1
|
Scholten D, El-Shennawy L, Jia Y, Zhang Y, Hyun E, Reduzzi C, Hoffmann AD, Almubarak HF, Tong F, Dashzeveg N, Sun Y, Squires JR, Lu J, Platanias LC, Wasserfall CH, Gradishar WJ, Cristofanilli M, Fang D, Liu H. Rare Subset of T Cells Form Heterotypic Clusters with Circulating Tumor Cells to Foster Cancer Metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646421. [PMID: 40236049 PMCID: PMC11996511 DOI: 10.1101/2025.04.01.646421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The immune ecosystem is central to maintaining effective defensive responses. However, how immune cells in the periphery blood interact with circulating tumor cells (CTCs) - seeds of metastasis - remains largely understudied. Here, our analysis of the blood specimens (N=1,529) from patients with advanced breast cancer revealed that over 75% of the CTC-positive blood specimens contained heterotypic CTC clusters with CD45 + white blood cells (WBCs). Detection of CTC-WBC clusters correlates with breast cancer subtypes (triple negative and luminal B), racial groups (Black), and decreased survival rates. Flow cytometry and ImageStream analyses revealed diverse WBC composition of heterotypic CTC-WBC clusters, including overrepresented T cells and underrepresented neutrophils. Most strikingly, a rare subset of CD4 and CD8 double positive T (DPT) cells showed an up to 140-fold enrichment in the CTC clusters versus its frequency in WBCs. DPT cells shared part of the profiles with CD4 + T cells and others with CD8 + T cells but exhibited unique features of T cell exhaustion and immune suppression with higher expression of TIM-3 and PD-1. Single-cell RNA sequencing and genetic perturbation studies further pinpointed the integrin VLA4 (α4β1) in DPT cells and its ligand VCAM1 in tumor cells as essential mediators of heterotypic WBC-CTC clusters. Neoadjuvant administration of anti-α4 (VLA4) neutralizing antibodies markedly blocked CTC-DPT cell clustering and inhibited metastasis for extended survival in preclinical mouse models in vivo . These findings uncover a pivotal role of rare DPT cells with immune suppressive features in fostering cancer dissemination through direct interactive clustering with CTCs. It lays a foundation for developing innovative biomarkers and therapeutic strategies to prevent and target cancer metastasis, ultimately benefiting cancer care. Brief summary Our findings uncover a fostering role of immune-suppressive T cells in contact with circulating tumor cells and identify therapeutic approaches to eliminate devastating cancer metastasis.
Collapse
|
2
|
Doğan B, Pirim D, Işık Ö, Evrensel T. Candidate Biomarkers Associated With Circulating Tumor Cell Status in Metastatic Colorectal Cancer. J Clin Lab Anal 2025; 39:e70013. [PMID: 40066900 PMCID: PMC11981952 DOI: 10.1002/jcla.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/10/2025] [Accepted: 02/21/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) ranks as the third most prevalent cancer worldwide. Recent studies suggest the promising potential of microRNAs (miRNA) in predicting the status of circulating tumor cells (CTC), and their combined analyses could pave the way for significant advancements in assessing the risk of metastatic cancer. Here, we investigate the circulating miRNA signatures associated with CTC status in metastatic CRC (mCRC). METHODS The CTC status of mCRC patients was assessed using AdnaTest ColonCancer technology, which detects tumor cells using an immunomagnetic approach and characterizes them based on colon-specific surface markers. The miRNA profiles were analyzed using the Agilent miRNA microarray in 8 CTC-positive, 8 CTC-negative, and eight healthy individuals. The functional implications of dysregulated miRNAs and their interactions with target mRNAs, TFs, and lncRNAs were determined through a comprehensive in silico analysis. Candidate miRNAs that were differentially expressed in CTC-positive and CTC-negative groups, which have prior evidence for their role in CRC biology, were validated using qPCR. RESULTS We identified two groups of dysregulated miRNAs associated with CTC status and multiple candidate biomarkers in suggested miRNA regulatory networks. Three miRNAs (hsa-miR-199a-5p, hsa-miR-326, hsa-miR-500b-5p), which were downregulated in the CTC-positive group compared to the CTC-negative group, were confirmed by qPCR and prioritized as candidate predictors of CTC status in mCRC. CONCLUSION Our findings suggest biomarker candidates that can be used to predict CTC status in individuals with mCRC. This might also provide new insights into new translational medicine applications in the management of mCRC through miRNA-based CRC-associated CTC detection.
Collapse
Affiliation(s)
- Berkcan Doğan
- Department of Translational Medicine, Institute of Health SciencesBursa Uludag UniversityBursaTürkiye
- Faculty of Medicine, Department of Medical GeneticsBursa Uludag UniversityBursaTürkiye
| | - Dilek Pirim
- Department of Translational Medicine, Institute of Health SciencesBursa Uludag UniversityBursaTürkiye
- Faculty of Arts and Science, Department of Molecular Biology and GeneticsBursa Uludag UniversityBursaTürkiye
| | - Özgen Işık
- Faculty of Medicine, Department of General SurgeryBursa Uludag UniversityBursaTürkiye
| | - Türkkan Evrensel
- Department of Translational Medicine, Institute of Health SciencesBursa Uludag UniversityBursaTürkiye
- Faculty of Medicine, Department of Medical OncologyBursa Uludag UniversityBursaTürkiye
| |
Collapse
|
3
|
Guo X, Wang W, Cheng X, Song Q, Wang X, Wei J, Xu S, Lv X, Ji G. Diagnostic efficacy of an extracellular vesicle-derived lncRNA-based liquid biopsy signature for the early detection of early-onset gastric cancer. Gut 2025:gutjnl-2024-333657. [PMID: 40113244 DOI: 10.1136/gutjnl-2024-333657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Early-onset gastric cancer (EOGC) is a lethal malignancy. It differs from late-onset gastric cancer (LOGC) in clinical and molecular characteristics. The current strategies for EOGC detection have certain limitations in diagnostic performance due to the rising trend in EOGC. OBJECTIVE We developed a liquid biopsy signature for EOGC detection. DESIGN We use a systematic discovery approach by analysing genome-wide transcriptomic profiling data from EOGC (n=43), LOGC (n=31) and age-matched non-disease controls (n=37) tissue samples. An extracellular vesicle-derived long non-coding RNA (EV-lncRNA) signature was identified in blood samples from a training cohort (n=299), and subsequently confirmed by qPCR in two external validation cohorts (n=462 and n=438), a preoperative/postoperative cohort (n=66) and a gastrointestinal tumour cohort (n=225). RESULTS A three EV-lncRNA (NALT1, PTENP1 and HOTTIP) liquid biopsy signature was developed for EOGC detection with an area under the receiver operating characteristic curve (AUROC) of 0.924 (95% CI 0.889 to 0.953). This EV-lncRNA signature provided robust diagnostic performance in two external validation cohorts (Xi'an cohort: AUROC, 0.911; Beijing cohort: AUROC, 0.9323). Furthermore, the EV-lncRNA signature reliably identified resectable stage EOGC patients (stage I/II) and demonstrated better diagnostic performance than traditional GC-related biomarkers in distinguishing early-stage EOGC (stage I) from precancerous lesions. The low levels of this biomarker in postsurgery and other gastrointestinal tumour plasma samples indicated its GC specificity. CONCLUSIONS The newly developed EV-lncRNA signature effectively identified EOGC patients at a resectable stage with enhanced precision, thereby improving the prognosis of patients who would have otherwise missed the curative treatment window.
Collapse
Affiliation(s)
- Xin Guo
- Department of General Surgery, Xijing 986th Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Weidong Wang
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xin Cheng
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qiying Song
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xinxin Wang
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiangpeng Wei
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shenhui Xu
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaohui Lv
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Gang Ji
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Joshi R, Ahmadi H, Gardner K, Bright RK, Wang W, Li W. Advances in microfluidic platforms for tumor cell phenotyping: from bench to bedside. LAB ON A CHIP 2025; 25:856-883. [PMID: 39774602 PMCID: PMC11859771 DOI: 10.1039/d4lc00403e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Heterogeneities among tumor cells significantly contribute towards cancer progression and therapeutic inefficiency. Hence, understanding the nature of cancer through liquid biopsies and isolation of circulating tumor cells (CTCs) has gained considerable interest over the years. Microfluidics has emerged as one of the most popular platforms for performing liquid biopsy applications. Various label-free and labeling techniques using microfluidic platforms have been developed, the majority of which focus on CTC isolation from normal blood cells. However, sorting and profiling of various cell phenotypes present amongst those CTCs is equally important for prognostics and development of personalized therapies. In this review, firstly, we discuss the biophysical and biochemical heterogeneities associated with tumor cells and CTCs which contribute to cancer progression. Moreover, we discuss the recently developed microfluidic platforms for sorting and profiling of tumor cells and CTCs. These techniques are broadly classified into biophysical and biochemical phenotyping methods. Biophysical methods are further classified into mechanical and electrical phenotyping. While biochemical techniques have been categorized into surface antigen expressions, metabolism, and chemotaxis-based phenotyping methods. We also shed light on clinical studies performed with these platforms over the years and conclude with an outlook for the future development in this field.
Collapse
Affiliation(s)
- Rutwik Joshi
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Hesaneh Ahmadi
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Karl Gardner
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Robert K Bright
- Department of Immunology & Molecular Microbiology, School of Medicine & Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Wenwen Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
5
|
Wang Y, Cao N, Cui X, Liu Z, Yuan X, Chen S, Xu H, Yi M, Ti Y, Zheng F, Cai K. Detection of circulating tumor cells using a microfluidic chip for diagnostics and therapeutic prediction in mediastinal neuroblastoma. Eur J Pediatr 2024; 184:93. [PMID: 39702653 DOI: 10.1007/s00431-024-05896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024]
Abstract
Circulating tumor cells (CTCs) have served as noninvasive tumor biomarkers in many types of cancer. Here, we detected CTCs in mediastinal neuroblastoma (mNB) patients for use as diagnostic and treatment response predictive biomarkers. We employed a cascaded filter deterministic lateral displacement microfluidic chip (CFD-Chip) to enrich CTCs in peripheral blood from 32 mNB patients and 7 healthy children. CTCs were identified by immunofluorescence staining and integrated neoplastic cell morphology. In total, 66.67% of newly diagnosed mNB patients were positive for CTCs while no CTCs were detected in healthy children. Moreover, CTC count differed significantly across different International Neuroblastoma Staging System, International Neuroblastoma Risk Group staging system, and risk stratifications. CTC count was also significantly higher in children with metastasis than those without metastasis. Additionally, CTC demonstrated a significant difference among patients with different clinical responses to therapy. CTC count decreased or fluctuated at low levels in patients with complete and partial response, compared to considerably increased in patients with stable and progressive diseases.Conclusion: CTCs may serve as non-invasive indicators for mNB diagnosis, staging, and metastasis prediction, and demonstrate promising potential as a liquid biopsy biomarker for the dynamic monitoring of therapeutic efficacy.
Collapse
Affiliation(s)
- Yuanxiang Wang
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Cardiothoracic Surgery, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Nianhua Cao
- Shenzhen Zigzag Biotechnology Co., Ltd, Shenzhen, 518107, China
| | - Xiufang Cui
- Shenzhen Zigzag Biotechnology Co., Ltd, Shenzhen, 518107, China
| | - Zongbin Liu
- Shenzhen Zigzag Biotechnology Co., Ltd, Shenzhen, 518107, China
| | - Xiuli Yuan
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Senmin Chen
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Huanli Xu
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Meng Yi
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Yunxing Ti
- Department of Cardiothoracic Surgery, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Fengnan Zheng
- Department of Cardiothoracic Surgery, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Kaican Cai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Xie P, Zhang X, Liu T, Song Y, Zhang Q, Wan D, Wang S, Wang S, Zhang W. Concordance of HER2 status between primary tumor and circulating tumor cells in breast cancer. Discov Oncol 2024; 15:760. [PMID: 39692928 DOI: 10.1007/s12672-024-01663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND During tumor progression, HER2 expression undergoes dynamic changes. Circulating tumor cells (CTCs) can be used to monitor HER2 expression in real-time and hold potential for clinical application. This study aimed to evaluate the consistency of HER2 expression between primary tumors and CTCs in patients with breast cancer (BC). METHODS We used a previously established telomerase reverse transcriptase-based CTC detection method (TBCD) combined with anti-HER2 antibody to detect CTC and HER2-positive CTC (HER2 + CTC) in 4 ml of peripheral blood from patients with breast cancer prior to radiotherapy. The results indicated that the status of HER2 in CTC was inconsistent with the histological results. RESULTS Discordance in HER2 status between primary tumor and CTC was observed in 32.6% of patients (kappa value = 0.325, p = 0.03). And among patients with histologically HER2-negative breast cancer, the detection rate of HER2 + CTC was 32.1% (9/28). CONCLUSIONS We found that the HER2 status of CTC in peripheral blood was inconsistent with the histological findings. Further research should explore the clinical significance of detecting HER2-positive CTCs, and it is desired that real-time HER2 status testing of CTCs could hold potential value for patients with breast cancer.
Collapse
Affiliation(s)
- Peipei Xie
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaoli Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tianyi Liu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuchun Song
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qi Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Duo Wan
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shijia Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shulian Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
7
|
Ma C, Li Y, Zhu H, Li Z, Liu Y. Clinical applications of circulating tumor cell detection: challenges and strategies. Clin Chem Lab Med 2024:cclm-2024-0959. [PMID: 39610299 DOI: 10.1515/cclm-2024-0959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024]
Abstract
Circulating tumor cells (CTCs) are pivotal in the distant metastasis of tumors, serving as one of the primary materials for liquid biopsy. They hold significant clinical importance in assessing prognosis, predicting efficacy, evaluating therapeutic outcomes, and studying recurrence, metastasis, and resistance mechanisms in cancer patients. Nevertheless, the rareness and heterogeneity of CTC and the complexity of metastasis make the clinical application of CTC detection confront many challenges, which may need to be settled by some practical strategies. This article will review the content mentioned above.
Collapse
Affiliation(s)
- Chunhui Ma
- Faculty of Medical Imaging, Naval Medical University, Shanghai, China
| | - Yang Li
- Faculty of Medical Imaging, Naval Medical University, Shanghai, China
| | - Hai Zhu
- Faculty of Medical Imaging, Naval Medical University, Shanghai, China
| | - Zhiyong Li
- Faculty of Medical Imaging, Naval Medical University, Shanghai, China
| | - Yi Liu
- 26460 The Fifth Medical Center of Chinese PLA General Hospital , Beijing, China
| |
Collapse
|
8
|
Zhang Q, Zhang X, Xie P, Zhang W. Liquid biopsy: An arsenal for tumour screening and early diagnosis. Cancer Treat Rev 2024; 129:102774. [PMID: 38851148 DOI: 10.1016/j.ctrv.2024.102774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Cancer has become the second leading cause of death in the world, and more than 50% of cancer patients are diagnosed at an advanced stage. Early diagnosis of tumours is the key to improving patient quality of life and survival time and reducing the socioeconomic burden. However, there is still a lack of reliable early diagnosis methods in clinical practice. In recent years, liquid biopsy technology has developed rapidly. It has the advantages of noninvasiveness, easy access to sample sources, and reproducibility. It has become the main focus of research on the early diagnosis methods of tumours. This review summarises the research progress of existing liquid biopsy markers, such as circulating tumour DNA, circulating viral DNA, DNA methylation, circulating tumour cells, circulating RNA, exosomes, and tumour education platelets in early diagnosis of tumours, and analyses the current advantages and limitations of various markers, providing a direction for the application and transformation of liquid biopsy research in early diagnosis of clinical tumours.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaoli Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Peipei Xie
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
9
|
Wang S, Liu X, Lv H, Yu J, Li H. The detection of circulating tumor cells indicates poor therapeutic efficacy and prognosis in patients with nonsmall cell lung cancer: A systematic review and meta-analysis. J Evid Based Med 2024; 17:329-340. [PMID: 38600712 DOI: 10.1111/jebm.12606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
OBJECTIVE The efficacy and prognostic value of circulating tumor cells (CTCs) in nonsmall cell lung cancer (NSCLC) are controversial based on the existing research. This systematic review and meta-analysis evaluated the significance of CTCs in NSCLC therapy monitoring and prognosis prediction, supporting their potential as clinical biomarkers. METHODS We conducted a comprehensive search of PubMed, Embase, Web of Science, The Cochrane Library, WanFang Data, CNKI, and VIP through September 20, 2023. Inclusion criteria were cohort studies involving NSCLC patients, focusing on peripheral blood CTCs, and assessing outcomes such as pre- and posttreatment CTC rates or levels, progression-free survival (PFS), and overall survival (OS). Two reviewers independently extracted the data and assessed risk of bias using the Newcastle-Ottawa Scale. We utilized Review Manager 5.4.1 for meta-analysis, calculating pooled odds ratios (ORs) for dichotomous outcomes, mean differences for continuous variables and hazard ratios (HRs) for survival data, applying fixed- or random-effects models based on heterogeneity assessed by the I2 statistic. This study was registered in PROSPERO (No. CRD42023450035). RESULTS Twenty-two eligible studies with a total of 1674 NSCLC patients were included. Meta-analysis results showed that the CTCs-positive rate (OR = 0.59, 95% CI 0.45 to 0.77, p = 0.0001) and CTCs count (mean difference = -3.10, 95% CI -5.52 to -0.69, p = 0.01) were significantly decreased after antitumor treatment. Compared with the CTCs nonreduced group, the CTC-reduced group showed better PFS (HR = 1.71, 95% CI 1.35 to 2.17, p < 0.00001) and OS (HR = 1.50, 95% CI 1.21 to 1.86, p = 0.0003) after treatment. PFS and OS in CTC-positive groups were lower than those in the CTCs-negative group pretreatment (HR = 2.49, 95% CI 1.78 to 3.47, p < 0.00001; HR = 1.80, 95% CI 1.29 to 2.52, p = 0.0006) and posttreatment (HR = 3.36, 95% CI 2.12 to 5.33, p < 0.00001; HR = 3.31, 95% CI 1.75 to 6.27, p = 0.0002). CONCLUSIONS CTCs can be used as a biomarker to monitor NSCLC efficacy, predict prognosis and guide follow-up treatment.
Collapse
Affiliation(s)
- Shan Wang
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaolin Liu
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongwei Lv
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Yu
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Huihui Li
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Sallam M, Nguyen NT, Sainsbury F, Kimizuka N, Muyldermans S, Benešová-Schäfer M. PSMA-targeted radiotheranostics in modern nuclear medicine: then, now, and what of the future? Theranostics 2024; 14:3043-3079. [PMID: 38855174 PMCID: PMC11155394 DOI: 10.7150/thno.92612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/04/2024] [Indexed: 06/11/2024] Open
Abstract
In 1853, the perception of prostate cancer (PCa) as a rare ailment prevailed, was described by the eminent Londoner surgeon John Adams. Rapidly forward to 2018, the landscape dramatically altered. Currently, men face a one-in-nine lifetime risk of PCa, accentuated by improved diagnostic methods and an ageing population. With more than three million men in the United States alone grappling with this disease, the overall risk of succumbing to stands at one in 39. The intricate clinical and biological diversity of PCa poses serious challenges in terms of imaging, ongoing monitoring, and disease management. In the field of theranostics, diagnostic and therapeutic approaches that harmoniously merge targeted imaging with treatments are integrated. A pivotal player in this arena is radiotheranostics, employing radionuclides for both imaging and therapy, with prostate-specific membrane antigen (PSMA) at the forefront. Clinical milestones have been reached, including FDA- and/or EMA-approved PSMA-targeted radiodiagnostic agents, such as [18F]DCFPyL (PYLARIFY®, Lantheus Holdings), [18F]rhPSMA-7.3 (POSLUMA®, Blue Earth Diagnostics) and [68Ga]Ga-PSMA-11 (Locametz®, Novartis/ ILLUCCIX®, Telix Pharmaceuticals), as well as PSMA-targeted radiotherapeutic agents, such as [177Lu]Lu-PSMA-617 (Pluvicto®, Novartis). Concurrently, ligand-drug and immune therapies designed to target PSMA are being advanced through rigorous preclinical research and clinical trials. This review delves into the annals of PSMA-targeted radiotheranostics, exploring its historical evolution as a signature molecule in PCa management. We scrutinise its clinical ramifications, acknowledge its limitations, and peer into the avenues that need further exploration. In the crucible of scientific inquiry, we aim to illuminate the path toward a future where the enigma of PCa is deciphered and where its menace is met with precise and effective countermeasures. In the following sections, we discuss the intriguing terrain of PCa radiotheranostics through the lens of PSMA, with the fervent hope of advancing our understanding and enhancing clinical practice.
Collapse
Affiliation(s)
- Mohamed Sallam
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- Griffith Institute for Drug Discovery (GRIDD), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Frank Sainsbury
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- Griffith Institute for Drug Discovery (GRIDD), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Research Center for Negative Emissions Technologies (K-NETs), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology (CMIM), Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Martina Benešová-Schäfer
- Research Group Molecular Biology of Systemic Radiotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Abusamra SM, Barber R, Sharafeldin M, Edwards CM, Davis JJ. The integrated on-chip isolation and detection of circulating tumour cells. SENSORS & DIAGNOSTICS 2024; 3:562-584. [PMID: 38646187 PMCID: PMC11025039 DOI: 10.1039/d3sd00302g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/12/2024] [Indexed: 04/23/2024]
Abstract
Circulating tumour cells (CTCs) are cancer cells shed from a primary tumour which intravasate into the blood stream and have the potential to extravasate into distant tissues, seeding metastatic lesions. As such, they can offer important insight into cancer progression with their presence generally associated with a poor prognosis. The detection and enumeration of CTCs is, therefore, critical to guiding clinical decisions during treatment and providing information on disease state. CTC isolation has been investigated using a plethora of methodologies, of which immunomagnetic capture and microfluidic size-based filtration are the most impactful to date. However, the isolation and detection of CTCs from whole blood comes with many technical barriers, such as those presented by the phenotypic heterogeneity of cell surface markers, with morphological similarity to healthy blood cells, and their low relative abundance (∼1 CTC/1 billion blood cells). At present, the majority of reported methods dissociate CTC isolation from detection, a workflow which undoubtedly contributes to loss from an already sparse population. This review focuses on developments wherein isolation and detection have been integrated into a single-step, microfluidic configuration, reducing CTC loss, increasing throughput, and enabling an on-chip CTC analysis with minimal operator intervention. Particular attention is given to immune-affinity, microfluidic CTC isolation, coupled to optical, physical, and electrochemical CTC detection (quantitative or otherwise).
Collapse
Affiliation(s)
- Sophia M Abusamra
- Nuffield Department of Surgical Sciences, University of Oxford Oxford OX3 9DU UK
| | - Robert Barber
- Department of Chemistry, University of Oxford Oxford OX1 3QZ UK
| | | | - Claire M Edwards
- Nuffield Department of Surgical Sciences, University of Oxford Oxford OX3 9DU UK
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Systems, University of Oxford Oxford UK
| | - Jason J Davis
- Department of Chemistry, University of Oxford Oxford OX1 3QZ UK
| |
Collapse
|
12
|
Allen TA. The Role of Circulating Tumor Cells as a Liquid Biopsy for Cancer: Advances, Biology, Technical Challenges, and Clinical Relevance. Cancers (Basel) 2024; 16:1377. [PMID: 38611055 PMCID: PMC11010957 DOI: 10.3390/cancers16071377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer remains a leading cause of mortality worldwide, with metastasis significantly contributing to its lethality. The metastatic spread of tumor cells, primarily through the bloodstream, underscores the importance of circulating tumor cells (CTCs) in oncological research. As a critical component of liquid biopsies, CTCs offer a non-invasive and dynamic window into tumor biology, providing invaluable insights into cancer dissemination, disease progression, and response to treatment. This review article delves into the recent advancements in CTC research, highlighting their emerging role as a biomarker in various cancer types. We explore the latest technologies and methods for CTC isolation and detection, alongside novel approaches to characterizing their biology through genomics, transcriptomics, proteomics, and epigenetic profiling. Additionally, we examine the clinical implementation of these findings, assessing how CTCs are transforming the landscape of cancer diagnosis, prognosis, and management. By offering a comprehensive overview of current developments and potential future directions, this review underscores the significance of CTCs in enhancing our understanding of cancer and in shaping personalized therapeutic strategies, particularly for patients with metastatic disease.
Collapse
|
13
|
Gurkan UA, Wood DK, Carranza D, Herbertson LH, Diamond SL, Du E, Guha S, Di Paola J, Hines PC, Papautsky I, Shevkoplyas SS, Sniadecki NJ, Pamula VK, Sundd P, Rizwan A, Qasba P, Lam WA. Next generation microfluidics: fulfilling the promise of lab-on-a-chip technologies. LAB ON A CHIP 2024; 24:1867-1874. [PMID: 38487919 PMCID: PMC10964744 DOI: 10.1039/d3lc00796k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Microfluidic lab-on-a-chip technologies enable the analysis and manipulation of small fluid volumes and particles at small scales and the control of fluid flow and transport processes at the microscale, leading to the development of new methods to address a broad range of scientific and medical challenges. Microfluidic and lab-on-a-chip technologies have made a noteworthy impact in basic, preclinical, and clinical research, especially in hematology and vascular biology due to the inherent ability of microfluidics to mimic physiologic flow conditions in blood vessels and capillaries. With the potential to significantly impact translational research and clinical diagnostics, technical issues and incentive mismatches have stymied microfluidics from fulfilling this promise. We describe how accessibility, usability, and manufacturability of microfluidic technologies should be improved and how a shift in mindset and incentives within the field is also needed to address these issues. In this report, we discuss the state of the microfluidic field regarding current limitations and propose future directions and new approaches for the field to advance microfluidic technologies closer to translation and clinical use. While our report focuses on using blood as the prototypical biofluid sample, the proposed ideas and research directions can be extrapolated to other areas of hematology, oncology, biology, and medicine.
Collapse
Affiliation(s)
| | | | | | | | | | - E Du
- Florida Atlantic University, USA
| | | | | | - Patrick C Hines
- Wayne State University School of Medicine, USA
- Functional Fluidics, Inc., USA
| | | | | | | | | | - Prithu Sundd
- VERSITI Blood Research Institute and Medical College of Wisconsin, USA
| | - Asif Rizwan
- National Heart, Lung, and Blood Institute, USA
| | | | | |
Collapse
|
14
|
Abdul Wahab MR, Palaniyandi T, Viswanathan S, Baskar G, Surendran H, Gangadharan SGD, Sugumaran A, Sivaji A, Kaliamoorthy S, Kumarasamy S. Biomarker-specific biosensors revolutionise breast cancer diagnosis. Clin Chim Acta 2024; 555:117792. [PMID: 38266968 DOI: 10.1016/j.cca.2024.117792] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Breast cancer is the most common cancer among women across the globe. In order to treat breast cancer successfully, it is crucial to conduct a comprehensive assessment of the condition during its initial stages. Although mammogram screening has long been a common method of breast cancer screening, high rates of type I error and type II error results as well as radiation exposure have always been of concern. The outgrowth cancer mortality rate is primarily due to delayed diagnosis, which occurs most frequently in a metastatic III or IV stage, resulting in a poor prognosis after therapy. Traditional detection techniques require identifying carcinogenic properties of cells, such as DNA or RNA alterations, conformational changes and overexpression of certain proteins, and cell shape, which are referred to as biomarkers or analytes. These procedures are complex, long-drawn-out, and expensive. Biosensors have recently acquired appeal as low-cost, simple, and super sensitive detection methods for analysis. The biosensor approach requires the existence of biomarkers in the sample. Thus, the development of novel molecular markers for diverse forms of cancer is a rising complementary affair. These biosensor devices offer two major advantages: (1) a tiny amount of blood collected from the patient is sufficient for analysis, and (2) it could help clinicians swiftly select and decide on the best therapy routine for the individual. This review will include updates on prospective cancer markers and biosensors in cancer diagnosis, as well as the associated detection limitations, with a focus on biosensor development for marker detection.
Collapse
Affiliation(s)
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India.
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Hemapreethi Surendran
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - S G D Gangadharan
- Department of Medical Oncology, Madras Medical College, R. G. G. G. H., Chennai, Tamil Nadu, India
| | - Abimanyu Sugumaran
- Department of Pharmaceutical Sciences, Assam University, (A Central University), Silchar, Assam, India
| | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, India
| | - Senthilkumar Kaliamoorthy
- Department of Electronics and Communication Engineering, Dr. M.G.R Educational and Research Institute, Chennai, Tamil Nadu, India
| | - Saravanan Kumarasamy
- Department of Electrical and Electronics Engineering, Dr. M.G.R Educational and Research Institute, Chennai, Tamil Nadu, India
| |
Collapse
|
15
|
Cai S, Deng Y, Wang Z, Zhu J, Huang C, Du L, Wang C, Yu X, Liu W, Yang C, Wang Z, Wang L, Ma K, Huang R, Zhou X, Zou H, Zhang W, Huang Y, Li Z, Qin T, Xu T, Guo X, Yu Z. Development and clinical validation of a microfluidic-based platform for CTC enrichment and downstream molecular analysis. Front Oncol 2023; 13:1238332. [PMID: 37849806 PMCID: PMC10578963 DOI: 10.3389/fonc.2023.1238332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/29/2023] [Indexed: 10/19/2023] Open
Abstract
Background Although many CTC isolation and detection methods can provide information on cancer cell counts, downstream gene and protein analysis remain incomplete. Therefore, it is crucial to develop a technology that can provide comprehensive information on both the number and profile of CTC. Methods In this study, we developed a novel microfluidics-based CTC separation and enrichment platform that provided detailed information about CTC. Results This platform exhibits exceptional functionality, achieving high rates of CTC recovery (87.1%) and purification (∼4 log depletion of WBCs), as well as accurate detection (95.10%), providing intact and viable CTCs for downstream analysis. This platform enables successful separation and enrichment of CTCs from a 4 mL whole-blood sample within 15 minutes. Additionally, CTC subtypes, selected protein expression levels on the CTC surface, and target mutations in selected genes can be directly analyzed for clinical utility using immunofluorescence and real-time polymerase chain reaction, and the detected PD-L1 expression in CTCs is consistent with immunohistochemical assay results. Conclusion The microfluidic-based CTC enrichment platform and downstream molecular analysis together provide a possible alternative to tissue biopsy for precision cancer management, especially for patients whose tissue biopsies are unavailable.
Collapse
Affiliation(s)
- Songhua Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Youjun Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Junyu Zhu
- Institute of Cancer Control, Cancer Hospital of Xinjiang Medical University, Urumqi, China
| | - Chujian Huang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Longde Du
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Chunguang Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Xiangyang Yu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Wenyi Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Chenglin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zhe Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Lixu Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Kai Ma
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Rui Huang
- Shenzhen Futian Research Institute, City University of Hong Kong, Shenzhen, China
| | - Xiaoyu Zhou
- Department of Medical Affairs, Cellomics (ShenZhen) Limited, Shenzhen, China
| | - Heng Zou
- Department of Medical Affairs, Cellomics (ShenZhen) Limited, Shenzhen, China
| | - Wenchong Zhang
- Department of Medical Affairs, Cellomics (ShenZhen) Limited, Shenzhen, China
| | - Yan Huang
- Department of Medical Affairs, Cellomics (ShenZhen) Limited, Shenzhen, China
| | - Zhi Li
- Department of Medical Affairs, Cellomics (ShenZhen) Limited, Shenzhen, China
| | - Tiaoping Qin
- Department of Medical Affairs, Cellomics (ShenZhen) Limited, Shenzhen, China
| | - Tao Xu
- Department of Medical Affairs, Cellomics (ShenZhen) Limited, Shenzhen, China
| | - Xiaotong Guo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zhentao Yu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
16
|
Yeh PY, Chen JY, Shen MY, Che TF, Lim SC, Wang J, Tsai WS, Frank CW, Huang CJ, Chang YC. Liposome-tethered supported lipid bilayer platform for capture and release of heterogeneous populations of circulating tumor cells. J Mater Chem B 2023; 11:8159-8169. [PMID: 37313622 DOI: 10.1039/d3tb00547j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Because of scarcity, vulnerability, and heterogeneity in the population of circulating tumor cells (CTCs), the CTC isolation system relying on immunoaffinity interaction exhibits inconsistent efficiencies for all types of cancers and even CTCs with different phenotypes in individuals. Moreover, releasing viable CTCs from an isolation system is of importance for molecular analysis and drug screening in precision medicine, which remains a challenge for current systems. In this work, a new CTC isolation microfluidic platform was developed and contains a coating of the antibody-conjugated liposome-tethered-supported lipid bilayer in a developed chaotic-mixing microfluidic system, referred to as the "LIPO-SLB" platform. The biocompatible, soft, laterally fluidic, and antifouling properties of the LIPO-SLB platform offer high CTC capture efficiency, viability, and selectivity. We successfully demonstrated the capability of the LIPO-SLB platform to recapitulate different cancer cell lines with different antigen expression levels. In addition, the captured CTCs in the LIPO-SLB platform can be detached by air foam to destabilize the physically assembled bilayer structures due to a large water/air interfacial area and strong surface tension. More importantly, the LIPO-SLB platform was constructed and used for the verification of clinical samples from 161 patients with different primary cancer types. The mean values of both single CTCs and CTC clusters correlated well with the cancer stages. Moreover, a considerable number of CTCs were isolated from patients' blood samples in the early/localized stages. The clinical validation demonstrated the enormous potential of the universal LIPO-SLB platform as a tool for prognostic and predictive purposes in precision medicine.
Collapse
Affiliation(s)
- Po-Ying Yeh
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jia-Yang Chen
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Mo-Yuan Shen
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ting-Fang Che
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
| | - Syer Choon Lim
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
| | - Jocelyn Wang
- The College, The University of Chicago, Chicago, IL 60637, USA
| | - Wen-Sy Tsai
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Science, Chang Gung University, Linkou, Taoyuan, Taiwan
| | - Curtis W Frank
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Chun-Jen Huang
- Department of Chemical & Materials Engineering, and NCU-Covestro Research Center, National Central University, Jhong-Li, Taoyuan 320, Taiwan.
- R&D Center for Membrane Technology, Chung Yuan Christian University, 200 Chung Pei Rd., Chung-Li City 32023, Taiwan
| | - Ying-Chih Chang
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
17
|
Huang D, Ma N, Li X, Gou Y, Duan Y, Liu B, Xia J, Zhao X, Wang X, Li Q, Rao J, Zhang X. Advances in single-cell RNA sequencing and its applications in cancer research. J Hematol Oncol 2023; 16:98. [PMID: 37612741 PMCID: PMC10463514 DOI: 10.1186/s13045-023-01494-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Cancers are a group of heterogeneous diseases characterized by the acquisition of functional capabilities during the transition from a normal to a neoplastic state. Powerful experimental and computational tools can be applied to elucidate the mechanisms of occurrence, progression, metastasis, and drug resistance; however, challenges remain. Bulk RNA sequencing techniques only reflect the average gene expression in a sample, making it difficult to understand tumor heterogeneity and the tumor microenvironment. The emergence and development of single-cell RNA sequencing (scRNA-seq) technologies have provided opportunities to understand subtle changes in tumor biology by identifying distinct cell subpopulations, dissecting the tumor microenvironment, and characterizing cellular genomic mutations. Recently, scRNA-seq technology has been increasingly used in cancer studies to explore tumor heterogeneity and the tumor microenvironment, which has increased the understanding of tumorigenesis and evolution. This review summarizes the basic processes and development of scRNA-seq technologies and their increasing applications in cancer research and clinical practice.
Collapse
Affiliation(s)
- Dezhi Huang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Naya Ma
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xinlei Li
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Yang Gou
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Yishuo Duan
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Bangdong Liu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Jing Xia
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xianlan Zhao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Qiong Li
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| | - Jun Rao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
18
|
Pattiya Arachchillage KGG, Chandra S, Williams A, Piscitelli P, Pham J, Castillo A, Florence L, Rangan S, Artes Vivancos JM. Electrical detection of RNA cancer biomarkers at the single-molecule level. Sci Rep 2023; 13:12428. [PMID: 37528139 PMCID: PMC10393997 DOI: 10.1038/s41598-023-39450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
Cancer is a significant healthcare issue, and early screening methods based on biomarker analysis in liquid biopsies are promising avenues to reduce mortality rates. Electrical detection of nucleic acids at the single molecule level could enable these applications. We examine the electrical detection of RNA cancer biomarkers (KRAS mutants G12C and G12V) as a single-molecule proof-of-concept electrical biosensor for cancer screening applications. We show that the electrical conductance is highly sensitive to the sequence, allowing discrimination of the mutants from a wild-type KRAS sequence differing in just one base. In addition to this high specificity, our results also show that these biosensors are sensitive down to an individual molecule with a high signal-to-noise ratio. These results pave the way for future miniaturized single-molecule electrical biosensors that could be groundbreaking for cancer screening and other applications.
Collapse
Affiliation(s)
| | - Subrata Chandra
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Ajoke Williams
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Patrick Piscitelli
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Jennifer Pham
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Aderlyn Castillo
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Lily Florence
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Srijith Rangan
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Juan M Artes Vivancos
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
19
|
Guo X, Peng Y, Song Q, Wei J, Wang X, Ru Y, Xu S, Cheng X, Li X, Wu D, Chen L, Wei B, Lv X, Ji G. A Liquid Biopsy Signature for the Early Detection of Gastric Cancer in Patients. Gastroenterology 2023; 165:402-413.e13. [PMID: 36894035 DOI: 10.1053/j.gastro.2023.02.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND & AIMS Diagnosing gastric cancer (GC) while the disease remains eligible for surgical resection is challenging. In view of this clinical challenge, novel and robust biomarkers for early detection thus improving prognosis of GC are necessary. The present study is to develop a blood-based long noncoding RNA (LR) signature for the early-detection of GC. METHODS The present 3-step study incorporated data from 2141 patients, including 888 with GC, 158 with chronic atrophic gastritis, 193 with intestinal metaplasia, 501 healthy donors, and 401 with other gastrointestinal cancers. The LR profile of stage I GC tissue samples were analyzed using transcriptomic profiling in discovery phase. The extracellular vesicle (EV)-derived LR signature was identified with a training cohort (n = 554) and validated with 2 external cohorts (n = 429 and n = 504) and a supplemental cohort (n = 69). RESULTS In discovery phase, one LR (GClnc1) was found to be up-regulated in both tissue and circulating EV samples with an area under the curve (AUC) of 0.9369 (95% confidence interval [CI], 0.9073-0.9664) for early-stage GC (stage I/II). The diagnostic performance of this biomarker was further confirmed in 2 external validation cohorts (Xi'an cohort, AUC: 0.8839; 95% CI: 0.8336-0.9342; Beijing cohort, AUC: 0.9018; 95% CI: 0.8597-0.9439). Moreover, EV-derived GClnc1 robustly distinguished early-stage GC from precancerous lesions (chronic atrophic gastritis and intestinal metaplasia) and GC with negative traditional gastrointestinal biomarkers (CEA, CA72-4, and CA19-9). The low levels of this biomarker in postsurgery and other gastrointestinal tumor plasma samples indicated its GC specificity. CONCLUSIONS EV-derived GClnc1 serves as a circulating biomarker for the early detection of GC, thus providing opportunities for curative surgery and improved survival outcomes.
Collapse
Affiliation(s)
- Xin Guo
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Endoscopic Surgery, Air Force 986(th) Hospital, Fourth Military Medical University, Xi'an, China; Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qiying Song
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jiangpeng Wei
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinxin Wang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yi Ru
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Shenhui Xu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin Cheng
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaohua Li
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Di Wu
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lubin Chen
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Endoscopic Surgery, Air Force 986(th) Hospital, Fourth Military Medical University, Xi'an, China
| | - Bo Wei
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China.
| | - Xiaohui Lv
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Gang Ji
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
20
|
Feely N, Wdowicz A, Chevalier A, Wang Y, Li P, Rollo F, Lee GU. Targeting Mucin Protein Enables Rapid and Efficient Ovarian Cancer Cell Capture: Role of Nanoparticle Properties in Efficient Capture and Culture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207154. [PMID: 36772896 DOI: 10.1002/smll.202207154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/18/2023] [Indexed: 05/04/2023]
Abstract
The development of specific and sensitive immunomagnetic cell separation nanotechnologies is central to enhancing the diagnostic relevance of circulating tumor cells (CTCs) and improving cancer patient outcomes. The limited number of specific biomarkers used to enrich a phenotypically diverse set of CTCs from liquid biopsies has limited CTC yields and purity. The ultra-high molecular weight mucin, mucin16 (MUC16) is shown to physically shield key membrane proteins responsible for activating immune responses against ovarian cancer cells and may interfere with the binding of magnetic nanoparticles to popular immunomagnetic cell capture antigens. MUC16 is expressed in ≈90% of ovarian cancers and is almost universal in High Grade Serous Epithelial Ovarian Cancer. This work demonstrates that cell bound MUC16 is an effective target for rapid immunomagnetic extraction of expressor cells with near quantitative yield, high purity and viability from serum. The results provide a mechanistic insight into the effects of nanoparticle physical properties and immunomagnetic labeling on the efficiency of immunomagnetic cell isolation. The growth of these cells has also been studied after separation, demonstrating that nanoparticle size impacts cell-particle behavior and growth rate. These results present the successful isolation of "masked" CTCs enabling new strategies for the detection of cancer recurrence and select and monitor chemotherapy.
Collapse
Affiliation(s)
- Nathan Feely
- Conway Institute for Biomedical Research and School of Chemistry, University College Dublin, 61 Adair, Sandymount Ave, Dublin, CO. DUBLIN, 00004, Ireland
| | - Anita Wdowicz
- Conway Institute for Biomedical Research and School of Chemistry, University College Dublin, 61 Adair, Sandymount Ave, Dublin, CO. DUBLIN, 00004, Ireland
| | - Anne Chevalier
- Magnostics Ltd, 2 Clifton Lane, Merrion Road, Monkstown, Dublin, A94 A306, Ireland
| | - Ying Wang
- Magnostics Ltd, 2 Clifton Lane, Merrion Road, Monkstown, Dublin, A94 A306, Ireland
| | - Peng Li
- Magnostics Ltd, 2 Clifton Lane, Merrion Road, Monkstown, Dublin, A94 A306, Ireland
| | - Fanny Rollo
- École nationale supérieure des ingénieurs en arts chimiques et technologiques, Toulouse, 31030, France
| | - Gil U Lee
- Conway Institute for Biomedical Research and School of Chemistry, University College Dublin, 61 Adair, Sandymount Ave, Dublin, CO. DUBLIN, 00004, Ireland
| |
Collapse
|
21
|
Xiao X, Miao X, Duan S, Liu S, Cao Q, Wu R, Tao C, Zhao J, Qu Q, Markiewicz A, Peng R, Chen Y, Żaczek A, Liu J. Single-Cell Enzymatic Screening for Epithelial Mesenchymal Transition with an Ultrasensitive Superwetting Droplet-Array Microchip. SMALL METHODS 2023:e2300096. [PMID: 37086121 DOI: 10.1002/smtd.202300096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/16/2023] [Indexed: 05/03/2023]
Abstract
The phenotypic changes of circulating tumor cells (CTCs) during the epithelial-mesenchymal transition (EMT) have been a hot topic in tumor biology and cancer therapeutic development. Here, an integrated platform of single-cell fluorescent enzymatic assays with superwetting droplet-array microchips (SDAM) for ultrasensitive functional screening of epithelial-mesenchymal sub-phenotypes of CTCs is reported. The SDAM can generate high-density, volume well-defined droplet (0.66 nL per droplet) arrays isolating single tumor cells via a discontinuous dewetting effect. It enables sensitive detection of MMP9 enzyme activities secreted by single tumor cells, correlating to their epithelial-mesenchymal sub-phenotypes. In the pilot clinical double-blind tests, the authors have demonstrated that SDAM assays allow for rapid identification and functional screening of CTCs with different epithelial-mesenchymal properties. The consistency with the clinical outcomes validates the usefulness of single-cell secreted MMP9 as a biomarker for selective CTC screening and tumor metastasis monitoring. Convenient addressing and recovery of individual CTCs from SDAM have been demonstrated for gene mutation sequencing, immunostaining, and transcriptome analysis, revealing new understandings of the signaling pathways between MMP9 secretion and the EMT regulation of CTCs. The SDAM approach combined with sequencing technologies promises to explore the dynamic EMT plasticity of tumors at the single-cell level.
Collapse
Affiliation(s)
- Xiang Xiao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Xinxing Miao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Shanzhou Duan
- Department of thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, P. R. China
| | - Sidi Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Qinghua Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Renfei Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Chengcheng Tao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Jian Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Qing Qu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Aleksandra Markiewicz
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Gdańsk, 80-211, Poland
| | - Rui Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Yongbing Chen
- Department of thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, P. R. China
| | - Anna Żaczek
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Gdańsk, 80-211, Poland
| | - Jian Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
22
|
Limaye S, Chowdhury S, Rohatgi N, Ranade A, Syed N, Riedemann J, Patil D, Akolkar D, Datta V, Patel S, Chougule R, Shejwalkar P, Bendale K, Apurwa S, Schuster S, John J, Srinivasan A, Datar R. Accurate prostate cancer detection based on enrichment and characterization of prostate cancer specific circulating tumor cells. Cancer Med 2023; 12:9116-9127. [PMID: 36718027 PMCID: PMC10166919 DOI: 10.1002/cam4.5649] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The low specificity of serum PSA resulting in the inability to effectively differentiate prostate cancer from benign prostate conditions is a persistent clinical challenge. The low sensitivity of serum PSA results in false negatives and can miss high-grade prostate cancers. We describe a non-invasive test for detection of prostate cancer based on functional enrichment of prostate adenocarcinoma associated circulating tumor cells (PrAD-CTCs) from blood samples followed by their identification by immunostaining for pan-cytokeratins (PanCK), prostate specific membrane antigen (PSMA), alpha methyl-acyl coenzyme-A racemase (AMACR), epithelial cell adhesion molecule (EpCAM), and common leucocyte antigen (CD45). METHODS Analytical validation studies were performed to establish the performance characteristics of the test using VCaP prostate cancer cells spiked into healthy donor blood (HDB). The clinical performance characteristics of the test were evaluated in a case-control study with 160 known prostate cancer cases and 800 healthy males, followed by a prospective clinical study of 210 suspected cases of prostate cancer. RESULTS Analytical validation established analyte stability as well as acceptable performance characteristics. The test showed 100% specificity and 100% sensitivity to differentiate prostate cancer cases from healthy individuals in the case control study and 91.2% sensitivity and 100% specificity to differentiate prostate cancers from benign prostate conditions in the prospective clinical study. CONCLUSIONS The test accurately detects PrAD-CTCs with high sensitivity and specificity irrespective of stage, serum PSA or Gleason score, which translates into low risks of false negatives or overdiagnosis. The high accuracy of the test could offer advantages over PSA based prostate cancer detection.
Collapse
Affiliation(s)
- Sewanti Limaye
- Sir HN Reliance Foundation Hospital and Research CentreMumbaiIndia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yeo D, Kao S, Gupta R, Wahlroos S, Bastian A, Strauss H, Klemm V, Shrestha P, Ramirez AB, Costandy L, Huston R, Gardner BS, Grimison P, Clark JR, Rasko JEJ. Accurate isolation and detection of circulating tumor cells using enrichment-free multiparametric high resolution imaging. Front Oncol 2023; 13:1141228. [PMID: 37051527 PMCID: PMC10083432 DOI: 10.3389/fonc.2023.1141228] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
IntroductionThe reliable and accurate detection of rare circulating tumor cells (CTCs) from cancer patient blood samples promises advantages in both research and clinical applications. Numerous CTC detection methods have been explored that rely on either the physical properties of CTCs such as density, size, charge, and/or their antigen expression profiles. Multiple factors can influence CTC recovery including blood processing method and time to processing. This study aimed to examine the accuracy and sensitivity of an enrichment-free method of isolating leukocytes (AccuCyte® system) followed by immunofluorescence staining and high-resolution imaging (CyteFinder® instrument) to detect CTCs.MethodHealthy human blood samples, spiked with cancer cells from cancer cell lines, as well as blood samples obtained from 4 subjects diagnosed with cancer (2 pancreatic, 1 thyroid, and 1 small cell lung) were processed using the AccuCyte-CyteFinder system to assess recovery rate, accuracy, and reliability over a range of processing times.ResultsThe AccuCyte-CyteFinder system was highly accurate (95.0%) at identifying cancer cells in spiked-in samples (in 7.5 mL of blood), even at low spiked-in numbers of 5 cells with high sensitivity (90%). The AccuCyte-CyteFinder recovery rate (90.9%) was significantly higher compared to recovery rates obtained by density gradient centrifugation (20.0%) and red blood cell lysis (52.0%). Reliable and comparable recovery was observed in spiked-in samples and in clinical blood samples processed up to 72 hours post-collection. Reviewer analysis of images from spiked-in and clinical samples resulted in high concordance (R-squared value of 0.998 and 0.984 respectively).DiscussionThe AccuCyte-CyteFinder system is as an accurate, sensitive, and clinically practical method to detect and enumerate cancer cells. This system addresses some of the practical logistical challenges in incorporating CTCs as part of routine clinical care. This could facilitate the clinical use of CTCs in guiding precision, personalized medicine.
Collapse
Affiliation(s)
- Dannel Yeo
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW, Australia
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Steven Kao
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Medical Oncology, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
| | - Ruta Gupta
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Department of Head and Neck Surgery, Sydney Head and Neck Cancer Institute, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- NSW Health Pathology, Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW, Australia
| | - Sara Wahlroos
- Medical Oncology, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
| | - Althea Bastian
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW, Australia
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Heidi Strauss
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW, Australia
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Vera Klemm
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW, Australia
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Prajwol Shrestha
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
- Medical Oncology, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
| | | | | | | | | | - Peter Grimison
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Medical Oncology, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
| | - Jonathan R. Clark
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Department of Head and Neck Surgery, Sydney Head and Neck Cancer Institute, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, NSW, Australia
| | - John E. J. Rasko
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW, Australia
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
- *Correspondence: John E. J. Rasko,
| |
Collapse
|
24
|
Detection of Circulating Tumor Cells Using the Attune NxT. Int J Mol Sci 2022; 24:ijms24010021. [PMID: 36613466 PMCID: PMC9820284 DOI: 10.3390/ijms24010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Circulating tumor cells (CTCs) have been detected in many patients with different solid malignancies. It has been reported that presence of CTCs correlates with worse survival in patients with multiple types of cancer. Several techniques have been developed to detect CTCs in liquid biopsies. Currently, the only method for CTC detection that is approved by the Food and Drug Administration is CellSearch. Due to low abundance of CTCs in certain cancer types and in early stages of disease, its clinical application is currently limited to metastatic colorectal cancer, breast cancer and prostate cancer. Therefore, we aimed to develop a new method for the detection of CTCs using the Attune NxT-a flow cytometry-based application that was specifically developed to detect rare events in biological samples without the need for enrichment. When healthy donor blood samples were spiked with variable amounts of different EpCAM+EGFR+ tumor cell lines, recovery yield was on average 75%. The detection range was between 1000 and 10 cells per sample. Cell morphology was confirmed with the Attune CytPix. Analysis of blood samples from metastatic colorectal cancer patients, as well as lung cancer patients, demonstrated that increased EpCAM+EGFR+ events were detected in more than half of the patient samples. However, most of these cells showed no (tumor) cell-like morphology. Notably, CellSearch analysis of blood samples from a subset of colorectal cancer patients did not detect CTCs either, suggesting that these blood samples were negative for CTCs. Therefore, we anticipate that the Attune NxT is not superior to CellSearch in detection of low amounts of CTCs, although handling and analysis of samples is easier. Moreover, morphological confirmation is essential to distinguish between CTCs and false positive events.
Collapse
|
25
|
Li Z, Song M, Han S, Jin C, Yang J. The prognostic role of circulating tumor cells in gastric cancer: A meta-analysis. Front Oncol 2022; 12:963091. [PMID: 36313657 PMCID: PMC9610107 DOI: 10.3389/fonc.2022.963091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE We conducted a meta-analysis to evaluate the relationship between circulating tumor cells (CTC) and the prognosis of patients with gastric cancer. MATERIALS AND METHODS The cohort studies reporting on the relationship between CTC and prognosis of gastric cancer were collected from Pubmed, Cochrane, Embase, CNKI, WanFang Data, and VIP databases. The two researchers independently screened the literature, extracted the data, and evaluated the bias risk of the included literature. The data were analyzed by Revman software (Review Manager version 5.4). RESULT A total of 14 retrospective cohort studies with 1053 patients were included. The results showed that the overall survival time (OS) and progression-free survival time (PFS) of CTC-positive patients were shorter compared to CTC-negative patients. Taking into consideration the critical value of CTC positive patients, country of origin, sample size, treatment mode, and study time, the subgroup analysis showed that CTC-positive was related to the shortening of OS in patients with gastric cancer. Based on the subgroup analysis of the factors such as CTC positive critical value < 2.8, sample size ≥ 75, mixed therapy, longer study duration, country, and immunofluorescence detection of CTC, it was found that OS in CTC positive group was shorter than that in CTC-negative group (all P<0.05), while the critical value of positive CTC ≥ 2.8, sample size ≥ 75, choice of treatment only for operation or non-operation, short study time and molecular detection of CTC were not associated with OS (all P>0.05). In addition, CTC-positive patients had a more advanced TNM staging, poorer tumor differentiation, and earlier distant metastasis. CONCLUSION CTC can be used as a prognostic indicator of gastric cancer. Gastric cancer patients with positive CTC may have a poorer prognosis compared to those with CTC-negative tumors. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022323155.
Collapse
Affiliation(s)
- Zuxi Li
- The First Clinical School of Gansu University of Chinese Medicine, Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Gansu Provincial Key Laboratory of Molecular Diagnosis and Precision Therapy of Surgical Tumors, Gansu Provincial Hospital, Lanzhou, China
| | - Meijuan Song
- The First Clinical School of Gansu University of Chinese Medicine, Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Gansu Provincial Key Laboratory of Molecular Diagnosis and Precision Therapy of Surgical Tumors, Gansu Provincial Hospital, Lanzhou, China
| | - Shangjun Han
- The First Clinical School of Gansu University of Chinese Medicine, Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Gansu Provincial Key Laboratory of Molecular Diagnosis and Precision Therapy of Surgical Tumors, Gansu Provincial Hospital, Lanzhou, China
| | - Chuanwei Jin
- The First Clinical School of Gansu University of Chinese Medicine, Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Gansu Provincial Key Laboratory of Molecular Diagnosis and Precision Therapy of Surgical Tumors, Gansu Provincial Hospital, Lanzhou, China
| | - Jing Yang
- The First Clinical School of Gansu University of Chinese Medicine, Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Gansu Provincial Key Laboratory of Molecular Diagnosis and Precision Therapy of Surgical Tumors, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
26
|
The Role of Circulating Tumor Cells in the Prognosis of Local Recurrence and Local Residual Nasopharyngeal Carcinoma Undergoing Endoscopic Resection. JOURNAL OF ONCOLOGY 2022; 2022:1453792. [PMID: 36131792 PMCID: PMC9484918 DOI: 10.1155/2022/1453792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/05/2022] [Accepted: 08/13/2022] [Indexed: 11/28/2022]
Abstract
Purpose To investigate the role of circulating tumor cells in the prognosis of local recurrence and local residual nasopharyngeal carcinoma undergoing endoscopic surgery. Methods A total of 56 patients with locally residual nasopharyngeal carcinoma (NPC) who underwent nasal endoscopic surgery from August 2018 to December 2021 were included. The status of circulating tumor cells (CTC) before and after surgery was detected, and its relationship with clinical characteristics and postoperative survival was analyzed. Results After nasal endoscopy, the positive rates of CTC and mesenchymal CTC (MCTC) detected in patients with nasopharyngeal carcinoma were significantly lower than those before treatment (P=0.0376; P=0.0212). Before nasal endoscopy, the status of CTC and MCTC was significantly correlated with the T stage (P < 0.05). After nasal endoscopy, the status of CTC and MCTC was significantly correlated with the TNM stage, T stage, and first radiotherapy mode (P < 0.05). The PFS of patients with different clinical characteristics was analyzed, and the results showed that the PFS of NPC patients with CTC (+) was significantly shorter than that of CTC (−) patients (18.71 vs. 22.47, P < 0.05) and the PFS of NPC patients with MCTC (+) was significantly shorter than that of MCTC (−) patients (18.22 vs. 22.30, P < 0.05). The PFS of NPC patients in TNM stage (I-II) was significantly longer than that in TNM stage (III) patients (22.53 vs. 18.57, P < 0.05). The PFS of NPC patients whose first radiotherapy mode was conventional was significantly longer than that of patients whose first radiotherapy mode was enhanced (22.14 vs. 16.85, P < 0.05). The COX analysis showed that MCTC and TNM stages were independent risk factors affecting the prognosis of local recurrence or local residual nasopharyngeal carcinoma after endoscopic resection (P < 0.05). Conclusion The detection of CTC is helpful for the prognosis evaluation of local recurrence or local residual NPC after endoscopic resection of NPC. The MCTC is an important factor affecting the prognosis of NPC patients.
Collapse
|
27
|
Xia F, Ma Y, Chen K, Duong B, Ahmed S, Atwal R, Philpott D, Ketela T, Pantea J, Lin S, Angers S, Kelley SO. Genome-wide in vivo screen of circulating tumor cells identifies SLIT2 as a regulator of metastasis. SCIENCE ADVANCES 2022; 8:eabo7792. [PMID: 36054348 PMCID: PMC10848953 DOI: 10.1126/sciadv.abo7792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Circulating tumor cells (CTCs) break free from primary tumors and travel through the circulation system to seed metastatic tumors, which are the major cause of death from cancer. The identification of the major genetic factors that enhance production and persistence of CTCs in the bloodstream at a whole genome level would enable more comprehensive molecular mechanisms of metastasis to be elucidated and the identification of novel therapeutic targets, but this remains a challenging task due to the heterogeneity and extreme rarity of CTCs. Here, we describe an in vivo genome-wide CRISPR knockout screen using CTCs directly isolated from a mouse xenograft. This screen elucidated SLIT2-a gene encoding a secreted protein acting as a cellular migration cue-as the most significantly represented gene knockout in the CTC population. SLIT2 knockout cells are highly metastatic with hypermigratory and mesenchymal phenotype, resulting in enhanced cancer progression in xenograft models.
Collapse
Affiliation(s)
- Fan Xia
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Yuan Ma
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
- Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P.R. China
| | - Kangfu Chen
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Bill Duong
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Sharif Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Randy Atwal
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - David Philpott
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Troy Ketela
- Princess Margret Genomics Centre, University Health Network, Toronto, Ontario, Canada
| | - Jennifer Pantea
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Sichun Lin
- Donnelly Centre for Cellular & Biomolecular Research, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
- Donnelly Centre for Cellular & Biomolecular Research, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, ON, Canada
| | - Shana O. Kelley
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
28
|
Sharifi-Azad M, Fathi M, Cho WC, Barzegari A, Dadashi H, Dadashpour M, Jahanban-Esfahlan R. Recent advances in targeted drug delivery systems for resistant colorectal cancer. Cancer Cell Int 2022; 22:196. [PMID: 35590367 PMCID: PMC9117978 DOI: 10.1186/s12935-022-02605-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/02/2022] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the deadliest cancers in the world, the incidences and morality rate are rising and poses an important threat to the public health. It is known that multiple drug resistance (MDR) is one of the major obstacles in CRC treatment. Tumor microenvironment plus genomic instability, tumor derived exosomes (TDE), cancer stem cells (CSCs), circulating tumor cells (CTCs), cell-free DNA (cfDNA), as well as cellular signaling pathways are important issues regarding resistance. Since non-targeted therapy causes toxicity, diverse side effects, and undesired efficacy, targeted therapy with contribution of various carriers has been developed to address the mentioned shortcomings. In this paper the underlying causes of MDR and then various targeting strategies including exosomes, liposomes, hydrogels, cell-based carriers and theranostics which are utilized to overcome therapeutic resistance will be described. We also discuss implication of emerging approaches involving single cell approaches and computer-aided drug delivery with high potential for meeting CRC medical needs.
Collapse
Affiliation(s)
- Masoumeh Sharifi-Azad
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Dadashi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
29
|
Li J, Xia Y, Zhou F, He R, Chen B, Guo S. Electric field-assisted MnO 2 nanomaterials for rapid capture and in situ delivery of circulating tumour cells. NANOSCALE 2022; 14:6959-6969. [PMID: 35467678 DOI: 10.1039/d2nr01371a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The heterogeneity of cancer has become a major obstacle to treatment, and the development of an efficient, fast, and accurate drug delivery system is even more urgent. In this work, we designed a device that integrated multiple functions of cell capture, in situ manipulation, and non-destructive release on a single device. With an applied electric field, an intelligent device based on MnO2 nanomaterials was used to realize efficient and rapid capture of cancer cells in both patients' blood and artificial blood samples. This device could capture cancer cells with high efficiency (up to about 93%) and strong specificity in blood samples, the capture time was nearly 50 min faster than that of natural sedimentation, and reduce the effects on cells caused by long-time in vitro culture. In addition, Mn3+ on the surface of the MnO2 substrate was reduced to Mn2+ by an electrochemical method, partial dissolution occurred, and then the captured cells were non-destructively released with rapid speed (about 8 s) and high efficiency (about 94 ± 2%). For in situ regulation, upon applying a pulse electric field, the captured cells were perforated nondestructively, and extracellular molecules could be delivered to the captured cells with well-performed dose and temporal controls. As a proof-of-concept application, we proved that the device could capture circulating tumor cells in peripheral blood faster and achieve in situ drug delivery. Finally, it can also quickly release circulating tumour cells for subsequent analysis, highlighting its accuracy, due to which it is widely used in medical treatment, basic tumor research and drug development.
Collapse
Affiliation(s)
- Juan Li
- Key Laboratory of Artificial Micro/Nano-Structures, Ministry of Education School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430205, China
| | - Yu Xia
- Key Laboratory of Artificial Micro/Nano-Structures, Ministry of Education School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430205, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Rongxiang He
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Photoelectric Materials and Technology, Jianghan University, Wuhan 430056, China
| | - Bolei Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Shishang Guo
- Key Laboratory of Artificial Micro/Nano-Structures, Ministry of Education School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430205, China
| |
Collapse
|
30
|
Green BJ, Marazzini M, Hershey B, Fardin A, Li Q, Wang Z, Giangreco G, Pisati F, Marchesi S, Disanza A, Frittoli E, Martini E, Magni S, Beznoussenko GV, Vernieri C, Lobefaro R, Parazzoli D, Maiuri P, Havas K, Labib M, Sigismund S, Fiore PPD, Gunby RH, Kelley SO, Scita G. PillarX: A Microfluidic Device to Profile Circulating Tumor Cell Clusters Based on Geometry, Deformability, and Epithelial State. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106097. [PMID: 35344274 DOI: 10.1002/smll.202106097] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Circulating tumor cell (CTC) clusters are associated with increased metastatic potential and worse patient prognosis, but are rare, difficult to count, and poorly characterized biophysically. The PillarX device described here is a bimodular microfluidic device (Pillar-device and an X-magnetic device) to profile single CTCs and clusters from whole blood based on their size, deformability, and epithelial marker expression. Larger, less deformable clusters and large single cells are captured in the Pillar-device and sorted according to pillar gap sizes. Smaller, deformable clusters and single cells are subsequently captured in the X-device and separated based on epithelial marker expression using functionalized magnetic nanoparticles. Clusters of established and primary breast cancer cells with variable degrees of cohesion driven by different cell-cell adhesion protein expression are profiled in the device. Cohesive clusters exhibit a lower deformability as they travel through the pillar array, relative to less cohesive clusters, and have greater collective invasive behavior. The ability of the PillarX device to capture clusters is validated in mouse models and patients of metastatic breast cancer. Thus, this device effectively enumerates and profiles CTC clusters based on their unique geometrical, physical, and biochemical properties, and could form the basis of a novel prognostic clinical tool.
Collapse
Affiliation(s)
- Brenda J Green
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Margherita Marazzini
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Ben Hershey
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Amir Fardin
- IEO, Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, Milan, 20141, Italy
| | - Qingsen Li
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Zongjie Wang
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 144 College St, Toronto, Ontario, M5S 3M2, Canada
| | - Giovanni Giangreco
- IEO, Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, Milan, 20141, Italy
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Federica Pisati
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Stefano Marchesi
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Andrea Disanza
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Emanuela Frittoli
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Emanuele Martini
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Serena Magni
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | | | - Claudio Vernieri
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Riccardo Lobefaro
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Dario Parazzoli
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Paolo Maiuri
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Kristina Havas
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Mahmoud Labib
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sara Sigismund
- IEO, Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, Milan, 20141, Italy
- Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Via Festa del Perdono, 7, Milan, 20122, Italy
| | - Pier Paolo Di Fiore
- IEO, Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, Milan, 20141, Italy
- Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Via Festa del Perdono, 7, Milan, 20122, Italy
| | - Rosalind H Gunby
- IEO, Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, Milan, 20141, Italy
| | - Shana O Kelley
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 144 College St, Toronto, Ontario, M5S 3M2, Canada
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Giorgio Scita
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
- Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Via Festa del Perdono, 7, Milan, 20122, Italy
| |
Collapse
|
31
|
Abstract
There is an identified need for point-of-care diagnostic systems for detecting and counting specific rare types of circulating cells in blood. By adequately labeling such cells with immunomagnetic beads and quantum dots, they can be efficiently collected magnetically for quantification using fluorescence methods. Automation of this process requires adequate mixing of the labeling materials with blood samples. A static mixing device can be employed to improve cell labeling efficiency and eliminate error-prone laboratory operations. Computational fluid dynamics (CFD) were utilized to simulate the flow of a labeling-materials/blood mixture through a 20-stage in-line static mixer of the interfacial-surface-generator type. Optimal fluid mixing conditions were identified and tested in a magnetic bead/tumor cell model, and it was found that labeled cells could be produced at 1.0 mL/min flow rate and fed directly into an in-line magnetic trap. The trap design consists of a dual flow channel with three bends and a permanent magnet positioned at the outer curve of each bend. The capture of labeled cells in the device was simulated using CFD, finite-element analysis and magnetophoretic mobility distributions of labeled cells. Testing with cultured CRL14777 human melanoma cells labeled with anti-CD146 1.5 μm diameter beads indicated that 90 ± 10% are captured at the first stage, and these cells can be captured when present in whole blood. Both in-line devices were demonstrated to function separately and together as predicted.
Collapse
|
32
|
Jiang AM, Zheng HR, Liu N, Zhao R, Ma YY, Bai SH, Tian T, Liang X, Ruan ZP, Fu X, Yao Y. Assessment of the Clinical Utility of Circulating Tumor Cells at Different Time Points in Predicting Prognosis of Patients With Small Cell Lung Cancer: A Meta-Analysis. Cancer Control 2021; 28:10732748211050581. [PMID: 34654345 PMCID: PMC8521771 DOI: 10.1177/10732748211050581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objectives Numerous studies have elucidated that circulating tumor cells (CTCs) have significant prognostic value in various solid tumors. However, the prognostic value of CTCs in small cell lung cancer (SCLC) remains controversial. The current study was performed to investigate the prognostic significance of different time points of CTCs in SCLC. Methods PubMed, EMBASE, Web of Science, and Cochrane Library databases were retrieved for eligible studies. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated to investigate the association between CTCs level and overall survival (OS) and progression-free survival (PFS) in SCLC. Furthermore, subgroup analyses, sensitivity analysis, Begg’s and Egger’s tests were also conducted. Results Sixteen cohort studies with 1103 participants were eligible for this meta-analysis. Our results revealed that higher pretreatment CTCs level was significantly correlated with worse OS in SCLC no matter CellSearch (HR, 2.95; 95%CI, 1.56-5.58; P = .001) or other methods (HR, 2.37; 95%CI, 1.13-4.99; P = .023) was used to detect CTCs. Higher pretreatment CTCs status detected by CellSearch was associated with shorter PFS (HR, 3.75; 95%CI, 2.52-5.57; P < .001), while there was no significant association when other methods were adopted to CTC detection (HR, 2.04; 95%CI, .73-5.68; P = .172). Likewise, we observed that higher post-therapy CTCs level detected by both CellSearch (HR, 2.99; 95%CI, 1.51-5.93; P = .002) and other methods (HR, 4.79; 95%CI, 2.03-11.32; P < .001) was significantly correlated with decreased OS in SCLC. However, higher post-therapy CTCs count detected by CellSearch was not correlated with worse PFS (HR, 1.80; 95%CI, .83-3.90; P = .135). Sensitivity analysis demonstrated that the pooled data were still stable after eliminating studies one by one. However, significant publication bias was observed between pretreatment CTCs level detected by CellSearch and OS of SCLC. Conclusion Dynamic monitoring of CTCs level could be a non-invasive and effective tool to predict the disease progression and prognosis in patients with SCLC.
Collapse
Affiliation(s)
- Ai-Min Jiang
- Department of Medical Oncology,162798The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Hao-Ran Zheng
- Department of Medical Oncology,162798The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Na Liu
- Department of Medical Oncology,162798The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Rui Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, 540681Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yu-Yan Ma
- Department of Medical Oncology,162798The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Shu-Heng Bai
- Department of Radiotherapy Oncology, 162798The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Tao Tian
- Department of Medical Oncology,162798The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xuan Liang
- Department of Medical Oncology,162798The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Zhi-Ping Ruan
- Department of Medical Oncology,162798The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xiao Fu
- Department of Medical Oncology,162798The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yu Yao
- Department of Medical Oncology,162798The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
33
|
Personalized Therapy and Liquid Biopsy-A Focus on Colorectal Cancer. J Pers Med 2021; 11:jpm11070630. [PMID: 34357097 PMCID: PMC8305103 DOI: 10.3390/jpm11070630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
(1) Background: Resistance mechanisms represent a barrier to anti-cancer therapies. Liquid biopsies would allow obtaining additional information in order to develop targeted therapies to thwart the resistance phenomena but also to follow in time real response to treatment and be able to adapt it the most quickly possible way in case of resistance. (2) Methods: herein we summarize the different liquid biopsies which are currently under research; we then review the literature and focalize on one of their potential roles: the theranostic one and especially in the cases of colorectal cancers. (3) Results: few studies targeting liquid biopsy as a potential tool to adapt cancer treatments are present in the literature and encompass few patients. (4) Conclusions: further research is needed to prove the efficiency of LB. Indeed, it seems a promising tool to guide treatment by targeting actionable mutations with detection of resistant mutations.
Collapse
|
34
|
Alix‐Panabières C, Pantel K. Liquid biopsy: from discovery to clinical implementation. Mol Oncol 2021; 15:1617-1621. [PMID: 34075709 PMCID: PMC8169443 DOI: 10.1002/1878-0261.12997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022] Open
Affiliation(s)
- Catherine Alix‐Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH)University Medical Centre of MontpellierMontpellierFrance
- CREEC/CANECEVMIVEGEC (CREES)University of MontpellierCNRSIRDMontpellierFrance
| | - Klaus Pantel
- Department of Tumor BiologyUniversity Cancer Center HamburgUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|