1
|
Chen Y, Kong D, Wang Z, Liu J, Wang L, Dai K, Ji J, Chen W, Tang X, Wen M, Zhang X, Zhang H, Jiao C, Sun L, Wang H, Fei X, Guo H, Sun B, Tao X, Wang W, Yang J, Wang X, Xiao J. A wheat CC-NBS-LRR protein Ym1 confers WYMV resistance by recognizing viral coat protein. Nat Commun 2025; 16:3630. [PMID: 40240346 PMCID: PMC12003722 DOI: 10.1038/s41467-025-58816-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Ym1 is the most widely utilized gene for wheat yellow mosaic virus (WYMV) disease control in worldwide wheat breeding. Here, we successfully isolated the responsible gene for Ym1. It encodes a typical CC-NBS-LRR type R protein, which is specifically expressed in root and induced upon WYMV infection. Ym1-mediated WYMV resistance is likely achieved by blocking viral transmission from the root cortex into steles, thereby preventing systemic movement to aerial tissues. Ym1 CC domain is essential for triggering cell death. Ym1 specifically interacts with WYMV coat protein, and this interaction leads to nucleocytoplasmic redistribution, a process for transitioning Ym1 from an auto-inhibited to an activated state. The activation subsequently elicits hypersensitive responses and establishes WYMV resistance. Ym1 is likely introgressed from the sub-genome Xn or Xc of polyploid Aegilops species. The findings highlight an exogenous-introgressed and root-specifically expressed R gene that confers WYMV resistance by recognizing the viral component.
Collapse
Affiliation(s)
- Yiming Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Dehui Kong
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Zongkuan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Jiaqian Liu
- Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Linghan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Keli Dai
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Jialun Ji
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiong Tang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Mingxing Wen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Xu Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Huajian Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Chengzhi Jiao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Li Sun
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Haiyan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Xingru Fei
- Yandu District Agricultural Science Research Institute, Yancheng, Jiangsu, China
| | - Hong Guo
- Yandu District Agricultural Science Research Institute, Yancheng, Jiangsu, China
| | - Bingjian Sun
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wei Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Jian Yang
- Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Xiue Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China.
| | - Jin Xiao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Cheng S, Fan S, Yang C, Hu W, Liu F. Proteomics revealed novel functions and drought tolerance of Arabidopsis thaliana protein kinase ATG1. BMC Biol 2025; 23:48. [PMID: 39984923 PMCID: PMC11846238 DOI: 10.1186/s12915-025-02149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/04/2025] [Indexed: 02/23/2025] Open
Abstract
ATG1 stimulates autophagy biogenesis and serves as a gatekeeper for classical autophagy. To obtain insight into the control of autophagy by ATG1 and determine whether ATG1 has broader processes, we performed a thorough proteomics analysis on the Col-0 wild-type and atg1abct mutant in Arabidopsis thaliana. Proteomic data analysis pointed out that ATG1 has an unidentified function within the inositol trisphosphate and fatty acid metabolism. We also discovered ATG1-dependent autophagy has an emerging connection with ER homeostasis and ABA biosynthesis. Moreover, Gene Ontology terms for abiotic and biotic stress were strongly enriched in differentially abundant proteins, consistent with the reported role of canonical autophagy in these processes. Additional physiological and biochemical analysis revealed that atg1abct exhibited stronger drought resistance under both PEG-simulated drought treatment and natural drought stress. Results from DAB staining also indicated that atg1abct accumulation fewer ROS than Col-0 following drought treatment. As a result, these results illuminate previously unknown functions for ATG1 and offers novel perspectives into the underlying processes of autophagy function.
Collapse
Affiliation(s)
- Shan Cheng
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China
| | - Siqi Fan
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China
| | - Chao Yang
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China
- College of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Weiming Hu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China.
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China.
| |
Collapse
|
3
|
Ikram AU, Khan MSS, Islam F, Ahmed S, Ling T, Feng F, Sun Z, Chen H, Chen J. All Roads Lead to Rome: Pathways to Engineering Disease Resistance in Plants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412223. [PMID: 39691979 PMCID: PMC11792000 DOI: 10.1002/advs.202412223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/27/2024] [Indexed: 12/19/2024]
Abstract
Unlike animals, plants are unable to move and lack specialized immune cells and circulating antibodies. As a result, they are always threatened by a large number of microbial pathogens and harmful pests that can significantly reduce crop yield worldwide. Therefore, the development of new strategies to control them is essential to mitigate the increasing risk of crops lost to plant diseases. Recent developments in genetic engineering, including efficient gene manipulation and transformation methods, gene editing and synthetic biology, coupled with the understanding of microbial pathogenicity and plant immunity, both at molecular and genomic levels, have enhanced the capabilities to develop disease resistance in plants. This review comprehensively explains the fundamental mechanisms underlying the tug-of-war between pathogens and hosts, and provides a detailed overview of different strategies for developing disease resistance in plants. Additionally, it provides a summary of the potential genes that can be employed in resistance breeding for key crops to combat a wide range of potential pathogens and pests, including fungi, oomycetes, bacteria, viruses, nematodes, and insects. Furthermore, this review addresses the limitations associated with these strategies and their possible solutions. Finally, it discusses the future perspectives for producing plants with durable and broad-spectrum disease resistance.
Collapse
Affiliation(s)
- Aziz Ul Ikram
- International Genome CenterJiangsu UniversityZhenjiang212013China
| | | | - Faisal Islam
- International Genome CenterJiangsu UniversityZhenjiang212013China
| | - Sulaiman Ahmed
- International Genome CenterJiangsu UniversityZhenjiang212013China
| | - Tengfang Ling
- Plant Systems Engineering Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Yuseong‐guDaejeon34141Republic of Korea
| | - Feng Feng
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Huan Chen
- Joint Center for Single Cell Biology, School of Agriculture and BiologyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Jian Chen
- International Genome CenterJiangsu UniversityZhenjiang212013China
| |
Collapse
|
4
|
Nagy PD, Pogany J, Kang Y. Novel exploitation of autophagy by tombusviruses. Virology 2025; 603:110363. [PMID: 39708618 DOI: 10.1016/j.virol.2024.110363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Positive-strand (+)RNA viruses are major pathogens of humans, animals and plants. This review summarizes the complex interplay between the host autophagy pathway and Tomato bushy stunt virus (TBSV) replication. Recent discoveries with TBSV have revealed virus-driven exploitation of autophagy in multiple ways that contributes to the unique phospholipid composition of viral replication organellar (VROs) membranes. Viral replication protein-driven subversion of phagophore membranes, recruitment of ATG2 bulk lipid transfer protein to enrich phosphatidylethanolamine and phosphatidylserine in VROs, recruitment of VPS34 PI3K to produce PI(3)P; and ATG11-facilitated formation of stable viral membrane contact sites contributes to VRO membrane proliferation. Recruitment of autophagy core proteins to vir-NBR1 bodies within vir-condensates associated with VROs results in dampened antiviral degradation by autophagy. Overall, TBSV intricate interplay with the autophagy machinery highlights the importance of lipid dynamics in viral life cycles and points toward potential directions for therapeutic intervention.
Collapse
Affiliation(s)
- Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY, USA.
| | - Judit Pogany
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY, USA
| | - Yuanrong Kang
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY, USA
| |
Collapse
|
5
|
Yang Z, Li G, Zhang Y, Li F, Zhou T, Ye J, Wang X, Zhang X, Sun Z, Tao X, Wu M, Wu J, Li Y. Crop antiviral defense: Past and future perspective. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2617-2634. [PMID: 39190125 DOI: 10.1007/s11427-024-2680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
Viral pathogens not only threaten the health and life of humans and animals but also cause enormous crop yield losses and contribute to global food insecurity. To defend against viral pathogens, plants have evolved an intricate immune system to perceive and cope with such attacks. Although most of the fundamental studies were carried out in model plants, more recent research in crops has provided new insights into the antiviral strategies employed by crop plants. We summarize recent advances in understanding the biological roles of cellular receptors, RNA silencing, RNA decay, hormone signaling, autophagy, and ubiquitination in manipulating crop host-mediated antiviral responses. The potential functions of circular RNAs, the rhizosphere microbiome, and the foliar microbiome of crops in plant-virus interactions will be fascinating research directions in the future. These findings will be beneficial for the development of modern crop improvement strategies.
Collapse
Affiliation(s)
- Zhirui Yang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Guangyao Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tao Zhou
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
6
|
Silva-Valencia S, Prol FV, Rodrigo I, Lisón P, Belda-Palazón B. TOR Inhibition Enhances Autophagic Flux and Immune Response in Tomato Plants Against PSTVd Infection. PHYSIOLOGIA PLANTARUM 2024; 176:e14606. [PMID: 39544013 DOI: 10.1111/ppl.14606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 11/17/2024]
Abstract
Viroids are small, non-coding RNA pathogens known for their ability to cause severe plant diseases. Despite their simple structure, viroids like Potato Spindle Tuber Viroid (PSTVd) can interfere with plant cellular processes, including transcriptional and post-transcriptional mechanisms, impacting plant growth and yield. In this study, we have investigated the role of the Target Of Rapamycin (TOR) signaling pathway in modulating viroid pathogenesis in tomato plants infected with PSTVd. Our findings reveal that PSTVd infection induces the accumulation of the selective autophagy receptor NBR1, potentially inhibiting autophagic flux. Pharmacological inhibition of TOR with AZD8055 mitigated PSTVd symptomatology by reducing viroid accumulation. Furthermore, TOR inhibition promoted the recovery of autophagic flux through NBR1. It primed the plant defense response, as evidenced by enhanced expression of the defense-related gene PR1b and S5H, a gene involved in the salicylic acid catabolism. These results suggest a novel role for TOR in regulating viroid-induced pathogenesis and highlight the potential of TOR inhibitors as tools for enhancing plant resistance against viroid infections.
Collapse
Affiliation(s)
- Samanta Silva-Valencia
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
- Present address: Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Valencia, Spain
| | - Francisco Vázquez Prol
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Ismael Rodrigo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Purificación Lisón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Borja Belda-Palazón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
7
|
Chen Y, Lu Y, Dong S, Yang C, Yang S. Cloning and Expression Analysis of ATG8 (Autophagy-Related 8) Gene Family in Solanaceae. PLANTS (BASEL, SWITZERLAND) 2024; 13:2924. [PMID: 39458869 PMCID: PMC11511159 DOI: 10.3390/plants13202924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
The autophagy-related gene family ATG8 (Autophagy-related 8) plays an important role in plant growth, development, and stress response. In this study, 15 ATG8 gene family sequences were amplified from Solanaceae, namely tobacco, tomato, and pepper, using RT-PCR to evaluate their basic properties, protein structure, and function, as well as the role of ATG8 in autophagy. The physicochemical properties, the predicted secondary and tertiary protein structures, subcellular localisation, gene structures, conserved motifs, and phylogenetic relationships of the ATG8 genes were analysed using bioinformatic techniques, and their expression patterns under sericin-induced plant disease resistance were investigated by RT-qPCR. The lengths of these proteins ranged from 79 to 120 aa, while their predicted molecular weights and isoelectric points (PI) ranged from 9283.62 to 13,778.74 and 6.32 to 11.44, respectively. The majority of the proteins were localised in the nucleus or chloroplasts. Conserved protein motifs and various cis-regulatory elements in the protein, with a wide range of related functions, were identified. The ATG8 gene family members showed expression changes after treatment with osthole, which induces disease resistance in tobacco, tomato, and pepper. These findings provide a foundation for further analyses of the ATG8 gene family in Solanaceae and the mechanism underlying the response to adverse conditions.
Collapse
Affiliation(s)
- Yahan Chen
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.); (S.D.); (C.Y.); (S.Y.)
| | | | | | | | | |
Collapse
|
8
|
Coll A, Lukan T, Stare K, Zagorščak M, Mahkovec Povalej T, Baebler Š, Prat S, Coll NS, Valls M, Petek M, Gruden K. The StPti5 ethylene response factor acts as a susceptibility factor by negatively regulating the potato immune response to pathogens. THE NEW PHYTOLOGIST 2024; 244:202-218. [PMID: 39129060 DOI: 10.1111/nph.20004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024]
Abstract
Ethylene response factors (ERFs) have been associated with biotic stress in Arabidopsis, while their function in non-model plants is still poorly understood. Here we investigated the role of potato ERF StPti5 in plant immunity. We show that StPti5 acts as a susceptibility factor. It negatively regulates potato immunity against potato virus Y and Ralstonia solanacearum, pathogens with completely different modes of action, and thereby has a different role than its orthologue in tomato. Remarkably, StPti5 is destabilised in healthy plants via the autophagy pathway and accumulates exclusively in the nucleus upon infection. We demonstrate that StEIN3 and StEIL1 directly bind the StPti5 promoter and activate its expression, while synergistic activity of the ethylene and salicylic acid pathways is required for regulated StPti expression. To gain further insight into the mode of StPti5 action in attenuating potato defence responses, we investigated transcriptional changes in salicylic acid deficient potato lines with silenced StPti5 expression. We show that StPti5 regulates the expression of other ERFs and downregulates the ubiquitin-proteasome pathway as well as several proteases involved in directed proteolysis. This study adds a novel element to the complex puzzle of immune regulation, by deciphering a two-level regulation of ERF transcription factor activity in response to pathogens.
Collapse
Affiliation(s)
- Anna Coll
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Tjaša Lukan
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Katja Stare
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Maja Zagorščak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Tjaša Mahkovec Povalej
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Salomé Prat
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, 08193, Catalonia, Spain
| | - Núria Sánchez Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, 08193, Catalonia, Spain
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, 08193, Catalonia, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, 08028, Catalonia, Spain
| | - Marko Petek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| |
Collapse
|
9
|
Chen Y, Jia M, Ge L, Li Z, He H, Zhou X, Li F. A Negative Feedback Loop Compromises NMD-Mediated Virus Restriction by the Autophagy Pathway in Plants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400978. [PMID: 39189522 PMCID: PMC11348178 DOI: 10.1002/advs.202400978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/21/2024] [Indexed: 08/28/2024]
Abstract
Nonsense-mediated decay (NMD) and autophagy play pivotal roles in restricting virus infection in plants. However, the interconnection between these two pathways in viral infections has not been explored. Here, it is shown that overexpression of NbSMG7 and NbUPF3 attenuates cucumber green mottle mosaic virus (CGMMV) infection by recognizing the viral internal termination codon and vice versa. NbSMG7 is subjected to autophagic degradation, which is executed by its interaction with one of the autophagy-related proteins, NbATG8i. Mutation of the ATG8 interacting motif (AIM) in NbSMG7 (SMG7mAIM1) abolishes the interaction and comprises its autophagic degradation. Silencing of NbSMG7 and NbATG8i, or NbUPF3 and NbATG8i, compared to silencing each gene individually, leads to more virus accumulations, but overexpression of NbSMG7 and NbATG8i fails to achieve more potent virus inhibition. When CGMMV is co-inoculated with NbSMG7mAIM1 or with NbUPF3, compared to co-inoculating with NbSMG7 in NbATG8i transgene plants, the inoculated plants exhibit milder viral phenotypes. These findings reveal that NMD-mediated virus inhibition is impaired by the autophagic degradation of SMG7 in a negative feedback loop, and a novel regulatory interplay between NMD and autophagy is uncovered, providing insights that are valuable in optimizing strategies to harness NMD and autophagy for combating viral infections.
Collapse
Affiliation(s)
- Yalin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Mingxuan Jia
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Linhao Ge
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Zhaolei Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Hao He
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
- State Key Laboratory of Rice BiologyInstitute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| |
Collapse
|
10
|
Zheng X, Yuan J, Wan Y, Tang Y, Cao H, Wang J, Qian K, Zhang Y, Chen S, Xu B, Zhang Y, Liang P, Wu Q. Dual Guardians of Immunity: FoRab10 and FoRab29 in Frankliniella occidentalis Confer Resistance to Tomato Spotted Wilt Orthotospovirus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16661-16673. [PMID: 39021284 DOI: 10.1021/acs.jafc.4c03412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Rab GTPase is critical for autophagy processes and is implicated in insect immunity against viruses. In this study, we aimed to investigate the role of FoRabs in the autophagic regulation of antiviral defense against tomato spotted wilt orthotospovirus (TSWV) in Frankliniella occidentalis. Transcriptome analysis revealed the downregulation of FoRabs in viruliferous nymph and adults of F. occidentalis in response to TSWV infection. Manipulation of autophagy levels with 3-MA and Rapa treatments resulted in a 5- to 15-fold increase and a 38-64% decrease in viral titers, respectively. Additionally, interference with FoRab10 in nymphs and FoRab29 in adults led to a 20-90% downregulation of autophagy-related genes, a decrease in ATG8-II (an autophagy marker protein), and an increase in the TSWV titers by 1.5- to 2.5-fold and 1.3- to 2.0-fold, respectively. In addition, the leaf disk and the living plant methods revealed increased transmission rates of 20.8-41.6 and 68.3-88.3%, respectively. In conclusion, FoRab10 and FoRab29 play a role in the autophagic regulation of the antiviral defense in F. occidentalis nymphs and adults against TSWV, respectively. These findings offer insights into the intricate immune mechanisms functional in F. occidentalis against TSWV, suggesting potential targeted strategies for F. occidentalis and TSWV management.
Collapse
Affiliation(s)
- Xiaobin Zheng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Jiangjiang Yuan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanran Wan
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Yingxi Tang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongyi Cao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kanghua Qian
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sirui Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Baoyun Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
11
|
Liu S, Yu Y, Guo K, Zhang Q, Jia Z, Alfredo MR, Ma P, Xie H, Bian X. Expression and antiviral application of exogenous lectin (griffithsin) in sweetpotatoes. FRONTIERS IN PLANT SCIENCE 2024; 15:1421244. [PMID: 39081525 PMCID: PMC11286482 DOI: 10.3389/fpls.2024.1421244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024]
Abstract
Griffithsin (GRFT) is a highly effective, broad-spectrum, safe, and stable viral inhibitor used to suppress a variety of viruses. However, little information is available on whether GRFT can prevent plant viral diseases. In this study, we constructed a GRFT overexpression vector containing the sweetpotato storage cell signal peptide and generated exogenous GRFT overexpression lines through genetic transformation. The transgenic plants showed notable resistance to sweetpotato virus disease in the virus nursery. To verify the antiplant virus function of GRFT, transient expression in tobacco leaves showed that GRFT inhibited the sweetpotato leaf curl virus (SPLCV). The replication of SPLCV was entirely inhibited when the concentration of GRFT reached a certain level. The results of pulldown and BIFC assays showed that GRFT did not interact with the six components of SPLCV. In addition, the mutated GRFTD/A without the binding ability of carbohydrate and anticoronavirus function, in which three aspartate residues at carbohydrate binding sites were all mutated to alanine, also inhibited SPLCV. Quantitative reverse-transcription PCR analyses showed that the tobacco antiviral-related genes HIN1, ICS1, WRKY40, and PR10 were overexpressed after GRFT/GRFTD/A injection. Furthermore, HIN1, ICS1, and PR10 were more highly expressed in the leaves injected with GRFTD/A. The results suggest that sweetpotato is able to express GRFT exogenously as a bioreactor. Moreover, exogenous GRFT expression inhibits plant viruses by promoting the expression of plant antiviral genes.
Collapse
Affiliation(s)
- Shuai Liu
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yang Yu
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ke Guo
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qian Zhang
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhaodong Jia
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Morales Rodriguez Alfredo
- Center for Tropical Crop Research, Research Institute of Tropical Roots and Tuber Crops (INIVIT), Santo Domingo, Cuba
| | - Peiyong Ma
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hao Xie
- Xuzhou Institute of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Xuzhou, China
| | - Xiaofeng Bian
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
12
|
Jahan MS, Hasan MM, Rahman MA. Editorial: Hormones and biostimulants in plants: physiological and molecular insights on plant stress responses. FRONTIERS IN PLANT SCIENCE 2024; 15:1413659. [PMID: 38812736 PMCID: PMC11133861 DOI: 10.3389/fpls.2024.1413659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024]
Affiliation(s)
- Mohammad Shah Jahan
- Department of Horticulture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Md Mahadi Hasan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Md Atikur Rahman
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, Republic of Korea
| |
Collapse
|
13
|
Wu J, Zhang Y, Li F, Zhang X, Ye J, Wei T, Li Z, Tao X, Cui F, Wang X, Zhang L, Yan F, Li S, Liu Y, Li D, Zhou X, Li Y. Plant virology in the 21st century in China: Recent advances and future directions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:579-622. [PMID: 37924266 DOI: 10.1111/jipb.13580] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023]
Abstract
Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants. Notably, various plant virus-based vectors have also been successfully developed for gene function studies and target gene expression in plants. We also recommend future plant virology studies in China.
Collapse
Affiliation(s)
- Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Ye
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Taiyun Wei
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lili Zhang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yi Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
14
|
Kang Y, Lin W, Nagy PD. Subversion of selective autophagy for the biogenesis of tombusvirus replication organelles inhibits autophagy. PLoS Pathog 2024; 20:e1012085. [PMID: 38484009 DOI: 10.1371/journal.ppat.1012085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/26/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
Elaborate viral replication organelles (VROs) are formed to support positive-strand RNA virus replication in infected cells. VRO formation requires subversion of intracellular membranes by viral replication proteins. Here, we showed that the key ATG8f autophagy protein and NBR1 selective autophagy receptor were co-opted by Tomato bushy stunt virus (TBSV) and the closely-related carnation Italian ringspot virus. Knockdown of ATG8f or NBR1 in plants led to reduced tombusvirus replication, suggesting pro-viral function for selective autophagy. BiFC and proximity-labeling experiments showed that the TBSV p33 replication protein interacted with ATG8f and NBR1 to recruit them to VROs. In addition, we observed that several core autophagy proteins, such as ATG1a, ATG4, ATG5, ATG101 and the plant-specific SH3P2 autophagy adaptor proteins were also re-localized to TBSV VROs, suggesting that TBSV hijacks the autophagy machinery in plant cells. We demonstrated that subversion of autophagy components facilitated the recruitment of VPS34 PI3 kinase and enrichment of phospholipids, such as phosphatidylethanolamine and PI3P phosphoinositide in the VRO membranes. Hijacking of autophagy components into TBSV VROs led to inhibition of autophagic flux. We also found that a fraction of the subverted ATG8f and NBR1 was sequestered in biomolecular condensates associated with VROs. We propose that the VRO-associated condensates trap those autophagy proteins, taking them away from the autophagy pathway. Overall, tombusviruses hijack selective autophagy to provide phospholipid-rich membranes for replication and to regulate the antiviral autophagic flux.
Collapse
Affiliation(s)
- Yuanrong Kang
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Wenwu Lin
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
15
|
Aguilera MO, Delgui LR, Reggiori F, Romano PS, Colombo MI. Autophagy as an innate immunity response against pathogens: a Tango dance. FEBS Lett 2024; 598:140-166. [PMID: 38101809 DOI: 10.1002/1873-3468.14788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 12/17/2023]
Abstract
Intracellular infections as well as changes in the cell nutritional environment are main events that trigger cellular stress responses. One crucial cell response to stress conditions is autophagy. During the last 30 years, several scenarios involving autophagy induction or inhibition over the course of an intracellular invasion by pathogens have been uncovered. In this review, we will present how this knowledge was gained by studying different microorganisms. We intend to discuss how the cell, via autophagy, tries to repel these attacks with the objective of destroying the intruder, but also how some pathogens have developed strategies to subvert this. These two fates can be compared with a Tango, a dance originated in Buenos Aires, Argentina, in which the partner dancers are in close connection. One of them is the leader, embracing and involving the partner, but the follower may respond escaping from the leader. This joint dance is indeed highly synchronized and controlled, perfectly reflecting the interaction between autophagy and microorganism.
Collapse
Affiliation(s)
- Milton O Aguilera
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia-Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Facultad de Odontología, Microbiología, Parasitología e Inmunología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Laura R Delgui
- Instituto de Histología y Embriología de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Denmark
| | - Patricia S Romano
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- Facultad de Ciencias Médicas, Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - María I Colombo
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia-Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Facultad de Ciencias Médicas, Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| |
Collapse
|
16
|
Liu W, Wei T, Wang X. Plant reoviruses hijack autophagy in insect vectors. Trends Microbiol 2023; 31:1251-1261. [PMID: 37453843 DOI: 10.1016/j.tim.2023.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Plant reoviruses, transmitted only by insect vectors, seriously threaten global cereal production. Understanding how insect vectors efficiently transmit the viruses is key to controlling the viral diseases. Autophagy commonly plays important roles in plant host defense against virus infection, but recent studies have shown that plant reoviruses can hijack the autophagy pathway in insect cells to enable their persistence in the insect and continued transmission to plants. Here, we summarize and discuss new insights on viral activation, evasion, regulation, and manipulation of autophagy within the insect vectors and the role of autophagy in virus survival in insect vectors. Deeper knowledge of the functions of autophagy in vectors may lead to novel strategies for blocking transmission of insect-borne plant viruses.
Collapse
Affiliation(s)
- Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Taiyun Wei
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
17
|
Ontiveros I, Fernández-Pozo N, Esteve-Codina A, López-Moya JJ, Díaz-Pendón JA. Enhanced Susceptibility to Tomato Chlorosis Virus (ToCV) in Hsp90- and Sgt1-Silenced Plants: Insights from Gene Expression Dynamics. Viruses 2023; 15:2370. [PMID: 38140611 PMCID: PMC10747942 DOI: 10.3390/v15122370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
The emerging whitefly-transmitted crinivirus tomato chlorosis virus (ToCV) causes substantial economic losses by inducing yellow leaf disorder in tomato crops. This study explores potential resistance mechanisms by examining early-stage molecular responses to ToCV. A time-course transcriptome analysis compared naïve, mock, and ToCV-infected plants at 2, 7, and 14 days post-infection (dpi). Gene expression changes were most notable at 2 and 14 dpi, likely corresponding to whitefly feeding and viral infection. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed key genes and pathways associated with ToCV infection, including those related to plant immunity, flavonoid and steroid biosynthesis, photosynthesis, and hormone signaling. Additionally, virus-derived small interfering RNAs (vsRNAs) originating from ToCV predominantly came from RNA2 and were 22 nucleotides in length. Furthermore, two genes involved in plant immunity, Hsp90 (heat shock protein 90) and its co-chaperone Sgt1 (suppressor of the G2 allele of Skp1) were targeted through viral-induced gene silencing (VIGS), showing a potential contribution to basal resistance against viral infections since their reduction correlated with increased ToCV accumulation. This study provides insights into tomato plant responses to ToCV, with potential implications for developing effective disease control strategies.
Collapse
Affiliation(s)
- Irene Ontiveros
- Institute for Mediterranean and Subtropical Horticulture La Mayora (IHSM), CSIC-UMA, 29750 Algarrobo-Costa, Spain; (I.O.); (N.F.-P.)
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08913 Bellaterra, Spain
| | - Noé Fernández-Pozo
- Institute for Mediterranean and Subtropical Horticulture La Mayora (IHSM), CSIC-UMA, 29750 Algarrobo-Costa, Spain; (I.O.); (N.F.-P.)
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain;
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08913 Bellaterra, Spain
| | - Juan Antonio Díaz-Pendón
- Institute for Mediterranean and Subtropical Horticulture La Mayora (IHSM), CSIC-UMA, 29750 Algarrobo-Costa, Spain; (I.O.); (N.F.-P.)
| |
Collapse
|
18
|
Tu CW, Huang YW, Lee CW, Kuo SY, Lin NS, Hsu YH, Hu CC. Argonaute 5-mediated antiviral defense and viral counter-defense in Nicotiana benthamiana. Virus Res 2023; 334:199179. [PMID: 37481165 PMCID: PMC10405324 DOI: 10.1016/j.virusres.2023.199179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
The argonaute (AGO) family proteins play a crucial role in preventing viral invasions through the plant antiviral RNA silencing pathway, with distinct AGO proteins recruited for specific antiviral mechanisms. Our previous study revealed that Nicotiana benthamiana AGO5 (NbAGO5) expression was significantly upregulated in response to bamboo mosaic virus (BaMV) infection. However, the roles of NbAGO5 in antiviral mechanisms remained to be explored. In this research, we examined the antiviral functions of NbAGO5 in the infections of different viruses. It was found that the accumulation of NbAGO5 was induced not only at the RNA but also at the protein level following the infections of BaMV, potato virus X (PVX), tobacco mosaic virus (TMV), and cucumber mosaic virus (CMV) in N. benthamiana. To explore the antiviral mechanism and regulatory function of NbAGO5, we generated NbAGO5 overexpression (OE-NbAGO5) and knockout (nbago5) transgenic N. benthamiana lines. Our findings reveal that NbAGO5 provides defense against BaMV, PVX, TMV, and a mutant CMV deficient in 2b gene, but not against the wild-type CMV and turnip mosaic virus (TuMV). Through affinity purification and small RNA northern blotting, we demonstrated that NbAGO5 exerts its antiviral function by binding to viral small interfering RNAs (vsiRNAs). Moreover, we observed that CMV 2b and TuMV HC-Pro interact with NbAGO5, triggering its degradation via the 26S proteasome and autophagy pathways, thereby allowing these viruses to overcome NbAGO5-mediated defense. In addition, TuMV HC-Pro provides another line of counter-defense by interfering with vsiRNA binding by NbAGO5. Our study provides further insights into the antiviral RNA interference mechanism and the complex interplay between NbAGO5 and plant viruses.
Collapse
Affiliation(s)
- Chin-Wei Tu
- PhD Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 40227, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chin-Wei Lee
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Song-Yi Kuo
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
19
|
Yang M, Ismayil A, Gao T, Ye Z, Yue N, Wu J, Zheng X, Li Y, Wang Y, Hong Y, Liu Y. Cotton leaf curl Multan virus C4 protein suppresses autophagy to facilitate viral infection. PLANT PHYSIOLOGY 2023; 193:708-720. [PMID: 37073495 DOI: 10.1093/plphys/kiad235] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/10/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Autophagy plays an important role in plant antiviral defense. Several plant viruses are reported to encode viral suppressor of autophagy (VSA) to prevent autophagy for effective virus infection. However, whether and how other viruses, in particular DNA viruses, also encode VSAs to affect viral infection in plants is unknown. Here, we report that the C4 protein encoded by Cotton leaf curl Multan geminivirus (CLCuMuV) inhibits autophagy by binding to the autophagy negative regulator eukaryotic translation initiation factor 4A (eIF4A) to enhance the eIF4A-Autophagy-related protein 5 (ATG5) interaction. By contrast, the R54A or R54K mutation in C4 abolishes its capacity to interact with eIF4A, and neither C4R54A nor C4R54K can suppress autophagy. However, the R54 residue is not essential for C4 to interfere with transcriptional gene silencing or post-transcriptional gene silencing. Moreover, plants infected with mutated CLCuMuV-C4R54K develop less severe symptoms with decreased levels of viral DNA. These findings reveal a molecular mechanism underlying how the DNA virus CLCuMuV deploys a VSA to subdue host cellular antiviral autophagy defense and uphold viral infection in plants.
Collapse
Affiliation(s)
- Meng Yang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Asigul Ismayil
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Teng Gao
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Beijing 100084, China
| | - Zihan Ye
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ning Yue
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jie Wu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xiyin Zheng
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yiqing Li
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yan Wang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Warwick-Hangzhou RNA Signaling Joint Laboratory, School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
20
|
Jovanović I, Frantová N, Zouhar J. A sword or a buffet: plant endomembrane system in viral infections. FRONTIERS IN PLANT SCIENCE 2023; 14:1226498. [PMID: 37636115 PMCID: PMC10453817 DOI: 10.3389/fpls.2023.1226498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
The plant endomembrane system is an elaborate collection of membrane-bound compartments that perform distinct tasks in plant growth and development, and in responses to abiotic and biotic stresses. Most plant viruses are positive-strand RNA viruses that remodel the host endomembrane system to establish intricate replication compartments. Their fundamental role is to create optimal conditions for viral replication, and to protect replication complexes and the cell-to-cell movement machinery from host defenses. In addition to the intracellular antiviral defense, represented mainly by RNA interference and effector-triggered immunity, recent findings indicate that plant antiviral immunity also includes membrane-localized receptor-like kinases that detect viral molecular patterns and trigger immune responses, which are similar to those observed for bacterial and fungal pathogens. Another recently identified part of plant antiviral defenses is executed by selective autophagy that mediates a specific degradation of viral proteins, resulting in an infection arrest. In a perpetual tug-of-war, certain host autophagy components may be exploited by viral proteins to support or protect an effective viral replication. In this review, we present recent advances in the understanding of the molecular interplay between viral components and plant endomembrane-associated pathways.
Collapse
Affiliation(s)
- Ivana Jovanović
- Department of Crop Science, Breeding and Plant Medicine, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Nicole Frantová
- Department of Crop Science, Breeding and Plant Medicine, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jan Zouhar
- Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
21
|
Sun H, Jing X, Wang C, Wang P, Huang Z, Sun B, Li P, Li H, Zhang C. The Great Game between Plants and Viruses: A Focus on Protein Homeostasis. Int J Mol Sci 2023; 24:12582. [PMID: 37628763 PMCID: PMC10454472 DOI: 10.3390/ijms241612582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Plant viruses are tiny pathogenic obligate parasites that cause significant damage to global crop production. They exploit and manipulate the cellular components of host plants to ensure their own survival. In response, plants activate multiple defense signaling pathways, such as gene silencing and plant hormone signaling, to hinder virus propagation. Growing evidence suggests that the regulation of protein homeostasis plays a vital role in the ongoing battle between plants and viruses. The ubiquitin-proteasome-degradation system (UPS) and autophagy, as two major protein-degradation pathways, are widely utilized by plants and viruses in their arms race. One the one hand, these pathways act as essential components of plant's antiviral defense system by facilitating the degradation of viral proteins; on the other hand, viruses exploit the UPS and autophagy to create a favorable intracellular environment for viral infection. This review aims to provide a comprehensive summary of the events involved in protein homeostasis regulation during viral infection in plants. Gaining knowledge in this area will enhance our understanding of the complex interplay between plants and viruses.
Collapse
Affiliation(s)
- Hangjun Sun
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinxin Jing
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chaonan Wang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengyue Wang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Ziting Huang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Bingjian Sun
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengbai Li
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Honglian Li
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chao Zhang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
22
|
González-Fuente M. Different battle, same strategy: DNA viruses also block plant autophagy. PLANT PHYSIOLOGY 2023; 192:2591-2592. [PMID: 37141318 PMCID: PMC10400024 DOI: 10.1093/plphys/kiad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Affiliation(s)
- Manuel González-Fuente
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists, USA
- Faculty of Biology & Biotechnology, Ruhr-University Bochum, D-44780 Bochum, Germany
| |
Collapse
|
23
|
Zhao W, Wang L, Li L, Zhou T, Yan F, Zhang H, Zhu Y, Andika IB, Sun L. Coat protein of rice stripe virus enhances autophagy activity through interaction with cytosolic glyceraldehyde-3-phosphate dehydrogenases, a negative regulator of plant autophagy. STRESS BIOLOGY 2023; 3:3. [PMID: 37676568 PMCID: PMC10441990 DOI: 10.1007/s44154-023-00084-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/28/2023] [Indexed: 09/08/2023]
Abstract
Viral infection commonly induces autophagy, leading to antiviral responses or conversely, promoting viral infection or replication. In this study, using the experimental plant Nicotiana benthamiana, we demonstrated that the rice stripe virus (RSV) coat protein (CP) enhanced autophagic activity through interaction with cytosolic glyceraldehyde-3-phosphate dehydrogenase 2 (GAPC2), a negative regulator of plant autophagy that binds to an autophagy key factor, autophagy-related protein 3 (ATG3). Competitive pull-down and co-immunoprecipitation (Co-IP)assays showed that RSV CP activated autophagy by disrupting the interaction between GAPC2 and ATG3. An RSV CP mutant that was unable to bind GAPC2 failed to disrupt the interaction between GAPC2 and ATG3 and therefore lost its ability to induce autophagy. RSV CP enhanced the autophagic degradation of a viral movement protein (MP) encoded by a heterologous virus, citrus leaf blotch virus (CLBV). However, the autophagic degradation of RSV-encoded MP and RNA-silencing suppressor (NS3) proteins was inhibited in the presence of CP, suggesting that RSV CP can protect MP and NS3 against autophagic degradation. Moreover, in the presence of MP, RSV CP could induce the autophagic degradation of a remorin protein (NbREM1), which negatively regulates RSV infection through the inhibition of viral cell-to-cell movement. Overall, our results suggest that RSV CP induces a selective autophagy to suppress the antiviral factors while protecting RSV-encoded viral proteins against autophagic degradation through an as-yet-unknown mechanism. This study showed that RSV CP plays dual roles in the autophagy-related interaction between plants and viruses.
Collapse
Affiliation(s)
- Wanying Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Li Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lipeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tong Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210095, China
| | - Fei Yan
- Institute of Plant Virology, Ningbo University, Ningbo, 312362, China
| | - Heng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
24
|
Qing Z, Ahmad S, Chen Y, Liang Q, Zhang L, Chen B, Wen R. P3/P3N-PIPO of PVY interacting with BI-1 inhibits the degradation of NIb by ATG6 to facilitate virus replication in N. benthamiana. FRONTIERS IN PLANT SCIENCE 2023; 14:1183144. [PMID: 37139112 PMCID: PMC10149851 DOI: 10.3389/fpls.2023.1183144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023]
Abstract
Introduction Autophagy not only plays an antiviral role but also can be utilized by viruses to facilitate virus infection. However, the underlying mechanism of potato virus Y (PVY) infection against plant autophagy remains unclear. BI-1, localizing to the endoplasmic reticulum (ER), is a multifunctional protein and may affect the virus infection. Methods In this study, Y2H, BiFC, qRT-PCR, RNA-Seq, WB and so on were used for research. Results P3 and P3N-PIPO of PVY can interact with the Bax inhibitor 1 (BI-1) of N. benthamiana. However, BI-1 knockout mutant showed better growth and development ability. In addition, when the BI-1 gene was knocked out or knocked down in N. benthamiana, the PVY-infected mutant showed milder symptoms and lower virus accumulation. Analysis of transcriptome data showed that the deletion of NbBI-1 weakened the gene expression regulation induced by PVY infection and NbBI-1 may reduce the mRNA level of NbATG6 by regulated IRE1-dependent decay (RIDD) in PVY-infected N. benthamiana. The expression level of the ATG6 gene of PVY-infected WT was significantly down-regulated, relative to the PVY-infected mutant. Further results showed that ATG6 of N. benthamiana can degrade NIb, the RNA-dependent RNA polymerase (RdRp) of PVY. NbATG6 has a higher mRNA level in PVY-infected BI-1 knockout mutants than in PVY-infected WT. Conclussion The interaction of P3 and/or P3N-PIPO of PVY with BI-1 decrease the expression of the ATG6 gene might be mediated by RIDD, which inhibits the degradation of viral NIb and enhances viral replication.
Collapse
Affiliation(s)
- Zhen Qing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shakeel Ahmad
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yuemeng Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Qingmin Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Lijuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
- College of Agriculture, Guangxi University, Nanning, China
| | - Ronghui Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
- *Correspondence: Ronghui Wen,
| |
Collapse
|
25
|
Wang P, Liu J, Lyu Y, Huang Z, Zhang X, Sun B, Li P, Jing X, Li H, Zhang C. A Review of Vector-Borne Rice Viruses. Viruses 2022; 14:v14102258. [PMID: 36298813 PMCID: PMC9609659 DOI: 10.3390/v14102258] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022] Open
Abstract
Rice (Oryza sativa L.) is one of the major staple foods for global consumption. A major roadblock to global rice production is persistent loss of crops caused by plant diseases, including rice blast, sheath blight, bacterial blight, and particularly various vector-borne rice viral diseases. Since the late 19th century, 19 species of rice viruses have been recorded in rice-producing areas worldwide and cause varying degrees of damage on the rice production. Among them, southern rice black-streaked dwarf virus (SRBSDV) and rice black-streaked dwarf virus (RBSDV) in Asia, rice yellow mottle virus (RYMV) in Africa, and rice stripe necrosis virus (RSNV) in America currently pose serious threats to rice yields. This review systematizes the emergence and damage of rice viral diseases, the symptomatology and transmission biology of rice viruses, the arm races between viruses and rice plants as well as their insect vectors, and the strategies for the prevention and control of rice viral diseases.
Collapse
Affiliation(s)
- Pengyue Wang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Jianjian Liu
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Hubei Engineering Research Center for Pest Forewarning and Management, College of Agronomy, Yangtze University, Jingzhou 434025, China
| | - Yajing Lyu
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Ziting Huang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoli Zhang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Bingjian Sun
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengbai Li
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinxin Jing
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Honglian Li
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chao Zhang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence:
| |
Collapse
|
26
|
Autophagy in the Lifetime of Plants: From Seed to Seed. Int J Mol Sci 2022; 23:ijms231911410. [PMID: 36232711 PMCID: PMC9570326 DOI: 10.3390/ijms231911410] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Autophagy is a highly conserved self-degradation mechanism in eukaryotes. Excess or harmful intracellular content can be encapsulated by double-membrane autophagic vacuoles and transferred to vacuoles for degradation in plants. Current research shows three types of autophagy in plants, with macroautophagy being the most important autophagic degradation pathway. Until now, more than 40 autophagy-related (ATG) proteins have been identified in plants that are involved in macroautophagy, and these proteins play an important role in plant growth regulation and stress responses. In this review, we mainly introduce the research progress of autophagy in plant vegetative growth (roots and leaves), reproductive growth (pollen), and resistance to biotic (viruses, bacteria, and fungi) and abiotic stresses (nutrients, drought, salt, cold, and heat stress), and we discuss the application direction of plant autophagy in the future.
Collapse
|
27
|
Bassham DC. Plant autophagy and intracellular trafficking. FEBS Lett 2022; 596:2089-2092. [PMID: 36093797 DOI: 10.1002/1873-3468.14466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
28
|
Sertsuvalkul N, DeMell A, Dinesh-Kumar SP. The complex roles of autophagy in plant immunity. FEBS Lett 2022; 596:2163-2171. [PMID: 35460270 PMCID: PMC9474723 DOI: 10.1002/1873-3468.14356] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/28/2022]
Abstract
Plant immunity is the result of multiple distinct cellular processes cooperating with each other to generate immune responses. Autophagy is a conserved cellular recycling process and has well-established roles in nutrient starvation responses and cellular homeostasis. Recently, the role of autophagy in immunity has become increasingly evident. However, our knowledge about plant autophagy remains limited, and how this fundamental cellular process is involved in plant immunity is still somewhat perplexing. Here, we summarize the current understanding of the positive and negative roles of autophagy in plant immunity and how different microbes exploit this process to their own advantage. The dualistic role of autophagy in plant immunity emphasizes that much remains to be explored in this area.
Collapse
Affiliation(s)
- Nyd Sertsuvalkul
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
- The Genome Center, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - April DeMell
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
- The Genome Center, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Savithramma P. Dinesh-Kumar
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
- The Genome Center, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|