1
|
Alharthi R, Sueiro-Olivares M, Storer I, Bin Shuraym H, Scott J, Al-Shidhani R, Fortune-Grant R, Bignell E, Tabernero L, Bromley M, Zhao C, Amich J. The sulfur-related metabolic status of Aspergillus fumigatus during infection reveals cytosolic serine hydroxymethyltransferase as a promising antifungal target. Virulence 2025; 16:2449075. [PMID: 39825596 PMCID: PMC11749473 DOI: 10.1080/21505594.2024.2449075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/07/2024] [Accepted: 12/28/2024] [Indexed: 01/20/2025] Open
Abstract
Sulfur metabolism is an essential aspect of fungal physiology and pathogenicity. Fungal sulfur metabolism comprises anabolic and catabolic routes that are not well conserved in mammals, therefore is considered a promising source of prospective novel antifungal targets. To gain insight into Aspergillus fumigatus sulfur-related metabolism during infection, we used a NanoString custom nCounter-TagSet and compared the expression of 68 key metabolic genes in different murine models of invasive pulmonary aspergillosis, at 3 time-points, and under a variety of in vitro conditions. We identified a set of 15 genes that were consistently expressed at higher levels in vivo than in vitro, suggesting that they may be particularly relevant for intrapulmonary growth and thus constitute promising drug targets. Indeed, the role of 5 of the 15 genes has previously been empirically validated, supporting the likelihood that the remaining candidates are relevant. In addition, the analysis of gene expression dynamics at early (16 h), mid (24 h), and late (72 h) time-points uncovered potential disease initiation and progression factors. We further characterized one of the identified genes, encoding the cytosolic serine hydroxymethyltransferase ShmB, and demonstrated that it is an essential gene of A. fumigatus, also required for virulence in a murine model of established pulmonary infection. We further showed that the structure of the ligand-binding pocket of the fungal enzyme differs significantly from its human counterpart, suggesting that specific inhibitors can be designed. Therefore, in vivo transcriptomics is a powerful tool for identifying genes crucial for fungal pathogenicity that may encode promising antifungal target candidates.
Collapse
Affiliation(s)
- Reem Alharthi
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Monica Sueiro-Olivares
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Isabelle Storer
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hajer Bin Shuraym
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jennifer Scott
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Reem Al-Shidhani
- Lydia Becker Institute for Immunology and Inflammation, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Rachael Fortune-Grant
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Elaine Bignell
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Lydia Tabernero
- Lydia Becker Institute for Immunology and Inflammation, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Michael Bromley
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Can Zhao
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Jorge Amich
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Mycology Reference Laboratory (Laboratorio deReferencia e Investigación en Micología LRIM), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- CiberInfec ISCIII, CIBER en Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Guo Q, Huang GH, Chen P, Guo C. Upregulated Expression of SHMT2 Predicts Poor Survival of Lung Adenocarcinoma. Genet Res (Camb) 2025; 2025:6104753. [PMID: 40432803 PMCID: PMC12103952 DOI: 10.1155/genr/6104753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 01/20/2025] [Indexed: 05/29/2025] Open
Abstract
Backgrounds: Serine hydroxy methyltransferase 2 (SHMT2) exerts an essential function in the cellular serine/glycine biosynthesis and one-carbon metabolism. Accumulative evidence revealed that SHMT2 was involved in cancer initiation and development in several types of carcinomas such as glioma, intrahepatic cholangiocarcinoma and colorectal cancer. However, expression and role of SHMT2 in lung adenocarcinoma (LUAD) had not been fully investigated. Methods: Transcriptional information of SHMT2 was retrieved from TCGA database. mRNA and protein expression of SHMT2 were analyzed in LUAD tissues alongside adjacent normal lung tissues using quantitative RT-PCR and immunohistochemical staining. The prognostic significance of SHMT2 in LUAD was assessed through both univariate and multivariate statistical analyses. Results: SHMT2 was higher in LUAD tissues than that in adjacent lung tissues on transcriptional level, mRNA level, and protein level. Elevated SHMT2 protein levels were associated with increased tumor size, positive lymph node metastasis, and more advanced TNM stages. LUAD patients with high SHMT2 level had worse prognosis. Conclusions: Our research indicated that elevated SHMT2 expression is strongly linked to adverse clinical characteristics and poor prognosis in LUAD patients. Consequently, SHMT2 may represent a novel prognosis marker and a promising therapeutic target regarding the treatment of LUAD.
Collapse
Affiliation(s)
- Qi Guo
- Department of Surgery, Xi'an Chest Hospital, Xi'an 710000, China
| | - Guang-Hong Huang
- Department of Surgery, Xi'an Chest Hospital, Xi'an 710000, China
| | - Pu Chen
- Department of Surgery, Xi'an Chest Hospital, Xi'an 710000, China
| | - Chao Guo
- Department of Anesthesiology and Surgery, Xi'an Chest Hospital, Xi'an 710000, China
| |
Collapse
|
3
|
Jiang Y, Xiao H, Yang Y, Chen G, Zhang Y, Wu X, Zhang Q, Huang Q, Gao H, Han Y, Zhang A, Jiang D, Zheng L, Li Y, Gao Y. Inhibition of Purine Metabolism Promotes the Differentiation of Neuroblastoma Driven by MYCN. Cancer Med 2025; 14:e70953. [PMID: 40353332 PMCID: PMC12067188 DOI: 10.1002/cam4.70953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 04/17/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Neuroblastoma (NB), the common extracranial solid tumor in children, is associated with a poor prognosis, particularly in high-risk patients. MYCN amplification stands as the most prominent molecular hallmark within this high-risk subgroup. However, MYCN protein is considered "undruggable" due to its lack of a conventional enzymatic binding pocket and its predominant nuclear localization, which precludes targeting by standard small-molecule inhibitors or antibody-based therapeutics. Consequently, current therapeutic strategies have achieved limited efficacy against MYCN-driven NB. Notably, MYCN not only orchestrates diverse metabolic reprogramming pathways in tumors but also exerts a pivotal influence on cellular differentiation. To overcome this therapeutic barrier, we seek to elucidate the contribution of purine metabolism to stemness maintenance in MYCN-amplified NBs and to discover novel small-molecule inhibitors capable of inducing differentiation in high-risk NBs. METHODS Metabolomic profiling via mass spectrometry was employed to delineate differential metabolite signatures between MYCN-amplified and non-amplified NB cells. Bioinformatics analysis of publicly available RNA sequencing datasets facilitated the systematic evaluation of purine metabolic enzyme expression. Cell differentiation, proliferation, colony formation, and cell migration assays were employed to assess the inhibitor's effects. Additionally, an in vivo xenograft model of NB was established to examine the therapeutic potential of lometrexol (LMX), a selective inhibitor of the purine biosynthesis enzyme phosphoribosylglycinamide formyltransferase (GART). RESULTS Significant changes in nucleotide metabolism were identified in NB cell lines with high MYCN expression compared to those with low MYCN expression. The expression of purine metabolic enzyme genes was positively correlated with MYCN expression, prognosis, and differentiation status in NBs. Pharmacological inhibition of GART using LMX elicited a robust pro-differentiation response, concomitant with a significant suppression of tumorigenic potential. CONCLUSIONS These findings establish purine metabolic enzyme inhibition as a viable therapeutic strategy to induce differentiation and attenuate tumor progression in high-risk MYCN-amplified NBs.
Collapse
Affiliation(s)
- Yufeng Jiang
- Department of Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of MedicineKey Laboratory of Pediatric Hematology & Oncology of China Ministry of HealthShanghaiChina
| | - Hui Xiao
- Department of Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of MedicineKey Laboratory of Pediatric Hematology & Oncology of China Ministry of HealthShanghaiChina
| | - Yi Yang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of MedicineKey Laboratory of Pediatric Hematology & Oncology of China Ministry of HealthShanghaiChina
| | - Guoyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji‐Med X Clinical Stem Cell Research Center, Renji Hospital, Shanghai Cancer InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yingwen Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji‐Med X Clinical Stem Cell Research Center, Renji Hospital, Shanghai Cancer InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaoyu Wu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of MedicineKey Laboratory of Pediatric Hematology & Oncology of China Ministry of HealthShanghaiChina
| | - Qi Zhang
- Department of Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of MedicineKey Laboratory of Pediatric Hematology & Oncology of China Ministry of HealthShanghaiChina
| | - Qingyi Huang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of MedicineKey Laboratory of Pediatric Hematology & Oncology of China Ministry of HealthShanghaiChina
| | - Hongxiang Gao
- Department of General Surgery, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yali Han
- Department of Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of MedicineKey Laboratory of Pediatric Hematology & Oncology of China Ministry of HealthShanghaiChina
| | - Anan Zhang
- Department of Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of MedicineKey Laboratory of Pediatric Hematology & Oncology of China Ministry of HealthShanghaiChina
| | - Dapeng Jiang
- Department of General Surgery, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Liang Zheng
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of MedicineKey Laboratory of Pediatric Hematology & Oncology of China Ministry of HealthShanghaiChina
| | - Yanxin Li
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of MedicineKey Laboratory of Pediatric Hematology & Oncology of China Ministry of HealthShanghaiChina
| | - Yijin Gao
- Department of Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of MedicineKey Laboratory of Pediatric Hematology & Oncology of China Ministry of HealthShanghaiChina
| |
Collapse
|
4
|
Rzepka Z, Janus M, Marciniec K, Rok J, Wrześniok D. Novel Method for the Synthesis of Hydroxycobalamin[ c-lactam] and Its Impact on Melanoma Cells In Vitro. Int J Mol Sci 2025; 26:1540. [PMID: 40004003 PMCID: PMC11855847 DOI: 10.3390/ijms26041540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
The ability to over-proliferate is a hallmark of cancer cells, so inhibiting proliferation is crucial for successful cancer treatment. Vitamin B12 (cobalamin) is among the factors necessary for replication of genetic material and cell division. There is currently no cobalamin antagonist with therapeutic use. Nevertheless, the idea of inhibiting cobalamin-dependent metabolic pathways as a potential anticancer strategy is of interest to many researchers. In this study, we investigated, for the first time, the impact of cobalamin deficiency on melanoma cells' growth. To achieve a cobalamin-deficient state in cellulo, hydroxycobalamin[c-lactam] was used as an antivitamin B12. Here, we describe a new and efficient method for synthesizing this analog from hydroxycobalamin. Interestingly, no cytostatic effect of cobalamin deficiency was observed on C32 and COLO 829 melanoma cell lines. However, we show the variously enhanced pro-proliferative action of vitamin B12 towards these cells. The presented experimental model can be used for further studies on the effects of the cobalamin status on melanoma cells.
Collapse
Affiliation(s)
- Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska, 41-200 Sosnowiec, Poland; (M.J.); (J.R.)
| | - Magdalena Janus
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska, 41-200 Sosnowiec, Poland; (M.J.); (J.R.)
| | - Krzysztof Marciniec
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska, 41-200 Sosnowiec, Poland;
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska, 41-200 Sosnowiec, Poland; (M.J.); (J.R.)
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska, 41-200 Sosnowiec, Poland; (M.J.); (J.R.)
| |
Collapse
|
5
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Lee Y, Vousden KH, Hennequart M. Cycling back to folate metabolism in cancer. NATURE CANCER 2024; 5:701-715. [PMID: 38698089 PMCID: PMC7616045 DOI: 10.1038/s43018-024-00739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/30/2024] [Indexed: 05/05/2024]
Abstract
Metabolic changes contribute to cancer initiation and progression through effects on cancer cells, the tumor microenvironment and whole-body metabolism. Alterations in serine metabolism and the control of one-carbon cycles have emerged as critical for the development of many tumor types. In this Review, we focus on the mitochondrial folate cycle. We discuss recent evidence that, in addition to supporting nucleotide synthesis, mitochondrial folate metabolism also contributes to metastasis through support of antioxidant defense, mitochondrial protein synthesis and the overflow of excess formate. These observations offer potential therapeutic opportunities, including the modulation of formate metabolism through dietary interventions and the use of circulating folate cycle metabolites as biomarkers for cancer detection.
Collapse
Affiliation(s)
| | | | - Marc Hennequart
- The Francis Crick Institute, London, UK
- Namur Research Institute for Life Sciences (NARILIS), Molecular Physiology Unit (URPHYM), University of Namur, Namur, Belgium
| |
Collapse
|
7
|
Katinas JM, Nayeen MJ, Schneider M, Shah K, Fifer AN, Klapper LM, Sharma A, Thalluri K, Van Nieuwenhze MS, Hou Z, Gangjee A, Matherly LH, Dann CE. Structural Characterization of 5-Substituted Pyrrolo[3,2- d]pyrimidine Antifolate Inhibitors in Complex with Human Serine Hydroxymethyl Transferase 2. Biochemistry 2024:10.1021/acs.biochem.3c00613. [PMID: 38324671 PMCID: PMC11303599 DOI: 10.1021/acs.biochem.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
We previously discovered first-in-class multitargeted 5-substituted pyrrolo[3,2-d]pyrimidine antifolates that inhibit serine hydroxymethyltransferase 2 (SHMT2), resulting in potent in vitro and in vivo antitumor efficacies. In this report, we present crystallographic structures for SHMT2 in complex with an expanded series of pyrrolo[3,2-d]pyrimidine compounds with variations in bridge length (3-5 carbons) and the side chain aromatic ring (phenyl, thiophene, fluorine-substituted phenyl, and thiophene). We evaluated structural features of the inhibitor-SHMT2 complexes and correlations to inhibitor potencies (i.e., Kis), highlighting conserved polar contacts and identifying 5-carbon bridge lengths as key determinants of inhibitor potency. Based on the analysis of SHMT2 structural data, we investigated the impact of mutation of Tyr105 in SHMT2 kinetic analysis and studies with HCT116 cells with inducible expression of wild-type and Y105F SHMT2. Increased enzyme inhibition potency by the pyrrolo[3,2-d]pyrimidine inhibitors with Phe105 SHMT2 accompanied an increased growth inhibition of Phe105-expressing HCT116 cells compared to wild-type SHMT2. Pyrrolo[3,2-d]pyrimidine inhibitors with polyglutamate modifications were evaluated for potencies against SHMT2. We determined the crystal structures of SHMT2 in complex with our lead antifolate AGF347 lacking L-glutamate, or as a diglutamate and triglutamate, for comparison with parent AGF347. These data provide the first insights into the influence of antifolate polyglutamylation on SHMT2:inhibitor interactions. Collectively, our results provide new insights into the critical structural determinants of SHMT2 binding by pyrrolo[3,2-d]pyrimidine inhibitors as novel antitumor agents, as well as the first structural characterization of human SHMT2 in complex with polyglutamates of an SHMT2-targeted antifolate.
Collapse
Affiliation(s)
- Jade M Katinas
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Md Junayed Nayeen
- School of Pharmacy & Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Mathew Schneider
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University, 4100 John R, Detroit, Michigan 48201, United States
| | - Khushbu Shah
- School of Pharmacy & Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Alexandra N Fifer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Lily M Klapper
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Abhishekh Sharma
- School of Pharmacy & Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Kishore Thalluri
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | | | - Zhanjun Hou
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University, 4100 John R, Detroit, Michigan 48201, United States
| | - Aleem Gangjee
- School of Pharmacy & Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Larry H Matherly
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University, 4100 John R, Detroit, Michigan 48201, United States
| | - Charles E Dann
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
8
|
Ren X, Wang X, Zheng G, Wang S, Wang Q, Yuan M, Xu T, Xu J, Huang P, Ge M. Targeting one-carbon metabolism for cancer immunotherapy. Clin Transl Med 2024; 14:e1521. [PMID: 38279895 PMCID: PMC10819114 DOI: 10.1002/ctm2.1521] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/15/2023] [Accepted: 12/10/2023] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND One-carbon (1C) metabolism is a metabolic network that plays essential roles in biological reactions. In 1C metabolism, a series of nutrients are used to fuel metabolic pathways, including nucleotide metabolism, amino acid metabolism, cellular redox defence and epigenetic maintenance. At present, 1C metabolism is considered the hallmark of cancer. The 1C units obtained from the metabolic pathways increase the proliferation rate of cancer cells. In addition, anticancer drugs, such as methotrexate, which target 1C metabolism, have long been used in the clinic. In terms of immunotherapy, 1C metabolism has been used to explore biomarkers connected with immunotherapy response and immune-related adverse events in patients. METHODS We collected numerous literatures to explain the roles of one-carbon metabolism in cancer immunotherapy. RESULTS In this review, we focus on the important pathways in 1C metabolism and the function of 1C metabolism enzymes in cancer immunotherapy. Then, we summarise the inhibitors acting on 1C metabolism and their potential application on cancer immunotherapy. Finally, we provide a viewpoint and conclusion regarding the opportunities and challenges of targeting 1C metabolism for cancer immunotherapy in clinical practicability in the future. CONCLUSION Targeting one-carbon metabolism is useful for cancer immunotherapy.
Collapse
Affiliation(s)
- Xinxin Ren
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
- Department of PathologyCancer CenterZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Xiang Wang
- Department of PharmacyAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Guowan Zheng
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| | - Shanshan Wang
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Qiyue Wang
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| | - Mengnan Yuan
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Tong Xu
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Jiajie Xu
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| | - Ping Huang
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Minghua Ge
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| |
Collapse
|
9
|
Gwynne PJ, Stocks KLK, Karozichian ES, Pandit A, Hu LT. Metabolic modeling predicts unique drug targets in Borrelia burgdorferi. mSystems 2023; 8:e0083523. [PMID: 37855615 PMCID: PMC10734484 DOI: 10.1128/msystems.00835-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Lyme disease is often treated using long courses of antibiotics, which can cause side effects for patients and risks the evolution of antimicrobial resistance. Narrow-spectrum antimicrobials would reduce these risks, but their development has been slow because the Lyme disease bacterium, Borrelia burgdorferi, is difficult to work with in the laboratory. To accelerate the drug discovery pipeline, we developed a computational model of B. burgdorferi's metabolism and used it to predict essential enzymatic reactions whose inhibition prevented growth in silico. These predictions were validated using small-molecule enzyme inhibitors, several of which were shown to have specific activity against B. burgdorferi. Although the specific compounds used are not suitable for clinical use, we aim to use them as lead compounds to develop optimized drugs targeting the pathways discovered here.
Collapse
Affiliation(s)
- Peter J. Gwynne
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Tufts Lyme Disease Initiative, Tufts University, Boston, Massachusetts, USA
| | - Kee-Lee K. Stocks
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Tufts Lyme Disease Initiative, Tufts University, Boston, Massachusetts, USA
| | - Elysse S. Karozichian
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Tufts Lyme Disease Initiative, Tufts University, Boston, Massachusetts, USA
| | - Aarya Pandit
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Tufts Lyme Disease Initiative, Tufts University, Boston, Massachusetts, USA
| | - Linden T. Hu
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Tufts Lyme Disease Initiative, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Alhassan HH, Alruwaili YS, Alzarea SI, Alruwaili M, Alsaidan OA, Alzarea AI, Manni E, Tahir Ul Qamar M. Identification and dynamics of novel scaffolds against Enterococcus faecium serine hydroxymethyltransferase enzyme: a potential target for antibiotics development. J Biomol Struct Dyn 2023; 42:10510-10520. [PMID: 37713363 DOI: 10.1080/07391102.2023.2257313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Serine hydroxymethyltransferase enzyme is a significant player in purine, thymidylate, and L-serine biosynthesis and has been tagged as a potential target for cancer, viruses, and parasites. However, this enzyme as an anti-bacterial druggable target has not been explored much. Herein, in this work, different computational chemistry and biophysics techniques were applied to identify potential computational predicted inhibitory molecules against Enterococcus faecium serine hydroxymethyltransferase enzyme. By structure based virtual screening process of ASINEX antibacterial library against the enzyme two main compounds: Top-1_BDC_21204033 and Top-2_BDC_20700155 were reported as best binding molecules. The Top-1_BDC_21204033 and Top-2_BDC_20700155 binding energy value is -9.3 and -8.9 kcal/mol, respectively. The control molecule binding energy score is -6.55 kcal/mol. The mean RMSD of Top-1-BDC_21204033, Top-2-BDC_20700155 and control is 3.7 Å (maximum 5.03 Å), 1.7 Å (maximum 3.05 Å), and 3.84 Å (maximum of 6.7 Å), respectively. During the simulation time, the intermolecular docked conformation and interactions were seen stable despite of few small jumps by the compounds/control, responsible for high RMSD in some frames. The MM/GBSA and MM/PBSA binding free energy of lead Top-2-BDC_20700155 complex is -79.52 and -82.63 kcal/mol, respectively. This complex was seen as the most stable compared to the control. Furthermore, the lead molecules and control showed good druglikeness and pharmacokinetics profile. The lead molecules were non-toxic and non-mutagenic. In short, the compounds are promising in terms of binding to the serine hydroxymethyltransferase enzyme and need to be subjected to experimental studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hassan H Alhassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al-Jouf Region, Saudi Arabia
| | - Yasir S Alruwaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al-Jouf Region, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf Region, Saudi Arabia
| | - Muharib Alruwaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al-Jouf Region, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf Region, Saudi Arabia
| | - Abdulaziz Ibrahim Alzarea
- Clinical Pharmacy Department, College of Pharmacy, Jouf University, Sakaka, Al-Jouf Region, Saudi Arabia
| | - Emad Manni
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al-Jouf Region, Saudi Arabia
| | | |
Collapse
|
11
|
Maenpuen S, Mee-Udorn P, Pinthong C, Athipornchai A, Phiwkaow K, Watchasit S, Pimviriyakul P, Rungrotmongkol T, Tinikul R, Leartsakulpanich U, Chitnumsub P. Mangiferin is a new potential antimalarial and anticancer drug for targeting serine hydroxymethyltransferase. Arch Biochem Biophys 2023; 745:109712. [PMID: 37543353 DOI: 10.1016/j.abb.2023.109712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Mangiferin, a polyphenolic xanthone glycoside found in various botanical sources, including mango (Mangifera indica L.) leaves, can exhibit a variety of bioactivities. Although mangiferin has been reported to inhibit many targets, none of the studies have investigated the inhibition of serine hydroxymethyltransferase (SHMT), an attractive target for antimalarial and anticancer drugs. SHMT, one of the key enzymes in the deoxythymidylate synthesis cycle, catalyzes the reversible conversion of l-serine and (6S)-tetrahydrofolate (THF) into glycine and 5,10-methylene THF. Here, in vitro and in silico studies were used to probe how mangiferin isolated from mango leaves inhibits Plasmodium falciparum and human cytosolic SHMTs. The inhibition kinetics at pH 7.5 revealed that mangiferin is a competitive inhibitor against THF for enzymes from both organisms. Molecular docking and molecular dynamic (MD) simulations demonstrated the inhibitory effects of the deprotonated forms of mangiferin, specifically the C6-O- species and its resonance C9-O- species appearing at pH 7.5, combined with two docked poses, either a xanthone or glucose moiety, placed inside the THF-binding pocket. The MD analysis revealed that both C6-O- and its resonance-stabilized C9-O- species can favorably bind to SHMT in a similar fashion to THF, supporting the THF competitive inhibition of mangiferin. In addition, characterization of the proton dissociation equilibria of isolated mangiferin revealed that only three hydroxy groups of the xanthone moiety, C6-OH, C3-OH, and C7-OH, underwent varying degrees of deprotonation with pKa values of 6.38 ± 0.11, 8.21 ± 0.35, and 12.37 ± 0.30, respectively, while C1-OH remained protonated. Altogether, our findings demonstrate a new bioactivity of mangiferin and provide the basis for the future development of mangiferin as a potent antimalarial and anticancer drug.
Collapse
Affiliation(s)
- Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand.
| | - Pitchayathida Mee-Udorn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Chatchadaporn Pinthong
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Anan Athipornchai
- The Research Unit in Synthetic Compounds and Synthetic Analogues from Natural Product for Drug Discovery, Center of Excellence for Innovation in Chemistry and Department of Chemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand
| | - Kochakorn Phiwkaow
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand
| | - Sarayut Watchasit
- Nuclear Magnetic Resonance Spectroscopic Laboratory, Science Innovation Facility, Faculty of Science, Burapha University, Chonburi, 20131, Thailand
| | - Panu Pimviriyakul
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Penchit Chitnumsub
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| |
Collapse
|
12
|
Nayeen MJ, Katinas JM, Magdum T, Shah K, Wong JE, O’Connor CE, Fifer AN, Wallace-Povirk A, Hou Z, Matherly LH, Dann CE, Gangjee A. Structure-Based Design of Transport-Specific Multitargeted One-Carbon Metabolism Inhibitors in Cytosol and Mitochondria. J Med Chem 2023; 66:11294-11323. [PMID: 37582241 PMCID: PMC10461232 DOI: 10.1021/acs.jmedchem.3c00763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 08/17/2023]
Abstract
Multitargeted agents provide tumor selectivity with reduced drug resistance and dose-limiting toxicities. We previously described the multitargeted 6-substituted pyrrolo[3,2-d]pyrimidine antifolate 1 with activity against early- and late-stage pancreatic tumors with limited tumor selectivity. Structure-based design with our human serine hydroxymethyl transferase (SHMT) 2 and glycinamide ribonucleotide formyltransferase (GARFTase) structures, and published X-ray crystal structures of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC), SHMT1, and folate receptor (FR) α and β afforded 11 analogues. Multitargeted inhibition and selective tumor transport were designed by providing promiscuous conformational flexibility in the molecules. Metabolite rescue identified mitochondrial C1 metabolism along with de novo purine biosynthesis as the targeted pathways. We identified analogues with tumor-selective transport via FRs and increased SHMT2, SHMT1, and GARFTase inhibition (28-, 21-, and 11-fold, respectively) compared to 1. These multitargeted agents represent an exciting new structural motif for targeted cancer therapy with substantial advantages of selectivity and potency over clinically used antifolates.
Collapse
Affiliation(s)
- Md. Junayed Nayeen
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jade M. Katinas
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47408, United States
| | - Tejashree Magdum
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Khushbu Shah
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jennifer E. Wong
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47408, United States
| | - Carrie E. O’Connor
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Alexandra N. Fifer
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47408, United States
| | - Adrianne Wallace-Povirk
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Zhanjun Hou
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Molecular
Therapeutics Program, Barbara Ann Karmanos
Cancer Institute, 4100 John R, Detroit, Michigan 48201, United States
| | - Larry H. Matherly
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Molecular
Therapeutics Program, Barbara Ann Karmanos
Cancer Institute, 4100 John R, Detroit, Michigan 48201, United States
| | - Charles E. Dann
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47408, United States
| | - Aleem Gangjee
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
13
|
Zhang J, Bai J, Gong C, Wang J, Cheng Y, Zhao J, Xiong H. Serine-associated one-carbon metabolic reprogramming: a new anti-cancer therapeutic strategy. Front Oncol 2023; 13:1184626. [PMID: 37664062 PMCID: PMC10471886 DOI: 10.3389/fonc.2023.1184626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Tumour metabolism is a major focus of cancer research, and metabolic reprogramming is an important feature of malignant tumours. Serine is an important non-essential amino acid, which is a main resource of one-carbon units in tumours. Cancer cells proliferate more than normal cells and require more serine for proliferation. The cancer-related genes that are involved in serine metabolism also show changes corresponding to metabolic alterations. Here, we reviewed the serine-associated one-carbon metabolism and its potential as a target for anti-tumour therapeutic strategies.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Bai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Gong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianhua Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Cheng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Zhou X, Tian C, Cao Y, Zhao M, Wang K. The role of serine metabolism in lung cancer: From oncogenesis to tumor treatment. Front Genet 2023; 13:1084609. [PMID: 36699468 PMCID: PMC9868472 DOI: 10.3389/fgene.2022.1084609] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Metabolic reprogramming is an important hallmark of malignant tumors. Serine is a non-essential amino acid involved in cell proliferation. Serine metabolism, especially the de novo serine synthesis pathway, forms a metabolic network with glycolysis, folate cycle, and one-carbon metabolism, which is essential for rapidly proliferating cells. Owing to the rapid development in metabolomics, abnormal serine metabolism may serve as a biomarker for the early diagnosis and pathological typing of tumors. Targeting serine metabolism also plays an essential role in precision and personalized cancer therapy. This article is a systematic review of de novo serine biosynthesis and the link between serine and folate metabolism in tumorigenesis, particularly in lung cancer. In addition, we discuss the potential of serine metabolism to improve tumor treatment.
Collapse
|
15
|
Pranzini E, Pardella E, Muccillo L, Leo A, Nesi I, Santi A, Parri M, Zhang T, Uribe AH, Lottini T, Sabatino L, Caselli A, Arcangeli A, Raugei G, Colantuoni V, Cirri P, Chiarugi P, Maddocks ODK, Paoli P, Taddei ML. SHMT2-mediated mitochondrial serine metabolism drives 5-FU resistance by fueling nucleotide biosynthesis. Cell Rep 2022; 40:111233. [PMID: 35977477 DOI: 10.1016/j.celrep.2022.111233] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/31/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
Abstract
5-Fluorouracil (5-FU) is a key component of chemotherapy for colorectal cancer (CRC). 5-FU efficacy is established by intracellular levels of folate cofactors and DNA damage repair strategies. However, drug resistance still represents a major challenge. Here, we report that alterations in serine metabolism affect 5-FU sensitivity in in vitro and in vivo CRC models. In particular, 5-FU-resistant CRC cells display a strong serine dependency achieved either by upregulating endogenous serine synthesis or increasing exogenous serine uptake. Importantly, regardless of the serine feeder strategy, serine hydroxymethyltransferase-2 (SHMT2)-driven compartmentalization of one-carbon metabolism inside the mitochondria represents a specific adaptation of resistant cells to support purine biosynthesis and potentiate DNA damage response. Interfering with serine availability or affecting its mitochondrial metabolism revert 5-FU resistance. These data disclose a relevant mechanism of mitochondrial serine use supporting 5-FU resistance in CRC and provide perspectives for therapeutic approaches.
Collapse
Affiliation(s)
- Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| | - Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Livio Muccillo
- Department of Sciences and Technologies, University of Sannio, Via Francesco de Sanctis, 82100 Benevento, Italy
| | - Angela Leo
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Ilaria Nesi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Alice Santi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Matteo Parri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Tong Zhang
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK; Novartis Institutes for BioMedical Research, Shanghai, China
| | - Alejandro Huerta Uribe
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| | - Tiziano Lottini
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Lina Sabatino
- Department of Sciences and Technologies, University of Sannio, Via Francesco de Sanctis, 82100 Benevento, Italy
| | - Anna Caselli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Giovanni Raugei
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Vittorio Colantuoni
- Department of Sciences and Technologies, University of Sannio, Via Francesco de Sanctis, 82100 Benevento, Italy
| | - Paolo Cirri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Oliver D K Maddocks
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| |
Collapse
|
16
|
Shamshad H, Bakri R, Mirza AZ. Dihydrofolate reductase, thymidylate synthase, and serine hydroxy methyltransferase: successful targets against some infectious diseases. Mol Biol Rep 2022; 49:6659-6691. [PMID: 35253073 PMCID: PMC8898753 DOI: 10.1007/s11033-022-07266-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 02/15/2022] [Indexed: 12/13/2022]
Abstract
Parasitic diseases have a serious impact on the world in terms of health and economics and are responsible for worldwide mortality and morbidity. The present review features the hybrid targeting involving three main enzymes for the treatment of different parasitic diseases. The enzymes Dihydrofolate reductase, thymidylate synthase, and Serine hydroxy methyltransferase play an essential role in the folate pathway. The present review focuses on these enzymes, which can be targeted against several diseases. It shed light on the past, present, and future of these targets, and it can be assessed that these targets can play a significant role against several infectious diseases. For combating viral and protozoal infectious diseases, these targets in combination should be addressed.
Collapse
Affiliation(s)
- Hina Shamshad
- Faculty of Pharmacy, Jinnah University for Women, Karachi, Pakistan
| | - Rowaida Bakri
- College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | |
Collapse
|
17
|
Sainero-Alcolado L, Liaño-Pons J, Ruiz-Pérez MV, Arsenian-Henriksson M. Targeting mitochondrial metabolism for precision medicine in cancer. Cell Death Differ 2022; 29:1304-1317. [PMID: 35831624 PMCID: PMC9287557 DOI: 10.1038/s41418-022-01022-y] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
During decades, the research field of cancer metabolism was based on the Warburg effect, described almost one century ago. Lately, the key role of mitochondria in cancer development has been demonstrated. Many mitochondrial pathways including oxidative phosphorylation, fatty acid, glutamine, and one carbon metabolism are altered in tumors, due to mutations in oncogenes and tumor suppressor genes, as well as in metabolic enzymes. This results in metabolic reprogramming that sustains rapid cell proliferation and can lead to an increase in reactive oxygen species used by cancer cells to maintain pro-tumorigenic signaling pathways while avoiding cellular death. The knowledge acquired on the importance of mitochondrial cancer metabolism is now being translated into clinical practice. Detailed genomic, transcriptomic, and metabolomic analysis of tumors are necessary to develop more precise treatments. The successful use of drugs targeting metabolic mitochondrial enzymes has highlighted the potential for their use in precision medicine and many therapeutic candidates are in clinical trials. However, development of efficient personalized drugs has proved challenging and the combination with other strategies such as chemocytotoxic drugs, immunotherapy, and ketogenic or calorie restriction diets is likely necessary to boost their potential. In this review, we summarize the main mitochondrial features, metabolic pathways, and their alterations in different cancer types. We also present an overview of current inhibitors, highlight enzymes that are attractive targets, and discuss challenges with translation of these approaches into clinical practice. The role of mitochondria in cancer is indisputable and presents several attractive targets for both tailored and personalized cancer therapy. ![]()
Collapse
Affiliation(s)
- Lourdes Sainero-Alcolado
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Judit Liaño-Pons
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - María Victoria Ruiz-Pérez
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
| |
Collapse
|
18
|
Wang Y, Wang Q, Hou Y, Wang Y. Molecular cloning, characterization, and homology modeling of serine hydroxymethyltransferase from psychrophilic bacterium Psychrobacter sp. J Basic Microbiol 2022; 62:984-994. [PMID: 35762735 DOI: 10.1002/jobm.202100692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 11/11/2022]
Abstract
Serine hydroxymethyltransferase (SHMT) plays a significant role in the synthesis of l-serine, purine, and thymidylate, which could be extensively applied in the treatment of cancers and the development of antibiotics. In this study, cloned from Psychrobacter sp. ANT206, a novel cold-adapted SHMT gene (psshmt, 1257 bp) encoding a protein of 418 amino acids was expressed in Escherichia coli. The homology modeling result revealed that PsSHMT owned fewer Proline (Pro) residues and hydrogen bonds compared with its homologs from mesophilic E. coli and thermophilic Geobacillus stearothermophilus. In addition, the molecular weight of the purified recombinant PsSHMT (rPsSHMT) was identified to be 45 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis, approximately. The enzymatic characteristics of the cold-adapted rPsSHMT displayed that its optimum temperature and pH were 30°C and 7.5, respectively, and its enzymatic activity could be inhibited by Cu2+ , significantly. rPsSHMT also showed a high kcat value and low ΔG at low temperatures. Furthermore, arginine (Arg) could affect the activity of rPsSHMT and be vital to its active sites. The results of this study reflected that these characteristics of the cold-adapted rPsSHMT made it a remarkable candidate that could be utilized in multiple industrial fields under low temperatures.
Collapse
Affiliation(s)
- Yifan Wang
- Laboratory of Applied Marine Biotechnology, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, People's Republic of China
| | - Quanfu Wang
- Laboratory of Applied Marine Biotechnology, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, People's Republic of China
| | - Yanhua Hou
- Laboratory of Applied Marine Biotechnology, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, People's Republic of China
| | - Yatong Wang
- Laboratory of Applied Marine Biotechnology, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, People's Republic of China
| |
Collapse
|
19
|
Makino Y, Oe C, Iwama K, Suzuki S, Nishiyama A, Hasegawa K, Okuda H, Hirata K, Ueno M, Kawaji K, Sasano M, Usui E, Hosaka T, Yabuki Y, Shirouzu M, Katsumi M, Murayama K, Hayashi H, Kodama EN. Serine hydroxymethyltransferase as a potential target of antibacterial agents acting synergistically with one-carbon metabolism-related inhibitors. Commun Biol 2022; 5:619. [PMID: 35739195 PMCID: PMC9223267 DOI: 10.1038/s42003-022-03555-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
Serine hydroxymethyltransferase (SHMT) produces 5,10-methylenetetrahydrofolate (CH2-THF) from tetrahydrofolate with serine to glycine conversion. SHMT is a potential drug target in parasites, viruses and cancer. (+)-SHIN-1 was developed as a human SHMT inhibitor for cancer therapy. However, the potential of SHMT as an antibacterial target is unknown. Here, we show that (+)-SHIN-1 bacteriostatically inhibits the growth of Enterococcus faecium at a 50% effective concentration of 10–11 M and synergistically enhances the antibacterial activities of several nucleoside analogues. Our results, including crystal structure analysis, indicate that (+)-SHIN-1 binds tightly to E. faecium SHMT (efmSHMT). Two variable loops in SHMT are crucial for inhibitor binding, and serine binding to efmSHMT enhances the affinity of (+)-SHIN-1 by stabilising the loop structure of efmSHMT. The findings highlight the potency of SHMT as an antibacterial target and the possibility of developing SHMT inhibitors for treating bacterial, viral and parasitic infections and cancer. Structural and biophysical studies of the inhibition of bacterial serine hydroxymethyltransferase (SHMT) by a human SHMT inhibitor used for cancer therapy, (+)-SHIN-1, identify SHMT as a potent antibacterial target.
Collapse
Affiliation(s)
- Yuko Makino
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Chihiro Oe
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kazuya Iwama
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Satoshi Suzuki
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Akie Nishiyama
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kazuya Hasegawa
- Structural Biology Division, Japan Synchrotron Radiation Research Institute, 1-1, Sayo-chou, Hyogo, Japan
| | - Haruka Okuda
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kazushige Hirata
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Division of Clinical Laboratory, Department of Clinical Laboratory Medicine, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Mariko Ueno
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kumi Kawaji
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Mina Sasano
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Emiko Usui
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Toshiaki Hosaka
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Suehiro 1-7-22, Tsurumi, Yokohama, Japan
| | - Yukako Yabuki
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Suehiro 1-7-22, Tsurumi, Yokohama, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Suehiro 1-7-22, Tsurumi, Yokohama, Japan
| | - Makoto Katsumi
- Division of Clinical Laboratory, Department of Clinical Laboratory Medicine, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Kazutaka Murayama
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Suehiro 1-7-22, Tsurumi, Yokohama, Japan.,Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Hironori Hayashi
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan. .,Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Eiichi N Kodama
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
20
|
Jin X, Li L, Peng Q, Gan C, Gao L, He S, Tan S, Pu W, Liu Y, Gong Y, Yao Y, Wang G, Liu X, Gong M, Lei P, Zhang H, Qi S, Xu H, Hu H, Dong B, Peng Y, Su D, Dai L. Glycyrrhetinic acid restricts mitochondrial energy metabolism by targeting SHMT2. iScience 2022; 25:104349. [PMID: 35602963 PMCID: PMC9117551 DOI: 10.1016/j.isci.2022.104349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023] Open
Abstract
Glycyrrhetinic acid (GA) is a natural product of licorice with mitochondria targeting properties and shows broad anticancer activities, but its targets and underlying mechanisms remain elusive. Here, we identified the mitochondrial enzyme serine hydroxymethyltransferase 2 (SHMT2) as a target of GA by using chemical proteomics. Binding to and inhibiting the activity of SHMT2 by GA were validated in vitro and in vivo. Knockout of SHMT2 or inhibiting SHMT2 with GA restricts mitochondrial energy supplies by downregulating mitochondrial oxidative phosphorylation (OXPHOS) and fatty acid β-oxidation, and consequently suppresses cancer cell proliferation and tumor growth. Crystal structures of GA derivatives indicate that GA occupies SHMT2 folate-binding pocket and regulates SHMT2 activity. Modifications at GA carboxylic group with diamines significantly improved its anticancer potency, demonstrating GA as a decent structural template for SHMT2 inhibitor development.
Collapse
Affiliation(s)
- Xiuxiu Jin
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Henan Provincial People’s Hospital, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Li Li
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qinlu Peng
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chunmei Gan
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Gao
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Siyu He
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuangyan Tan
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenchen Pu
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Liu
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuqin Yao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Wang
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Xiaohui Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meng Gong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Peng Lei
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huiyuan Zhang
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiqian Qi
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Heng Xu
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongbo Hu
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Biao Dong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Su
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
21
|
Chen Z, Zhou H, Hu H, Chen L. Blocking the Metabolic Switch Toward Cytosolic 1C Flux: A Novel Therapeutic Approach for Tumors With Low SLC19A1 Expression. Pathol Oncol Res 2022; 28:1610337. [PMID: 35531073 PMCID: PMC9072622 DOI: 10.3389/pore.2022.1610337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022]
Affiliation(s)
- Zhe Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Hong Zhou
- Radiology Department, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Haoliang Hu
- Changde Research Centre for Artificial Intelligence and Biomedicine, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
22
|
Stine ZE, Schug ZT, Salvino JM, Dang CV. Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discov 2021; 21:141-162. [PMID: 34862480 PMCID: PMC8641543 DOI: 10.1038/s41573-021-00339-6] [Citation(s) in RCA: 647] [Impact Index Per Article: 161.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 12/23/2022]
Abstract
One hundred years have passed since Warburg discovered alterations in cancer metabolism, more than 70 years since Sidney Farber introduced anti-folates that transformed the treatment of childhood leukaemia, and 20 years since metabolism was linked to oncogenes. However, progress in targeting cancer metabolism therapeutically in the past decade has been limited. Only a few metabolism-based drugs for cancer have been successfully developed, some of which are in - or en route to - clinical trials. Strategies for targeting the intrinsic metabolism of cancer cells often did not account for the metabolism of non-cancer stromal and immune cells, which have pivotal roles in tumour progression and maintenance. By considering immune cell metabolism and the clinical manifestations of inborn errors of metabolism, it may be possible to isolate undesirable off-tumour, on-target effects of metabolic drugs during their development. Hence, the conceptual framework for drug design must consider the metabolic vulnerabilities of non-cancer cells in the tumour immune microenvironment, as well as those of cancer cells. In this Review, we cover the recent developments, notable milestones and setbacks in targeting cancer metabolism, and discuss the way forward for the field.
Collapse
Affiliation(s)
| | | | | | - Chi V Dang
- The Wistar Institute Philadelphia, Philadelphia, PA, USA. .,Ludwig Institute for Cancer Research New York, New York, NY, USA.
| |
Collapse
|
23
|
Ganini C, Amelio I, Bertolo R, Candi E, Cappello A, Cipriani C, Mauriello A, Marani C, Melino G, Montanaro M, Natale ME, Tisone G, Shi Y, Wang Y, Bove P. Serine and one-carbon metabolisms bring new therapeutic venues in prostate cancer. Discov Oncol 2021; 12:45. [PMID: 35201488 PMCID: PMC8777499 DOI: 10.1007/s12672-021-00440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Serine and one-carbon unit metabolisms are essential biochemical pathways implicated in fundamental cellular functions such as proliferation, biosynthesis of important anabolic precursors and in general for the availability of methyl groups. These two distinct but interacting pathways are now becoming crucial in cancer, the de novo cytosolic serine pathway and the mitochondrial one-carbon metabolism. Apart from their role in physiological conditions, such as epithelial proliferation, the serine metabolism alterations are associated to several highly neoplastic proliferative pathologies. Accordingly, prostate cancer shows a deep rearrangement of its metabolism, driven by the dependency from the androgenic stimulus. Several new experimental evidence describes the role of a few of the enzymes involved in the serine metabolism in prostate cancer pathogenesis. The aim of this study is to analyze gene and protein expression data publicly available from large cancer specimens dataset, in order to further dissect the potential role of the abovementioned metabolism in the complex reshaping of the anabolic environment in this kind of neoplasm. The data suggest a potential role as biomarkers as well as in cancer therapy for the genes (and enzymes) belonging to the one-carbon metabolism in the context of prostatic cancer.
Collapse
Affiliation(s)
- Carlo Ganini
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- IDI-IRCCS, Rome, Italy
| | - Ivano Amelio
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Riccardo Bertolo
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- IDI-IRCCS, Rome, Italy
| | - Angela Cappello
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- IDI-IRCCS, Rome, Italy
| | - Chiara Cipriani
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Carla Marani
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Maria Emanuela Natale
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Giuseppe Tisone
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Yufang Shi
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Pierluigi Bove
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| |
Collapse
|
24
|
Zeng Y, Zhang J, Xu M, Chen F, Zi R, Yue J, Zhang Y, Chen N, Chin YE. Roles of Mitochondrial Serine Hydroxymethyltransferase 2 (SHMT2) in Human Carcinogenesis. J Cancer 2021; 12:5888-5894. [PMID: 34476002 PMCID: PMC8408114 DOI: 10.7150/jca.60170] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/26/2021] [Indexed: 11/09/2022] Open
Abstract
In the last few years, cellular metabolic reprogramming has been acknowledged as a hallmark of human cancer and evaluated for its crucial role in supporting the proliferation and survival of human cancer cells. In a variety of human tumours, including hepatocellular carcinoma (HCC), breast cancer and non-small-cell lung cancer (NSCLC), a large amount of carbon is reused in serine/glycine biosynthesis, accompanied by higher expression of the key glycine synthetic enzyme mitochondrial serine hydroxymethyltransferase 2 (SHMT2). This enzyme can convert serine into glycine and a tetrahydrofolate-bound one-carbon unit, ultimately supporting thymidine synthesis and purine synthesis and promoting tumour growth. In tumour samples, elevated expression of SHMT2 was found to be associated with poor prognosis. In this review, the pivotal roles of SHMT2 in human carcinogenesis are described, highlighting the underlying regulatory mechanisms through promotion of tumour progression. In conclusion, SHMT2 may serve as a prognostic marker and a target for anticancer therapies.
Collapse
Affiliation(s)
- Yuanyuan Zeng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China.,Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Jie Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Mengmeng Xu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Fuxian Chen
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Ruidong Zi
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jicheng Yue
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yanan Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Nannan Chen
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Y Eugene Chin
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
25
|
Metformin Is a Pyridoxal-5'-phosphate (PLP)-Competitive Inhibitor of SHMT2. Cancers (Basel) 2021; 13:cancers13164009. [PMID: 34439169 PMCID: PMC8393646 DOI: 10.3390/cancers13164009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/18/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The mitochondrial enzyme serine hydroxymethyltransferase (SHMT2), which converts serine into glycine and generates 1C units for cell growth, is one of the most consistently overexpressed metabolic enzymes in cancer. Here, we reveal that the anti-diabetic biguanide metformin operates as a novel class of non-catalytic SHMT2 inhibitor that disrupts the pyridoxal-5′-phosphate (PLP)-dependent SHMT2 oligomerization process and ultimately SHMT2 activity. As SHMT2 inhibitors have not yet reached the clinic, these findings may aid the rational design of PLP-competitive SHMT2 inhibitors based on the biguanide skeleton of metformin. Abstract The anticancer actions of the biguanide metformin involve the functioning of the serine/glycine one-carbon metabolic network. We report that metformin directly and specifically targets the enzymatic activity of mitochondrial serine hydroxymethyltransferase (SHMT2). In vitro competitive binding assays with human recombinant SHMT1 and SHMT2 isoforms revealed that metformin preferentially inhibits SHMT2 activity by a non-catalytic mechanism. Computational docking coupled with molecular dynamics simulation predicted that metformin could occupy the cofactor pyridoxal-5′-phosphate (PLP) cavity and destabilize the formation of catalytically active SHMT2 oligomers. Differential scanning fluorimetry-based biophysical screening confirmed that metformin diminishes the capacity of PLP to promote the conversion of SHMT2 from an inactive, open state to a highly ordered, catalytically competent closed state. CRISPR/Cas9-based disruption of SHMT2, but not of SHMT1, prevented metformin from inhibiting total SHMT activity in cancer cell lines. Isotope tracing studies in SHMT1 knock-out cells confirmed that metformin decreased the SHMT2-channeled serine-to-formate flux and restricted the formate utilization in thymidylate synthesis upon overexpression of the metformin-unresponsive yeast equivalent of mitochondrial complex I (mCI). While maintaining its capacity to inhibit mitochondrial oxidative phosphorylation, metformin lost its cytotoxic and antiproliferative activity in SHMT2-null cancer cells unable to produce energy-rich NADH or FADH2 molecules from tricarboxylic acid cycle (TCA) metabolites. As currently available SHMT2 inhibitors have not yet reached the clinic, our current data establishing the structural and mechanistic bases of metformin as a small-molecule, PLP-competitive inhibitor of the SHMT2 activating oligomerization should benefit future discovery of biguanide skeleton-based novel SHMT2 inhibitors in cancer prevention and treatment.
Collapse
|
26
|
Zarou MM, Vazquez A, Vignir Helgason G. Folate metabolism: a re-emerging therapeutic target in haematological cancers. Leukemia 2021; 35:1539-1551. [PMID: 33707653 PMCID: PMC8179844 DOI: 10.1038/s41375-021-01189-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 01/31/2023]
Abstract
Folate-mediated one carbon (1C) metabolism supports a series of processes that are essential for the cell. Through a number of interlinked reactions happening in the cytosol and mitochondria of the cell, folate metabolism contributes to de novo purine and thymidylate synthesis, to the methionine cycle and redox defence. Targeting the folate metabolism gave rise to modern chemotherapy, through the introduction of antifolates to treat paediatric leukaemia. Since then, antifolates, such as methotrexate and pralatrexate have been used to treat a series of blood cancers in clinic. However, traditional antifolates have many deleterious side effects in normal proliferating tissue, highlighting the urgent need for novel strategies to more selectively target 1C metabolism. Notably, mitochondrial 1C enzymes have been shown to be significantly upregulated in various cancers, making them attractive targets for the development of new chemotherapeutic agents. In this article, we present a detailed overview of folate-mediated 1C metabolism, its importance on cellular level and discuss how targeting folate metabolism has been exploited in blood cancers. Additionally, we explore possible therapeutic strategies that could overcome the limitations of traditional antifolates.
Collapse
Affiliation(s)
- Martha M Zarou
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Alexei Vazquez
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
- Cancer Research UK Beatson Institute, Glasgow, UK.
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
27
|
Fultang L, Gneo L, De Santo C, Mussai FJ. Targeting Amino Acid Metabolic Vulnerabilities in Myeloid Malignancies. Front Oncol 2021; 11:674720. [PMID: 34094976 PMCID: PMC8174708 DOI: 10.3389/fonc.2021.674720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/26/2021] [Indexed: 01/02/2023] Open
Abstract
Tumor cells require a higher supply of nutrients for growth and proliferation than normal cells. It is well established that metabolic reprograming in cancers for increased nutrient supply exposes a host of targetable vulnerabilities. In this article we review the documented changes in expression patterns of amino acid metabolic enzymes and transporters in myeloid malignancies and the growing list of small molecules and therapeutic strategies used to disrupt amino acid metabolic circuits within the cell. Pharmacological inhibition of amino acid metabolism is effective in inducing cell death in leukemic stem cells and primary blasts, as well as in reducing tumor burden in in vivo murine models of human disease. Thus targeting amino acid metabolism provides a host of potential translational opportunities for exploitation to improve the outcomes for patients with myeloid malignancies.
Collapse
Affiliation(s)
- Livingstone Fultang
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Luciana Gneo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Carmela De Santo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Francis J Mussai
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
28
|
Cuthbertson CR, Arabzada Z, Bankhead A, Kyani A, Neamati N. A Review of Small-Molecule Inhibitors of One-Carbon Enzymes: SHMT2 and MTHFD2 in the Spotlight. ACS Pharmacol Transl Sci 2021; 4:624-646. [PMID: 33860190 DOI: 10.1021/acsptsci.0c00223] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 02/06/2023]
Abstract
Metabolic reprogramming is a key hallmark of cancer and shifts cellular metabolism to meet the demands of biomass production necessary for abnormal cell reproduction. One-carbon metabolism (1CM) contributes to many biosynthetic pathways that fuel growth and is comprised of a complex network of enzymes. Methotrexate and 5-fluorouracil were pioneering drugs in this field and are still widely used today as anticancer agents as well as for other diseases such as arthritis. Besides dihydrofolate reductase and thymidylate synthase, two other enzymes of the folate cycle arm of 1CM have not been targeted clinically: serine hydroxymethyltransferase (SHMT) and methylenetetrahydrofolate dehydrogenase (MTHFD). An increasing body of literature suggests that the mitochondrial isoforms of these enzymes (SHMT2 and MTHFD2) are clinically relevant in the context of cancer. In this review, we focused on the 1CM pathway as a target for cancer therapy and, in particular, SHMT2 and MTHFD2. The function, regulation, and clinical relevance of SHMT2 and MTHFD2 are all discussed. We expand on previous clinical studies and evaluate the prognostic significance of these critical enzymes by performing a pan-cancer analysis of patient data from the The Cancer Genome Atlas and a transcriptional coexpression network enrichment analysis. We also provide an overview of preclinical and clinical inhibitors targeting the folate pathway, the methionine cycle, and folate-dependent purine biosynthesis enzymes.
Collapse
Affiliation(s)
- Christine R Cuthbertson
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Zahra Arabzada
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Armand Bankhead
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan 48109, United States.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Armita Kyani
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
29
|
Ota T, Senoo A, Shirakawa M, Nonaka H, Saito Y, Ito S, Ueno G, Nagatoishi S, Tsumoto K, Sando S. Structural basis for selective inhibition of human serine hydroxymethyltransferase by secondary bile acid conjugate. iScience 2021; 24:102036. [PMID: 33521601 PMCID: PMC7820547 DOI: 10.1016/j.isci.2021.102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/08/2020] [Accepted: 12/31/2020] [Indexed: 11/25/2022] Open
Abstract
Bile acids are metabolites of cholesterol that facilitate lipid digestion and absorption in the small bowel. Bile acids work as agonists of receptors to regulate their own metabolism. Bile acids also regulate other biological systems such as sugar metabolism, intestinal multidrug resistance, and adaptive immunity. However, numerous physiological roles of bile acids remain undetermined. In this study, we solved the crystal structure of human serine hydroxymethyltransferase (hSHMT) in complex with an endogenous secondary bile acid glycine conjugate. The specific interaction between hSHMT and the ligand was demonstrated using mutational analyses, biophysical measurements, and structure-activity relationship studies, suggesting that secondary bile acid conjugates may act as modulators of SHMT activity. The crystal structures of hSHMT in complex with secondary bile acid glycine conjugate Specific interactions between hSHMT and secondary bile acid conjugate were validated Biological role of bile acids as modulators for one-carbon metabolism is suggested
Collapse
Affiliation(s)
- Tomoki Ota
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Akinobu Senoo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Masumi Shirakawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroshi Nonaka
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yutaro Saito
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Sho Ito
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
- ROD (Single Crystal Analysis) Group, Application Laboratories, Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo, 196-8666, Japan
| | - Go Ueno
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Satoru Nagatoishi
- Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Corresponding author
| |
Collapse
|
30
|
Yang C, Zhang J, Liao M, Yang Y, Wang Y, Yuan Y, Ouyang L. Folate-mediated one-carbon metabolism: a targeting strategy in cancer therapy. Drug Discov Today 2020; 26:817-825. [PMID: 33316375 DOI: 10.1016/j.drudis.2020.12.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/22/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023]
Abstract
Folate-mediated one-carbon metabolism (FOCM) supports vital events for the growth and survival of proliferating cells. Nucleotide synthesis and DNA methylation are the biochemical bases of cancers that are highly dependent on FOCM. Recent studies revealed that FOCM is connected with redox homeostasis and epigenetics in cancer. Furthermore, folate-metabolizing enzymes, such as serine hydroxymethyltransferase 2 (SHMT2) and methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), are associated with the development of cancers, including breast cancer, highlighting their potential application in tumor-targeted therapy. Therefore, targeting metabolizing enzymes, especially SHMT2 and MTHFD2, provides a novel strategy for cancer treatment. In this review, we outline current understanding of the functions of SHMT2 and MTHFD2, discussing their expression, potential functions, and regulatory mechanism in cancers. Furthermore, we discuss examples of inhibitors of SHMT2 and MTHFD2.
Collapse
Affiliation(s)
- Chengcan Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, China
| | - Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, China
| | - Yushang Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, China; Department of Thoracic Surgery, West China Hospital, Sichuan University, China
| | - Yuxi Wang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, China; Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, China.
| | - Yong Yuan
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, China; Department of Thoracic Surgery, West China Hospital, Sichuan University, China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, China; The Research Units of West China, Chinese Academy of Medical Sciences, China.
| |
Collapse
|
31
|
Dekhne AS, Hou Z, Gangjee A, Matherly LH. Therapeutic Targeting of Mitochondrial One-Carbon Metabolism in Cancer. Mol Cancer Ther 2020; 19:2245-2255. [PMID: 32879053 DOI: 10.1158/1535-7163.mct-20-0423] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/06/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
One-carbon (1C) metabolism encompasses folate-mediated 1C transfer reactions and related processes, including nucleotide and amino acid biosynthesis, antioxidant regeneration, and epigenetic regulation. 1C pathways are compartmentalized in the cytosol, mitochondria, and nucleus. 1C metabolism in the cytosol has been an important therapeutic target for cancer since the inception of modern chemotherapy, and "antifolates" targeting cytosolic 1C pathways continue to be a mainstay of the chemotherapy armamentarium for cancer. Recent insights into the complexities of 1C metabolism in cancer cells, including the critical role of the mitochondrial 1C pathway as a source of 1C units, glycine, reducing equivalents, and ATP, have spurred the discovery of novel compounds that target these reactions, with particular focus on 5,10-methylene tetrahydrofolate dehydrogenase 2 and serine hydroxymethyltransferase 2. In this review, we discuss key aspects of 1C metabolism, with emphasis on the importance of mitochondrial 1C metabolism to metabolic homeostasis, its relationship with the oncogenic phenotype, and its therapeutic potential for cancer.
Collapse
Affiliation(s)
- Aamod S Dekhne
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania
| | - Larry H Matherly
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.
| |
Collapse
|
32
|
Oncology Therapeutics Targeting the Metabolism of Amino Acids. Cells 2020; 9:cells9081904. [PMID: 32824193 PMCID: PMC7463463 DOI: 10.3390/cells9081904] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Amino acid metabolism promotes cancer cell proliferation and survival by supporting building block synthesis, producing reducing agents to mitigate oxidative stress, and generating immunosuppressive metabolites for immune evasion. Malignant cells rewire amino acid metabolism to maximize their access to nutrients. Amino acid transporter expression is upregulated to acquire amino acids from the extracellular environment. Under nutrient depleted conditions, macropinocytosis can be activated where proteins from the extracellular environment are engulfed and degraded into the constituent amino acids. The demand for non-essential amino acids (NEAAs) can be met through de novo synthesis pathways. Cancer cells can alter various signaling pathways to boost amino acid usage for the generation of nucleotides, reactive oxygen species (ROS) scavenging molecules, and oncometabolites. The importance of amino acid metabolism in cancer proliferation makes it a potential target for therapeutic intervention, including via small molecules and antibodies. In this review, we will delineate the targets related to amino acid metabolism and promising therapeutic approaches.
Collapse
|
33
|
Liu Y, Shi Y. Mitochondria as a target in cancer treatment. MedComm (Beijing) 2020; 1:129-139. [PMID: 34766113 PMCID: PMC8491233 DOI: 10.1002/mco2.16] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yu'e Liu
- Tongji University Cancer Center Shanghai Tenth People's Hospital of Tongji University School of Medicine Tongji University Shanghai China
| | - Yufeng Shi
- Tongji University Cancer Center Shanghai Tenth People's Hospital of Tongji University School of Medicine Tongji University Shanghai China
- Center for Brain and Spinal Cord Research School of Medicine Tongji University Shanghai China
| |
Collapse
|
34
|
Escande-Beillard N, Loh A, Saleem SN, Kanata K, Hashimoto Y, Altunoglu U, Metoska A, Grandjean J, Ng FM, Pomp O, Baburajendran N, Wong J, Hill J, Beillard E, Cozzone P, Zaki M, Kayserili H, Hamada H, Shiratori H, Reversade B. Loss of PYCR2 Causes Neurodegeneration by Increasing Cerebral Glycine Levels via SHMT2. Neuron 2020; 107:82-94.e6. [PMID: 32330411 DOI: 10.1016/j.neuron.2020.03.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/12/2019] [Accepted: 03/25/2020] [Indexed: 01/17/2023]
Abstract
Patients lacking PYCR2, a mitochondrial enzyme that synthesizes proline, display postnatal degenerative microcephaly with hypomyelination. Here we report the crystal structure of the PYCR2 apo-enzyme and show that a novel germline p.Gly249Val mutation lies at the dimer interface and lowers its enzymatic activity. We find that knocking out Pycr2 in mice phenocopies the human disorder and depletes PYCR1 levels in neural lineages. In situ quantification of neurotransmitters in the brains of PYCR2 mutant mice and patients revealed a signature of encephalopathy driven by excessive cerebral glycine. Mechanistically, we demonstrate that loss of PYCR2 upregulates SHMT2, which is responsible for glycine synthesis. This hyperglycemia could be partially reversed by SHMT2 knockdown, which rescued the axonal beading and neurite lengths of cultured Pycr2 knockout neurons. Our findings identify the glycine metabolic pathway as a possible intervention point to alleviate the neurological symptoms of PYCR2-mutant patients.
Collapse
Affiliation(s)
- Nathalie Escande-Beillard
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A(∗)STAR, Singapore 138648, Singapore; Genome Institute of Singapore, A∗STAR, Singapore 138672, Singapore; Department of Medical Genetics, Koç University, School of Medicine, 34010 Istanbul, Turkey.
| | - Abigail Loh
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A(∗)STAR, Singapore 138648, Singapore; Institute of Molecular and Cellular Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Sahar N Saleem
- Radiology Department, Kasr Al Ainy Faculty of Medicine - Cairo University, El Manial, Cairo 11956, Egypt
| | - Kohei Kanata
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yui Hashimoto
- Division of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Umut Altunoglu
- Department of Medical Genetics, Koç University, School of Medicine, 34010 Istanbul, Turkey
| | - Artina Metoska
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A(∗)STAR, Singapore 138648, Singapore
| | - Joanes Grandjean
- Singapore Bioimaging Consortium, Biomedical Sciences Institutes, A(∗)STAR, Singapore 138667, Singapore
| | - Fui Mee Ng
- Experimental Drug Development Centre, A(∗)STAR, Singapore 138669, Singapore
| | - Oz Pomp
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A(∗)STAR, Singapore 138648, Singapore; Institute of Molecular and Cellular Biology, A(∗)STAR, Singapore 138673, Singapore
| | | | - Joyner Wong
- Experimental Drug Development Centre, A(∗)STAR, Singapore 138669, Singapore
| | - Jeffrey Hill
- Experimental Drug Development Centre, A(∗)STAR, Singapore 138669, Singapore
| | | | - Patrick Cozzone
- Singapore Bioimaging Consortium, Biomedical Sciences Institutes, A(∗)STAR, Singapore 138667, Singapore
| | - Maha Zaki
- Human Genetics and Genome Research Division, National Research Centre, Cairo 12311, Egypt
| | - Hülya Kayserili
- Department of Medical Genetics, Koç University, School of Medicine, 34010 Istanbul, Turkey
| | - Hiroshi Hamada
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hidetaka Shiratori
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan; Division of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| | - Bruno Reversade
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A(∗)STAR, Singapore 138648, Singapore; Genome Institute of Singapore, A∗STAR, Singapore 138672, Singapore; Institute of Molecular and Cellular Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Medical Genetics, Koç University, School of Medicine, 34010 Istanbul, Turkey; Department of Paediatrics, National University of Singapore, Singapore 119260, Singapore.
| |
Collapse
|
35
|
Ruszkowski M, Sekula B, Ruszkowska A, Contestabile R, Nogues I, Angelaccio S, Szczepaniak A, Dauter Z. Structural basis of methotrexate and pemetrexed action on serine hydroxymethyltransferases revealed using plant models. Sci Rep 2019; 9:19614. [PMID: 31873125 PMCID: PMC6928210 DOI: 10.1038/s41598-019-56043-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022] Open
Abstract
Serine hydroxymethyltransferases (SHMTs) reversibly transform serine into glycine in a reaction accompanied with conversion of tetrahydrofolate (THF) into 5,10-methylene-THF (5,10-meTHF). In vivo, 5,10-meTHF is the main carrier of one-carbon (1C) units, which are utilized for nucleotide biosynthesis and other processes crucial for every living cell, but hyperactivated in overproliferating cells (e.g. cancer tissues). SHMTs are emerging as a promising target for development of new drugs because it appears possible to inhibit growth of cancer cells by cutting off the supply of 5,10-meTHF. Methotrexate (MTX) and pemetrexed (PTX) are two examples of antifolates that have cured many patients over the years but target different enzymes from the folate cycle (mainly dihydrofolate reductase and thymidylate synthase, respectively). Here we show crystal structures of MTX and PTX bound to plant SHMT isozymes from cytosol and mitochondria-human isozymes exist in the same subcellular compartments. We verify inhibition of the studied isozymes by a thorough kinetic analysis. We propose to further exploit antifolate scaffold in development of SHMT inhibitors because it seems likely that especially polyglutamylated PTX inhibits SHMTs in vivo. Structure-based optimization is expected to yield novel antifolates that could potentially be used as chemotherapeutics.
Collapse
Affiliation(s)
- Milosz Ruszkowski
- Synchrotron Radiation Research Section of MCL, National Cancer Institute, Argonne, IL, USA.
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| | - Bartosz Sekula
- Synchrotron Radiation Research Section of MCL, National Cancer Institute, Argonne, IL, USA
| | - Agnieszka Ruszkowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Roberto Contestabile
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Roma, Italy
| | - Isabel Nogues
- Research Institute of Terrestrial Ecosystems, Italian National Research Council, Via Salaria Km. 29, 300-00015, Monterotondo Scalo, Roma, Italy
| | - Sebastiana Angelaccio
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Roma, Italy
| | - Andrzej Szczepaniak
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section of MCL, National Cancer Institute, Argonne, IL, USA
| |
Collapse
|
36
|
Downregulating Serine Hydroxymethyltransferase 2 Deteriorates Hepatic Ischemia-Reperfusion Injury through ROS/JNK/P53 Signaling in Mice. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2712185. [PMID: 31828098 PMCID: PMC6885790 DOI: 10.1155/2019/2712185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022]
Abstract
Background Serine hydroxymethyltransferase 2 (SHMT2) activity ensures that cells have a survival advantage in ischemic conditions and regulates redox homeostasis. In this study, we aimed to investigate the role of SHMT2 after hepatic ischemia-reperfusion (IR), which involves hypoxia, ischemic conditions, and cell apoptosis. Methods A 70% IR model was established in C57BL/6J mice with or without SHMT2 knockdown. H&E staining, liver weight/body weight, serum alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels and cell apoptosis were tested to analyze liver damage and function. Then, the related cellular signals were probed. Results The level of SHMT2 protein was significantly increased at 24 h and 48 h after IR (p < 0.001). Mice in the shSHMT2 group showed more necrotic areas and histological damage at 24 h (p < 0.01) after IR and higher levels of serum ALT and AST (p < 0.05) compared with those of mice in the scramble group. After IR for 24 h, the expression of TUNEL in the shSHMT2 group was significantly higher than that in the scramble group, as shown by histological analysis (p < 0.01). Mechanistically, the JNK/P53 signaling pathway was activated by IR, and knockdown of SHMT2 exacerbated hepatocyte apoptosis. Conclusions Knockdown of SHMT2 worsens IR injury through the ROS/JNK/P53 signaling pathway. Our discovery expands the understanding of both molecular and metabolic mechanisms involved in IR. SHMT2 is a possible therapeutic target to improve the prognosis of liver transplantation (LT) and subtotal hepatectomy.
Collapse
|