPLANT 2023; 21:428-433. [PMID: 37334690 DOI: 10.6002/ect.2023.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
OBJECTIVES The main risk factor for poor graft outcomes is refractory acute rejection and its consequences. In this study, we compared the efficacy of antithymocyte globulins versus other antirejection strategies in reversing refractory acute graft rejection after living donor renal transplant. MATERIALS AND METHODS We retrospectively reviewed the records of 745 patients who received living-donor kidney transplants and experienced acute rejection episodes at Mansoura Urology and Nephrology Center in Egypt over the past 20 years. Based on the type of antirejection medication that they received, we divided patients into 2 groups, with 80 patients in the antithymocyte globulin group and 665 patients who had other antirejection strategies. By using event-based sequential graft biopsy histopathology analysis, we compared the efficacy of antithymocyte globulins in reversing refractory rejection in terms of graft and patient complications and survival. RESULTS Patient survival was comparable in both groups; however, graft survival was better in the antithymocyte globulin group than in the other group; in addition, event-based sequential graft biopsies revealed a lower incidence of acute and chronic rejection episodes after treatment of severe acute rejection in the antithymocyte globulin group compared with the other group. Incidence of posttreatment complications, particularly infection and malignancy, was comparable in both groups. CONCLUSIONS Our retrospective analysis of event-based sequential graft biopsy allowed us to track graft rejection resolution or worsening. Antithymocyte globulins are highly effective in reversing acute graft rejection when compared with other approaches, with no increased risk of infection or malignancy.
Collapse
Affiliation(s)
- Ahmed Akl
- From the Transplantation Unit, Nephrology Department Mansoura University, Egypt; and the Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | | | | | | | | |
Collapse
|
8
|
Chen T, Li X, Wang J, Wang X, Zhu T, Rong R, Yang C. Basiliximab for the therapy of acute T cell–mediated rejection in kidney transplant recipient with BK virus infection: A case report. Front Immunol 2022; 13:1017872. [PMID: 36211389 PMCID: PMC9537549 DOI: 10.3389/fimmu.2022.1017872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/07/2022] [Indexed: 01/11/2023] Open
Abstract
A 66-year-old Chinese man underwent a deceased donor kidney transplantation. Induction-immunosuppressive protocol consisted of basiliximab (BAS) and methyl prednisolone (MP), followed by maintenance immunosuppression with cyclosporin (CsA), mycophenolate mofetil (MMF), and prednisone (PED). The patient’s post-transplantation course was almost uneventful, and the graft was functioning well [serum creatinine (Scr) 2.15 mg/dL]. The MMF and CsA doses were decreased 1-month post-operative as the BK virus activation was serologically positive. His Scr was elevated to 2.45 mg/dL 45 days after the transplant. A graft biopsy showed BKV nephropathy (BKVN) and acute T cell–mediated rejection (TCMR) Banff grade IIA (I2, t2, ptc2, v1, c4d1, g0, and SV40 positive). The conventional anti-rejection therapy could deteriorate his BKVN, therefore, we administered BAS to eliminate activated graft-infiltrating T cells and combined with low-dose steroid. He responded well to the therapy after two doses of BAS were given, and the kidney graft status has been stable (recent Scr 2.1 mg/dL).
Collapse
Affiliation(s)
- Tingting Chen
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyu Li
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jina Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key laboratory of Organ Transplantation, Shanghai, China
| | - Xuanchuan Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key laboratory of Organ Transplantation, Shanghai, China
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key laboratory of Organ Transplantation, Shanghai, China
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key laboratory of Organ Transplantation, Shanghai, China
- Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Ruiming Rong, ; Cheng Yang, ;
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key laboratory of Organ Transplantation, Shanghai, China
- Zhangjiang Institute of Fudan University, Shanghai, China
- *Correspondence: Ruiming Rong, ; Cheng Yang, ;
| |
Collapse
|
9
|
Oomen L, Bootsma-Robroeks C, Cornelissen E, de Wall L, Feitz W. Pearls and Pitfalls in Pediatric Kidney Transplantation After 5 Decades. Front Pediatr 2022; 10:856630. [PMID: 35463874 PMCID: PMC9024248 DOI: 10.3389/fped.2022.856630] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Worldwide, over 1,300 pediatric kidney transplantations are performed every year. Since the first transplantation in 1959, healthcare has evolved dramatically. Pre-emptive transplantations with grafts from living donors have become more common. Despite a subsequent improvement in graft survival, there are still challenges to face. This study attempts to summarize how our understanding of pediatric kidney transplantation has developed and improved since its beginnings, whilst also highlighting those areas where future research should concentrate in order to help resolve as yet unanswered questions. Existing literature was compared to our own data of 411 single-center pediatric kidney transplantations between 1968 and 2020, in order to find discrepancies and allow identification of future challenges. Important issues for future care are innovations in immunosuppressive medication, improving medication adherence, careful donor selection with regard to characteristics of both donor and recipient, improvement of surgical techniques and increased attention for lower urinary tract dysfunction and voiding behavior in all patients.
Collapse
Affiliation(s)
- Loes Oomen
- Division of Pediatric Urology, Department of Urology, Radboudumc Amalia Children's Hospital, Nijmegen, Netherlands
| | - Charlotte Bootsma-Robroeks
- Department of Pediatric Nephrology, Radboudumc Amalia Children's Hospital, Nijmegen, Netherlands
- Department of Pediatrics, Pediatric Nephrology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elisabeth Cornelissen
- Department of Pediatric Nephrology, Radboudumc Amalia Children's Hospital, Nijmegen, Netherlands
| | - Liesbeth de Wall
- Division of Pediatric Urology, Department of Urology, Radboudumc Amalia Children's Hospital, Nijmegen, Netherlands
| | - Wout Feitz
- Division of Pediatric Urology, Department of Urology, Radboudumc Amalia Children's Hospital, Nijmegen, Netherlands
| |
Collapse
|
10
|
Bacterial and Viral Infection and Sepsis in Kidney Transplanted Patients. Biomedicines 2022; 10:biomedicines10030701. [PMID: 35327510 PMCID: PMC8944970 DOI: 10.3390/biomedicines10030701] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Kidney transplanted patients are a unique population with intrinsic susceptibility to viral and bacterial infections, mainly (but not exclusively) due to continuous immunosuppression. In this setting, infectious episodes remain among the most important causes of death, with different risks according to the degree of immunosuppression, time after transplantation, type of infection, and patient conditions. Prevention, early diagnosis, and appropriate therapy are the goals of infective management, taking into account that some specific characteristics of transplanted patients may cause a delay (the absence of fever or inflammatory symptoms, the negativity of serological tests commonly adopted for the general population, or the atypical anatomical presentation depending on the surgical site and graft implantation). This review considers the recent available findings of the most common viral and bacterial infection in kidney transplanted patients and explores risk factors and outcomes in septic evolution.
Collapse
|
11
|
Ahn WS, Kim TS, Park YJ, Park YK, Kim HD, Kim J. Production, characterization, and epitope mapping of monoclonal antibodies of ribosomal protein S3 (rpS3). Anim Cells Syst (Seoul) 2021; 25:323-336. [PMID: 34745438 PMCID: PMC8567880 DOI: 10.1080/19768354.2021.1980100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ribosomal protein S3 (rpS3), a member of 40S small ribosomal subunit, is a multifunctional protein with various extra-ribosomal functions including DNA repair endonuclease activity and is secreted from cancer cells. Therefore, antibodies with high specificity against rpS3 protein could be useful cancer biomarkers. In this study, polyclonal antibody (pAb) and monoclonal antibodies (mAbs) were raised against rpS3 protein and epitope mapping was performed for each antibody; the amino acid residues of rpS3 were scanned from amino acid 185 to 243 through peptide scanning to reveal the epitopes of each mAb. Results showed that pAb R2 has an epitope from amino acid 203 to 230, mAb M7 has an epitope from amino acid 213 to 221, and mAb M8 has an epitope from amino acid 197 to 219. Taken together, novel mAbs and pAb against rpS3 were raised and mapped against rpS3 with different specific epitopes.
Collapse
Affiliation(s)
- Woo-Sung Ahn
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Tae-Sung Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Yong Jun Park
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Young Kwang Park
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Hag Dong Kim
- HAEL Lab, Korea University, Seoul, Republic of Korea
| | - Joon Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea.,HAEL Lab, Korea University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Ritschl PV, Günther J, Hofhansel L, Ernst S, Ebner S, Sattler A, Weiß S, Weissenbacher A, Oberhuber R, Cardini B, Öllinger R, Biebl M, Denecke C, Margreiter C, Resch T, Schneeberger S, Maglione M, Kotsch K, Pratschke J. Perioperative Perfusion of Allografts with Anti-Human T-lymphocyte Globulin Does Not Improve Outcome Post Liver Transplantation-A Randomized Placebo-Controlled Trial. J Clin Med 2021; 10:jcm10132816. [PMID: 34202355 PMCID: PMC8267618 DOI: 10.3390/jcm10132816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/05/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
Due to the lack of suitable organs transplant surgeons have to accept unfavorable extended criteria donor (ECD) organs. Recently, we demonstrated that the perfusion of kidney organs with anti-human T-lymphocyte globulin (ATLG) prior to transplantation ameliorates ischemia-reperfusion injury (IRI). Here, we report on the results of perioperative ATLG perfusion in a randomized, single-blinded, placebo-controlled, feasibility trial (RCT) involving 30 liver recipients (LTx). Organs were randomly assigned for perfusion with ATLG/Grafalon® (AP) (n = 16) or saline only (control perfusion = CP) (n = 14) prior to implantation. The primary endpoint was defined as graft function reflected by aspartate transaminase (AST) values at day 7 post-transplantation (post-tx). With respect to the primary endpoint, no significant differences in AST levels were shown in the intervention group at day 7 (AP: 53.0 ± 21.3 mg/dL, CP: 59.7 ± 59.2 mg/dL, p = 0.686). Similarly, exploratory analysis of secondary clinical outcomes (e.g., patient survival) and treatment-specific adverse events revealed no differences between the study groups. Among liver transplant recipients, pre-operative organ perfusion with ATLG did not improve short-term outcomes, compared to those who received placebo perfusion. However, ATLG perfusion of liver grafts was proven to be a safe procedure without the occurrence of relevant adverse events.
Collapse
Affiliation(s)
- Paul Viktor Ritschl
- Department of Surgery, Campus Charité-Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (P.V.R.); (S.W.); (R.Ö.); (M.B.); (C.D.); (J.P.)
- Clinician Scientist Program, Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany
| | - Julia Günther
- Center for Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 5020 Innsbruck, Austria; (J.G.); (L.H.); (S.E.); (A.W.); (R.O.); (B.C.); (C.M.); (T.R.); (S.S.); (M.M.)
| | - Lena Hofhansel
- Center for Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 5020 Innsbruck, Austria; (J.G.); (L.H.); (S.E.); (A.W.); (R.O.); (B.C.); (C.M.); (T.R.); (S.S.); (M.M.)
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, 52074 Aachen, Germany
| | - Stefanie Ernst
- Biostatistics Unit, Clinical Research Unit, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Susanne Ebner
- Center for Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 5020 Innsbruck, Austria; (J.G.); (L.H.); (S.E.); (A.W.); (R.O.); (B.C.); (C.M.); (T.R.); (S.S.); (M.M.)
| | - Arne Sattler
- Department of General, Visceral- and Vascular Surgery, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany;
| | - Sascha Weiß
- Department of Surgery, Campus Charité-Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (P.V.R.); (S.W.); (R.Ö.); (M.B.); (C.D.); (J.P.)
| | - Annemarie Weissenbacher
- Center for Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 5020 Innsbruck, Austria; (J.G.); (L.H.); (S.E.); (A.W.); (R.O.); (B.C.); (C.M.); (T.R.); (S.S.); (M.M.)
| | - Rupert Oberhuber
- Center for Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 5020 Innsbruck, Austria; (J.G.); (L.H.); (S.E.); (A.W.); (R.O.); (B.C.); (C.M.); (T.R.); (S.S.); (M.M.)
| | - Benno Cardini
- Center for Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 5020 Innsbruck, Austria; (J.G.); (L.H.); (S.E.); (A.W.); (R.O.); (B.C.); (C.M.); (T.R.); (S.S.); (M.M.)
| | - Robert Öllinger
- Department of Surgery, Campus Charité-Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (P.V.R.); (S.W.); (R.Ö.); (M.B.); (C.D.); (J.P.)
| | - Matthias Biebl
- Department of Surgery, Campus Charité-Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (P.V.R.); (S.W.); (R.Ö.); (M.B.); (C.D.); (J.P.)
| | - Christian Denecke
- Department of Surgery, Campus Charité-Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (P.V.R.); (S.W.); (R.Ö.); (M.B.); (C.D.); (J.P.)
| | - Christian Margreiter
- Center for Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 5020 Innsbruck, Austria; (J.G.); (L.H.); (S.E.); (A.W.); (R.O.); (B.C.); (C.M.); (T.R.); (S.S.); (M.M.)
| | - Thomas Resch
- Center for Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 5020 Innsbruck, Austria; (J.G.); (L.H.); (S.E.); (A.W.); (R.O.); (B.C.); (C.M.); (T.R.); (S.S.); (M.M.)
| | - Stefan Schneeberger
- Center for Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 5020 Innsbruck, Austria; (J.G.); (L.H.); (S.E.); (A.W.); (R.O.); (B.C.); (C.M.); (T.R.); (S.S.); (M.M.)
| | - Manuel Maglione
- Center for Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 5020 Innsbruck, Austria; (J.G.); (L.H.); (S.E.); (A.W.); (R.O.); (B.C.); (C.M.); (T.R.); (S.S.); (M.M.)
| | - Katja Kotsch
- Department of General, Visceral- and Vascular Surgery, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany;
- Correspondence: ; Tel.: +49-30-450-552247
| | - Johann Pratschke
- Department of Surgery, Campus Charité-Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (P.V.R.); (S.W.); (R.Ö.); (M.B.); (C.D.); (J.P.)
| |
Collapse
|
13
|
de Sousa MV, Gonçalez AC, de Lima Zollner R, Mazzali M. Treatment of Antibody-Mediated Rejection After Kidney Transplantation: Immunological Effects, Clinical Response, and Histological Findings. Ann Transplant 2020; 25:e925488. [PMID: 33199675 PMCID: PMC7679996 DOI: 10.12659/aot.925488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Antibody-mediated rejection (AMR) presents with diverse clinical manifestations and can have a potential negative impact on graft function and survival. If not treated successfully, AMR can lead to 20–30% graft loss after 1 year. Little is known about the efficacy of AMR treatment, and the most appropriate therapeutic strategy has not yet been determined. This study evaluated the effects of AMR treatment with plasmapheresis (PP) and intravenous immunoglobulin (IVIG) on renal function, intensity of anti-HLA antibodies, and graft biopsy morphology. Material/Methods This single-center retrospective cohort study included renal transplant recipients with biopsy-proven AMR who were treated with PP and/or IVIG. Clinical findings, mean fluorescence intensity of donor-specific anti-HLA antibodies (DSA), and graft histology findings, classified according to Banff score at the time of AMR and 6 and 12 months later, were evaluated. Results Of the 42 patients who met the inclusion criteria, 38 (90.5%) received IVIG and 26 (61.9%) underwent PP. At AMR diagnosis, 36 (85.7%) patients had proteinuria, with their estimated glomerular filtration rate remaining stable during follow-up. During the first year, 8 (19.0%) patients experienced graft failure, but none died with a functioning graft. Reductions in the class I panel of reactive antibodies were observed 6 and 12 months after AMR treatment, with significant reductions in DSA-A and -B fluorescence intensity, but no changes in DSA-DQ. Graft biopsy showed reductions in inflammation and C4d scores, without improvements in microvascular inflammation. Conclusions AMR treatment reduced biopsy-associated and serological markers of AMR, but did not affect DSA-DQ.
Collapse
Affiliation(s)
- Marcos Vinicius de Sousa
- Renal Transplant Research Laboratory, Renal Transplant Unit, Division of Nephrology, Department of Internal Medicine, School of Medical Sciences, University of Campinas - UNICAMP, Campinas, Brazil
| | - Ana Claudia Gonçalez
- Histocompatibility Laboratory, University of Campinas - UNICAMP, Campinas, Brazil
| | - Ricardo de Lima Zollner
- Laboratory of Translational Immunology, Department of Internal Medicine, School of Medical Sciences, University of Campinas - UNICAMP, Campinas, Brazil
| | - Marilda Mazzali
- Renal Transplant Research Laboratory, Renal Transplant Unit, Division of Nephrology, Department of Internal Medicine, School of Medical Sciences, University of Campinas - UNICAMP, Campinas, Brazil
| |
Collapse
|
14
|
Gao C, Wang X, Lu J, Li Z, Jia H, Chen M, Chang Y, Liu Y, Li P, Zhang B, Du X, Qi F. Mesenchymal stem cells transfected with sFgl2 inhibit the acute rejection of heart transplantation in mice by regulating macrophage activation. Stem Cell Res Ther 2020; 11:241. [PMID: 32552823 PMCID: PMC7301524 DOI: 10.1186/s13287-020-01752-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have become a promising candidate for cell-based immune therapy for acute rejection (AR) after heart transplantation due to possessing immunomodulatory properties. In this study, we evaluated the efficacy of soluble fibronectin-like protein 2 (sFgl2) overexpressing mesenchymal stem cells (sFgl2-MSCs) in inhibiting AR of heart transplantation in mice by regulating immune tolerance through inducing M2 phenotype macrophage polarization. METHODS AND RESULTS The sFgl2, a novel immunomodulatory factor secreted by regulatory T cells, was transfected into MSCs to enhance their immunosuppressive functions. After being co-cultured for 72 h, the sFgl2-MSCs inhibited M1 polarization whereas promoted M2 of polarization macrophages through STAT1 and NF-κB pathways in vitro. Besides, the sFgl2-MSCs significantly enhanced the migration and phagocytosis ability of macrophages stimulated with interferon-γ (IFN-γ) and lipopolysaccharide (LPS). Further, the application potential of sFgl2-MSCs in AR treatment was demonstrated by heterotopic cardiac transplantation in mice. The tissue damage and macrophage infiltration were evaluated by H&E and immunohistochemistry staining, and the secretion of inflammatory cytokines was analyzed by ELISA. The results showed that sFgl2-MSCs injected intravenously were able to locate in the graft, promote the M2 polarization of macrophages in vivo, regulate the local and systemic immune response, significantly protect tissues from damaging, and finally prolonged the survival time of mice heart grafts. CONCLUSION sFgl2-MSCs ameliorate AR of heart transplantation by regulating macrophages, which provides a new idea for the development of anti-AR treatment methods after heart transplantation.
Collapse
Affiliation(s)
- Chao Gao
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Xiaodong Wang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| | - Jian Lu
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Zhilin Li
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Haowen Jia
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Minghao Chen
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Yuchen Chang
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Yanhong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Peiyuan Li
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Baotong Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Xuezhi Du
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.
- Tianjin General Surgery Institute, Tianjin, 300052, China.
| |
Collapse
|
15
|
Abstract
Advances in immunosuppressive therapy have drastically improved acute rejection rates in kidney transplant recipients over the past five decades. Nevertheless, it should remain high on any differential diagnosis of unexplained graft dysfunction because of the potential negative effect on graft longevity. Understanding the pre- and post-transplant risk factors for acute rejection can help estimate the probability of immunologic graft damage, and accurate identification of the type and severity of acute rejection will guide appropriate treatment. Tissue biopsy remains the gold standard for evaluating immunologic graft damage, and the histologic definition of acute rejection has evolved in recent years. Intravenous steroids and T cell depletion remain the standard therapy for T cell-mediated rejection and are effective in reversing most cases. Plasma exchange and intravenous Ig, with or without rituximab, are most commonly used for the treatment of antibody-mediated rejection and several newer agents have recently been investigated for severe cases. This review aims to provide the general nephrologist caring for transplant recipients with an approach to immunologic risk assessment and a summary of recent advances in the diagnosis and treatment of acute graft rejection.
Collapse
Affiliation(s)
- James E Cooper
- Division of Renal Disease and Hypertension, Transplant Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
16
|
Platt JL, Cascalho M. Non-canonical B cell functions in transplantation. Hum Immunol 2019; 80:363-377. [PMID: 30980861 PMCID: PMC6544480 DOI: 10.1016/j.humimm.2019.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
Abstract
B cells are differentiated to recognize antigen and respond by producing antibodies. These activities, governed by recognition of ancillary signals, defend the individual against microorganisms and the products of microorganisms and constitute the canonical function of B cells. Despite the unique differentiation (e.g. recombination and mutation of immunoglobulin gene segments) toward this canonical function, B cells can provide other, "non-canonical" functions, such as facilitating of lymphoid organogenesis and remodeling and fashioning T cell repertoires and modifying T cell responses. Some non-canonical functions are exerted by antibodies, but most are mediated by other products and/or direct actions of B cells. The diverse set of non-canonical functions makes the B cell as much as any cell a central organizer of innate and adaptive immunity. However, the diverse products and actions also confound efforts to weigh the importance of individual non-canonical B cell functions. Here we shall describe the non-canonical functions of B cells and offer our perspective on how those functions converge in the development and governance of immunity, particularly immunity to transplants, and hurdles to advancing understanding of B cell functions in transplantation.
Collapse
Affiliation(s)
- Jeffrey L Platt
- Departments of Surgery and of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, United States.
| | - Marilia Cascalho
- Departments of Surgery and of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
17
|
Ritschl PV, Günther J, Hofhansel L, Kühl AA, Sattler A, Ernst S, Friedersdorff F, Ebner S, Weiss S, Bösmüller C, Weissenbacher A, Oberhuber R, Cardini B, Öllinger R, Schneeberger S, Biebl M, Denecke C, Margreiter C, Resch T, Aigner F, Maglione M, Pratschke J, Kotsch K. Graft Pre-conditioning by Peri-Operative Perfusion of Kidney Allografts With Rabbit Anti-human T-lymphocyte Globulin Results in Improved Kidney Graft Function in the Early Post-transplantation Period-a Prospective, Randomized Placebo-Controlled Trial. Front Immunol 2018; 9:1911. [PMID: 30197644 PMCID: PMC6117415 DOI: 10.3389/fimmu.2018.01911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022] Open
Abstract
Introduction: Although prone to a higher degree of ischemia reperfusion injury (IRI), the use of extended criteria donor (ECD) organs has become reality in transplantation. We therefore postulated that peri-operative perfusion of renal transplants with anti-human T-lymphocyte globulin (ATLG) ameliorates IRI and results in improved graft function. Methods: We performed a randomized, single-blinded, placebo-controlled trial involving 50 kidneys (KTx). Prior to implantation organs were perfused and incubated with ATLG (AP) (n = 24 kidney). Control organs (CP) were perfused with saline only (n = 26 kidney). Primary endpoint was defined as graft function reflected by serum creatinine at day 7 post transplantation (post-tx). Results: AP-KTx recipients illustrated significantly better graft function at day 7 post-tx as reflected by lower creatinine levels, whereas no treatment effect was observed after 12 months surveillance. During the early hospitalization phase, 16 of the 26 CP-KTx patients required dialysis during the first 7 days post-tx, whereas only 10 of the 24 AP-KTx patients underwent dialysis. No treatment-specific differences were detected for various lymphocytes subsets in the peripheral blood of patients. Additionally, mRNA analysis of 0-h biopsies post incubation with ATLG revealed no changes of intragraft inflammatory expression patterns between AP and CP organs. Conclusion: We here present the first clinical study on peri-operative organ perfusion with ATLG illustrating improved graft function in the early period post kidney transplantation. Clinical Trial Registration:www.ClinicalTrials.gov, NCT03377283
Collapse
Affiliation(s)
- Paul V Ritschl
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany.,BIH Charité Clinical Scientist Program, Berlin Institute of Health, Berlin, Germany
| | - Julia Günther
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Lena Hofhansel
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Anja A Kühl
- iPATH.Berlin-Immunopathology for Experimental Models, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Arne Sattler
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Stefanie Ernst
- Biostatistics Unit, Clinical Research Unit, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Susanne Ebner
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Sascha Weiss
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Bösmüller
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Annemarie Weissenbacher
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Rupert Oberhuber
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Benno Cardini
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Robert Öllinger
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schneeberger
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Biebl
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Denecke
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Margreiter
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Resch
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Aigner
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Manuel Maglione
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Johann Pratschke
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Katja Kotsch
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
18
|
van der Zwan M, Clahsen-Van Groningen MC, Roodnat JI, Bouvy AP, Slachmuylders CL, Weimar W, Baan CC, Hesselink DA, Kho MML. The Efficacy of Rabbit Anti-Thymocyte Globulin for Acute Kidney Transplant Rejection in Patients Using Calcineurin Inhibitor and Mycophenolate Mofetil-Based Immunosuppressive Therapy. Ann Transplant 2018; 23:577-590. [PMID: 30115901 PMCID: PMC6248318 DOI: 10.12659/aot.909646] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background T cell depleting antibody therapy with rabbit anti-thymocyte globulin (rATG) is the treatment of choice for glucocorticoid-resistant acute kidney allograft rejection (AR) and is used as first-line therapy in severe AR. Almost all studies investigating the effectiveness of rATG for this indication were conducted at the time when cyclosporine A and azathioprine were the standard of care. Here, the long-term outcome of rATG for AR in patients using the current standard immunosuppressive therapy (i.e., tacrolimus and mycophenolate mofetil) is described. Material/Methods Between 2002 to 2012, 108 patients were treated with rATG for AR. Data on kidney function in the year following rATG and long-term outcomes were collected. Results Overall survival after rATG was comparable to overall survival of all kidney transplantation patients (P=0.10). Serum creatinine 1 year after rATG was 179 μmol/L (interquartile range (IQR) 136–234 μmol/L) and was comparable to baseline serum creatinine (P=0.22). Early AR showed better allograft survival than late AR (P=0.0007). In addition, 1 year after AR, serum creatinine was lower in early AR (157 mol/L; IQR 131–203) compared to late AR (216 mol/L; IQR 165–269; P<0.05). The Banff grade of rejection, kidney function at the moment of rejection, and reason for rATG (severe or glucocorticoid resistant AR) did not influence the allograft survival. Conclusions Treatment of AR with rATG is effective in patients using current standard immunosuppressive therapy, even in patients with poor allograft function. Early identification of AR followed by T cell depleting treatment leads to better allograft outcomes.
Collapse
Affiliation(s)
- Marieke van der Zwan
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam Transplant Group, Rotterdam, Netherlands
| | - Marian C Clahsen-Van Groningen
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam Transplant Group, Rotterdam, Netherlands
| | - Joke I Roodnat
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam Transplant Group, Rotterdam, Netherlands
| | - Anne P Bouvy
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam Transplant Group, Rotterdam, Netherlands
| | - Casper L Slachmuylders
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam Transplant Group, Rotterdam, Netherlands
| | - Willem Weimar
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam Transplant Group, Rotterdam, Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam Transplant Group, Rotterdam, Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam Transplant Group, Rotterdam, Netherlands
| | - Marcia M L Kho
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam Transplant Group, Rotterdam, Netherlands
| |
Collapse
|
19
|
LCK as a Potential Therapeutic Target for Acute Rejection after Kidney Transplantation: A Bioinformatics Clue. J Immunol Res 2018; 2018:6451298. [PMID: 29977931 PMCID: PMC6011083 DOI: 10.1155/2018/6451298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/12/2018] [Accepted: 04/10/2018] [Indexed: 12/21/2022] Open
Abstract
Objectives We aim to identify the key biomarker of acute rejection (AR) after kidney transplantation via bioinformatics methods. Methods The gene expression data GSE75693 of 30 samples with stable kidney transplantation recipients and 15 AR samples were downloaded and analyzed by the limma package to identify differentially expressed genes (DEGs). Then, Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were done to explore the biological functions and potential important pathways of DEGs. Finally, protein-protein interactions (PPIs) and literature mining were applied to construct the cocitation network and to select the hub protein. Results A total of 437 upregulated genes and 353 downregulated genes were selected according to P < 0.01 and |log2(fold change)| > 1.0. DEGs of AR are mainly located on membranes and impact the activation of receptors in immune responses. In the PPI network, Src kinase, lymphocyte kinase (LCK), CD3G, B2M, interferon-γ, CD3D, tumor necrosis factor, VAV1, and CD3E in the T cell receptor signaling pathway were selected as important factors, and LCK was identified as the hub protein. Conclusion LCK, via acting on T-cell receptor, might be a potential therapeutic target for AR after kidney transplantation.
Collapse
|