1
|
Fujioka E, Kiyasu J, Choi I, Yagi Y, Sawabe T, Oyama M, Hoashi K, Tsuda M, Takamatsu A, Haji S, Yufu Y, Suehiro Y, Shiratsuchi M. Efficacy and Safety of Rituximab plus Modified EPOCH (Etoposide, Vincristine, Doxorubicin, Carboplatin, and Prednisolone) for Transplant-ineligible Relapsed/Refractory Diffuse Large B-cell Lymphoma. Intern Med 2025:5175-24. [PMID: 40222939 DOI: 10.2169/internalmedicine.5175-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
Objective Despite the recent development of various novel therapeutic approaches for relapsed/refractory diffuse large B-cell lymphoma (R/R DLBCL), optimal management of patients with R/R DLBCL who are elderly and/or unfit has not yet been established. Methods and Patients We retrospectively analyzed the efficacy and safety of the R-mEPOCH regimen comprising rituximab, etoposide, vincristine, doxorubicin, carboplatin, and prednisolone in transplant-ineligible patients with R/R DLBCL. Results In total, 22 patients were included in this study. The median patient age was 75 years old. The median number of prior lines of therapy was one (range, 1-5). The overall response rate was 68%, with 45% achieving complete response (CR) or unconfirmed CR and 23% achieving partial response. With a median follow-up of 27.8 months, the median progression-free survival and overall survival (OS) were 17.1 and 27.4 months, respectively. The 2- and 5-year OS rates were 50% and 28%, respectively. The most common grade ≥3 adverse events were neutropenia (n=18 [82%]), febrile neutropenia (n=16 [73%]), anemia (n=12 [55%]), and thrombocytopenia (n=8 [36%]). The median total lifetime cumulative dose of anthracyclines was 281 mg/m2 (range, 69-536 mg/m2) in doxorubicin equivalents. One case of grade 1 bradycardia occurred, leading to the discontinuation of R-mEPOCH. No other cardiac adverse events of grade ≥3 and/or discontinuation of treatment were observed. Conclusion Our study suggests that the R-mEPOCH regimen may be an effective and tolerable salvage regimen for transplant-ineligible R/R DLBCL patients.
Collapse
Affiliation(s)
| | - Junichi Kiyasu
- Department of Hematology, Iizuka Hospital, Japan
- Department of Pathology, Kurume University, Japan
| | - Ilseung Choi
- Department of Hematology and Cell Therapy, National Hospital Organization Kyushu Cancer Center, Japan
| | - Yu Yagi
- Department of Hematology, Iizuka Hospital, Japan
| | - Taro Sawabe
- Department of Hematology, Iizuka Hospital, Japan
| | - Makoto Oyama
- Department of Hematology, Iizuka Hospital, Japan
| | | | - Mariko Tsuda
- Department of Hematology, Iizuka Hospital, Japan
| | | | - Shojiro Haji
- Department of Hematology, Iizuka Hospital, Japan
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Yuji Yufu
- Department of Hematology, Iizuka Hospital, Japan
| | - Youko Suehiro
- Department of Hematology and Cell Therapy, National Hospital Organization Kyushu Cancer Center, Japan
| | | |
Collapse
|
2
|
Jørgensen AR, Bue M, Hanberg P, Harlev C, Petersen EK, Rasmussen HC, Hansen J, Hansen TB, Safwat A, Stilling M. Effect of repeated bolus and continuous doxorubicin administration on bone and soft tissue concentrations- a randomized study evaluated in a tumour-free porcine model. Cancer Chemother Pharmacol 2025; 95:47. [PMID: 40123034 PMCID: PMC11930866 DOI: 10.1007/s00280-025-04768-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/23/2025] [Indexed: 03/25/2025]
Abstract
PURPOSE The aim of this study was to evaluate plasma and bone- and soft-tissue concentrations of doxorubicin following two administrations of either bolus or continuous infusion administered at a three-week interval. The achievement of adequate concentration at target sites is believed to be positively correlated to effect, and it has been suggested that concentrations are affected by the number of administrations. METHODS Eighteen female pigs were included in the study and randomized into two groups of nine receiving either a bolus or continuous infusion. The animals received a dosage of 2 mg/kg on day 1 and on day 22. From day 1 to 10, doxorubicin concentrations, as well as kidney and liver function, were monitored with plasma samples (total concentrations). On day 22, doxorubicin was measured in plasma samples (total concentration) and microdialysates (unbound concentrations) from subcutaneous tissue, muscle, synovial fluid of the knee joint, cancellous bone, and intravenously. RESULTS On day 22, the pharmacokinetic profiles were comparable between the two groups except for plasma AUC0 - 12 h, which was higher after continuous infusion, and intravenous Cmax, which was higher after bolus infusion. Bone- and soft tissue concentrations were below 0.10 µg/mL. Except for mean plasma (total) concentration at the 6 h timepoint on day 1 and 22 in the continuous group, which was higher after the first administration (p = 0.037), no differences in plasma concentrations were found between the two administrations. CONCLUSION Low mean tissue doxorubicin concentrations and similar pharmacokinetic profiles were found between the bolus and continuous infusion groups. Thus, similar anti-neoplastic efficacy is to be expected with both administration types.
Collapse
Affiliation(s)
- Andrea René Jørgensen
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus N, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.
| | - Mats Bue
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus N, Denmark
| | - Pelle Hanberg
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Christina Harlev
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Elisabeth Krogsgaard Petersen
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Hans Christian Rasmussen
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Jakob Hansen
- Department of Forensic Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Thomas Baad Hansen
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus N, Denmark
| | - Akmal Safwat
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus N, Denmark
| | - Maiken Stilling
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
3
|
Fakih Y, Al Sakan M, El Ghazawi A, Khoury M, Refaat MM. Exploring Resting Sinus Tachycardia in Cancer Care: A Comprehensive Review. J Clin Med 2025; 14:985. [PMID: 39941655 PMCID: PMC11818562 DOI: 10.3390/jcm14030985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Resting sinus tachycardia is frequently encountered in cancer patients. It affects a wide variety of cancer patients and is associated with distressing symptoms. Cancer-associated resting sinus tachycardia varies in its underlying mechanism. It can stem from the tumor burden or the side effects of chemotherapy/radiotherapy, or it can be secondary to paraneoplastic syndrome or the sequalae of cancer itself (infection, anemia, thrombosis, etc.). The clinical significance of resting sinus tachycardia extends beyond mere symptomatology, as it can potentially indicate severe complications which may facilitate or exacerbate a new or underlying cardiovascular dysfunction. Therefore, this necessitates thorough diagnostic tools to discern the underlying cause and tailor appropriate management strategies, whether pharmacological, non-pharmacological, or conservative. While resting sinus tachycardia has been extensively investigated in the context of cardiovascular disease, its underlying etiology, clinical implication, prognostic value, and treatment options remain vague in the context of cancer. This review aims to explore the topic of resting sinus tachycardia in cancer patients through delving deeper into its underlying mechanism, presenting the current evidence on its effect on cancer-independent cardiovascular and all-cause mortality, as well as providing some insight into the currently available treatment options. It will also propose therapeutic interventions and strategies aimed at optimizing cancer patient care. Lastly, it will highlight research gaps which need to be addressed further, as future research is needed to refine the diagnostic criteria, develop targeted therapies, find alternative cardioprotective/cardio-neutral chemotherapy options, and establish evidence-based guidelines to improve outcomes in this vulnerable patient population.
Collapse
Affiliation(s)
- Yeva Fakih
- Faculty of Medicine, American University of Beirut Medical Center, Beirut 1107, Lebanon; (Y.F.); (M.K.)
| | - Moied Al Sakan
- Internal Medicine Department, American University of Beirut Medical Center, Beirut 1107, Lebanon; (M.A.S.); (A.E.G.)
| | - Alaaeddine El Ghazawi
- Internal Medicine Department, American University of Beirut Medical Center, Beirut 1107, Lebanon; (M.A.S.); (A.E.G.)
| | - Maurice Khoury
- Faculty of Medicine, American University of Beirut Medical Center, Beirut 1107, Lebanon; (Y.F.); (M.K.)
- Internal Medicine Department, American University of Beirut Medical Center, Beirut 1107, Lebanon; (M.A.S.); (A.E.G.)
- Cardiology Department, Division of Cardiac Electrophysiology, American University of Beirut Medical Center, Beirut 1107, Lebanon
| | - Marwan M. Refaat
- Faculty of Medicine, American University of Beirut Medical Center, Beirut 1107, Lebanon; (Y.F.); (M.K.)
- Internal Medicine Department, American University of Beirut Medical Center, Beirut 1107, Lebanon; (M.A.S.); (A.E.G.)
- Cardiology Department, Division of Cardiac Electrophysiology, American University of Beirut Medical Center, Beirut 1107, Lebanon
| |
Collapse
|
4
|
Giffoni de Mello Morais Mata D, Pezo RC, Chan KKW, Menjak I, Eisen A, Trudeau M. A Real-World Comparison Between Adjuvant Docetaxel with Cyclophosphamide (TC) and Anthracycline-Taxane Chemotherapy in Early HER-2 Negative Breast Cancer. Curr Oncol 2024; 32:6. [PMID: 39851922 PMCID: PMC11764166 DOI: 10.3390/curroncol32010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Anthracycline-taxane chemotherapy is the gold standard in high-risk breast cancer (BC), despite the potential risk of congestive heart failure (CHF). A suitable alternative for anthracycline-sparing chemotherapy is through the combination of docetaxel and cyclophosphamide (TC). METHODS Through a retrospective study of stage I-III HER2-negative BC, using administrative databases, we analyzed a total of 10,634 women treated with adjuvant chemotherapy in Ontario, Canada, between 2009 and 2017. We compared TC versus standardized anthracycline-taxane chemotherapies (ACT and FEC-D). We investigated the overall survival (OS), and explored the incidence of CHF, emergency department (ED) visits and febrile neutropenia. RESULTS With a median follow-up of 5.5 years, the 5-year analysis showed an increased OS in patients treated with TC, versus those treated with ACT, HR 0.77 (0.63-0.95, p = 0.015). Among ER+ BC, there was an increased OS in patients treated with ACT and FEC-D, versus those treated with TC, HR 0.70 (0.52-0.95, p = 0.021) and HR 0.71 (0.56-0.91, p = 0.007), respectively. There were no substantial differences in CHF, between TC and anthracycline-based treatments. Patients treated with TC and FEC-D had more ED visits, compared to those treated with ACT. CONCLUSION Our study shows that anthracycline-taxane regimens were the most commonly prescribed adjuvant chemotherapy options in HER2-negative BC. Women who received ACT had the lowest OS, likely due to their unfavorable pathology.
Collapse
Affiliation(s)
- Danilo Giffoni de Mello Morais Mata
- Division of Medical Oncology, Verspeeten Family Cancer Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- ICES Western, London, ON N6A 5W9, Canada
| | - Rossanna C. Pezo
- Division of Medical Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (R.C.P.); (K.K.W.C.); (I.M.)
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Kelvin K. W. Chan
- Division of Medical Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (R.C.P.); (K.K.W.C.); (I.M.)
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Cancer Program, ICES, Toronto, ON M4N 3M5, Canada
| | - Ines Menjak
- Division of Medical Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (R.C.P.); (K.K.W.C.); (I.M.)
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Andrea Eisen
- Division of Medical Oncology, Juravinski Cancer Centre, Hamilton, ON L8V 1C3, Canada;
- Hamilton Health Sciences, Hamilton, ON L8V 1C3, Canada
| | - Maureen Trudeau
- Division of Medical Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (R.C.P.); (K.K.W.C.); (I.M.)
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
5
|
Camilli M, Cipolla CM, Dent S, Minotti G, Cardinale DM. Anthracycline Cardiotoxicity in Adult Cancer Patients: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:655-677. [PMID: 39479333 PMCID: PMC11520218 DOI: 10.1016/j.jaccao.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 11/02/2024] Open
Abstract
Since their introduction in the 1960s, anthracyclines have been a significant breakthrough in oncology, introducing dramatic changes in the treatment of solid and hematologic malignancies. Although new-generation targeted drugs and cellular therapies are revolutionizing contemporary oncology, anthracyclines remain the cornerstone of treatment for lymphomas, acute leukemias, and soft tissue sarcomas. However, their clinical application is limited by a dose-dependent cardiotoxicity that can reduce cardiac performance and eventually lead to overt heart failure. The field of cardio-oncology has emerged to safeguard the cardiovascular health of cancer patients receiving these therapies. It focuses on controlling risk factors, implementing preventive strategies, ensuring appropriate surveillance, and managing complications. This state-of-the-art review summarizes the current indications for anthracyclines in modern oncology, explores recent evidence on pathophysiology and epidemiology, and discusses advances in cardioprotection measures in the anthracycline-treated patient. Additionally, it highlights key clinical challenges and research gaps in this area.
Collapse
Affiliation(s)
- Massimiliano Camilli
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Carlo Maria Cipolla
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology IRCCS, Milan, Italy
| | - Susan Dent
- Duke Cancer Institute, Duke University, Durham, North Carolina, USA
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, North Carolina, USA
| | - Giorgio Minotti
- Università e Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Daniela Maria Cardinale
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
6
|
Vitale R, Marzocco S, Popolo A. Role of Oxidative Stress and Inflammation in Doxorubicin-Induced Cardiotoxicity: A Brief Account. Int J Mol Sci 2024; 25:7477. [PMID: 39000584 PMCID: PMC11242665 DOI: 10.3390/ijms25137477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024] Open
Abstract
Cardiotoxicity is the main side effect of several chemotherapeutic drugs. Doxorubicin (Doxo) is one of the most used anthracyclines in the treatment of many tumors, but the development of acute and chronic cardiotoxicity limits its clinical usefulness. Different studies focused only on the effects of long-term Doxo administration, but recent data show that cardiomyocyte damage is an early event induced by Doxo after a single administration that can be followed by progressive functional decline, leading to overt heart failure. The knowledge of molecular mechanisms involved in the early stage of Doxo-induced cardiotoxicity is of paramount importance to treating and/or preventing it. This review aims to illustrate several mechanisms thought to underlie Doxo-induced cardiotoxicity, such as oxidative and nitrosative stress, inflammation, and mitochondrial dysfunction. Moreover, here we report data from both in vitro and in vivo studies indicating new therapeutic strategies to prevent Doxo-induced cardiotoxicity.
Collapse
Affiliation(s)
| | | | - Ada Popolo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (R.V.); (S.M.)
| |
Collapse
|
7
|
Jesus EB, Cavalcanti ACD, Oliveira JA. Nursing interventions for adult patients undergoing cancer cardiotoxic therapy: Scoping review. Int J Nurs Knowl 2024; 35:239-255. [PMID: 37459404 DOI: 10.1111/2047-3095.12435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/09/2023] [Indexed: 07/16/2024]
Abstract
PURPOSE To identify nursing interventions for the management of adult patients undergoing cardiotoxic oncologic therapy. METHODS This scoping review was performed in accordance with the JBI guidelines. The literature search took place between July and August 2022. Studies examining interventions for the management of adult cancer patients undergoing cardiotoxic therapy were included. The characteristics and results of the studies were synthesized and analyzed in a narrative way. FINDINGS In the nine included studies, it was verified that the interventions were implemented to guide the actions of the health team in general rather than specifically nursing staff. Nine nursing interventions related to the Classification of Nursing Interventions were included. CONCLUSIONS The nursing interventions identified focused on rigorous cardiovascular surveillance, risk assessment, and actions to identify and mitigate cardiotoxicity. IMPLICATIONS FOR NURSING PRACTICE It is believed that the implementation of the identified nursing interventions will lead to evidence-based nursing practice and will contribute to the development of care products and processes that assess the cardiological risks and cardiotoxicity.
Collapse
Affiliation(s)
- Evelyn Barcelos Jesus
- Professional Master's Degree in Nursing, Aurora de Afonso Costa Nursing School, Fluminense Federal University, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
8
|
Jørgensen AR, Bue M, Hanberg P, Petersen EK, Harlev C, Hansen J, Baad-Hansen T, Safwat A, Stilling M. Doxorubicin concentrations in bone tumour-relevant tissues after bolus and continuous infusion: a randomized porcine microdialysis study. Cancer Chemother Pharmacol 2024; 93:555-564. [PMID: 38332155 PMCID: PMC11130026 DOI: 10.1007/s00280-023-04637-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/24/2023] [Indexed: 02/10/2024]
Abstract
PURPOSE Doxorubicin is a widely used chemotherapeutic drug that can be administered intravenously as both a bolus infusion and a continuous infusion. The latter is believed to lower the risk of cardiotoxicity, which is a critical long-term complication of doxorubicin treatment. The local tissue concentrations of doxorubicin will be reflected in both treatment efficacy and toxicity, but very limited information is available. The aim of this study was to measure the concentration of doxorubicin after continuous and bolus infusion in tissue compartments around a typical location of a bone tumour. METHODS Sixteen pigs (female, Danish Landrace, mean weight 77 kg) were randomized into two groups of eight. Both groups received an intravenous infusion of 150 mg doxorubicin; Group 1 received a bolus infusion (10-15 min) and Group 2 received a continuous infusion (6 h). Before infusion, microdialysis catheters were placed intravenously and in four bone tumour-relevant tissue compartments (cancellous bone, subcutaneous tissue, synovial fluid of the knee joint and muscle tissue). Sampling was done (n = 15) over 24 h, and venous blood samples were collected as a reference. RESULTS Area under the concentration-time curve (AUC0-24 h) for plasma (total concentration) was significantly different between the two groups, while peak drug concentration (Cmax) was significantly higher in two compartments (plasma and synovial fluid of the knee joint) in Group 1 compared to Group 2. Overall, the unbound tissue concentrations were extremely low with values below 0.20 µg/mL. CONCLUSION The pharmacokinetic profile for doxorubicin in the investigated tissues is very similar when comparing bolus and 6 h continuous infusion.
Collapse
Affiliation(s)
- Andrea René Jørgensen
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, J112, 8200, Aarhus N, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.
| | - Mats Bue
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, J112, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus N, Denmark
| | - Pelle Hanberg
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, J112, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Elisabeth Krogsgaard Petersen
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, J112, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Christina Harlev
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, J112, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Jakob Hansen
- Department of Forensic Medicine, Aarhus University, Aarhus N, Denmark
| | - Thomas Baad-Hansen
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus N, Denmark
| | - Akmal Safwat
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus N, Denmark
| | - Maiken Stilling
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, J112, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
9
|
Qiu Y, Jiang P, Huang Y. Anthracycline-induced cardiotoxicity: mechanisms, monitoring, and prevention. Front Cardiovasc Med 2023; 10:1242596. [PMID: 38173817 PMCID: PMC10762801 DOI: 10.3389/fcvm.2023.1242596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Anthracyclines are the most fundamental and important treatment of several cancers especially for lymphoma and breast cancer. However, their use is limited by a dose-dependent cardiotoxicity which may emerge early at the initiation of anthracycline administration or several years after termination of the therapy. A full comprehending of the mechanisms of anthracycline-induced cardiotoxicity, which has not been achieved and is currently under the efforts, is critical to the advance of developing effective methods to protect against the cardiotoxicity, as well as to early detect and treat it. Therefore, we review the recent progress of the mechanism underlying anthracycline-induced cardiotoxicity, as well as approaches to monitor and prevent this issue.
Collapse
Affiliation(s)
- Yun Qiu
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Piao Jiang
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Yingmei Huang
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
10
|
Wolf J, Stoller S, Lübke J, Rothe T, Serpa M, Scholber J, Zamboglou C, Gkika E, Baltas D, Juhasz-Böss I, Verma V, Krug D, Grosu AL, Nicolay NH, Sprave T. Deep inspiration breath-hold radiation therapy in left-sided breast cancer patients: a single-institution retrospective dosimetric analysis of organs at risk doses. Strahlenther Onkol 2023; 199:379-388. [PMID: 36074138 PMCID: PMC10033469 DOI: 10.1007/s00066-022-01998-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/07/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Radiotherapy can induce cardiac injury in left-sided breast cancer cases. Cardiac-sparing irradiation using the deep inspiration breath-hold (DIBH) technique can achieve substantial dose reduction to vulnerable cardiac substructures compared with free breathing (FB). This study evaluated the dosimetric differences between both techniques at a single institution. METHODS From 2017 to 2019, 130 patients with left-sided breast cancer underwent breast-conserving surgery (BCS; n = 121, 93.1%) or mastectomy (ME; n = 9, 6.9%) along with axillary lymph node staging (n = 105, 80.8%), followed by adjuvant irradiation in DIBH technique; adjuvant systemic therapy was included if applicable. 106 (81.5%) patients received conventional and 24 (18.5%) hypofractionated irradiation. Additionally, 12 patients received regional nodal irradiation. Computed tomography (CT) scans in FB and DIBH position were performed for all patients. Intrafractional 3D position monitoring of the patient surface in deep inspiration and breath gating was performed using Sentinel and Catalyst HD 3D surface scanning systems (C-RAD, Catalyst, C‑RAD AB, Uppsala, Sweden). Individual coaching and determination of breathing amplitude during the radiation planning CT was performed. Three-dimensional treatment planning was performed using standard tangential treatment portals (6 or 18 MV). The delineation of cardiac structures and both lungs was done in both the FB and the DIBH scan. RESULTS All dosimetric parameters for cardiac structures were significantly reduced (p < 0.01 for all). The mean heart dose (Dmean) in the DIBH group was 1.3 Gy (range 0.5-3.6) vs. 2.2 Gy (range 0.9-8.8) in the FB group (p < 0.001). The Dmean for the left ventricle (LV) in DIBH was 1.5 Gy (range 0.6-4.5), as compared to 2.8 Gy (1.1-9.5) with FB (p < 0.001). The parameters for LV (V10 Gy, V15 Gy, V20 Gy, V23 Gy, V25 Gy, V30 Gy) were reduced by about 100% (p < 0.001). The LAD Dmean in the DIBH group was 4.1 Gy (range 1.2-33.3) and 14.3 Gy (range 2.4-37.5) in the FB group (p < 0.001). The median values for LAD such as V15 Gy, V20 Gy, V25 Gy, V30 Gy, and V40 Gy decreased by roughly 100% (p < 0.001). An increasing volume of left lung in the DIBH position resulted in dose sparing of cardiac structures. CONCLUSION For all ascertained dosimetric parameters, a significant dose reduction could be achieved in DIBH technique.
Collapse
Affiliation(s)
- Jule Wolf
- Department of Radiation Oncology, University Hospital of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Sabine Stoller
- Department of Radiation Oncology, University Hospital of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jördis Lübke
- Department of Radiation Oncology, University Hospital of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Thomas Rothe
- Department of Radiation Oncology, University Hospital of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Marco Serpa
- Department of Radiation Oncology, University Hospital of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jutta Scholber
- Department of Radiation Oncology, University Hospital of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, University Hospital of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Dimos Baltas
- Department of Radiation Oncology, University Hospital of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Ingolf Juhasz-Böss
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Vivek Verma
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - David Krug
- Department of Radiation Oncology, University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, 24105, Kiel, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, University Hospital of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, University Hospital of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Tanja Sprave
- Department of Radiation Oncology, University Hospital of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
11
|
Kuron D, Pohlmann A, Angenendt L, Kessler T, Mesters R, Berdel WE, Stelljes M, Lenz G, Schliemann C, Mikesch JH. Amsacrine-based induction therapy in AML patients with cardiac comorbidities: a retrospective single-center analysis. Ann Hematol 2023; 102:755-760. [PMID: 36749402 PMCID: PMC9998561 DOI: 10.1007/s00277-023-05111-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023]
Abstract
Intensive chemotherapy is the backbone of induction treatment in patients with acute myeloid leukemia (AML). However, AML patients with concomitant cardiac disease may not be eligible for anthracycline-based therapies. In a small cohort of patients, we have previously shown that anthracycline-free, amsacrine-based chemotherapy TAA (thioguanine, cytarabine, amsacrine) may be as effective as cytarabine/daunorubicin for induction therapy in these patients. In this systematic retrospective single-center analysis, we documented the outcome of 31 patients with significant cardiac comorbidities including coronary heart disease or cardiomyopathy receiving TAA as induction chemotherapy. Median (range) ejection fraction (EF) was 48% (30-67%) in this cohort. Patients with EF below 30% were considered unfit for intensive induction therapy. Event-free survival (EFS), overall survival (OS), and relapse-free survival (RFS) were 1.61, 5.46, and 13.6 months respectively. Poor outcome was primarily related to a high early mortality rate within the first 30 days of therapy, mainly caused by infectious complications. TAA cannot be recommended as a substitute of standard induction for AML patients with significant concomitant cardiac disease. In the era of novel agents, alternative strategies (e.g., hypomethylating agents plus venetoclax) should be considered when anthracycline-based regimens are not suitable.
Collapse
Affiliation(s)
- David Kuron
- Department of Medicine A, University Hospital Münster, 48149, Münster, Germany. .,Current Affiliation: Department of Medicine II, University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, 24105, Kiel, Germany.
| | - Alexander Pohlmann
- Department of Medicine A, University Hospital Münster, 48149, Münster, Germany
| | - Linus Angenendt
- Department of Medicine A, University Hospital Münster, 48149, Münster, Germany
| | - Torsten Kessler
- Department of Medicine A, University Hospital Münster, 48149, Münster, Germany
| | - Rolf Mesters
- Department of Medicine A, University Hospital Münster, 48149, Münster, Germany
| | - Wolfgang E Berdel
- Department of Medicine A, University Hospital Münster, 48149, Münster, Germany
| | - Matthias Stelljes
- Department of Medicine A, University Hospital Münster, 48149, Münster, Germany
| | - Georg Lenz
- Department of Medicine A, University Hospital Münster, 48149, Münster, Germany
| | | | - Jan-Henrik Mikesch
- Department of Medicine A, University Hospital Münster, 48149, Münster, Germany
| |
Collapse
|
12
|
van Dalen EC, Leerink JM, Kremer LCM, Feijen EAM. Risk Prediction Models for Myocardial Dysfunction and Heart Failure in Patients with Current or Prior Cancer. Curr Oncol Rep 2023; 25:353-367. [PMID: 36787043 DOI: 10.1007/s11912-023-01368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2022] [Indexed: 02/15/2023]
Abstract
PURPOSE OF REVIEW Cancer patients are at risk for treatment-related myocardial dysfunction and heart failure during or after treatment. Risk prediction models have the potential to play an important role in identifying patients at high or low risk in order to take appropriate measures. Here, we review their current role. RECENT FINDINGS More and more risk prediction models are currently being developed. Unfortunately, they vary widely in their ability to identify patients and survivors at risk for myocardial dysfunction or heart failure, from very poor to strong. Part of this variation might be explained by methodological limitations of the models, but due to a lack of reporting it is not possible to completely assess this. There lies great potential in the improvement of the quality and the use of risk prediction models to inform patients and clinicians on the absolute risk of cardiac events in order to guide care.
Collapse
Affiliation(s)
- E C van Dalen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS, Utrecht, The Netherlands
| | - J M Leerink
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS, Utrecht, The Netherlands.,Heart Center, Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - L C M Kremer
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS, Utrecht, The Netherlands.,Department of Pediatrics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - E A M Feijen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Wu C, Hormuth DA, Lorenzo G, Jarrett AM, Pineda F, Howard FM, Karczmar GS, Yankeelov TE. Towards Patient-Specific Optimization of Neoadjuvant Treatment Protocols for Breast Cancer Based on Image-Guided Fluid Dynamics. IEEE Trans Biomed Eng 2022; 69:3334-3344. [PMID: 35439121 PMCID: PMC9640301 DOI: 10.1109/tbme.2022.3168402] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE This study establishes a fluid dynamics model personalized with patient-specific imaging data to optimize neoadjuvant therapy (i.e., doxorubicin) protocols for breast cancers. METHODS Ten patients recruited at the University of Chicago were included in this study. Quantitative dynamic contrast-enhanced and diffusion weighted magnetic resonance imaging data are leveraged to estimate patient-specific hemodynamic properties, which are then used to constrain the mechanism-based drug delivery model. Then, computer simulations of this model yield the subsequent drug distribution throughout the breast. By systematically varying the dosing schedule, we identify an optimized regimen for each patient using the maximum safe therapeutic duration (MSTD), which is a metric balancing treatment efficacy and toxicity. RESULTS With an individually optimized dose (range = 12.11-15.11 mg/m2 per injection), a 3-week regimen consisting of a uniform daily injection significantly outperforms all other scheduling strategies (P < 0.001). In particular, the optimal protocol is predicted to significantly outperform the standard protocol (P < 0.001), improving the MSTD by an average factor of 9.93 (range = 6.63 to 14.17). CONCLUSION A clinical-mathematical framework was developed by integrating quantitative MRI data, advanced image processing, and computational fluid dynamics to predict the efficacy and toxicity of neoadjuvant therapy protocols, thus enabling the rational identification of an optimal therapeutic regimen on a patient-specific basis. SIGNIFICANCE Our clinical-computational approach has the potential to enable optimization of therapeutic regimens on a patient-specific basis and provide guidance for prospective clinical trials aimed at refining neoadjuvant therapy protocols for breast cancers.
Collapse
Affiliation(s)
- Chengyue Wu
- Oden Institute for Computational Engineering and Sciences, the University of Texas at Austin, Austin TX 78712 USA
| | - David A. Hormuth
- Oden Institute for Computational Engineering and Sciences, and Livestrong Cancer Institutes, The University of Texas at Austin, USA
| | - Guillermo Lorenzo
- Oden Institute for Computational Engineering and Sciences, the University of Texas at Austin; Department of Civil Engineering and Architecture, University of Pavia, Italy
| | - Angela M. Jarrett
- Oden Institute for Computational Engineering and Sciences, and Livestrong Cancer Institutes, The University of Texas at Austin, USA
| | | | - Frederick M. Howard
- Section of Hematology/Oncology - Department of Medicine, The University of Chicago, USA
| | | | - Thomas E. Yankeelov
- Department of Biomedical Engineering, Department of Diagnostic Medicine, Department of Oncology, Oden Institute for Computational Engineering and Sciences, and Livestrong Cancer Institutes, The University of Texas at Austin; Department of Imaging Physics, MD Anderson Cancer Center, USA
| |
Collapse
|
14
|
de Baat EC, Mulder RL, Armenian S, Feijen EA, Grotenhuis H, Hudson MM, Mavinkurve-Groothuis AM, Kremer LC, van Dalen EC. Dexrazoxane for preventing or reducing cardiotoxicity in adults and children with cancer receiving anthracyclines. Cochrane Database Syst Rev 2022; 9:CD014638. [PMID: 36162822 PMCID: PMC9512638 DOI: 10.1002/14651858.cd014638.pub2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND This review is the third update of a previously published Cochrane Review. The original review, looking at all possible cardioprotective agents, was split and this part now focuses on dexrazoxane only. Anthracyclines are effective chemotherapeutic agents in the treatment of numerous malignancies. Unfortunately, their use is limited by a dose-dependent cardiotoxicity. In an effort to prevent or reduce this cardiotoxicity, different cardioprotective agents have been studied, including dexrazoxane. OBJECTIVES To assess the efficacy of dexrazoxane to prevent or reduce cardiotoxicity and determine possible effects of dexrazoxane on antitumour efficacy, quality of life and toxicities other than cardiac damage in adults and children with cancer receiving anthracyclines when compared to placebo or no additional treatment. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to May 2021. We also handsearched reference lists, the proceedings of relevant conferences and ongoing trials registers. SELECTION CRITERIA Randomised controlled trials (RCTs) in which dexrazoxane was compared to no additional therapy or placebo in adults and children with cancer receiving anthracyclines. DATA COLLECTION AND ANALYSIS Two review authors independently performed study selection, data extraction, risk of bias and GRADE assessment of included studies. We analysed results in adults and children separately. We performed analyses according to the Cochrane Handbook for Systematic Reviews of Interventions. MAIN RESULTS For this update, we identified 548 unique records. We included three additional RCTs: two paediatric and one adult. Therefore, we included a total of 13 eligible RCTs (five paediatric and eight adult). The studies enrolled 1252 children with leukaemia, lymphoma or a solid tumour and 1269 participants, who were mostly diagnosed with breast cancer. In adults, moderate-quality evidence showed that there was less clinical heart failure with the use of dexrazoxane (risk ratio (RR) 0.22, 95% confidence interval (CI) 0.11 to 0.43; 7 studies, 1221 adults). In children, we identified no difference in clinical heart failure risk between treatment groups (RR 0.20, 95% CI 0.01 to 4.19; 3 studies, 885 children; low-quality evidence). In three paediatric studies assessing cardiomyopathy/heart failure as the primary cause of death, none of the children had this outcome (1008 children, low-quality evidence). In the adult studies, different definitions for subclinical myocardial dysfunction and clinical heart failure combined were used, but pooled analyses were possible: there was a benefit in favour of the use of dexrazoxane (RR 0.37, 95% CI 0.24 to 0.56; 3 studies, 417 adults and RR 0.46, 95% CI 0.33 to 0.66; 2 studies, 534 adults, respectively, moderate-quality evidence). In the paediatric studies, definitions of subclinical myocardial dysfunction and clinical heart failure combined were incomparable, making pooling impossible. One paediatric study showed a benefit in favour of dexrazoxane (RR 0.33, 95% CI 0.13 to 0.85; 33 children; low-quality evidence), whereas another study showed no difference between treatment groups (Fischer exact P = 0.12; 537 children; very low-quality evidence). Overall survival (OS) was reported in adults and overall mortality in children. The meta-analyses of both outcomes showed no difference between treatment groups (hazard ratio (HR) 1.04, 95% 0.88 to 1.23; 4 studies; moderate-quality evidence; and HR 1.01, 95% CI 0.72 to 1.42; 3 studies, 1008 children; low-quality evidence, respectively). Progression-free survival (PFS) was only reported in adults. We subdivided PFS into three analyses based on the comparability of definitions, and identified a longer PFS in favour of dexrazoxane in one study (HR 0.62, 95% CI 0.43 to 0.90; 164 adults; low-quality evidence). There was no difference between treatment groups in the other two analyses (HR 0.95, 95% CI 0.64 to 1.40; 1 study; low-quality evidence; and HR 1.18, 95% CI 0.97 to 1.43; 2 studies; moderate-quality evidence, respectively). In adults, there was no difference in tumour response rate between treatment groups (RR 0.91, 95% CI 0.79 to 1.04; 6 studies, 956 adults; moderate-quality evidence). We subdivided tumour response rate in children into two analyses based on the comparability of definitions, and identified no difference between treatment groups (RR 1.01, 95% CI 0.95 to 1.07; 1 study, 206 children; very low-quality evidence; and RR 0.92, 95% CI 0.84 to 1.01; 1 study, 200 children; low-quality evidence, respectively). The occurrence of secondary malignant neoplasms (SMN) was only assessed in children. The available and worst-case analyses were identical and showed a difference in favour of the control group (RR 3.08, 95% CI 1.13 to 8.38; 3 studies, 1015 children; low-quality evidence). In the best-case analysis, the direction of effect was the same, but there was no difference between treatment groups (RR 2.51, 95% CI 0.96 to 6.53; 4 studies, 1220 children; low-quality evidence). For other adverse effects, results also varied. None of the studies evaluated quality of life. If not reported, the number of participants for an analysis was unclear. AUTHORS' CONCLUSIONS Our meta-analyses showed the efficacy of dexrazoxane in preventing or reducing cardiotoxicity in adults treated with anthracyclines. In children, there was a difference between treatment groups for one cardiac outcome (i.e. for one of the definitions used for clinical heart failure and subclinical myocardial dysfunction combined) in favour of dexrazoxane. In adults, no evidence of a negative effect on tumour response rate, OS and PFS was identified; and in children, no evidence of a negative effect on tumour response rate and overall mortality was identified. The results for adverse effects varied. In children, dexrazoxane may be associated with a higher risk of SMN; in adults this was not addressed. In adults, the quality of the evidence ranged between moderate and low; in children, it ranged between low and very low. Before definitive conclusions on the use of dexrazoxane can be made, especially in children, more high-quality research is needed. We conclude that if the risk of cardiac damage is expected to be high, it might be justified to use dexrazoxane in children and adults with cancer who are treated with anthracyclines. However, clinicians and patients should weigh the cardioprotective effect of dexrazoxane against the possible risk of adverse effects, including SMN, for each individual. For children, the International Late Effects of Childhood Cancer Guideline Harmonization Group has developed a clinical practice guideline.
Collapse
Affiliation(s)
- Esmée C de Baat
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Renée L Mulder
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Saro Armenian
- Population Sciences, City of Hope National Medical Center, Duarte, USA
| | | | - Heynric Grotenhuis
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | | | | | | | | |
Collapse
|
15
|
Current Status and Trends of Research on Anthracycline-Induced Cardiotoxicity from 2002 to 2021: A Twenty-Year Bibliometric and Visualization Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6260243. [PMID: 35993025 PMCID: PMC9388240 DOI: 10.1155/2022/6260243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 07/24/2022] [Indexed: 12/30/2022]
Abstract
Anthracyclines constitute the cornerstone of numerous chemotherapy regimens for various cancers. However, the clinical application of anthracyclines is significantly limited to their dose-dependent cardiotoxicity. A comprehensive understanding of the current status of anthracycline-induced cardiotoxicity is necessary for in-depth research and optimal clinical protocols. Bibliometric analysis is widely applied in depicting development trends and tracking frontiers of a specific field. The present study is aimed at revealing the status and trends of anthracycline-induced cardiotoxicity during the past two decades by employing bibliometric software including R-bibliometric, VOSviewer, and CiteSpace. A total of 3504 publications concerning anthracycline-induced cardiotoxicity from 2002 to 2021 were collected from the Web of Science Core Collection database. Results showed significant growth in annual yields from 90 records in 2002 to 304 papers in 2021. The United States was the most productive country with the strongest collaboration worldwide in the field. Charles University in the Czech Republic was the institution that contributed the most papers, while 7 of the top 10 productive institutions were from the United States. The United States Department of Health and Human Services and the National Institutes of Health are the two agencies that provide financial support for more than 50% of sponsored publications. The research categories of included publications mainly belong to Oncology and Cardiac Cardiovascular Systems. The Journal of Clinical Oncology had a comprehensive impact on this research field with the highest IF value and many publications. Simunek Tomas from Charles University contributed the most publications, while Lipshultz Steven E. from the State University of New York possessed the highest H-index. In addition, the future research frontiers of anthracycline-induced cardiotoxicity might include early detection, pharmacogenomics, molecular mechanism, and cardiooncology. The present bibliometric analysis may provide a valuable reference for researchers and practitioners in future research directions.
Collapse
|
16
|
Chaulin AM, Duplyakov DV. Cardioprotective Strategies for Doxorubicin-induced Cardiotoxicity: Present and Future. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2022. [DOI: 10.20996/1819-6446-2022-02-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The improvement of drugs and protocols of chemotherapeutic treatment has led to improved outcomes and survival in patients with cancer. But along with this, at first glance a positive point, there was another interdisciplinary problem, which is the need for early detection and treatment of developing cardiotoxicity when taking chemotherapy drugs. The study of cardioprotective strategies has recently become increasingly relevant, due to the fact that many patients who have successfully undergone treatment for cancer have a high risk of developing or are at high risk of death from cardiovascular diseases. One of the main drugs for the treatment of a number of oncological diseases is an anthracycline – type antibiotic-doxorubicin. This review briefly examines the risk factors and pathophysiological mechanisms underlying anthracycline cardiotoxicity. The current possibilities of cardioprotection of anthracycline cardiotoxicity are considered in detail, and some promising targets and drugs for improving cardioprotective strategies are discussed.
Collapse
Affiliation(s)
- A. M. Chaulin
- Samara State Medical University; Samara Regional Cardiology Dispensary
| | - D. V. Duplyakov
- Samara State Medical University; Samara Regional Cardiology Dispensary
| |
Collapse
|
17
|
Hitawala G, Jain E, Castellanos L, Garimella R, Akku R, Chamavaliyathil AK, Irfan H, Jaiswal V, Quinonez J, Dakroub M, Hanif M, Baloch AH, Gomez IS, Dylewski J. Pediatric Chemotherapy Drugs Associated With Cardiotoxicity. Cureus 2021; 13:e19658. [PMID: 34976454 PMCID: PMC8679581 DOI: 10.7759/cureus.19658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 11/05/2022] Open
Abstract
Pediatric cancers are a common cause of childhood morbidity. As a result, chemotherapeutic regimens have been designed to target childhood cancers. These medications are necessary to treat pediatric cancers, however, oncology management options are accompanied by multiple negative and potentially fatal adverse effects. Although anthracyclines are the most commonly used chemotherapeutic agents associated with cardiotoxicity, we also explore other chemotherapeutic drugs used in children that can potentially affect the heart. Genetic variations resulting in single nucleotide polymorphism (SNP) have the propensity to modify the cardiotoxic effects of the chemotherapy drugs. The clinical presentation of the cardiac effects can vary from arrhythmias and heart failure to completely asymptomatic. A range of imaging studies and laboratory investigations can protect the heart from severe outcomes. The physiology of the heart and the effect of drugs in children vary vividly from adults; therefore, it is crucial to study the cardiotoxic effect of chemotherapy drugs in the pediatric population. This review highlights the potential contributing factors for cardiotoxicity in the pediatric population and discusses the identification and management options.
Collapse
Affiliation(s)
- Gazala Hitawala
- Internal Medicine, Jersey City (JC) Medical Center, Orlando, USA
| | - Esha Jain
- Medicine, American University of Antigua, St. John's, ATG
| | | | | | - Radhika Akku
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Adila K Chamavaliyathil
- Pediatrics, Ras Al Khaimah (RAK) Medical and Health Sciences University, Ras Al Khaimah, ARE
| | - Huma Irfan
- Research, Larkin Community Hospital, South Miami, USA
| | | | - Jonathan Quinonez
- Neurology/Osteopathic Neuromuscular Medicine, Larkin Community Hospital, Miami, USA
| | - Maher Dakroub
- Hematology and Oncology, Larkin Community Hospital, South Miami, USA
| | - Muhammad Hanif
- Internal Medicine, Khyber Medical College Peshawar, Hayatabad Medical Complex, Peshawar, PAK
| | - Ali H Baloch
- Research, University of Maryland Medical Center, Baltimore, USA
| | - Ivan S Gomez
- Cardiology, Larkin Community Hospital, South Miami, USA
| | - John Dylewski
- Cardiology, Larkin Community Hospital, South Miami, USA
| |
Collapse
|
18
|
Saleh Y, Abdelkarim O, Herzallah K, Abela GS. Anthracycline-induced cardiotoxicity: mechanisms of action, incidence, risk factors, prevention, and treatment. Heart Fail Rev 2021; 26:1159-1173. [PMID: 32410142 DOI: 10.1007/s10741-020-09968-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Anthracycline is a mainstay in treatment of many cancers including lymphoma and breast cancer among many others. However, anthracycline treatment can be cardiotoxic. Although anthracycline-induced cardiotoxicity is dose dependent, it can also occur early at the onset of treatment and even up to several years following completion of treatment. This review article focuses on the understanding of mechanisms of anthracycline-induced cardiotoxicity, the treatments, and recommended follow-up and preventive approaches.
Collapse
Affiliation(s)
- Yehia Saleh
- Department of Internal Medicine, Michigan State University, East Lansing, MI, USA
| | - Ola Abdelkarim
- Department of Internal Medicine, Cardiology, Michigan State University, 788 service road, Room B-208, Clinical Center, East Lansing, MI, USA
| | - Khader Herzallah
- Department of Internal Medicine, Michigan State University, East Lansing, MI, USA
| | - George S Abela
- Department of Internal Medicine, Cardiology, Michigan State University, 788 service road, Room B-208, Clinical Center, East Lansing, MI, USA.
| |
Collapse
|
19
|
Anthracycline-related cardiotoxicity in older patients with acute myeloid leukemia: a Young SIOG review paper. Blood Adv 2021; 4:762-775. [PMID: 32097461 DOI: 10.1182/bloodadvances.2019000955] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
The incidence of acute myeloid leukemia (AML) increases with age. Intensive induction chemotherapy containing cytarabine and an anthracycline has been part of the upfront and salvage treatment of AML for decades. Anthracyclines are associated with a significant risk of cardiotoxicity (especially anthracycline-related left ventricular dysfunction [ARLVD]). In the older adult population, the higher prevalence of cardiac comorbidities and risk factors may further increase the risk of ARLVD. In this article of the Young International Society of Geriatric Oncology group, we review the prevalence of ARLVD in patients with AML and factors predisposing to ARLVD, focusing on older adults when possible. In addition, we review the assessment of cardiac function and management of ARLVD during and after treatment. It is worth noting that only a minority of clinical trials focus on alternative treatment strategies in patients with mildly declined left ventricular ejection fraction or at a high risk for ARLVD. The limited evidence for preventive strategies to ameliorate ARLVD and alternative strategies to anthracycline use in the setting of cardiac comorbidities are discussed. Based on extrapolation of findings from younger adults and nonrandomized trials, we recommend a comprehensive baseline evaluation of cardiac function by imaging, cardiac risk factors, and symptoms to risk stratify for ARLVD. Anthracyclines remain an appropriate choice for induction although careful risk-stratification based on cardiac disease, risk factors, and predicted chemotherapy-response are warranted. In case of declined left ventricular ejection fraction, alternative strategies should be considered.
Collapse
|
20
|
Feitosa LADS, Carvalho JDS, Dantas CO, de Souza DS, de Vasconcelos CML, Miguel-Dos-Santos R, Lauton-Santos S, Quíntans-Júnior LJ, Santos MRV, de Santana-Filho VJ, Barreto AS. Resistance training improves cardiac function and cardiovascular autonomic control in doxorubicin-induced cardiotoxicity. Cardiovasc Toxicol 2021; 21:365-374. [PMID: 33387253 DOI: 10.1007/s12012-020-09627-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/14/2020] [Indexed: 02/02/2023]
Abstract
Doxorubicin (DOX) is an anticancer chemotherapy drug that is widely used in clinical practice. It is well documented that DOX impairs baroreflex responsiveness and left ventricular function and enhances sympathetic activity, cardiac sympathetic afferent reflexes and oxidative stress, which contribute to hemodynamic deterioration. Because resistance training (RT)-induced cardioprotection has been observed in other animal models, the objective of this study was to assess the effects of RT during DOX treatment on hemodynamics, arterial baroreflex, cardiac autonomic tone, left ventricular function and oxidative stress in rats with DOX-induced cardiotoxicity. Male Wistar rats were submitted to a RT protocol (3 sets of 10 repetitions, 40% of one-repetition maximum (1RM) of intensity, 3 times per week, for 8 weeks). The rats were separated into 3 groups: sedentary control, DOX sedentary (2.5 mg/kg of DOX intraperitoneal injection, once a week, for 6 weeks) and DOX + RT. After training or time control, the animals were anesthetized and 2 catheters were implanted for hemodynamic, arterial baroreflex and cardiac autonomic tone. Another group of animals was used to evaluate left ventricular function. We found that RT in DOX-treated rats decreased diastolic arterial pressure, heart rate, sympathetic tone and oxidative stress. In addition, RT increased arterial baroreflex sensitivity, vagal tone and left ventricular developed pressure in rats with DOX-induced cardiotoxicity. In summary, RT is a useful non-pharmacological strategy to attenuate DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
| | | | - Cácia Oliveira Dantas
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Diego Santos de Souza
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Rodrigo Miguel-Dos-Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- Cardiac Exercise Research Group, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sandra Lauton-Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | | | | | - André Sales Barreto
- Department of Health Education, Federal University of Sergipe, Lagarto, Sergipe, Brazil
| |
Collapse
|
21
|
Genetic Polymorphisms Affecting Cardiac Biomarker Concentrations in Children with Cancer: an Analysis from the "European Paediatric Oncology Off-patents Medicines Consortium" (EPOC) Trial. Eur J Drug Metab Pharmacokinet 2021; 45:413-422. [PMID: 31981210 DOI: 10.1007/s13318-019-00592-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND OBJECTIVES Doxorubicin plays an essential role in the treatment of paediatric cancers. Defining genotypes with a higher risk for developing anthracycline-induced cardiotoxicity could help to reduce cardiotoxicity. METHODS Data originated from a phase II study assessing the pharmacokinetics of doxorubicin in 100 children. Studied patients (0-17 years) were treated for solid tumours or leukaemia. Two cycles of doxorubicin were studied. Concentrations of natriuretic peptides proANP, BNP and NT-proBNP and cardiac troponins T and I were measured at five time points before, during and after two cycles of doxorubicin treatment. Genotypes of 17 genetic polymorphisms in genes encoding for anthracycline metabolizing enzymes and drug transporters were determined for each patient. We analysed the influence of genotypes on cardiac biomarker concentrations at different time points by a Kruskal-Wallis test. To perform a pairwise comparison significant genetic polymorphisms with more than two genotypes were analysed by a post hoc test. RESULTS The Kruskal-Wallis tests and the post hoc-tests showed a significant association for seven genetic polymorphisms (ABCB1-rs1128503, ABCB1-rs1045642, ABCC1-rs4148350, CBR3-rs8133052, NQO2-in/del, SLC22A16-rs714368 and SLC22A16-rs6907567) with the concentration of at least one biomarker at one or more time points. We could not identify any polymorphism with a consistent effect on any biomarker over the whole treatment period. CONCLUSIONS In this study of patients treated with doxorubicin for different tumour entities, seven genetic polymorphisms possibly influencing the pharmacokinetics and pharmacodynamics of doxorubicin could lead occasionally to differences in the concentration of cardiac biomarkers. Since, the role of cardiac biomarkers for monitoring anthracycline-induced cardiotoxicity has not yet been clarified, further trials with a long follow-up time are required to assess the impact of these genetic polymorphisms on chemotherapy-related cardiotoxicity. TRIAL REGISTRATION EudraCT number: 2009-011454-17.
Collapse
|
22
|
Possible Susceptibility Genes for Intervention against Chemotherapy-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4894625. [PMID: 33110473 PMCID: PMC7578723 DOI: 10.1155/2020/4894625] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/07/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Recent therapeutic advances have significantly improved the short- and long-term survival rates in patients with heart disease and cancer. Survival in cancer patients may, however, be accompanied by disadvantages, namely, increased rates of cardiovascular events. Chemotherapy-related cardiac dysfunction is an important side effect of anticancer therapy. While advances in cancer treatment have increased patient survival, treatments are associated with cardiovascular complications, including heart failure (HF), arrhythmias, cardiac ischemia, valve disease, pericarditis, and fibrosis of the pericardium and myocardium. The molecular mechanisms of cardiotoxicity caused by cancer treatment have not yet been elucidated, and they may be both varied and complex. By identifying the functional genetic variations responsible for this toxicity, we may be able to improve our understanding of the potential mechanisms and pathways of treatment, paving the way for the development of new therapies to target these toxicities. Data from studies on genetic defects and pharmacological interventions have suggested that many molecules, primarily those regulating oxidative stress, inflammation, autophagy, apoptosis, and metabolism, contribute to the pathogenesis of cardiotoxicity induced by cancer treatment. Here, we review the progress of genetic research in illuminating the molecular mechanisms of cancer treatment-mediated cardiotoxicity and provide insights for the research and development of new therapies to treat or even prevent cardiotoxicity in patients undergoing cancer treatment. The current evidence is not clear about the role of pharmacogenomic screening of susceptible genes. Further studies need to done in chemotherapy-induced cardiotoxicity.
Collapse
|
23
|
Leerink JM, de Baat EC, Feijen EA, Bellersen L, van Dalen EC, Grotenhuis HB, Kapusta L, Kok WE, Loonen J, van der Pal HJ, Pluijm SM, Teske AJ, Mavinkurve-Groothuis AM, Merkx R, Kremer LC. Cardiac Disease in Childhood Cancer Survivors: Risk Prediction, Prevention, and Surveillance: JACC CardioOncology State-of-the-Art Review. JACC CardioOncol 2020; 2:363-378. [PMID: 34396245 PMCID: PMC8352294 DOI: 10.1016/j.jaccao.2020.08.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiac diseases in the growing population of childhood cancer survivors are of major concern. Cardiotoxicity as a consequence of anthracyclines and chest radiotherapy continues to be relevant in the modern treatment era. Mitoxantrone has emerged as an important treatment-related risk factor and evidence on traditional cardiovascular risk factors in childhood cancer survivors is accumulating. International surveillance guidelines have been developed with the aim to detect and manage cardiac diseases early and prevent symptomatic disease. There is growing interest in risk prediction models to individualize prevention and surveillance. This State-of-the-Art Review summarizes literature from a systematic PubMed search focused on cardiac diseases after treatment for childhood cancer. Here, we discuss the prevalence, risk factors, prevention, risk prediction, and surveillance of cardiac diseases in survivors of childhood cancer.
Collapse
Key Words
- CAD, coronary artery disease
- CCS, childhood cancer survivors
- ECG, electrocardiogram
- FS, fractional shortening
- GLS, global longitudinal strain
- IGHG, International Late Effects of Childhood Cancer Guideline Harmonization Group
- LV, left ventricle
- LVEF, left ventricular ejection fraction
- RCT, randomized controlled trial
- cardiotoxicity
- cardiovascular risk factors
- chest RT, chest-directed radiotherapy
- childhood cancer survivors
- prevention
- risk prediction
Collapse
Affiliation(s)
- Jan M. Leerink
- Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Esmée C. de Baat
- Department of Pediatric Oncology, Princess Máxima Center, Utrecht, the Netherlands
| | | | - Louise Bellersen
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Elvira C. van Dalen
- Department of Pediatric Oncology, Princess Máxima Center, Utrecht, the Netherlands
| | - Heynric B. Grotenhuis
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University of Utrecht, Utrecht, the Netherlands
| | - Livia Kapusta
- Department of Pediatric Cardiology, Radboud University Medical Center, Amalia Children’s Hospital, Nijmegen, the Netherlands
- Department of Pediatrics, Tel Aviv University, Sackler School of Medicine, Tel Aviv Sourasky Medical Center, Pediatric Cardiology Unit, Tel Aviv, Israel
| | - Wouter E.M. Kok
- Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Jacqueline Loonen
- Department of Pediatric Hematology and Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Saskia M.F. Pluijm
- Department of Pediatric Oncology, Princess Máxima Center, Utrecht, the Netherlands
| | - Arco J. Teske
- Department of Cardiology, Utrecht University Medical Center, Utrecht, the Netherlands
| | | | - Remy Merkx
- Department of Medical Imaging, Radboud University Medical Center, Medical UltraSound Imaging Center, Nijmegen, the Netherlands
| | - Leontien C.M. Kremer
- Department of Pediatric Oncology, Princess Máxima Center, Utrecht, the Netherlands
| |
Collapse
|
24
|
Siebel C, Würthwein G, Lanvers-Kaminsky C, André N, Berthold F, Castelli I, Chastagner P, Doz F, English M, Escherich G, Frühwald MC, Graf N, Groll AH, Ruggiero A, Hempel G, Boos J. Can we optimise doxorubicin treatment regimens for children with cancer? Pharmacokinetic simulations and a Delphi consensus procedure. BMC Pharmacol Toxicol 2020; 21:37. [PMID: 32466789 PMCID: PMC7254632 DOI: 10.1186/s40360-020-00417-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 05/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite its cardiotoxicity doxorubicin is widely used for the treatment of paediatric malignancies. Current treatment regimens appear to be suboptimal as treatment strategies vary and do not follow a clear pharmacological rationale. Standardisation of dosing strategies in particular for infants and younger children is required but is hampered by scarcely defined exposure-response relationships. The aim is to provide a rational dosing concept allowing for a reduction of variability in systemic therapy intensity and subsequently unforeseen side effects. METHODS Doxorubicin plasma concentrations in paediatric cancer patients were simulated for different treatment schedules using a population pharmacokinetic model which considers age-dependent differences in doxorubicin clearance. Overall drug exposure and peak concentrations were assessed. Simulation results were used to support a three round Delphi consensus procedure with the aim to clarify the pharmacological goals of doxorubicin dosing in young children. A group of 28 experts representing paediatric trial groups and clinical centres were invited to participate in this process. RESULTS Pharmacokinetic simulations illustrated the substantial differences in therapy intensity associated with current dosing strategies. Consensus among the panel members was obtained on a standardised a priori dose adaptation that individualises doxorubicin doses based on age and body surface area targeting uniform drug exposure across children treated with the same protocol. Further, a reduction of peak concentrations in very young children by prolonged infusion was recommended. CONCLUSIONS An approach to standardise current dose modification schemes in young children is proposed. The consented concept takes individual pharmacokinetic characteristics into account and involves adaptation of both the dose and the infusion duration potentially improving the safety of doxorubicin administration.
Collapse
Affiliation(s)
- Christian Siebel
- Department of Paediatric Haematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer-Campus 1, A1, 48149, Muenster, Germany
| | - Gudrun Würthwein
- Department of Paediatric Haematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer-Campus 1, A1, 48149, Muenster, Germany
| | - Claudia Lanvers-Kaminsky
- Department of Paediatric Haematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer-Campus 1, A1, 48149, Muenster, Germany
| | - Nicolas André
- Department of Paediatric Haematology-Oncology, La Timone University Hospital of Marseille, Marseille, France
| | - Frank Berthold
- Department of Paediatric Oncology and Haematology, University Children's Hospital Cologne, Cologne, Germany
| | - Ilaria Castelli
- Department of Paediatrics, University of Milano-Bicocca, Hospital S Gerardo, Monza, Italy
| | - Pascal Chastagner
- Department of Paediatric Oncology, CHRU Nancy, Vandoeuvre Les Nancy, France
| | - François Doz
- Oncology Center SIREDO, Institut Curie and University Paris Descartes, Paris, France
| | - Martin English
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Gabriele Escherich
- University Medical Centre Eppendorf, Clinic of Paediatric Haematology and Oncology, Hamburg, Germany
| | - Michael C Frühwald
- Swabian Children's Cancer Centre, University Children's Hospital Augsburg, Augsburg, Germany
| | - Norbert Graf
- Department of Paediatric Haematology/Oncology, Saarland University, Homburg/Saar, Germany
| | - Andreas H Groll
- Department of Paediatric Haematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer-Campus 1, A1, 48149, Muenster, Germany
| | - Antonio Ruggiero
- Division of Paediatric Oncology, Catholic University of Rome, Rome, Italy
| | - Georg Hempel
- Department of Pharmaceutical and Medical Chemistry - Clinical Pharmacy, University of Muenster, Muenster, Germany
| | - Joachim Boos
- Department of Paediatric Haematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer-Campus 1, A1, 48149, Muenster, Germany.
| |
Collapse
|
25
|
Cardinale D, Iacopo F, Cipolla CM. Cardiotoxicity of Anthracyclines. Front Cardiovasc Med 2020; 7:26. [PMID: 32258060 PMCID: PMC7093379 DOI: 10.3389/fcvm.2020.00026] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiotoxicity is a feared side effect that may limit the clinical use of anthracyclines. It may indeed affect the quality of life and survival of patients with cancer, regardless of oncological prognosis. This paper provides an overview of anthracycline-induced cardiotoxicity in terms of definition, classification, incidence, risk factors, possible mechanisms, diagnosis, and treatment. We also report effective strategies for preventing cardiotoxicity. In addition, we discuss limiting current approaches, the need for a new classification, and early cardiotoxicity detection and treatment. Probably, anthracycline-induced cardiotoxicity is a continuous phenomenon that starts from myocardial cell injury; it is followed by left ventricular ejection fraction (LVEF) and, if not diagnosed and cured early, progressively leads to symptomatic heart failure. Anthracycline-induced cardiotoxicity can be detected at a preclinical phase. The role of biomarkers, in particular troponins, in identifying subclinical cardiotoxicity and its therapy with angiotensin-converting enzyme inhibitors (mainly enalapril) to prevent LVEF reduction is a recognized and effective strategy. If cardiac dysfunction has already occurred, partial or complete LVEF recovery may still be obtained in case of early detection of cardiotoxicity and prompt heart failure treatment.
Collapse
Affiliation(s)
- Daniela Cardinale
- Cardioncology Unit, European Institute of Oncology, IRCCS, Milan, Italy
| | - Fabiani Iacopo
- Cardioncology Unit, European Institute of Oncology, IRCCS, Milan, Italy
| | | |
Collapse
|
26
|
Diagnostic tools for early detection of cardiac dysfunction in childhood cancer survivors: Methodological aspects of the Dutch late effects after childhood cancer (LATER) cardiology study. Am Heart J 2020; 219:89-98. [PMID: 31733449 DOI: 10.1016/j.ahj.2019.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cancer therapy-related cardiac dysfunction and heart failure are major problems in long-term childhood cancer survivors (CCS). We hypothesize that assessment of more sensitive echo- and electrocardiographic measurements, and/or biomarkers will allow for improved recognition of patients with cardiac dysfunction before heart failure develops, and may also identify patients at lower risk for heart failure. OBJECTIVE To describe the methodology of the Dutch LATER cardiology study (LATER CARD). METHODS The LATER CARD study is a cross-sectional study in long-term CCS treated with (potentially) cardiotoxic cancer therapies and sibling controls. We will evaluate 1) the prevalence and associated (treatment related) risk factors of subclinical cardiac dysfunction in CCS compared to sibling controls and 2) the diagnostic value of echocardiography including myocardial strain and diastolic function parameters, blood biomarkers for cardiomyocyte apoptosis, oxidative stress, cardiac remodeling and inflammation and ECG or combinations of them in the surveillance for cancer therapy-related cardiac dysfunction. From 2017 to 2020 we expect to include 1900 CCS and 500 siblings. CONCLUSIONS The LATER CARD study will provide knowledge on different surveillance modalities for detection of cardiac dysfunction in long-term CCS at risk for heart failure. The results of the study will enable us to improve long-term follow-up surveillance guidelines for CCS at risk for heart failure.
Collapse
|
27
|
Hohmann C, Baldus S, Pfister R. [Curing cancer and protecting the heart : Challenges in cardio-oncology in the era of modern tumor treatment]. Herz 2019; 44:175-188. [PMID: 30847511 DOI: 10.1007/s00059-019-4787-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent advances in the medical oncological treatment options for cancer have led to a clear improvement in the survival rate worldwide; however, many of the recently developed new drugs are directly or indirectly associated with cardiovascular side effects. Cardiovascular diseases are already the most frequent non-cancerous cause of death in tumor patients. Prevention, early detection of these complications, correct management and timely initiation of specific cardiac medical treatment are the key for an improvement of the cardiovascular prognosis. This article provides an overview and comprehensive summary of the possible cardiotoxic side effects of important oncological therapies and offers possible practical strategies with respect to risk stratification, cardiological follow-up care and management approaches for chemotherapy-induced left ventricular dysfunction.
Collapse
Affiliation(s)
- C Hohmann
- Klinik III für Innere Medizin, Herzzentrum, Universität zu Köln, Kerpener Str. 62, 50937, Köln, Deutschland
| | - S Baldus
- Klinik III für Innere Medizin, Herzzentrum, Universität zu Köln, Kerpener Str. 62, 50937, Köln, Deutschland
| | - R Pfister
- Klinik III für Innere Medizin, Herzzentrum, Universität zu Köln, Kerpener Str. 62, 50937, Köln, Deutschland.
| |
Collapse
|
28
|
Pediatric Cardio-Oncology: Development of Cancer Treatment-Related Cardiotoxicity and the Therapeutic Approach to Affected Patients. Curr Treat Options Oncol 2019; 20:56. [PMID: 31129800 DOI: 10.1007/s11864-019-0658-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OPINION STATEMENT The past 5 decades have seen significant improvements in outcomes for pediatric patients with cancer. Unfortunately, children and adolescents who have been treated for cancer are five to six times more likely to develop cardiovascular disease as a result of their therapies. Cardiovascular disease may manifest in a plethora of ways, from asymptomatic ventricular dysfunction to end-stage heart failure, hypertension, arrhythmia, valvular disease, early coronary artery disease, or peripheral vascular disease. A number of treatment modalities are implicated in pediatric and adult populations, including anthracyclines, radiation therapy, alkylating agents, targeted cancer therapies (small molecules and antibody therapies), antimetabolites, antimicrotubule agents, immunotherapy, interleukins, and chimeric antigen receptor T cells. For some therapies, such as anthracyclines, the mechanism of injury is elucidated, but for many others it is not. While a few protective strategies exist, in many cases, observation and close monitoring is the only defense against developing end-stage cardiovascular disease. Because of the variety of potential outcomes after cancer therapy, a one-size-fits-all approach is not appropriate. Rather, a good working relationship between oncology and cardiology to assess the risks and benefits of various therapies and planning for appropriate surveillance is the best model. When disease is identified, any of a number of therapies may be appropriate; however, in the pediatric and adolescent population supportive data are limited.
Collapse
|
29
|
D'Lugos AC, Fry CS, Ormsby JC, Sweeney KR, Brightwell CR, Hale TM, Gonzales RJ, Angadi SS, Carroll CC, Dickinson JM. Chronic doxorubicin administration impacts satellite cell and capillary abundance in a muscle-specific manner. Physiol Rep 2019; 7:e14052. [PMID: 30963722 PMCID: PMC6453819 DOI: 10.14814/phy2.14052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 01/23/2023] Open
Abstract
Anthracycline chemotherapies are effective at reducing disease recurrence and mortality in cancer patients. However, these drugs also contribute to skeletal muscle wasting and dysfunction. The purpose of this study was to assess the impact of chronic doxorubicin (DOX) administration on satellite cell and capillary densities in different skeletal muscles. We hypothesized that DOX would reduce satellite cell and capillary densities of the soleus (SOL) and extensor digitorum longus (EDL) muscles, along with muscle fiber size. Ovariectomized female Sprague-Dawley rats were randomized to receive three bi-weekly intraperitoneal injections of DOX (4 mg∙kg-1 ; cumulative dose 12 mg∙kg-1 ) or vehicle (VEH; saline). Animals were euthanized 5d following the last injection and the SOL and EDL were dissected and prepared for immunohistochemical and RT-qPCR analyses. Relative to VEH, CSA of the SOL and EDL fibers were 26% and 33% smaller, respectively, in DOX (P < 0.05). In the SOL, satellite cell and capillary densities were 39% and 35% lower, respectively, in DOX (P < 0.05), whereas in the EDL satellite cell and capillary densities were unaffected by DOX administration (P > 0.05). Proliferating satellite cells were unaffected by DOX in the SOL (P > 0.05). In the SOL, MYF5 mRNA expression was increased in DOX (P < 0.05), while in the EDL MGF mRNA expression was reduced in DOX (P < 0.05). Chronic DOX administration is associated with reduced fiber size in the SOL and EDL; however, DOX appeared to reduce satellite cell and capillary densities only in the SOL. These findings highlight that therapeutic targets to protect skeletal muscle from DOX may vary across muscles.
Collapse
Affiliation(s)
| | - Christopher S. Fry
- Department of Nutrition and MetabolismUniversity of Texas Medical BranchGalvestonTexas
| | - Jordan C. Ormsby
- College of Health SolutionsArizona State UniversityPhoenixArizona
| | | | - Camille R. Brightwell
- Department of Nutrition and MetabolismUniversity of Texas Medical BranchGalvestonTexas
| | - Taben M. Hale
- Department of Basic Medical SciencesCollege of Medicine‐PhoenixUniversity of ArizonaPhoenixArizona
| | - Rayna J. Gonzales
- Department of Basic Medical SciencesCollege of Medicine‐PhoenixUniversity of ArizonaPhoenixArizona
| | | | - Chad C. Carroll
- Department of PhysiologyMidwestern UniversityGlendaleArizona
- Department of Health and KinesiologyPurdue UniversityWest LafayetteIndiana
| | | |
Collapse
|
30
|
Abstract
Iron overload cardiomyopathy (IOC) is a major cause of death in patients with diseases associated with chronic anemia such as thalassemia or sickle cell disease after chronic blood transfusions. Associated with iron overload conditions, there is excess free iron that enters cardiomyocytes through both L- and T-type calcium channels thereby resulting in increased reactive oxygen species being generated via Haber-Weiss and Fenton reactions. It is thought that an increase in reactive oxygen species contributes to high morbidity and mortality rates. Recent studies have, however, suggested that it is iron overload in mitochondria that contributes to cellular oxidative stress, mitochondrial damage, cardiac arrhythmias, as well as the development of cardiomyopathy. Iron chelators, antioxidants, and/or calcium channel blockers have been demonstrated to prevent and ameliorate cardiac dysfunction in animal models as well as in patients suffering from cardiac iron overload. Hence, either a mono-therapy or combination therapies with any of the aforementioned agents may serve as a novel treatment in iron-overload patients in the near future. In the present article, we review the mechanisms of cytosolic and/or mitochondrial iron load in the heart which may contribute synergistically or independently to the development of iron-associated cardiomyopathy. We also review available as well as potential future novel treatments.
Collapse
|
31
|
Abstract
Traditional chemotherapeutic agents and newer targeted therapies for cancer have the potential to cause cardiovascular toxicities. These toxicities can result in arrhythmias, heart failure, vascular toxicity, and even death. It is important for oncologists and cardiologists to understand the basic diagnostic and management strategies to employ when these toxicities occur. While anti-neoplastic therapy occasionally must be discontinued in this setting, it can often be maintained with caution and careful monitoring. In the second of this two-part review series, we focus on the management of cardiovascular toxicity from anthracyclines, HER2/ErbB2 inhibitors, immune checkpoint inhibitors, and vascular endothelial growth factor inhibitors.
Collapse
Affiliation(s)
- Timothy M Markman
- Department of Medicine, Cardiovascular Division, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, PA, USA
| | - Maurie Markman
- Cancer Treatment Centers of America at Eastern Regional Medical Center, Philadelphia, PA, USA
| |
Collapse
|
32
|
Neudorf U, Schönecker A, Reinhardt D. Cardio-toxicity in childhood cancer survivors "Cure is not enough". J Thorac Dis 2018; 10:S4344-S4350. [PMID: 30701102 DOI: 10.21037/jtd.2018.11.28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The number of pediatric cancer survivors is growing, and they are getting older. Therapy-induced cardiotoxicity therefore is debated as an ongoing problem. Recognition of the side effects in the use of anthracyclines and radiation as well as the patients' clinical condition and comorbidities leads back as far as the beginning of systematic cancer treatment in children in the 1980s. Since, numerous case reports, meta-analyses and retrospective surveys were published worldwide. However, randomized clinical trials with standardized protocols yet fail to be designed. This article gives an overview of the recent reports and emphasizes on the heterogeneity of the different approaches. A standardized work-up which may identify the patient at risk-including the patient's history and condition, individual genetic dispositions, dosage and method of drug application, consideration of co-medication, radiation therapy and dose, standardized imaging methods-is the main proposition of our report. The fusion of already established sources, e.g., data of different registries or study centers, might help to create preventive strategies for and a better understanding of patients with therapy induced cardiomyopathy.
Collapse
Affiliation(s)
- Ulrich Neudorf
- Clinic of Pediatrics III, University Hospital Essen, D-45122 Essen, Germany
| | - Anne Schönecker
- Clinic of Pediatrics III, University Hospital Essen, D-45122 Essen, Germany
| | - Dirk Reinhardt
- Clinic of Pediatrics III, University Hospital Essen, D-45122 Essen, Germany
| |
Collapse
|
33
|
Cardinale D, Caruso V, Cipolla CM. The breast cancer patient in the cardioncology unit. J Thorac Dis 2018; 10:S4306-S4322. [PMID: 30701099 PMCID: PMC6328395 DOI: 10.21037/jtd.2018.10.06] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/02/2018] [Indexed: 12/19/2022]
Abstract
The breakthroughs of breast cancer management have led to a significant improvement in patient survival. However, to obtain this outcome a considerable price has been paid regarding cardiovascular side effects. Indeed, cardiovascular disease is the main cause of mortality in patients with breast cancer over fifty years of age, contributing more than cancer mortality in older cancer survivors. Thus, the identification and the management of patients with breast cancer at risk for cardiovascular events has become critical in order to reduce morbidity and mortality from cardiovascular toxicity due to cancer therapy, which may blunt its effectiveness. Today, cardioncology is a novel and recognized medical discipline, which aims to encourage a close interaction between cardiology and oncology, explore new strategies, collect evidence-based indications, and develop interdisciplinary expertise with the ultimate goal of minimize the risk of developing cardiovascular disease during and after anticancer therapy, prevent the breast cancer patient cured today from becoming the heart patient of tomorrow, and avoiding the possibility that pre-existent cardiac disease be a barrier leading to a reduction of a patient's therapeutic opportunities. In this review we discussed the advantages of a cardioncology approach in terms of risk stratification, monitoring for early diagnosis, prevention, and early treatment of cardiotoxicity.
Collapse
Affiliation(s)
- Daniela Cardinale
- Cardioncology Unit, Cardiology Division, IEO, European Istitute of Oncology, IRCCS, Milan, Italy
| | - Vincenzo Caruso
- Cardioncology Unit, Cardiology Division, IEO, European Istitute of Oncology, IRCCS, Milan, Italy
| | - Carlo M Cipolla
- Cardioncology Unit, Cardiology Division, IEO, European Istitute of Oncology, IRCCS, Milan, Italy
| |
Collapse
|
34
|
Teske AJ, Linschoten M, Kamphuis JAM, Naaktgeboren WR, Leiner T, van der Wall E, Kuball J, van Rhenen A, Doevendans PA, Cramer MJ, Asselbergs FW. Cardio-oncology: an overview on outpatient management and future developments. Neth Heart J 2018; 26:521-532. [PMID: 30141030 PMCID: PMC6220023 DOI: 10.1007/s12471-018-1148-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent advances in the early detection and treatment of cancer have led to increasing numbers of cancer survivors worldwide. Nonetheless, despite major improvements in the outcome of these patients, long-term side effects of radio- and chemotherapy affect both patient survival and quality of life, independent of the oncological prognosis. Chemotherapy-related cardiac dysfunction is one of the most notorious short-term side effects of anticancer treatment, occurring in ~10% of patients. Progression to overt heart failure carries a strikingly poor prognosis with a 2-year mortality rate of 60%. Early detection of left ventricular damage by periodic monitoring and prompt initiation of heart failure treatment is key in improving cardiovascular prognosis. To meet the growing demand for a specialised interdisciplinary approach for the prevention and management of cardiovascular complications induced by cancer treatment, a new discipline termed cardio-oncology has evolved. However, an uniform, multidisciplinary approach is currently lacking in the Netherlands. This overview provides an introduction and comprehensive summary of this emerging discipline and offers a practical strategy for the outpatient management of this specific patient population.
Collapse
Affiliation(s)
- A J Teske
- Department of Cardiology, Division of Heart and Lungs, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | - M Linschoten
- Department of Cardiology, Division of Heart and Lungs, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - J A M Kamphuis
- Department of Cardiology, Division of Heart and Lungs, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - W R Naaktgeboren
- Department of Cardiology, Division of Heart and Lungs, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - T Leiner
- Department of Radiology, Utrecht University Medical Centre, Utrecht, The Netherlands
| | - E van der Wall
- Department of Medical Oncology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - J Kuball
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Haematology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - A van Rhenen
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - P A Doevendans
- Department of Cardiology, Division of Heart and Lungs, University Medical Centre Utrecht, Utrecht, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - M J Cramer
- Department of Cardiology, Division of Heart and Lungs, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - F W Asselbergs
- Department of Cardiology, Division of Heart and Lungs, University Medical Centre Utrecht, Utrecht, The Netherlands
- Durrer Centre for Cardiovascular Research, Netherlands Heart Institute, Utrecht, The Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
- Farr Institute of Health Informatics Research and Institute of Health Informatics, University College London, London, UK
| |
Collapse
|
35
|
He H, Liu C, Wu Y, Zhang X, Fan J, Cao Y. A Multiscale Physiologically-Based Pharmacokinetic Model for Doxorubicin to Explore its Mechanisms of Cytotoxicity and Cardiotoxicity in Human Physiological Contexts. Pharm Res 2018; 35:174. [PMID: 29987398 DOI: 10.1007/s11095-018-2456-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/02/2018] [Indexed: 01/23/2023]
Abstract
PURPOSE The mechanisms underlying doxorubicin cytotoxicity and cardiotoxicity were broadly explored but remain incompletely understood. A multiscale physiologically-based pharmacokinetic (PBPK) model was developed to assess doxorubicin dispositions at levels of system, tissue interstitial, cell, and cellular organelles. This model was adopted to explore the mechanisms-of-action/toxicity of doxorubicin in humans. METHODS The PBPK model was developed by analyzing data from mice and the model was verified by scaling up to predict doxorubicin multiscale dispositions in rats and humans. The multiscale dispositions of doxorubicin in human heart and tumors were explicitly simulated to elucidate the potential mechanisms of its cytotoxicity and cardiotoxicity. RESULTS The developed PBPK model was able to adequately describe doxorubicin dispositions in mice, rats and humans. In humans, prolonged infusion, a dosing regimen with less cardiotoxicity, was predicted with substantially reduced free doxorubicin concentrations at human heart interstitium, which were lower than the concentrations associated with oxidative stress. However, prolonged infusion did not reduce doxorubicin-DNA adduct at tumor nucleus, consistent with clinical observations that prolonged infusion did not compromise anti-tumor effect, indicating that one primary anti-tumor mechanism was DNA torsion. CONCLUSIONS A multiscale PBPK model for doxorubicin was developed and further applied to explore its cytotoxic and cardiotoxic mechanisms.
Collapse
Affiliation(s)
- Hua He
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.,Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Can Liu
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
| | - Xinyuan Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Jianghong Fan
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| |
Collapse
|
36
|
Zambrano-Estrada X, Landaverde-Quiroz B, Dueñas-Bocanegra AA, De Paz-Campos MA, Hernández-Alberto G, Solorio-Perusquia B, Trejo-Mandujano M, Pérez-Guerrero L, Delgado-González E, Anguiano B, Aceves C. Molecular iodine/doxorubicin neoadjuvant treatment impair invasive capacity and attenuate side effect in canine mammary cancer. BMC Vet Res 2018. [PMID: 29530037 PMCID: PMC5848438 DOI: 10.1186/s12917-018-1411-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Mammary cancer has a high incidence in canines and is an excellent model of spontaneous carcinogenesis. Molecular iodine (I2) exerts antineoplastic effects on different cancer cells activating re-differentiation pathways. In co-administration with anthracyclines, I2 impairs chemoresistance installation and prevents the severity of side effects generated by these antineoplastic drugs. This study is a random and double-blind protocol that analyzes the impact of I2 (10 mg/day) in two administration schemes of Doxorubicin (DOX; 30 mg/m2) in 27 canine patients with cancer of the mammary gland. The standard scheme (sDOX) includes four cycles of DOX administered intravenously for 20 min every 21 days, while the modified scheme (mDOX) consists of more frequent chemotherapy (four cycles every 15 days) with slow infusion (60 min). In both schemes, I2 or placebo (colored water) was supplemented daily throughout the treatment. Results mDOX attenuated the severity of adverse events (VCOG-CTCAE) in comparison with the sDOX group. The overall tumor response rate (RECIST criteria) for all dogs was 18% (interval of reduction 48–125%), and no significant difference was found between groups. I2 supplementation enhances the antineoplastic effect in mDOX, exhibiting a significant decrease in the tumor epithelial fraction, diminished expression of chemoresistance (MDR1 and Survivin) and invasion (uPA) markers and enhanced expression of the differentiation factor known as peroxisome proliferator-activated receptors type gamma (PPARγ). Significant tumor lymphocytic infiltration was also observed in both I2-supplemented groups. The ten-month survival analysis showed that the entire I2 supplementation (before and after surgery) induced 67–73% of disease-free survival, whereas supplementation in the last period (only after surgery) produced 50% in both schemes. Conclusions The mDOX+I2 scheme improves the therapeutic outcome, diminishes the invasive capacity, attenuates the adverse events and increases disease-free survival. These data led us to propose mDOX+I2 as an effective treatment for canine mammary cancer.
Collapse
Affiliation(s)
- Xóchitl Zambrano-Estrada
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, CP 76230, Querétaro, Mexico
| | - Brianda Landaverde-Quiroz
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Andrés A Dueñas-Bocanegra
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marco A De Paz-Campos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gerardo Hernández-Alberto
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Laura Pérez-Guerrero
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Mexico City, Mexico
| | - Evangelina Delgado-González
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, CP 76230, Querétaro, Mexico
| | - Brenda Anguiano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, CP 76230, Querétaro, Mexico
| | - Carmen Aceves
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, CP 76230, Querétaro, Mexico.
| |
Collapse
|
37
|
Loeffen EAH, van Dalen EC, Mulder RL, van de Wetering MD, Kremer LCM, Tissing WJE. The duration of anthracycline infusion should be at least one hour in children with cancer: A clinical practice guideline. Pediatr Blood Cancer 2018; 65. [PMID: 29077260 DOI: 10.1002/pbc.26867] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 11/09/2022]
Abstract
We aimed to provide recommendations on the infusion duration of anthracycline chemotherapy agents in children with cancer. This study also serves as a practice example of the essential steps that need to be taken when using a previously published systematic review to develop a high-quality clinical practice guideline. Although evidence was scarce and included adult studies, the panel was able (using the Grading of Recommendations Assessment, Development and Evaluation evidence-to-decision framework) to recommend in favor of an anthracycline infusion duration of at least 1 hr (strong recommendation, very low to moderate quality of evidence). Recommending a precise optimal prolonged infusion duration was currently not possible.
Collapse
Affiliation(s)
- Erik A H Loeffen
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Department of Pediatric Oncology, Groningen, The Netherlands
| | - Elvira C van Dalen
- Department of Pediatric Oncology, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | - Renée L Mulder
- Department of Pediatric Oncology, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | - Marianne D van de Wetering
- Department of Pediatric Oncology, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | - Leontien C M Kremer
- Department of Pediatric Oncology, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | - Wim J E Tissing
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Department of Pediatric Oncology, Groningen, The Netherlands
| | | |
Collapse
|
38
|
Klein K, de Haas V, Kaspers GJL. Clinical challenges in de novo pediatric acute myeloid leukemia. Expert Rev Anticancer Ther 2018; 18:277-293. [DOI: 10.1080/14737140.2018.1428091] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kim Klein
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Valérie de Haas
- Dutch Childhood Oncology Group, The Hague, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Gertjan J. L. Kaspers
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Dutch Childhood Oncology Group, The Hague, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
39
|
Chang HM, Moudgil R, Scarabelli T, Okwuosa TM, Yeh ETH. Cardiovascular Complications of Cancer Therapy: Best Practices in Diagnosis, Prevention, and Management: Part 1. J Am Coll Cardiol 2017; 70:2536-2551. [PMID: 29145954 PMCID: PMC5825187 DOI: 10.1016/j.jacc.2017.09.1096] [Citation(s) in RCA: 260] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 12/27/2022]
Abstract
Modern cancer therapy has successfully cured many cancers and converted a terminal illness into a chronic disease. Because cancer patients often have coexisting heart diseases, expert advice from cardiologists will improve clinical outcome. In addition, cancer therapy can also cause myocardial damage, induce endothelial dysfunction, and alter cardiac conduction. Thus, it is important for practicing cardiologists to be knowledgeable about the diagnosis, prevention, and management of the cardiovascular complications of cancer therapy. In this first part of a 2-part review, we will review cancer therapy-induced cardiomyopathy and ischemia. This review is based on a MEDLINE search of published data, published clinical guidelines, and best practices in major cancer centers. With the number of cancer survivors expanding quickly, the time has come for cardiologists to work closely with cancer specialists to prevent and treat cancer therapy-induced cardiovascular complications.
Collapse
Affiliation(s)
- Hui-Ming Chang
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Rohit Moudgil
- Department of Cardiology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Tiziano Scarabelli
- Division of Cardiology, Virginia Common Wealth University, Richmond, Virginia
| | - Tochukwu M Okwuosa
- Division of Cardiology, Rush University Medical Center, Chicago, Illinois
| | - Edward T H Yeh
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri.
| |
Collapse
|
40
|
Reed DR, Hayashi M, Wagner L, Binitie O, Steppan DA, Brohl AS, Shinohara ET, Bridge JA, Loeb DM, Borinstein SC, Isakoff MS. Treatment pathway of bone sarcoma in children, adolescents, and young adults. Cancer 2017; 123:2206-2218. [PMID: 28323337 PMCID: PMC5485018 DOI: 10.1002/cncr.30589] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 12/11/2022]
Abstract
When pediatric, adolescent, and young adult patients present with a bone sarcoma, treatment decisions, especially after relapse, are complex and require a multidisciplinary approach. This review presents scenarios commonly encountered in the therapy of bone sarcomas with the goal of objectively presenting a consensus, multidisciplinary management approach. Little variation was found in the authors' group with respect to local control or systemic therapy. Clinical trials were universally prioritized in all settings. Decisions regarding relapse therapies in the absence of a clinical trial had very minor variations initially, but a consensus was reached after a literature review and discussion. This review presents a concise document and figures as a starting point for evidence‐based care for patients with these rare diseases. This framework allows prospective decision making and prioritization of clinical trials. It is hoped that this framework will inspire and focus future clinical research and thus lead to new trials to improve efficacy and reduce toxicity. Cancer 2017;123:2206–2218. © 2017 American Cancer Society. This review presents a pathway for the management of common clinical scenarios that arise in the treatment of bone sarcomas in children, adolescents, and young adults. Clinical trials should be prioritized when they are available, and for those times when trials are unavailable, a consensus, multidisciplinary management approach to bone sarcomas is presented.
Collapse
Affiliation(s)
- Damon R Reed
- Sarcoma Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Adolescent and Young Adult Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Masanori Hayashi
- Division of Pediatric Oncology, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Lars Wagner
- Division of Pediatric Hematology/Oncology, University of Kentucky, Lexington, Kentucky
| | - Odion Binitie
- Sarcoma Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Adolescent and Young Adult Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Orthopedic Surgery, University of South Florida College of Medicine, Tampa, Florida
| | - Diana A Steppan
- Division of Pediatric Oncology, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Andrew S Brohl
- Sarcoma Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Eric T Shinohara
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Julia A Bridge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska
| | - David M Loeb
- Division of Pediatric Oncology, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Scott C Borinstein
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael S Isakoff
- Center for Cancer and Blood Disorders, Connecticut Children's Medical Center, Hartford, Connecticut
| |
Collapse
|
41
|
Tien CC, Peng YC, Yang FL, Subeq YM, Lee RP. Slow infusion rate of doxorubicin induces higher pro-inflammatory cytokine production. Regul Toxicol Pharmacol 2016; 81:69-76. [PMID: 27494949 DOI: 10.1016/j.yrtph.2016.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 07/05/2016] [Accepted: 08/01/2016] [Indexed: 11/29/2022]
Abstract
Different infusion rates of doxorubicin (DOX) have been used for treating human malignancies. Organ toxicity after DOX infusion is a major issue in treatment disruption. However, whether different DOX infusion rates induce different toxicity is still unknown. In this study, we examined the toxicity effects of different DOX infusion rates in the early phase of organ toxicity. Thirty-six rats were randomly divided into 5-, 15-, and 30-min infusion rate groups. A single dose of DOX (8.3 mg/kg, I.V.) was administered at different infusion rates. Blood samples were collected from the femoral artery at 1, 3, 6, 9, 12, 18, 24, 36, and 48 h after DOX administration. The blood cell count and blood biochemistry were analyzed. The liver, kidney, and heart were removed for pathological examinations after the rats were sacrificed. Our findings show that the 30-min group had higher injury markers in the liver (glutamic oxaloacetic transaminase and glutamic pyruvic transaminase), kidneys (blood urea nitrogen and creatinine), and heart (creatine phosphokinase-MB and lactate dehydrogenase), and had higher tumor necrosis factor-alpha and interleukin 6 levels than did the other groups. The 30-min group also had more severe damage according to the pathological examinations. In conclusion, slower infusion of DOX induced a higher inflammatory response and greater organ damage.
Collapse
Affiliation(s)
- Chin-Chieh Tien
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan, ROC; Department of Nursing, Hsin Sheng College of Medical Care and Management, Taoyuan 32544, Taiwan, ROC
| | - Yi-Chi Peng
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan, ROC; Department of Nursing, National Taichung University of Science and Technology, Taichung 40343, Taiwan, ROC
| | - Fwu-Lin Yang
- Intensive Care Unit, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan, ROC; School of Medicine, Tzu Chi University, Hualien 97004, Taiwan, ROC
| | - Yi-Maun Subeq
- Department of Nursing, Tzu Chi University, Hualien 97004, Taiwan, ROC
| | - Ru-Ping Lee
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan, ROC.
| |
Collapse
|
42
|
Ofran Y, Tallman MS, Rowe JM. How I treat acute myeloid leukemia presenting with preexisting comorbidities. Blood 2016; 128:488-96. [PMID: 27235136 PMCID: PMC5524532 DOI: 10.1182/blood-2016-01-635060] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 05/18/2016] [Indexed: 12/23/2022] Open
Abstract
Acute myeloid leukemia (AML) is a devastating disease with an incidence that progressively increases with advancing age. Currently, only ∼40% of younger and 10% of older adults are long-term survivors. If untreated, the overall prognosis of AML remains dismal. Initiation of therapy at diagnosis is usually urgent. Barriers to successful therapy for AML are the attendant toxicities directly related to chemotherapy or those associated with inevitable aplasia. Organ dysfunction often further complicates such toxicities and may even be prohibitive. There are few guidelines to manage such patients and the fear of crossing the medico-legal abyss may dominate. Such clinical scenarios provide particular challenges and require experience for optimal management. Herein, we discuss select examples of common pretreatment comorbidities, including cardiomyopathy, ischemic heart disease; chronic renal failure, with and without dialysis; hepatitis and cirrhosis; chronic pulmonary insufficiency; and cerebral vascular disease. These comorbidities usually render patients ineligible for clinical trials and enormous uncertainty regarding management reigns, often to the point of withholding definitive therapy. The scenarios described herein emphasize that with appropriate subspecialty support, many AML patients with comorbidities can undergo therapy with curative intent and achieve successful long-term outcome.
Collapse
Affiliation(s)
- Yishai Ofran
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel; Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Martin S Tallman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY; Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY; and
| | - Jacob M Rowe
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel; Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel; Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel
| |
Collapse
|
43
|
Garner P, Hopewell S, Chandler J, MacLehose H, Schünemann HJ, Akl EA, Beyene J, Chang S, Churchill R, Dearness K, Guyatt G, Lefebvre C, Liles B, Marshall R, Martínez García L, Mavergames C, Nasser M, Qaseem A, Sampson M, Soares-Weiser K, Takwoingi Y, Thabane L, Trivella M, Tugwell P, Welsh E, Wilson EC, Schünemann HJ. When and how to update systematic reviews: consensus and checklist. BMJ 2016; 354:i3507. [PMID: 27443385 PMCID: PMC4955793 DOI: 10.1136/bmj.i3507] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Paul Garner
- Cochrane Infectious Diseases Group, Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Sally Hopewell
- Oxford Clinical Trials Research Unit, University of Oxford, Oxford, UK
| | - Jackie Chandler
- Cochrane Editorial Unit, Cochrane Central Executive, London, UK
| | | | - Holger J Schünemann
- Department of Clinical Epidemiology and Biostatistics and Department of Medicine, McMaster University, Hamilton, ON, Canada Cochrane GRADEing Methods Group, Ottawa, ON, Canada
| | - Elie A Akl
- Cochrane GRADEing Methods Group, Ottawa, ON, Canada Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Joseph Beyene
- Department of Mathematics and Statistics, McMaster University
| | - Stephanie Chang
- Evidence-based Practice Center Program, Agency for Healthcare and Research Quality, Rockville, MD, USA
| | - Rachel Churchill
- Centre for Reviews and Dissemination, University of York, York, UK
| | - Karin Dearness
- Cochrane Upper Gastrointestinal and Pancreatic Diseases Group, Hamilton, ON, Canada
| | - Gordon Guyatt
- Department of Clinical Epidemiology and Biostatistics and Department of Medicine, McMaster University, Hamilton, ON, Canada
| | | | - Beth Liles
- Kaiser Permanente National Guideline Program, Portland, OR, USA
| | - Rachel Marshall
- Cochrane Editorial Unit, Cochrane Central Executive, London, UK
| | | | - Chris Mavergames
- Cochrane Informatics and Knowledge Management, Cochrane Central Executive, Freiburg, Germany
| | - Mona Nasser
- Plymouth University Peninsula School of Dentistry, Plymouth, UK
| | - Amir Qaseem
- Department of Clinical Policy, American College of Physicians,Philadelphia, PA, USA Guidelines International Network, Pitlochry, UK
| | | | | | - Yemisi Takwoingi
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Lehana Thabane
- Department of Clinical Epidemiology and Biostatistics and Department of Medicine, McMaster University, Hamilton, ON, Canada Biostatistics Unit, Centre for Evaluation, McMaster University, Hamilton, ON, Canada
| | | | | | - Emma Welsh
- Cochrane Airways Group, Population Health Research Institute, St George's, University of London, London, UK
| | - Ed C Wilson
- Cambridge Centre for Health Services Research, University of Cambridge, Cambridge, UK
| | - Holger J Schünemann
- Department of Clinical Epidemiology and Biostatistics and Department of Medicine, McMaster University, Hamilton, ON, Canada Cochrane GRADEing Methods Group, Ottawa, ON, Canada
| |
Collapse
|