1
|
Shaik R, Malik MS, Basavaraju S, Qurban J, Al-Subhi FMM, Badampudi S, Peddapaka J, Shaik A, Abd-El-Aziz A, Moussa Z, Ahmed SA. Cellular and molecular aspects of drug resistance in cancers. Daru 2024; 33:4. [PMID: 39652186 PMCID: PMC11628481 DOI: 10.1007/s40199-024-00545-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/09/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVES Cancer drug resistance is a multifaceted phenomenon. The present review article aims to comprehensively analyze the cellular and molecular aspects of drug resistance in cancer and the strategies employed to overcome it. EVIDENCE ACQUISITION A systematic search of relevant literature was conducted using electronic databases such as PubMed, Scopus, and Web of Science using appropriate key words. Original research articles and secondary literature were taken into consideration in reviewing the development in the field. RESULTS AND CONCLUSIONS Cancer drug resistance is a pervasive challenge that causes many treatments to fail therapeutically. Despite notable advances in cancer treatment, resistance to traditional chemotherapeutic agents and novel targeted medications remains a formidable hurdle in cancer therapy leading to cancer relapse and mortality. Indeed, a majority of patients with metastatic cancer experience are compromised on treatment efficacy because of drug resistance. The multifaceted nature of drug resistance encompasses various factors, such as tumor heterogeneity, growth kinetics, immune system, microenvironment, physical barriers, and the emergence of undruggable cancer drivers. Additionally, alterations in drug influx/efflux transporters, DNA repair mechanisms, and apoptotic pathways further contribute to resistance, which may manifest as either innate or acquired traits, occurring prior to or following therapeutic intervention. Several strategies such as combination therapy, targeted therapy, development of P-gp inhibitors, PROTACs and epigenetic modulators are developed to overcome cancer drug resistance. The management of drug resistance is compounded by the patient and tumor heterogeneity coupled with cancer's ability to evade treatment. Gaining further insight into the mechanisms underlying medication resistance is imperative for the development of effective therapeutic interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Rahaman Shaik
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - M Shaheer Malik
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia.
| | | | - Jihan Qurban
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Fatimah M M Al-Subhi
- Department of Environmental and Occupational Health, College of Public Health and Health Informatics, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Sathvika Badampudi
- Department of Pharmacology, St.Pauls College of Pharmacy, Turkayamjal, Hyderabad, India
| | - Jagruthi Peddapaka
- Department of Pharmaceutical Chemistry, St.Paul's College of Pharmacy, Turkayamjal, Hyderabad, India
| | - Azeeza Shaik
- Research&Development Department, KVB Asta Life sciences, Hyderabad, India
| | - Ahmad Abd-El-Aziz
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia.
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
2
|
Masnikosa R, Cvetković Z, Pirić D. Tumor Biology Hides Novel Therapeutic Approaches to Diffuse Large B-Cell Lymphoma: A Narrative Review. Int J Mol Sci 2024; 25:11384. [PMID: 39518937 PMCID: PMC11545713 DOI: 10.3390/ijms252111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a malignancy of immense biological and clinical heterogeneity. Based on the transcriptomic or genomic approach, several different classification schemes have evolved over the years to subdivide DLBCL into clinically (prognostically) relevant subsets, but each leaves unclassified samples. Herein, we outline the DLBCL tumor biology behind the actual and potential drug targets and address the challenges and drawbacks coupled with their (potential) use. Therapeutic modalities are discussed, including small-molecule inhibitors, naked antibodies, antibody-drug conjugates, chimeric antigen receptors, bispecific antibodies and T-cell engagers, and immune checkpoint inhibitors. Candidate drugs explored in ongoing clinical trials are coupled with diverse toxicity issues and refractoriness to drugs. According to the literature on DLBCL, the promise for new therapeutic targets lies in epigenetic alterations, B-cell receptor and NF-κB pathways. Herein, we present putative targets hiding in lipid pathways, ferroptosis, and the gut microbiome that could be used in addition to immuno-chemotherapy to improve the general health status of DLBCL patients, thus increasing the chance of being cured. It may be time to devote more effort to exploring DLBCL metabolism to discover novel druggable targets. We also performed a bibliometric and knowledge-map analysis of the literature on DLBCL published from 2014-2023.
Collapse
Affiliation(s)
- Romana Masnikosa
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| | - Zorica Cvetković
- Department of Hematology, Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia
| | - David Pirić
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| |
Collapse
|
3
|
Clemmensen SB, Frederiksen H, Mengel-From J, Heikkinen A, Kaprio J, Hjelmborg JVB. Novel epigenetic biomarkers for hematopoietic cancer found in twins. Acta Oncol 2024; 63:710-717. [PMID: 39295308 PMCID: PMC11423697 DOI: 10.2340/1651-226x.2024.40700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND AND PURPOSE This article aims to identify epigenetic markers and detect early development of hematopoietic malignancies through an epigenome wide association study of DNA methylation data. MATERIALS AND METHODS This register-based study includes 1,085 Danish twins with 31 hematopoietic malignancies and methylation levels from 450,154 5'-C-phospate-G-3' (CpG) sites. Associations between methylation levels and incidence of hematopoietic malignancy is studied through time-to-event regression. The matched case-cotwin design, where one twin has a malignancy and the cotwin does not, is applied to enhance control for unmeasured shared confounding and false discoveries. Predictive performance is validated in the independent Older Finnish Twin Cohort. RESULTS AND INTERPRETATION We identified 67 epigenetic markers for hematopoietic malignancies of which 12 are linked to genes associated with hematologic malignancies. For some markers, we discovered a 2-3-fold relative risk difference for high versus low methylation. The identification of these 67 sites enabled the formation of a predictor demonstrating a cross-validated time-varying area under the curve (AUC) of 92% 3 years after individual blood sampling and persistent performance above 70% up to 6 years after blood sampling. This predictive performance was to a large extent recovered in the validation sample showing an overall Harrell's C of 73%. In conclusion, from a large population representative twin study on hematopoietic cancers, novel epigenetic markers were identified that may prove useful for early diagnosis.
Collapse
Affiliation(s)
- Signe B Clemmensen
- Department of Epidemiology, Biostatistics, and Biodemography, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Danish Twin Registry, Institute of Public Health, University of Southern Denmark, Odense, Denmark.
| | - Henrik Frederiksen
- Department of Haematology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jonas Mengel-From
- Department of Epidemiology, Biostatistics, and Biodemography, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Danish Twin Registry, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Aino Heikkinen
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jacob vB Hjelmborg
- Department of Epidemiology, Biostatistics, and Biodemography, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Danish Twin Registry, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
4
|
Lewis J, Guilcher GMT, Greenway SC. Reviewing the impact of hydroxyurea on DNA methylation and its potential clinical implications in sickle cell disease. Eur J Haematol 2024; 113:264-272. [PMID: 38831675 DOI: 10.1111/ejh.14247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024]
Abstract
Hydroxyurea (HU) is the most common drug therapy for sickle cell disease (SCD). The clinical benefits of HU derive from its upregulation of fetal hemoglobin (HbF), which reduces aggregation of the mutated sickle hemoglobin protein (HbS) and reduces SCD symptoms and complications. However, some individuals do not respond to HU, or stop responding over time. Unfortunately, current understanding of the mechanism of action of HU is limited, hindering the ability of clinicians to identify those patients who will respond to HU and to optimize treatment for those receiving HU. Given that epigenetic modifications are essential to erythropoiesis and HbF expression, we hypothesize that some effects of HU may be mediated by epigenetic modifications, specifically DNA methylation. However, few studies have investigated this possibility and the effects of HU on DNA methylation remain relatively understudied. In this review, we discuss the evidence linking HU treatment to DNA methylation changes and associated gene expression changes, with an emphasis on studies that were performed in individuals with SCD. Overall, although HU can affect DNA methylation, research on these changes and their clinical effects remains limited. Further study is likely to contribute to our understanding of hematopoiesis and benefit patients suffering from SCD.
Collapse
Affiliation(s)
- Jasmine Lewis
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gregory M T Guilcher
- Department of Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Steven C Greenway
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Hjazi A, Jasim SA, Al-Dhalimy AMB, Bansal P, Kaur H, Qasim MT, Mohammed IH, Deorari M, Jawad MA, Zwamel AH. HOXA9 versus HOXB9; particular focus on their controversial role in tumor pathogenesis. J Appl Genet 2024; 65:473-492. [PMID: 38753266 DOI: 10.1007/s13353-024-00868-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 08/09/2024]
Abstract
The Homeobox (HOX) gene family is essential to regulating cellular processes because it maintains the exact coordination required for tissue homeostasis, cellular differentiation, and embryonic development. The most distinctive feature of this class of genes is the presence of the highly conserved DNA region known as the homeobox, which is essential for controlling their regulatory activities. Important players in the intricate process of genetic regulation are the HOX genes. Many diseases, especially in the area of cancer, are linked to their aberrant functioning. Due to their distinctive functions in biomedical research-particularly in the complex process of tumor advancement-HOXA9 and HOXB9 have drawn particular attention. HOXA9 and HOXB9 are more significant than what is usually connected with HOX genes since they have roles in the intricate field of cancer and beyond embryonic processes. The framework for a focused study of the different effects of HOXA9 and HOXB9 in the context of tumor biology is established in this study.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | | | | | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Israa Hussein Mohammed
- College of Nursing, National University of Science and Technology, Dhi Qar, Nasiriyah, Iraq
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
6
|
Tanaka Y, Nakanishi Y, Furuhata E, Nakada KI, Maruyama R, Suzuki H, Suzuki T. FLI1 is associated with regulation of DNA methylation and megakaryocytic differentiation in FPDMM caused by a RUNX1 transactivation domain mutation. Sci Rep 2024; 14:14080. [PMID: 38890442 PMCID: PMC11189521 DOI: 10.1038/s41598-024-64829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Familial platelet disorder with associated myeloid malignancies (FPDMM) is an autosomal dominant disease caused by heterozygous germline mutations in RUNX1. It is characterized by thrombocytopenia, platelet dysfunction, and a predisposition to hematological malignancies. Although FPDMM is a precursor for diseases involving abnormal DNA methylation, the DNA methylation status in FPDMM remains unknown, largely due to a lack of animal models and challenges in obtaining patient-derived samples. Here, using genome editing techniques, we established two lines of human induced pluripotent stem cells (iPSCs) with different FPDMM-mimicking heterozygous RUNX1 mutations. These iPSCs showed defective differentiation of hematopoietic progenitor cells (HPCs) and megakaryocytes (Mks), consistent with FPDMM. The FPDMM-mimicking HPCs showed DNA methylation patterns distinct from those of wild-type HPCs, with hypermethylated regions showing the enrichment of ETS transcription factor (TF) motifs. We found that the expression of FLI1, an ETS family member, was significantly downregulated in FPDMM-mimicking HPCs with a RUNX1 transactivation domain (TAD) mutation. We demonstrated that FLI1 promoted binding-site-directed DNA demethylation, and that overexpression of FLI1 restored their megakaryocytic differentiation efficiency and hypermethylation status. These findings suggest that FLI1 plays a crucial role in regulating DNA methylation and correcting defective megakaryocytic differentiation in FPDMM-mimicking HPCs with a RUNX1 TAD mutation.
Collapse
Affiliation(s)
- Yuki Tanaka
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Yuri Nakanishi
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Erina Furuhata
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Ken-Ichi Nakada
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Rino Maruyama
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Harukazu Suzuki
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Takahiro Suzuki
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan.
- Department of Obstetrics & Gynecology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
7
|
Nayarisseri A, Bandaru S, Khan A, Sharma K, Bhrdwaj A, Kaur M, Ghosh D, Chopra I, Panicker A, Kumar A, Saravanan P, Belapurkar P, Mendonça Junior FJB, Singh SK. Epigenetic dysregulation in cancers by isocitrate dehydrogenase 2 (IDH2). ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:223-253. [PMID: 38960475 DOI: 10.1016/bs.apcsb.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Recent advances in genome-wide studies have revealed numerous epigenetic regulations brought about by genes involved in cellular metabolism. Isocitrate dehydrogenase (IDH), an essential enzyme, that converts isocitrate into -ketoglutarate (KG) predominantly in the tricarboxylic acid (TCA) cycle, has gained particular importance due to its cardinal role in the metabolic pathway in cells. IDH1, IDH2, and IDH3 are the three isomeric IDH enzymes that have been shown to regulate cellular metabolism. Of particular importance, IDH2 genes are associated with several cancers, including gliomas, oligodendroglioma, and astrocytomas. These mutations lead to the production of oncometabolite D-2-hydroxyglutarate (D-2-HG), which accumulates in cells promoting tumor growth. The enhanced levels of D-2-HG competitively inhibit α-KG dependent enzymes, inhibiting cell TCA cycle, upregulating the cell growth and survival relevant HIF-1α pathway, promoting DNA hypermethylation related epigenetic activity, all of which synergistically contribute to carcinogenesis. The present review discusses epigenetic mechanisms inIDH2 regulation in cells and further its clinical implications.
Collapse
Affiliation(s)
- Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India; Bioinformatics Research Laboratory, LeGene Biosciences Pvt Ltd, Indore, Madhya Pradesh, India.
| | - Srinivas Bandaru
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India; Department of Biotechnology, Koneru Lakshmaiah Educational Foundation (KLEF), Green Fields, Vaddeswaram, Andhra Pradesh, India
| | - Arshiya Khan
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India; Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Khushboo Sharma
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India; Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Anushka Bhrdwaj
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India; Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Manmeet Kaur
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Dipannita Ghosh
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Ishita Chopra
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India; School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Aravind Panicker
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Abhishek Kumar
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India; Department of Biosciences, Acropolis Institute, Indore, Madhya Pradesh, India
| | - Priyadevi Saravanan
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Pranoti Belapurkar
- Department of Biosciences, Acropolis Institute, Indore, Madhya Pradesh, India
| | | | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
8
|
Chen C, Wang L, Liu Y, Du S, Teng Q. Arsenic disulfide promoted the demethylation of PTPL1 in diffuse large B cell lymphoma cells. PeerJ 2024; 12:e17363. [PMID: 38766487 PMCID: PMC11100478 DOI: 10.7717/peerj.17363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
Background Promoter hypermethylation of the tumor suppressor gene is one of the well-studied causes of cancer development. The drugs that reverse the process by driving demethylation could be a candidate for anticancer therapy. This study was designed to investigate the effects of arsenic disulfide on PTPL1 methylation in diffuse large B cell lymphoma (DLBCL). Methods We knocked down the expression of PTPL1 in two DLBCL cell lines (i.e., DB and SU-DHL-4 cells) using siRNA. Then the DLBCL proliferation was determined in the presence of PTPL1 knockdown. The methylation of PTPL1 in DLBCL cells was analyzed by methylation specific PCR (MSPCR). The effect of arsenic disulfide on the PTPL1 methylation was determined in DLBCL cell lines in the presence of different concentrations of arsenic disulfide (5 µM, 10 µM and 20 µM), respectively. To investigate the potential mechanism on the arsenic disulfide-mediated methylation, the mRNA expression of DNMT1, DNMT3B and MBD2 was determined. Results PTPL1 functioned as a tumor suppressor gene in DLBCL cells, which was featured by the fact that PTPL1 knockdown promoted the proliferation of DLBCL cells. PTPL1 was found hypermethylated in DLBCL cells. Arsenic disulfide promoted the PTPL1 demethylation in a dose-dependent manner, which was related to the inhibition of DNMTs and the increase of MBD2. Conclusion Experimental evidence shows that PTPL1 functions as a tumor suppressor gene in DLBCL progression. PTPL1 hyper-methylation could be reversed by arsenic disulfide in a dose-dependent manner.
Collapse
Affiliation(s)
- Chen Chen
- Department of Hematology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Ling Wang
- Department of Hematology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Yan Liu
- Department of Breast Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Shenghong Du
- Department of Hematology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Qingliang Teng
- Department of Hematology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| |
Collapse
|
9
|
Webster AP, Ecker S, Moghul I, Liu X, Dhami P, Marzi S, Paul DS, Kuxhausen M, Lee SJ, Spellman SR, Wang T, Feber A, Rakyan V, Peggs KS, Beck S. Donor whole blood DNA methylation is not a strong predictor of acute graft versus host disease in unrelated donor allogeneic haematopoietic cell transplantation. Front Genet 2024; 15:1242636. [PMID: 38633407 PMCID: PMC11021570 DOI: 10.3389/fgene.2024.1242636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is used to treat many blood-based disorders and malignancies, however it can also result in serious adverse events, such as the development of acute graft-versus-host disease (aGVHD). This study aimed to develop a donor-specific epigenetic classifier to reduce incidence of aGVHD by improving donor selection. Genome-wide DNA methylation was assessed in a discovery cohort of 288 HCT donors selected based on recipient aGVHD outcome; this cohort consisted of 144 cases with aGVHD grades III-IV and 144 controls with no aGVHD. We applied a machine learning algorithm to identify CpG sites predictive of aGVHD. Receiver operating characteristic (ROC) curve analysis of these sites resulted in a classifier with an encouraging area under the ROC curve (AUC) of 0.91. To test this classifier, we used an independent validation cohort (n = 288) selected using the same criteria as the discovery cohort. Attempts to validate the classifier failed with the AUC falling to 0.51. These results indicate that donor DNA methylation may not be a suitable predictor of aGVHD in an HCT setting involving unrelated donors, despite the initial promising results in the discovery cohort. Our work highlights the importance of independent validation of machine learning classifiers, particularly when developing classifiers intended for clinical use.
Collapse
Affiliation(s)
- Amy P. Webster
- UCL Cancer Institute, University College London, London, United Kindom
- The University of Exeter Medical School, University of Exeter, Exeter, United Kindom
| | - Simone Ecker
- UCL Cancer Institute, University College London, London, United Kindom
| | - Ismail Moghul
- UCL Cancer Institute, University College London, London, United Kindom
| | - Xiaohong Liu
- UCL Cancer Institute, University College London, London, United Kindom
| | - Pawan Dhami
- UCL Cancer Institute, University College London, London, United Kindom
- NIHR Biomedical Research Centre, Guy’s Hospital London, London, United Kindom
| | - Sarah Marzi
- Blizard Institute, Barts and the London School of Medicine and Dentistry, London, United Kindom
| | - Dirk S. Paul
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kindom
| | - Michelle Kuxhausen
- Center for International Blood and Marrow Transplant Research, NMDP, Minneapolis, United Kindom
| | - Stephanie J. Lee
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, United Kindom
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, United Kindom
| | - Stephen R. Spellman
- Center for International Blood and Marrow Transplant Research, NMDP, Minneapolis, United Kindom
| | - Tao Wang
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, United Kindom
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, United Kindom
| | - Andrew Feber
- UCL Cancer Institute, University College London, London, United Kindom
- The Institute of Cancer Research, London, United Kindom
| | - Vardhman Rakyan
- Blizard Institute, Barts and the London School of Medicine and Dentistry, London, United Kindom
| | - Karl S. Peggs
- UCL Cancer Institute, University College London, London, United Kindom
- Department of Haematology, University College London, London, United Kindom
| | - Stephan Beck
- UCL Cancer Institute, University College London, London, United Kindom
| |
Collapse
|
10
|
Chatzidavid S, Kontandreopoulou CN, Giannakopoulou N, Diamantopoulos PT, Stafylidis C, Kyrtsonis MC, Dimou M, Panayiotidis P, Viniou NA. The Role of Methylation in Chronic Lymphocytic Leukemia and Its Prognostic and Therapeutic Impacts in the Disease: A Systematic Review. Adv Hematol 2024; 2024:1370364. [PMID: 38435839 PMCID: PMC10907108 DOI: 10.1155/2024/1370364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
Epigenetic regulation has been thoroughly investigated in recent years and has emerged as an important aspect of chronic lymphocytic leukemia (CLL) biology. Characteristic aberrant features such as methylation patterns and global DNA hypomethylation were the early findings of the research during the last decades. The investigation in this field led to the identification of a large number of genes where methylation features correlated with important clinical and laboratory parameters. Gene-specific analyses investigated methylation in the gene body enhancer regions as well as promoter regions. The findings included genes and proteins involved in key pathways that play central roles in the pathophysiology of the disease. Τhe application of these findings beyond the theoretical understanding can not only lead to the creation of prognostic and predictive models and scores but also to the design of novel therapeutic agents. The following is a review focusing on the present knowledge about single gene/gene promoter methylation or mRNA expression in CLL cases as well as records of older data that have been published in past papers.
Collapse
Affiliation(s)
- Sevastianos Chatzidavid
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Thalassemia and Sickle Cell Disease Center, Laikon General Hospital, Athens, Greece
| | - Christina-Nefeli Kontandreopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Panagiotis T. Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Stafylidis
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marie-Christine Kyrtsonis
- Hematology Section of the First Department of Propaedeutic Internal Medicine, Laikon University Hospital, Athens, Greece
| | - Maria Dimou
- Hematology Section of the First Department of Propaedeutic Internal Medicine, Laikon University Hospital, Athens, Greece
| | - Panayiotis Panayiotidis
- Department of Hematology and Bone Marrow Transplantation Unit, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, Athens, Greece
| | - Nora-Athina Viniou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Hematology Department, Iatriko Kentro Palaiou Falirou, Athens, Greece
| |
Collapse
|
11
|
Krali O, Marincevic-Zuniga Y, Arvidsson G, Enblad AP, Lundmark A, Sayyab S, Zachariadis V, Heinäniemi M, Suhonen J, Oksa L, Vepsäläinen K, Öfverholm I, Barbany G, Nordgren A, Lilljebjörn H, Fioretos T, Madsen HO, Marquart HV, Flaegstad T, Forestier E, Jónsson ÓG, Kanerva J, Lohi O, Norén-Nyström U, Schmiegelow K, Harila A, Heyman M, Lönnerholm G, Syvänen AC, Nordlund J. Multimodal classification of molecular subtypes in pediatric acute lymphoblastic leukemia. NPJ Precis Oncol 2023; 7:131. [PMID: 38066241 PMCID: PMC10709574 DOI: 10.1038/s41698-023-00479-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/15/2023] [Indexed: 02/25/2025] Open
Abstract
Genomic analyses have redefined the molecular subgrouping of pediatric acute lymphoblastic leukemia (ALL). Molecular subgroups guide risk-stratification and targeted therapies, but outcomes of recently identified subtypes are often unclear, owing to limited cases with comprehensive profiling and cross-protocol studies. We developed a machine learning tool (ALLIUM) for the molecular subclassification of ALL in retrospective cohorts as well as for up-front diagnostics. ALLIUM uses DNA methylation and gene expression data from 1131 Nordic ALL patients to predict 17 ALL subtypes with high accuracy. ALLIUM was used to revise and verify the molecular subtype of 281 B-cell precursor ALL (BCP-ALL) cases with previously undefined molecular phenotype, resulting in a single revised subtype for 81.5% of these cases. Our study shows the power of combining DNA methylation and gene expression data for resolving ALL subtypes and provides a comprehensive population-based retrospective cohort study of molecular subtype frequencies in the Nordic countries.
Collapse
Affiliation(s)
- Olga Krali
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Yanara Marincevic-Zuniga
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gustav Arvidsson
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Pia Enblad
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Anders Lundmark
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Shumaila Sayyab
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Janne Suhonen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Laura Oksa
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere University Hospital, Tays Cancer Center, Tampere, Finland
| | - Kaisa Vepsäläinen
- Department of Pediatrics, Kuopio University Hospital, Kuopio, Finland
| | - Ingegerd Öfverholm
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Gisela Barbany
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Henrik Lilljebjörn
- Division of Clinical Genetics, Dept. of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thoas Fioretos
- Division of Clinical Genetics, Dept. of Laboratory Medicine, Lund University, Lund, Sweden
| | - Hans O Madsen
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hanne Vibeke Marquart
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trond Flaegstad
- Department of Pediatrics, Tromsø University and University Hospital, Tromsø, Norway
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
| | - Erik Forestier
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
- Department of Medical Biosciences, University of Umeå, Umeå, Sweden
| | - Ólafur G Jónsson
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
- Pediatric Hematology-Oncology, Children's Hospital, Barnaspitali Hringsins, Landspitali University Hospital, Reykjavik, Iceland
| | - Jukka Kanerva
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
- New Children's Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Olli Lohi
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere University Hospital, Tays Cancer Center, Tampere, Finland
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
| | - Ulrika Norén-Nyström
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Kjeld Schmiegelow
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
- Pediatrics and Adolescent Medicine, Rigshospitalet, and the Medical Faculty, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Arja Harila
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
| | - Mats Heyman
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
- Childhood Cancer Research Unit, Karolinska Institutet, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Gudmar Lönnerholm
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
| | - Ann-Christine Syvänen
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jessica Nordlund
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
12
|
Ghosh A, Himaja A, Biswas S, Kulkarni O, Ghosh B. Advances in the Delivery and Development of Epigenetic Therapeutics for the Treatment of Cancer. Mol Pharm 2023; 20:5981-6009. [PMID: 37899551 DOI: 10.1021/acs.molpharmaceut.3c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Gene expression at the transcriptional level is altered by epigenetic modifications such as DNA methylation, histone methylation, and acetylation, which can upregulate, downregulate, or entirely silence genes. Pathological dysregulation of epigenetic processes can result in the development of cancer, neurological problems, metabolic disorders, and cardiovascular diseases. It is of promising therapeutic interest to find medications that target these epigenetic alterations. Despite the enormous amount of work that has been done in this area, very few molecules have been approved for clinical purposes. This article provides a comprehensive review of recent advances in epigenetic therapeutics for cancer, with a specific focus on emerging delivery and development strategies. Various delivery systems, including pro-drugs, conjugated molecules, nanoparticles (NPs), and liposomes, as well as remedial strategies such as combination therapies, and epigenetic editing, are being investigated to improve the efficacy and specificity of epigenetic drugs (epi-drugs). Furthermore, the challenges associated with available epi-drugs and the limitations of their translation into clinics have been discussed. Target selection, isoform selectivity, physiochemical properties of synthesized molecules, drug screening, and scalability of epi-drugs from preclinical to clinical fields are the major shortcomings that are addressed. This Review discusses novel strategies for the identification of new biomarkers, exploration of the medicinal chemistry of epigenetic modifiers, optimization of the dosage regimen, and design of proper clinical trials that will lead to better utilization of epigenetic modifiers over conventional therapies. The integration of these approaches holds great potential for improving the efficacy and precision of epigenetic treatments, ultimately benefiting cancer patients.
Collapse
Affiliation(s)
- Aparajita Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science- Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
- Pharmacology Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Ambati Himaja
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science- Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Onkar Kulkarni
- Pharmacology Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science- Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| |
Collapse
|
13
|
Papakonstantinou E, Pappa I, Androutsopoulos G, Adonakis G, Maroulis I, Tzelepi V. Comprehensive Analysis of DNA Methyltransferases Expression in Primary and Relapsed Ovarian Carcinoma. Cancers (Basel) 2023; 15:4950. [PMID: 37894317 PMCID: PMC10605797 DOI: 10.3390/cancers15204950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Despite recent advances in epithelial ovarian carcinoma (EOC) treatment, its recurrence and mortality rates have not improved significantly. DNA hypermethylation has generally been associated with an ominous prognosis and chemotherapy resistance, but the role of DNA methyltransferases (DNMTs) in EOC remains to be investigated. METHODS In the current study, we systematically retrieved gene expression data from patients with EOC and studied the immunohistochemical expression of DNMTs in 108 primary and 26 relapsed tumors. RESULTS Our results showed that the DNMT1, DNMT3A, DNMT3B and DNMT3L RNA levels were higher and the DNMT2 level was lower in tumors compared to non-neoplastic tissue, and DNMT3A and DNMT2 expression decreased from Stage-II to Stage-IV carcinomas. The proteomic data also suggested that the DNMT1 and DNMT3A levels were increased in the tumors. Similarly, the DNMT1, DNMT3A and DNMT3L protein levels were overexpressed and DNMT2 expression was reduced in high-grade carcinomas compared to non-neoplastic tissue and low-grade tumors. Moreover, DNMT1 and DNMT3L were increased in relapsed tumors compared to their primaries. The DNMT3A, DNMT1 and DNMT3B mRNA levels were correlated with overall survival. CONCLUSIONS Our study demonstrates that DNMT1 and DNMT3L are upregulated in primary high-grade EOC and further increase in relapses, whereas DNMT3A is upregulated only in the earlier stages of cancer progression. DNMT2 downregulation highlights the presumed tumor-suppressor activity of this gene in ovarian carcinoma.
Collapse
Affiliation(s)
- Efthymia Papakonstantinou
- Department of Obstetrics and Gynecology, School of Medicine, University of Patras, 26504 Patras, Greece; (E.P.); (G.A.)
| | - Ioanna Pappa
- Multidimensional Data Analysis and Knowledge Management Laboratory, Computer Engineering and Informatics Department, School of Engineering, University of Patras, 26504 Patras, Greece;
| | - Georgios Androutsopoulos
- Gynecological Oncology Unit, Department of Obstetrics and Gynecology, Medical School, University of Patras, 26504 Patras, Greece;
| | - Georgios Adonakis
- Department of Obstetrics and Gynecology, School of Medicine, University of Patras, 26504 Patras, Greece; (E.P.); (G.A.)
| | - Ioannis Maroulis
- Department of General Surgery, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Vasiliki Tzelepi
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
14
|
Wu YH, Xiao HY, Quan RC, Tang XD, Liu WY, Lyu Y, Chen Z, Liu C, Hu XM. Comparing Arsenic-Containing Qinghuang Powder and Low-Intensity Chemotherapy in Elderly Patients with Acute Myeloid Leukemia. Chin J Integr Med 2023; 29:832-837. [PMID: 37222831 DOI: 10.1007/s11655-023-3603-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVE To compare the clinical effect of arsenic-containing Qinghuang Powder (QHP) and low-intensity chemotherapy (LIC) in treatment of elderly acute myeloid leukemia (eAML) patients. METHODS Clinical data of 80 eAML patients treated at Xiyuan Hospital of China Academy of Chinese Medical Sciences from January 2015 to December 2020 were retrospectively analyzed. The treatment scheme was designed by real world study according to patients' preference, and patients were divided into a QHP group (35 cases) and a LIC group (45 cases). The median overall survival (mOS), 1-, 2-, and 3-year OS rates, and incidence of adverse events were compared between the two groups. RESULTS The mOS of 80 patients was 11 months, and the 1-, 2-, and 3-year OS rates were 45.51%, 17.96%, and 11.05%, respectively. The QHP and LIC groups demonstrated no significant difference in mOS (12 months vs. 10 months), 1- (48.57% vs. 39.65%), 2- (11.43% vs. 20.04%), and 3-year OS rates (5.71% vs. 13.27%, all P>0.05). Moreover, the related factors of mOS demonstrated no significant difference in patients with age>75 years (11 months vs. 8 months), secondary AML (11 months vs. 8 months), poor genetic prognosis (9 months vs. 7 months), Eastern Cooperative Oncology Group performance status score ⩾ 3 (10 months vs. 7 months) and hematopoietic stem cell transplant comorbidity index ⩾ 4 (11 months vs. 7 months) between the QHP and LIC groups (all P>0.05). However, the incidence of myelosuppression was significantly lower in the QHP group than that in the LIC group (28.57% vs. 73.33%, P<0.01). CONCLUSIONS QHP and LIC had similar survival rates in eAML patients, but QHP had a lower myelosuppression incidence. Hence, QHP can be an alternative for eAML patients who do not tolerate LIC.
Collapse
Affiliation(s)
- Yu-He Wu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hai-Yan Xiao
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Ri-Cheng Quan
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Xu-Dong Tang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Wei-Yi Liu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yan Lyu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Zhuo Chen
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Chi Liu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Xiao-Mei Hu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
15
|
Jevtic Z, Allram M, Grebien F, Schwaller J. Biomolecular Condensates in Myeloid Leukemia: What Do They Tell Us? Hemasphere 2023; 7:e923. [PMID: 37388925 PMCID: PMC10306439 DOI: 10.1097/hs9.0000000000000923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Recent studies have suggested that several oncogenic and tumor-suppressive proteins carry out their functions in the context of specific membrane-less cellular compartments. As these compartments, generally referred to as onco-condensates, are specific to tumor cells and are tightly linked to disease development, the mechanisms of their formation and maintenance have been intensively studied. Here we review the proposed leukemogenic and tumor-suppressive activities of nuclear biomolecular condensates in acute myeloid leukemia (AML). We focus on condensates formed by oncogenic fusion proteins including nucleoporin 98 (NUP98), mixed-lineage leukemia 1 (MLL1, also known as KMT2A), mutated nucleophosmin (NPM1c) and others. We also discuss how altered condensate formation contributes to malignant transformation of hematopoietic cells, as described for promyelocytic leukemia protein (PML) in PML::RARA-driven acute promyelocytic leukemia (APL) and other myeloid malignancies. Finally, we discuss potential strategies for interfering with the molecular mechanisms related to AML-associated biomolecular condensates, as well as current limitations of the field.
Collapse
Affiliation(s)
- Zivojin Jevtic
- Department of Biomedicine (DBM), University Children’s Hospital Basel, University of Basel, Switzerland
| | - Melanie Allram
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Juerg Schwaller
- Department of Biomedicine (DBM), University Children’s Hospital Basel, University of Basel, Switzerland
| |
Collapse
|
16
|
Ribeiro ML, Sánchez Vinces S, Mondragon L, Roué G. Epigenetic targets in B- and T-cell lymphomas: latest developments. Ther Adv Hematol 2023; 14:20406207231173485. [PMID: 37273421 PMCID: PMC10236259 DOI: 10.1177/20406207231173485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
Non-Hodgkin's lymphomas (NHLs) comprise a diverse group of diseases, either of mature B-cell or of T-cell derivation, characterized by heterogeneous molecular features and clinical manifestations. While most of the patients are responsive to standard chemotherapy, immunotherapy, radiation and/or stem cell transplantation, relapsed and/or refractory cases still have a dismal outcome. Deep sequencing analysis have pointed out that epigenetic dysregulations, including mutations in epigenetic enzymes, such as chromatin modifiers and DNA methyltransferases (DNMTs), are prevalent in both B- cell and T-cell lymphomas. Accordingly, over the past decade, a large number of epigenetic-modifying agents have been developed and introduced into the clinical management of these entities, and a few specific inhibitors have already been approved for clinical use. Here we summarize the main epigenetic alterations described in B- and T-NHL, that further supported the clinical development of a selected set of epidrugs in determined diseases, including inhibitors of DNMTs, histone deacetylases (HDACs), and extra-terminal domain proteins (bromodomain and extra-terminal motif; BETs). Finally, we highlight the most promising future directions of research in this area, explaining how bioinformatics approaches can help to identify new epigenetic targets in B- and T-cell lymphoid neoplasms.
Collapse
Affiliation(s)
- Marcelo Lima Ribeiro
- Lymphoma Translational Group, Josep Carreras
Leukaemia Research Institute, Badalona, Spain
- Laboratory of Immunopharmacology and Molecular
Biology, Sao Francisco University Medical School, Braganca Paulista,
Brazil
| | - Salvador Sánchez Vinces
- Laboratory of Immunopharmacology and Molecular
Biology, Sao Francisco University Medical School, Braganca Paulista,
Brazil
| | - Laura Mondragon
- T Cell Lymphoma Group, Josep Carreras Leukaemia
Research Institute, IJC. Ctra de Can Ruti, Camí de les Escoles s/n, 08916
Badalona, Barcelona, Spain
| | - Gael Roué
- Lymphoma Translational Group, Josep Carreras
Leukaemia Research Institute, IJC. Ctra de Can Ruti, Camí de les Escoles
s/n, 08916 Badalona, Barcelona, Spain
| |
Collapse
|
17
|
Targeting DNA Methylation in Leukemia, Myelodysplastic Syndrome, and Lymphoma: A Potential Diagnostic, Prognostic, and Therapeutic Tool. Int J Mol Sci 2022; 24:ijms24010633. [PMID: 36614080 PMCID: PMC9820560 DOI: 10.3390/ijms24010633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
DNA methylation represents a crucial mechanism of epigenetic regulation in hematologic malignancies. The methylation process is controlled by specific DNA methyl transferases and other regulators, which are often affected by genetic alterations. Global hypomethylation and hypermethylation of tumor suppressor genes are associated with hematologic cancer development and progression. Several epi-drugs have been successfully implicated in the treatment of hematologic malignancies, including the hypomethylating agents (HMAs) decitabine and azacytidine. However, combinations with other treatment modalities and the discovery of new molecules are still the subject of research to increase sensitivity to anti-cancer therapies and improve patient outcomes. In this review, we summarized the main functions of DNA methylation regulators and genetic events leading to changes in methylation landscapes. We provide current knowledge about target genes with aberrant methylation levels in leukemias, myelodysplastic syndromes, and malignant lymphomas. Moreover, we provide an overview of the clinical trials, focused mainly on the combined therapy of HMAs with other treatments and its impact on adverse events, treatment efficacy, and survival rates among hematologic cancer patients. In the era of precision medicine, a transition from genes to their regulation opens up the possibility of an epigenetic-based approach as a diagnostic, prognostic, and therapeutic tool.
Collapse
|
18
|
Skelding KA, Barry DL, Theron DZ, Lincz LF. Bone Marrow Microenvironment as a Source of New Drug Targets for the Treatment of Acute Myeloid Leukaemia. Int J Mol Sci 2022; 24:563. [PMID: 36614005 PMCID: PMC9820412 DOI: 10.3390/ijms24010563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a heterogeneous disease with one of the worst survival rates of all cancers. The bone marrow microenvironment is increasingly being recognised as an important mediator of AML chemoresistance and relapse, supporting leukaemia stem cell survival through interactions among stromal, haematopoietic progenitor and leukaemic cells. Traditional therapies targeting leukaemic cells have failed to improve long term survival rates, and as such, the bone marrow niche has become a promising new source of potential therapeutic targets, particularly for relapsed and refractory AML. This review briefly discusses the role of the bone marrow microenvironment in AML development and progression, and as a source of novel therapeutic targets for AML. The main focus of this review is on drugs that modulate/target this bone marrow microenvironment and have been examined in in vivo models or clinically.
Collapse
Affiliation(s)
- Kathryn A. Skelding
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Daniel L. Barry
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Danielle Z. Theron
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Lisa F. Lincz
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Hunter Hematology Research Group, Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
| |
Collapse
|
19
|
Polyphenols as Potent Epigenetics Agents for Cancer. Int J Mol Sci 2022; 23:ijms231911712. [PMID: 36233012 PMCID: PMC9570183 DOI: 10.3390/ijms231911712] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 02/06/2023] Open
Abstract
Human diseases such as cancer can be caused by aberrant epigenetic regulation. Polyphenols play a major role in mammalian epigenome regulation through mechanisms and proteins that remodel chromatin. In fruits, seeds, and vegetables, as well as food supplements, polyphenols are found. Compounds such as these ones are powerful anticancer agents and antioxidants. Gallic acid, kaempferol, curcumin, quercetin, and resveratrol, among others, have potent anti-tumor effects by helping reverse epigenetic changes associated with oncogene activation and tumor suppressor gene inactivation. The role dietary polyphenols plays in restoring epigenetic alterations in cancer cells with a particular focus on DNA methylation and histone modifications was summarized. We also discussed how these natural compounds modulate gene expression at the epigenetic level and described their molecular targets in cancer. It highlights the potential of polyphenols as an alternative therapeutic approach in cancer since they modulate epigenetic activity.
Collapse
|
20
|
Germline Abnormalities in DNA Methylation and Histone Modification and Associated Cancer Risk. Curr Hematol Malig Rep 2022; 17:82-93. [PMID: 35653077 DOI: 10.1007/s11899-022-00665-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Somatic mutations in DNA methyltransferases and other DNA methylation associated genes have been found in a wide variety of cancers. Germline mutations in these genes have been associated with several rare hereditary disorders. Among the described germline/congenital disorders, neurological dysfunction and/or growth abnormalities appear to be a common phenotype. Here, we outline known germline abnormalities and examine the cancer risks associated with these mutations. RECENT FINDINGS The increased use and availability of sequencing techniques in the clinical setting has expanded the identification of germline abnormalities involving DNA methylation machinery. This has provided additional cases to study these rare hereditary disorders and their predisposition to cancer. Studying these syndromes may offer an opportunity to better understand the contribution of these genes in cancer development.
Collapse
|
21
|
Benetatos L, Benetatou A, Vartholomatos G. Epialleles and epiallelic heterogeneity in hematological malignancies. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:139. [PMID: 35834015 DOI: 10.1007/s12032-022-01737-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/22/2022] [Indexed: 10/17/2022]
Abstract
DNA methylation has a well-established role in the pathogenesis, prognosis, and response to treatment in all the spectra of hematological malignancies. However, most of the data reported involve average DNA methylation observed in a sample. The emergence of bisulfite sequencing methods such as enhanced reduced representation that permit analyze adjacent CpGs led to exciting findings. Among these are the epialleles shift and the resulting epigenetic heterogeneity observed in leukemias and lymphomas. Epialleles seem to have an influential role as the cause of mutations that characterize leukemias, may stratify groups with different prognosis and response to treatment, and may be redistributed in the genome at different time points of the disease promoting activation of alternate transcriptional networks. Epiallelic shift may be responsible for the intratumor heterogeneity observed within the cells of the same tumor which increases with disease aggressiveness. It may also responsible for the interpatient heterogeneity explaining why blood cancers exhibit different behavior among different patients. Understanding better epiallelic conformation and the consequent chromatin conformational changes and the pathways that may be affected will permit deeper understanding of hematological malignancies pathogenesis and treatment.
Collapse
Affiliation(s)
- Leonidas Benetatos
- Blood Bank, Preveza General Hospital, Selefkias 2, 48100, Preveza, Greece.
| | | | | |
Collapse
|
22
|
Studying Epigenetics of Cardiovascular Diseases on Chip Guide. CARDIOGENETICS 2022. [DOI: 10.3390/cardiogenetics12030021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Epigenetics is defined as the study of inheritable changes in the gene expressions and phenotypes that occurs without altering the normal DNA sequence. These changes are mainly due to an alteration in chromatin or its packaging, which changes the DNA accessibility. DNA methylation, histone modification, and noncoding or microRNAs can best explain the mechanism of epigenetics. There are various DNA methylated enzymes, histone-modifying enzymes, and microRNAs involved in the cause of various CVDs (cardiovascular diseases) such as cardiac hypertrophy, heart failure, and hypertension. Moreover, various CVD risk factors such as diabetes mellitus, hypoxia, aging, dyslipidemia, and their epigenetics are also discussed together with CVDs such as CHD (coronary heart disease) and PAH (pulmonary arterial hypertension). Furthermore, different techniques involved in epigenetic chromatin mapping are explained. Among these techniques, the ChIP-on-chip guide is explained with regard to its role in cardiac hypertrophy, a final form of heart failure. This review focuses on different epigenetic factors that are involved in causing cardiovascular diseases.
Collapse
|
23
|
Gong Y, Zhou L, Ding L, Zhao J, Wang Z, Ren G, Zhang J, Mao Z, Zhou R. KIF23 is a potential biomarker of diffuse large B cell lymphoma: Analysis based on bioinformatics and immunohistochemistry. Medicine (Baltimore) 2022; 101:e29312. [PMID: 35713434 PMCID: PMC9276187 DOI: 10.1097/md.0000000000029312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 05/04/2022] [Indexed: 11/26/2022] Open
Abstract
Diffuse Large B Cell Lymphoma (DLBCL), the most common form of blood cancer. The genetic and clinical heterogeneity of DLBCL poses a major barrier to diagnosis and treatment. Hence, we aim to identify potential biomarkers for DLBCL.Differentially expressed genes were screened between DLBCL and the corresponding normal tissues. Kyoto Encyclopedia of Genes and Genomes and Gene oncology analyses were performed to obtain an insight into these differentially expressed genes. PPI network was constructed to identify hub genes. survival analysis was applied to evaluate the prognostic value of those hub genes. DNA methylation analysis was implemented to explore the epigenetic dysregulation of genes in DLBCL.In this study, Kinesin family member 23 (KIF23) showed higher expression in DLBCL and was identified as a risk factor in DLBCL. The immunohistochemistry experiment further confirmed this finding. Subsequently, the univariate and multivariate analysis indicated that KIF23 might be an independent adverse factor in DLBCL. Upregulation of KIF23 might be a risk factor for the overall survival of patients who received an R-CHOP regimen, in late-stage, whatever with or without extranodal sites. Higher expression of KIF23 also significantly reduced 3, 5, 10-year overall survival. Furthermore, functional enrichment analyses (Kyoto Encyclopedia of Genes and Genomes, Gene oncology, and Gene Set Enrichment Analysis) showed that KIF23 was mainly involved in cell cycle, nuclear division, PI3K/AKT/mTOR, TGF-beta, and Wnt/beta-catenin pathway in DLBCL. Finally, results of DNA methylation analysis indicated that hypomethylation in KIF23's promoter region might be the result of its higher expression in DLBCL.The findings of this study suggested that KIF23 is a potential biomarker for the diagnosis and prognosis of DLBCL. However, further studies were needed to validate these findings.
Collapse
Affiliation(s)
- Yuqi Gong
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingna Zhou
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Liya Ding
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhao
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhe Wang
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Guoping Ren
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengrong Mao
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ren Zhou
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
24
|
Neuberger EWI, Sontag S, Brahmer A, Philippi KFA, Radsak MP, Wagner W, Simon P. Physical activity specifically evokes release of cell-free DNA from granulocytes thereby affecting liquid biopsy. Clin Epigenetics 2022; 14:29. [PMID: 35193681 PMCID: PMC8864902 DOI: 10.1186/s13148-022-01245-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/07/2022] [Indexed: 11/28/2022] Open
Abstract
Physical activity impacts immune homeostasis and leads to rapid and marked increase in cell-free DNA (cfDNA). However, the origin of cfDNA during exercise remains elusive and it is unknown if physical activity could improve or interfere with methylation based liquid biopsy. We analyzed the methylation levels of four validated CpGs representing cfDNA from granulocytes, lymphocytes, monocytes, and non-hematopoietic cells, in healthy individuals in response to exercise, and in patients with hematological malignancies under resting conditions. The analysis revealed that physical activity almost exclusively triggered DNA release from granulocytes, highlighting the relevance as a pre-analytical variable which could compromise diagnostic accuracy.
Collapse
Affiliation(s)
- Elmo W I Neuberger
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Faculty of Social Science, Media and Sport, Johannes Gutenberg-University Mainz, Albert-Schweitzerstr. 22, 55128, Mainz, Germany
| | - Stephanie Sontag
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Alexandra Brahmer
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Faculty of Social Science, Media and Sport, Johannes Gutenberg-University Mainz, Albert-Schweitzerstr. 22, 55128, Mainz, Germany
| | - Keito F A Philippi
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Faculty of Social Science, Media and Sport, Johannes Gutenberg-University Mainz, Albert-Schweitzerstr. 22, 55128, Mainz, Germany
| | - Markus P Radsak
- Department of Medicine III, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Perikles Simon
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Faculty of Social Science, Media and Sport, Johannes Gutenberg-University Mainz, Albert-Schweitzerstr. 22, 55128, Mainz, Germany.
| |
Collapse
|
25
|
Kamachi K, Ureshino H, Watanabe T, Yoshida N, Yamamoto Y, Kurahashi Y, Fukuda-Kurahashi Y, Hayashi Y, Hirai H, Yamashita S, Ushijima T, Okada S, Kimura S. Targeting DNMT1 by demethylating agent OR-2100 increases tyrosine kinase inhibitors-sensitivity and depletes leukemic stem cells in chronic myeloid leukemia. Cancer Lett 2022; 526:273-283. [PMID: 34875342 DOI: 10.1016/j.canlet.2021.11.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022]
Abstract
ABL1 tyrosine kinase inhibitors (TKIs) dramatically improve the prognosis of chronic myeloid leukemia (CML), but 10-20% of patients achieve suboptimal responses with low TKIs sensitivity. Furthermore, residual leukemic stem cells (LSCs) are involved in the molecular relapse after TKIs discontinuation. Aberrant DNA hypermethylation contributes to low TKIs sensitivity and the persistence of LSCs in CML. DNMT1 is a key regulator of hematopoietic stem cells, suggesting that aberrant DNA hypermethylation targeting DNMT1 represents a potential therapeutic target for CML. We investigated the efficacy of OR-2100 (OR21), the first orally available single-compound prodrug of decitabine. OR21 exhibited anti-tumor effects as a monotherapy, and in combination therapy it increased TKI-induced apoptosis and induction of tumor suppressor genes including PTPN6 encoding SHP-1 in CML cells. OR21 in combination with imatinib significantly suppressed tumor growth in a xenotransplant model. OR21 and combination therapy decreased the abundance of LSCs and inhibited engraftment in a BCR-ABL1-transduced mouse model. These results demonstrate that targeting DNMT1 using OR21 exerts anti-tumor effects and impairs LSCs in CML. Therefore, combination treatment of TKIs and OR21 represents a promising treatment strategy in CML.
Collapse
Affiliation(s)
- Kazuharu Kamachi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan; Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Hiroshi Ureshino
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan; Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan.
| | - Tatsuro Watanabe
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Nao Yoshida
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuta Yamamoto
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuki Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan; OHARA Pharmaceutical Co., Ltd, Japan
| | - Yuki Fukuda-Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan; OHARA Pharmaceutical Co., Ltd, Japan
| | - Yoshihiro Hayashi
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hideyo Hirai
- Laboratory of Stem Cell Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Satoshi Yamashita
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Shinya Kimura
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan; Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
26
|
Sobočan N, Himelreich-Perić M, Katušić-Bojanac A, Krasić J, Sinčić N, Majić Ž, Jurić-Lekić G, Šerman L, Marić A, Ježek D, Bulić-Jakuš F. Extended Prophylactic Effect of N-tert-Butyl-α-phenylnitron against Oxidative/Nitrosative Damage Caused by the DNA-Hypomethylating Drug 5-Azacytidine in the Rat Placenta. Int J Mol Sci 2022; 23:603. [PMID: 35054786 PMCID: PMC8775603 DOI: 10.3390/ijms23020603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/10/2022] Open
Abstract
Antioxidant N-tert-Butyl-α-phenylnitron (PBN) partly protected embryos from the negative effects of a DNA demethylating drug 5-azacytidine during pregnancy. Our aim was to investigate PBN's impact on the placenta. Fischer rat dams were treated on gestation days (GD) 12 and 13 by PBN (40 mg/kg), followed by 5azaC (5 mg/kg) after one hour. Global methylation was assessed by pyrosequencing. Numerical density was calculated from immunohistochemical expression in single cells for proliferating (PCNA), oxidative (oxoguanosine) and nitrosative (nitrotyrosine) activity. Results were compared with the PBN-treated and control rats. PBN-pretreatment significantly increased placental weight at GD15 and GD20, diminished by 5azaC, and diminished apoptosis in GD 20 placentas caused by 5azaC. Oxoguanosine expression in placentas of 5azaC-treated dams was especially high in the placental labyrinth on GD 15, while PBN-pretreatment lowered its expression on GD 15 and GD 20 in both the labyrinth and basal layer. 5azaC enhanced nitrotyrosine level in the labyrinth of both gestational stages, while PBN-pretreatment lowered it. We conclude that PBN exerted its prophylactic activity against DNA hypomethylating agent 5azaC in the placenta through free radical scavenging, especially in the labyrinthine part of the placenta until the last day of pregnancy.
Collapse
Affiliation(s)
- Nikola Sobočan
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (N.S.); (A.K.-B.); (J.K.); (N.S.); (G.J.-L.); (L.Š.); (D.J.); (F.B.-J.)
- Department of Gastroenterology, University Hospital Merkur, 10000 Zagreb, Croatia
| | - Marta Himelreich-Perić
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (N.S.); (A.K.-B.); (J.K.); (N.S.); (G.J.-L.); (L.Š.); (D.J.); (F.B.-J.)
- Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Ana Katušić-Bojanac
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (N.S.); (A.K.-B.); (J.K.); (N.S.); (G.J.-L.); (L.Š.); (D.J.); (F.B.-J.)
- Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Jure Krasić
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (N.S.); (A.K.-B.); (J.K.); (N.S.); (G.J.-L.); (L.Š.); (D.J.); (F.B.-J.)
- Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Nino Sinčić
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (N.S.); (A.K.-B.); (J.K.); (N.S.); (G.J.-L.); (L.Š.); (D.J.); (F.B.-J.)
- Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Željka Majić
- Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Gordana Jurić-Lekić
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (N.S.); (A.K.-B.); (J.K.); (N.S.); (G.J.-L.); (L.Š.); (D.J.); (F.B.-J.)
- Department of Histology and Embryology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ljiljana Šerman
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (N.S.); (A.K.-B.); (J.K.); (N.S.); (G.J.-L.); (L.Š.); (D.J.); (F.B.-J.)
- Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Andreja Marić
- Department of Internal Medicine, County Hospital Čakovec, 40000 Čakovec, Croatia;
| | - Davor Ježek
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (N.S.); (A.K.-B.); (J.K.); (N.S.); (G.J.-L.); (L.Š.); (D.J.); (F.B.-J.)
- Department of Histology and Embryology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Floriana Bulić-Jakuš
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (N.S.); (A.K.-B.); (J.K.); (N.S.); (G.J.-L.); (L.Š.); (D.J.); (F.B.-J.)
- Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
27
|
Fernández-Serrano M, Winkler R, Santos JC, Le Pannérer MM, Buschbeck M, Roué G. Histone Modifications and Their Targeting in Lymphoid Malignancies. Int J Mol Sci 2021; 23:253. [PMID: 35008680 PMCID: PMC8745418 DOI: 10.3390/ijms23010253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
In a wide range of lymphoid neoplasms, the process of malignant transformation is associated with somatic mutations in B cells that affect the epigenetic machinery. Consequential alterations in histone modifications contribute to disease-specific changes in the transcriptional program. Affected genes commonly play important roles in cell cycle regulation, apoptosis-inducing signal transduction, and DNA damage response, thus facilitating the emergence of malignant traits that impair immune surveillance and favor the emergence of different B-cell lymphoma subtypes. In the last two decades, the field has made a major effort to develop therapies that target these epigenetic alterations. In this review, we discuss which epigenetic alterations occur in B-cell non-Hodgkin lymphoma. Furthermore, we aim to present in a close to comprehensive manner the current state-of-the-art in the preclinical and clinical development of epigenetic drugs. We focus on therapeutic strategies interfering with histone methylation and acetylation as these are most advanced in being deployed from the bench-to-bedside and have the greatest potential to improve the prognosis of lymphoma patients.
Collapse
Affiliation(s)
- Miranda Fernández-Serrano
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain; (M.F.-S.); (J.C.S.)
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08014 Barcelona, Spain
| | - René Winkler
- Chromatin, Metabolism and Cell Fate Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain; (R.W.); (M.-M.L.P.)
| | - Juliana C. Santos
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain; (M.F.-S.); (J.C.S.)
| | - Marguerite-Marie Le Pannérer
- Chromatin, Metabolism and Cell Fate Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain; (R.W.); (M.-M.L.P.)
| | - Marcus Buschbeck
- Chromatin, Metabolism and Cell Fate Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain; (R.W.); (M.-M.L.P.)
- Program of Personalized and Predictive Medicine of Cancer, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain; (M.F.-S.); (J.C.S.)
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08014 Barcelona, Spain
| |
Collapse
|
28
|
Wang Y, Chen C, Lin Y, Chen M, Cai J, Chen X, Chen S, Huang X, Lin Y. Polyurethane foam dressings ameliorating local adverse effects of azacitidine: a randomized controlled trial. Leuk Lymphoma 2021; 63:703-709. [PMID: 34818966 DOI: 10.1080/10428194.2021.1998482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study investigated the use of polyurethane foam dressings to prevent local adverse reactions of subcutaneous azacitidine injection. Patients receiving a subcutaneous azacitidine injection were randomly divided into experimental and control groups. A total of 55 patients were included in each group. A polyurethane foam dressing was used to cover the injection site of patients in the experimental group. Conventional treatment was used in the control group. Injection site pain and local skin reactions were assessed after the intervention in both groups. The score and duration of pain, the incidence and duration of local skin adverse reactions, and the incidence of severe reactions in the experimental group were significantly lower than in the control group (p < 0.05). Polyurethane foam dressing can effectively reduce local adverse reactions of subcutaneous injection of azacitidine, relieve pain, shorten the duration of local pain and adverse reactions, and improve the quality of nursing.
Collapse
Affiliation(s)
- Yufang Wang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou City, China
| | - Chunrong Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou City, China
| | - Yanfang Lin
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou City, China
| | - Meihua Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou City, China
| | - Jinxiang Cai
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou City, China
| | - Xiujuan Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou City, China
| | - Saizhen Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou City, China
| | - Xiaomei Huang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou City, China
| | - Yanjuan Lin
- Department of Nursing, Fujian Medical University Union Hospital, Fuzhou City, China
| |
Collapse
|
29
|
Shen FL, Zhao YN, Yu XL, Wang BL, Wu XL, Lan GC, Gao RL. Chinese Medicine Regulates DNA Methylation to Treat Haematological Malignancies: A New Paradigm of "State-Target Medicine". Chin J Integr Med 2021; 28:560-566. [PMID: 34241803 DOI: 10.1007/s11655-021-3316-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 12/19/2022]
Abstract
Aberrant regulation of DNA methylation plays a crucial causative role in haematological malignancies (HMs). Targeted therapy, aiming for DNA methylation, is an effective mainstay of modern medicine; however, many issues remain to be addressed. The progress of epigenetic studies and the proposed theory of "state-target medicine" have provided conditions to form a new treatment paradigm that combines the "body state adjustment" of CM with targeted therapy. We discussed the correlation between Chinese medicine (CM) syndromes/states and DNA methylation in this paper. Additionally, the latest research findings on the intervention and regulation of DNA methylation in HMs, including the core targets, therapy status, CM compounds and active components of the Chinese materia medica were concisely summarized to establish a theoretical foundation of "state-target synchronous conditioning" pattern of integrative medicine for HMs, simultaneously leading a new perspective in clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Feng-Lin Shen
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Yan-Na Zhao
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Xiao-Ling Yu
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Bo-Lin Wang
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Xiao-Long Wu
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Gao-Chen Lan
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Rui-Lan Gao
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China.
| |
Collapse
|
30
|
Reszka E, Jabłońska E, Wieczorek E, Valent P, Arock M, Nilsson G, Nedoszytko B, Niedoszytko M. Epigenetic Changes in Neoplastic Mast Cells and Potential Impact in Mastocytosis. Int J Mol Sci 2021; 22:2964. [PMID: 33803981 PMCID: PMC7999363 DOI: 10.3390/ijms22062964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
Systemic mastocytosis (SM) is a hematologic neoplasm with abnormal accumulation of mast cells in various organ systems such as the bone marrow, other visceral organs and skin. So far, only little is known about epigenetic changes contributing to the pathogenesis of SM. In the current article, we provide an overview of epigenetic changes that may occur and be relevant to mastocytosis, including mutations in genes involved in epigenetic processes, such as TET2, DNMT3A and ASXL1, and global and gene-specific methylation patterns in neoplastic cells. Moreover, we discuss methylation-specific pathways and other epigenetic events that may trigger disease progression in mast cell neoplasms. Finally, we discuss epigenetic targets and the effects of epigenetic drugs, such as demethylating agents and BET-targeting drugs, on growth and viability of neoplastic mast cells. The definitive impact of these targets and the efficacy of epigenetic therapies in advanced SM need to be explored in future preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Edyta Reszka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland; (E.J.); (E.W.)
| | - Ewa Jabłońska
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland; (E.J.); (E.W.)
| | - Edyta Wieczorek
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland; (E.J.); (E.W.)
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria;
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Michel Arock
- Department of Hematological Biology, Pitié-Sapêtrière Hospital, Sorbonne University, 75013 Paris, France;
| | - Gunnar Nilsson
- Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden;
| | - Bogusław Nedoszytko
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-211 Gdansk, Poland;
- Invicta Fertility and Reproductive Center, Molecular Laboratory, Polna 64, 81-740 Sopot, Poland
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, 80-211 Gdansk, Poland
| |
Collapse
|
31
|
Maćkowska N, Drobna-Śledzińska M, Witt M, Dawidowska M. DNA Methylation in T-Cell Acute Lymphoblastic Leukemia: In Search for Clinical and Biological Meaning. Int J Mol Sci 2021; 22:ijms22031388. [PMID: 33573325 PMCID: PMC7866817 DOI: 10.3390/ijms22031388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/21/2022] Open
Abstract
Distinct DNA methylation signatures, related to different prognosis, have been observed across many cancers, including T-cell acute lymphoblastic leukemia (T-ALL), an aggressive hematological neoplasm. By global methylation analysis, two major phenotypes might be observed in T-ALL: hypermethylation related to better outcome and hypomethylation, which is a candidate marker of poor prognosis. Moreover, DNA methylation holds more than a clinical meaning. It reflects the replicative history of leukemic cells and most likely different mechanisms underlying leukemia development in these T-ALL subtypes. The elucidation of the mechanisms and aberrations specific to (epi-)genomic subtypes might pave the way towards predictive diagnostics and precision medicine in T-ALL. We present the current state of knowledge on the role of DNA methylation in T-ALL. We describe the involvement of DNA methylation in normal hematopoiesis and T-cell development, focusing on epigenetic aberrations contributing to this leukemia. We further review the research investigating distinct methylation phenotypes in T-ALL, related to different outcomes, pointing to the most recent research aimed to unravel the biological mechanisms behind differential methylation. We highlight how technological advancements facilitated broadening the perspective of the investigation into DNA methylation and how this has changed our understanding of the roles of this epigenetic modification in T-ALL.
Collapse
|