1
|
Li Z, Wang Y, Hu J, Du J, Nie H, Xi Y, Huang Y, Wang K, Zhang K, Xu Q, Cheng L, Huang D, Tu L. USP28 knockdown and small molecule inhibitors promote KRT1 destabilization and sensitize hepatocellular carcinoma cells to sorafenib. Exp Cell Res 2025; 448:114558. [PMID: 40222446 DOI: 10.1016/j.yexcr.2025.114558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a significant malignant tumor that is typically diagnosed late and has a poor prognosis. USP28 (Ubiquitin-specific protease 28), a deubiquitinating enzyme within the ubiquitin-specific proteases (USPs) family, plays a pivotal role in various biological processes, especially in cancer progression. However, its functions and molecular mechanisms in HCC are still unknown. METHODS We first analyzed the expression level of USP28 in HCC tissues relative to normal tissues using TCGA database. This was further validated by qRT-PCR and Western Blot. To investigate the function of USP28 in HCC, CCK-8 assay, clone formation assay and Transwell assay were performed in control and USP28 knockdown or overexpressed HCC cells. To explore potential downstream targets of USP28, we used IP-MS analysis. The interaction between USP28 and KRT1 was confirmed by immunoprecipitation and immunofluorescence staining. Finally, we evaluated the in vivo effects of USP28 on HCC growth and metastasis using a ectopic tumor-bearing mouse model. RESULTS The expression of USP28 in HCC tissues was significantly higher than that in normal tissues, and its high expression was associated with poor prognosis. Functional experiments showed that down-regulation of USP28 expression effectively inhibited the proliferation, migration and invasion of HCC cells, while overexpression of USP28 produced the opposite effect. Mechanistic investigations demonstrated that USP28 interacted with KRT1 and exerted deubiquitination on KRT1, thereby maintaining the stability of KRT1. Further studies revealed that USP28 knockdown resulted in decreased IFITM3 expression, which inhibited HCC cell proliferation. In addition, USP28 knockdown combined with sorafenib inhibited tumor growth and metastasis in tumor xenograft mice model. CONCLUSIONS Our study confirmed the carcinogenic effects of USP28 by stabilizing KRT1 expression and promoting IFITM3. USP28 small molecule inhibitors can inhibit the proliferation of hepatocellular carcinoma cells and enhance the sensitivity of hepatocellular carcinoma cell lines to sorafenib. This provides a theoretical basis for USP28 to be a new clinical method to alleviate sorafenib resistance.
Collapse
Affiliation(s)
- Zilin Li
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, 310059, PR China; Jixi Central Blood Station, Jixi, Heilongjiang, 158199, PR China
| | - Yan Wang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, 310059, PR China
| | - Jiahui Hu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, 310059, PR China
| | - Jingyang Du
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, 310059, PR China
| | - Huizong Nie
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, 310059, PR China
| | - Yiling Xi
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, 310059, PR China
| | - Yue Huang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, 310059, PR China
| | - Kexin Wang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, 310059, PR China
| | - Kaixuan Zhang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, 310059, PR China
| | - Qiuran Xu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310059, PR China
| | - Liyan Cheng
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, 310059, PR China; Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou, Zhejiang, 310059, PR China
| | - Dongsheng Huang
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310059, PR China
| | - Linglan Tu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, 310059, PR China.
| |
Collapse
|
2
|
Zhang P, Ruan C, Yang G, Guan Y, Zhu Y, Li Q, Dai X, An Y, Shi X, Huang P, Chen Y, He Z, Du Z, Liu C. PGRN Inhibits Early B-cell Activation and IgE Production Through the IFITM3-STAT1 Signaling Pathway in Asthma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403939. [PMID: 39412083 PMCID: PMC11615816 DOI: 10.1002/advs.202403939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/23/2024] [Indexed: 12/06/2024]
Abstract
Progranulin (PGRN) plays a critical role in bronchial asthma and the function of various immune cells. However, the mechanisms by which PGRN influences B-cell receptor (BCR) signaling and immunoglobulin E(IgE) production are not fully understood. The study aimed to elucidate the molecular mechanisms through which PGRN affects BCR signaling, B-cell differentiation, and IgE production. A PGRN knockout mouse model, along with techniques including flow cytometry, the creation of a bone marrow chimeric mouse model, total internal reflection fluorescence (TIRF), and Western blot (WB) analysis is employed, to investigate the link between PGRN and various aspects of B-cell biology. It is discovered that the absence of PGRN in mice alters peripheral B-cell subpopulations, promotes IgE class switching in a cell-intrinsic manner, and affects B-cell subpopulations. Additionally, PGRN modulates B-cell functions by regulating BCR signaling pathways, metabolic processes, and the actin cytoskeleton during early B-cell activation. Significantly, PGRN deficiency results in diminished production of NP-specific antibodies. Moreover, it is found that PGRN inhibits B-cell activation and IgE production through the PGRN-IFITM3-STAT1 signaling pathway. The findings provide new strategies for the targeted treatment of bronchial asthma, highlighting the crucial role of PGRN in B-cell signaling and IgE production.
Collapse
Affiliation(s)
- Pingping Zhang
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Changshun Ruan
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqing400014China
| | - Guangli Yang
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Yaning Guan
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Yin Zhu
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Qian Li
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Xin Dai
- Zhanjiang Institute of Clinical MedicineZhanjiang Central HospitalGuangdong Medical UniversityZhanjiang524037China
- Department of HematologyCentral People's Hospital of ZhanjiangZhanjiang524037China
| | - Yang An
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Xiaoqi Shi
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Pei Huang
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Yan Chen
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Zhixu He
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Zuochen Du
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Chaohong Liu
- Department of Pathogen Biology School of Basic MedicineTongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesHuazhong University of Science and Technology Wuhan Hubei ChinaHubei430074China
| |
Collapse
|
3
|
Tahir F, Farooq M, Malik MA, Manzoor S. Extracellular Vesicles Contribute to Viral-Induced Hepatocellular Carcinoma: Understanding Their Involvement in Viral Hepatitis and Their Potential as Biomarkers for Early Hepatocellular Carcinoma Detection. Viral Immunol 2024; 37:159-166. [PMID: 38588555 DOI: 10.1089/vim.2023.0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
The high global prevalence of hepatitis B and hepatitis C and the poor prognosis of hepatitis B and hepatitis C-associated hepatocellular carcinoma (HCC), necessitates the early diagnosis and treatment of the disease. Recent studies show that cell-to-cell communication via extracellular vesicles (EVs) is involved in the HCC progression. The objective of the following study was to explore the role of EVs in the progression of viral-induced HCC and investigate their potential for the early diagnosis of cancer. First, the mRNA derived from EVs of HCC patients was compared to the mRNA derived from EVs from the healthy controls. Expression analysis of ANGPTL3, SH3BGRL3, and IFITM3 genes from the EVs was done. Afterward, to confirm whether hepatocytes can uptake EVs, HuH7 cells were exposed to EVs, and the expression analysis of downstream target genes (AKT, TNF-α, and MMP-9) in Huh7 cells was done. Transcriptional analysis showed that in the EVs from HCC patients, the expression levels of ANGPTL3, SH3BGRL3, and IFITM3 were significantly increased by 2.62-, 4.3-, and 9.03-folds, respectively. The downstream targets, AKT, TNF-α, and MMP-9, also showed a considerable change of 4.1-, 1.46-, and 5.05-folds, respectively, in Huh7 cells exposed to HCC EVs. In conclusion, the following study corroborates the role of EVs in HCC progression. Furthermore, the significant alteration in mRNA levels of the selected genes demonstrates their potential to be used as possible biomarkers for the early diagnosis of HCC.
Collapse
Affiliation(s)
- Fatima Tahir
- Molecular Virology and Immunology Research Group, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Mariya Farooq
- Molecular Virology and Immunology Research Group, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Maliha Ashraf Malik
- Molecular Virology and Immunology Research Group, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sobia Manzoor
- Molecular Virology and Immunology Research Group, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
4
|
Zhou L, Lu Y, Liu W, Wang S, Wang L, Zheng P, Zi G, Liu H, Liu W, Wei S. Drug conjugates for the treatment of lung cancer: from drug discovery to clinical practice. Exp Hematol Oncol 2024; 13:26. [PMID: 38429828 PMCID: PMC10908151 DOI: 10.1186/s40164-024-00493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
A drug conjugate consists of a cytotoxic drug bound via a linker to a targeted ligand, allowing the targeted delivery of the drug to one or more tumor sites. This approach simultaneously reduces drug toxicity and increases efficacy, with a powerful combination of efficient killing and precise targeting. Antibody‒drug conjugates (ADCs) are the best-known type of drug conjugate, combining the specificity of antibodies with the cytotoxicity of chemotherapeutic drugs to reduce adverse reactions by preferentially targeting the payload to the tumor. The structure of ADCs has also provided inspiration for the development of additional drug conjugates. In recent years, drug conjugates such as ADCs, peptide‒drug conjugates (PDCs) and radionuclide drug conjugates (RDCs) have been approved by the Food and Drug Administration (FDA). The scope and application of drug conjugates have been expanding, including combination therapy and precise drug delivery, and a variety of new conjugation technology concepts have emerged. Additionally, new conjugation technology-based drugs have been developed in industry. In addition to chemotherapy, targeted therapy and immunotherapy, drug conjugate therapy has undergone continuous development and made significant progress in treating lung cancer in recent years, offering a promising strategy for the treatment of this disease. In this review, we discuss recent advances in the use of drug conjugates for lung cancer treatment, including structure-based drug design, mechanisms of action, clinical trials, and side effects. Furthermore, challenges, potential approaches and future prospects are presented.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Liu
- Department of Geriatrics, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shanglong Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guisha Zi
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
5
|
Wang Y, Zhang L, Liu C, Luo Y, Chen D. Peptide-Mediated Nanocarriers for Targeted Drug Delivery: Developments and Strategies. Pharmaceutics 2024; 16:240. [PMID: 38399294 PMCID: PMC10893007 DOI: 10.3390/pharmaceutics16020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Effective drug delivery is essential for cancer treatment. Drug delivery systems, which can be tailored to targeted transport and integrated tumor therapy, are vital in improving the efficiency of cancer treatment. Peptides play a significant role in various biological and physiological functions and offer high design flexibility, excellent biocompatibility, adjustable morphology, and biodegradability, making them promising candidates for drug delivery. This paper reviews peptide-mediated drug delivery systems, focusing on self-assembled peptides and peptide-drug conjugates. It discusses the mechanisms and structural control of self-assembled peptides, the varieties and roles of peptide-drug conjugates, and strategies to augment peptide stability. The review concludes by addressing challenges and future directions.
Collapse
Affiliation(s)
- Yubo Wang
- Medical College, Guangxi University, Da-Xue-Dong Road No. 100, Nanning 530004, China;
| | - Lu Zhang
- School of Life Sciences, Xiamen University, Xiamen 361005, China;
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China;
| | - Chen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China;
| | - Yiming Luo
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen 361003, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou 351002, China
| | - Dengyue Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China;
| |
Collapse
|
6
|
Luo T, Chen X, Pan W, Zhang S, Huang J. The sorafenib resistance-related gene signature predicts prognosis and indicates immune activity in hepatocellular carcinoma. Cell Cycle 2024; 23:150-168. [PMID: 38444181 PMCID: PMC11037289 DOI: 10.1080/15384101.2024.2309020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 03/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related death worldwide. Most patients with advanced HCC acquire sorafenib resistance. Drug resistance reflects the heterogeneity of tumors and is the main cause of tumor recurrence and death.We identified and validated sorafenib resistance related-genes (SRGs) as prognostic biomarkers for HCC. We obtained SRGs from the Gene Expression Omnibus and selected four key SRGs using the least absolute shrinkage and selection operator, random forest, and Support Vector Machine-Recursive feature elimination machine learning algorithms. Samples from the The Cancer Genome Atlas (TCGA)-HCC were segregated into two groups by consensus clustering. Following difference analysis, 19 SRGs were obtained through univariate Cox regression analysis, and a sorafenib resistance model was constructed for risk stratification and prognosis prediction. In multivariate Cox regression analysis, the risk score was an independent predictor of overall survival (OS). Patients classified as high-risk were more sensitive to other chemotherapy drugs and showed a higher expression of the common immune checkpoints. Additionally, the expression of drug-resistance genes was verified in the International Cancer Genome Consortium cohort. A nomogram model with a risk score was established, and its prediction performance was verified by calibration chart analysis of the TCGA-HCC cohort. We conclude that there is a significant correlation between sorafenib resistance and the tumor immune microenvironment in HCC. The risk score could be used to identify a reliable prognostic biomarker to optimize the therapeutic benefits of chemotherapy and immunotherapy, which can be helpful in the clinical decision-making for HCC patients.
Collapse
Affiliation(s)
- Tianxin Luo
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Xiaomei Chen
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Wei Pan
- Prenatal Diagnosis Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shu Zhang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
- Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jian Huang
- Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
7
|
Jeong SU, Park JM, Yoon SY, Hwang HS, Go H, Shin DM, Ju H, Sung CO, Lee JL, Jeong G, Cho YM. IFITM3-mediated activation of TRAF6/MAPK/AP-1 pathways induces acquired TKI resistance in clear cell renal cell carcinoma. Investig Clin Urol 2024; 65:84-93. [PMID: 38197755 PMCID: PMC10789540 DOI: 10.4111/icu.20230294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/19/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024] Open
Abstract
PURPOSE Vascular endothelial growth factor tyrosine kinase inhibitors (TKIs) have been the standard of care for advanced and metastatic clear cell renal cell carcinoma (ccRCC). However, the therapeutic effect of TKI monotherapy remains unsatisfactory given the high rates of acquired resistance to TKI therapy despite favorable initial tumor response. MATERIALS AND METHODS To define the TKI-resistance mechanism and identify new therapeutic target for TKI-resistant ccRCC, an integrative differential gene expression analysis was performed using acquired resistant cohort and a public dataset. Sunitinib-resistant RCC cell lines were established and used to test their malignant behaviors of TKI resistance through in vitro and in vivo studies. Immunohistochemistry was conducted to compare expression between the tumor and normal kidney and verify expression of pathway-related proteins. RESULTS Integrated differential gene expression analysis revealed increased interferon-induced transmembrane protein 3 (IFITM3) expression in post-TKI samples. IFITM3 expression was increased in ccRCC compared with the normal kidney. TKI-resistant RCC cells showed high expression of IFITM3 compared with TKI-sensitive cells and displayed aggressive biologic features such as higher proliferative ability, clonogenic survival, migration, and invasion while being treated with sunitinib. These aggressive features were suppressed by the inhibition of IFITM3 expression and promoted by IFITM3 overexpression, and these findings were confirmed in a xenograft model. IFITM3-mediated TKI resistance was associated with the activation of TRAF6 and MAPK/AP-1 pathways. CONCLUSIONS These results demonstrate IFITM3-mediated activation of the TRAF6/MAPK/AP-1 pathways as a mechanism of acquired TKI resistance, and suggest IFITM3 as a new target for TKI-resistant ccRCC.
Collapse
Affiliation(s)
- Se Un Jeong
- Department of Pathology, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul, Korea
| | - Ja-Min Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sun Young Yoon
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee Sang Hwang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Heounjeong Go
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dong-Myung Shin
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyein Ju
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chang Ohk Sung
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae-Lyun Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Gowun Jeong
- AI Recommendation, T3K, SK Telecom, Seoul, Korea
| | - Yong Mee Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
8
|
Wu R, Liu W, Yang Q, Zhang J, Hou P, Xiong J, Wu L, Li E. LncTUG1 promotes hepatocellular carcinoma immune evasion via upregulating PD-L1 expression. Sci Rep 2023; 13:16998. [PMID: 37813900 PMCID: PMC10562488 DOI: 10.1038/s41598-023-42948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/16/2023] [Indexed: 10/11/2023] Open
Abstract
HCC is one of the most common malignant tumors worldwide. Although traditional treatment methods have been improved in recent years, the survival rate of HCC patients has not been significantly improved. Immunotherapy has shown extremely high clinical value in a variety of tumors. In this study, we found that TUG1 could regulate the expression of PD-L1 through JAK2/STAT3 to mediate immunosuppression. Here, The expression of TUG1 and PD-L1 in HCC tissues was evaluated through analysis of databases and verified in HCC tissue and HCC cancer cells by qRT-PCR. The effect of TUG1 on tumor immune escape was detected by coculture, and cell viability was detected with a CCK8 assay. The results demonstrated that TUG1 was closely associated with anticancer immunity. TUG1 and PD-L1 were highly expressed in HCC tissues and HCC cancer cells, and high expression of TUG1 and PD-L1 was related to the poor prognosis of HCC patients. In addition, knocking down TUG1 expression could reduce PD-L1 expression and enhance the cancer cell-killing capability of T cells. Downregulating TUG1 expression could also decrease the mRNA and protein expression of JAK2 and STAT3. To sum up, TUG1 and PD-L1 are overexpressed in patients with liver cancer and are related to the poor prognosis of these patients. Silencing TUG1 expression reduced the mRNA and protein expression of PD-L1 by affecting the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Rongshou Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Weiwei Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, 83 Xinqiao Main Street, Chongqing, 400000, People's Republic of China
| | - Qingping Yang
- Department of Assisted Reproductive, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jingling Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Ping Hou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jianghui Xiong
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Linquan Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Enliang Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
9
|
São José C, Garcia-Pelaez J, Ferreira M, Arrieta O, André A, Martins N, Solís S, Martínez-Benítez B, Ordóñez-Sánchez ML, Rodríguez-Torres M, Sommer AK, Te Paske IBAW, Caldas C, Tischkowitz M, Tusié MT, Hoogerbrugge N, Demidov G, de Voer RM, Laurie S, Oliveira C. Combined loss of CDH1 and downstream regulatory sequences drive early-onset diffuse gastric cancer and increase penetrance of hereditary diffuse gastric cancer. Gastric Cancer 2023; 26:653-666. [PMID: 37249750 PMCID: PMC10361908 DOI: 10.1007/s10120-023-01395-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/30/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Germline CDH1 pathogenic or likely pathogenic variants cause hereditary diffuse gastric cancer (HDGC). Once a genetic cause is identified, stomachs' and breasts' surveillance and/or prophylactic surgery is offered to asymptomatic CDH1 carriers, which is life-saving. Herein, we characterized an inherited mechanism responsible for extremely early-onset gastric cancer and atypical HDGC high penetrance. METHODS Whole-exome sequencing (WES) re-analysis was performed in an unsolved HDGC family. Accessible chromatin and CDH1 promoter interactors were evaluated in normal stomach by ATAC-seq and 4C-seq, and functional analysis was performed using CRISPR-Cas9, RNA-seq and pathway analysis. RESULTS We identified a germline heterozygous 23 Kb CDH1-TANGO6 deletion in a family with eight diffuse gastric cancers, six before age 30. Atypical HDGC high penetrance and young cancer-onset argued towards a role for the deleted region downstream of CDH1, which we proved to present accessible chromatin, and CDH1 promoter interactors in normal stomach. CRISPR-Cas9 edited cells mimicking the CDH1-TANGO6 deletion display the strongest CDH1 mRNA downregulation, more impacted adhesion-associated, type-I interferon immune-associated and oncogenic signalling pathways, compared to wild-type or CDH1-deleted cells. This finding solved an 18-year family odyssey and engaged carrier family members in a cancer prevention pathway of care. CONCLUSION In this work, we demonstrated that regulatory elements lying down-stream of CDH1 are part of a chromatin network that control CDH1 expression and influence cell transcriptome and associated signalling pathways, likely explaining high disease penetrance and very young cancer-onset. This study highlights the importance of incorporating scientific-technological updates and clinical guidelines in routine diagnosis, given their impact in timely genetic diagnosis and disease prevention.
Collapse
Affiliation(s)
- Celina São José
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- Doctoral Programme in Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - José Garcia-Pelaez
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- Doctoral Programme in Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Marta Ferreira
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- Department Computer Science Faculty of Science, University of Porto, Porto, Portugal
| | - Oscar Arrieta
- Thoracic Oncology Unit, Department of Thoracic Oncology, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Ana André
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Nelson Martins
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- Master Programme in Molecular Medicine and Oncology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Samantha Solís
- INCMNSZ/Instituto de Investigaciones Biomédicas, Unidad de Biología Molecular y Medicina Genómica Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, UNAM Mexico City, Mexico
| | - Braulio Martínez-Benítez
- Pathology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, INCMNSZ Mexico City, Mexico
| | - María Luisa Ordóñez-Sánchez
- INCMNSZ/Instituto de Investigaciones Biomédicas, Unidad de Biología Molecular y Medicina Genómica Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, UNAM Mexico City, Mexico
| | - Maribel Rodríguez-Torres
- INCMNSZ/Instituto de Investigaciones Biomédicas, Unidad de Biología Molecular y Medicina Genómica Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, UNAM Mexico City, Mexico
| | - Anna K Sommer
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Iris B A W Te Paske
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
- Cambridge Experimental Cancer Medicine Centre (ECMC), CRUK Cambridge Centre, NIHR Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Maria Teresa Tusié
- INCMNSZ/Instituto de Investigaciones Biomédicas, Unidad de Biología Molecular y Medicina Genómica Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, UNAM Mexico City, Mexico
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - German Demidov
- Institute of Medical Genetics and Applied Genomics, Tübingen, Germany
| | - Richarda M de Voer
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Steve Laurie
- The Barcelona Institute of Science and Technology, CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Carla Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.
- FMUP-Faculty of Medicine of the University of Porto, Porto, Portugal.
| |
Collapse
|
10
|
Zhang Y, Lu Y, Li X, Zhang S, Liu P, Hao X, Han J. The novel role of IFITM1-3 in myogenic differentiation of C2C12 cells. Intractable Rare Dis Res 2023; 12:180-190. [PMID: 37662621 PMCID: PMC10468414 DOI: 10.5582/irdr.2023.01050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/15/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs 1, 2, and 3) play a critical role in preventing pathogen infection in vertebrates. They are also involved in the occurrence and prognosis of cancer. Myogenesis is a complex process regulated by several factors. This study disclosed that Ifitm1-3 were upregulated in the process of myogenic differentiation of C2C12 myoblasts on days 3, 5, and 7. This positively correlated with the expression of differentiation factors MyoD, myogenin, Mrf5, and desmin. Furthermore, knockdown of Ifitm1-3 by their individual siRNAs inhibited myogenesis of C2C12 myoblasts, with relative downregulation of MyoD, myogenin, Mrf5, and desmin. Subsequently, myotube formation and fusion percentage decreased. Co-immunoprecipitation combined with LC-MS/MS analysis uncovered the interaction proteins of IFITM1 and IFITM3 in C2C12 myoblasts. A total of 84 overlapped interaction proteins of IFITM1 and IFITM3 were identified, and one of the clusters was engaged in cytoskeletal and sarcomere proteins, including desmin, myosin, actin, vimentin, nestin, ankycorbin, and nucleolin. Hence, we hypothesize that these interacting proteins may function as scaffolds for IFITM1-3, possibly through the interaction protein desmin to initiate further interaction with other proteins to participate in myogenesis; however, the molecular mechanisms remain unclear. Our study may contribute to the development of novel therapeutics for myopathic diseases.
Collapse
Affiliation(s)
- Yongtao Zhang
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Science College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Yanqin Lu
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Science College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Xianxian Li
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Science College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Shanshan Zhang
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Science College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Pengchao Liu
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Science College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Xiaoyang Hao
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Science College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Jinxiang Han
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Science College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| |
Collapse
|
11
|
Liu Y, Zhang H, Mao Y, Shi Y, Wang X, Shi S, Hu D, Liu S. Bulk and single-cell RNA-sequencing analyses along with abundant machine learning methods identify a novel monocyte signature in SKCM. Front Immunol 2023; 14:1094042. [PMID: 37304304 PMCID: PMC10248046 DOI: 10.3389/fimmu.2023.1094042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Background Global patterns of immune cell communications in the immune microenvironment of skin cutaneous melanoma (SKCM) haven't been well understood. Here we recognized signaling roles of immune cell populations and main contributive signals. We explored how multiple immune cells and signal paths coordinate with each other and established a prognosis signature based on the key specific biomarkers with cellular communication. Methods The single-cell RNA sequencing (scRNA-seq) dataset was downloaded from the Gene Expression Omnibus (GEO) database, in which various immune cells were extracted and re-annotated according to cell markers defined in the original study to identify their specific signs. We computed immune-cell communication networks by calculating the linking number or summarizing the communication probability to visualize the cross-talk tendency in different immune cells. Combining abundant analyses of communication networks and identifications of communication modes, all networks were quantitatively characterized and compared. Based on the bulk RNA sequencing data, we trained specific markers of hub communication cells through integration programs of machine learning to develop new immune-related prognostic combinations. Results An eight-gene monocyte-related signature (MRS) has been built, confirmed as an independent risk factor for disease-specific survival (DSS). MRS has great predictive values in progression free survival (PFS) and possesses better accuracy than traditional clinical variables and molecular features. The low-risk group has better immune functions, infiltrated with more lymphocytes and M1 macrophages, with higher expressions of HLA, immune checkpoints, chemokines and costimulatory molecules. The pathway analysis based on seven databases confirms the biological uniqueness of the two risk groups. Additionally, the regulon activity profiles of 18 transcription factors highlight possible differential regulatory patterns between the two risk groups, suggesting epigenetic event-driven transcriptional networks may be an important distinction. MRS has been identified as a powerful tool to benefit SKCM patients. Moreover, the IFITM3 gene has been identified as the key gene, validated to express highly at the protein level via the immunohistochemical assay in SKCM. Conclusion MRS is accurate and specific in evaluating SKCM patients' clinical outcomes. IFITM3 is a potential biomarker. Moreover, they are promising to improve the prognosis of SKCM patients.
Collapse
Affiliation(s)
- Yuyao Liu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Haoxue Zhang
- Department of Dermatovenerology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Yan Mao
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yangyang Shi
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xu Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shaomin Shi
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Delin Hu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shengxiu Liu
- Department of Dermatovenerology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
12
|
Barakat LA, Elsergany AR, Ghattas MH, Mahsoub N, Bondok RM. Relationship between interferon-induced transmembrane protein 3 and matrix metalloproteinase-9 gene polymorphisms in patients with hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2023; 47:102110. [PMID: 36914067 DOI: 10.1016/j.clinre.2023.102110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/08/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023]
Abstract
BACKGROUND Hepatocellular carcinoma originates from hepatocytes as a result of the effects of numerous genetic variations. Interferon-Induced Transmembrane protein 3 (IFITM3) is involved in the processes of cellular differentiation, apoptosis, cell adhesion, and immune cell regulation. Matrix Metalloproteinase-9 (MMP-9) are zinc dependent endopeptidases that cleave extracellular matrix contents and play an important role in the progression of cancer. OBJECTIVE The study aimed to outline the key molecular biology progression in hepatocellular carcinoma and the relationship between hepatocellular cancer and genetic polymorphisms of IFITM3 and MMP-9. METHODS In total 200 patients with hepatocellular carcinoma patients (n=100) and a control group with Hepatitis C virus (n=100) which collected randomly from the EL-Mansoura oncology center during the interval between June 2020 and October 2021. The expression of MMP-9 and the IFITM3 SNP was investigated. MMP-9 gene polymorphisms were estimated by using PCR-RFLP and IFITM3 gene was detected using DNA sequencing, ELISA was used to measure protein levels of MMP-9 and IFITM3. RESULTS The T allele of MMP-9 was more frequent among patients (n=121) than control subjects (n=71). The C allele of IFITM3 was more frequent among patients (n=112) than control subjects (n=83), polymorphisms of the genes linked to a high risk of disease development, patients of MMP-9 (TT genotype), odd ratio (OR) = 2.63, IFITM3 (CC genotype), OR= 2.43. CONCLUSIONS We found that the genetic polymorphisms of MMP-9 and IFITM3 are related to the occurrence and development of hepatocellular carcinoma. This study might be utilized in clinical diagnosis and therapy and to provide a baseline for prevention.
Collapse
Affiliation(s)
- Lamiaa A Barakat
- Department of Biochemistry, Faculty of Science, Port-Said University, Egypt.
| | - Alyaa R Elsergany
- Internal Medicine Department , Oncology Center, Faculty of Medicine, Mansoura University, Egypt
| | - Maivel H Ghattas
- Department of Medical Biochemistry, Faculty of Medicine, Port-Said University, Egypt
| | - Nancy Mahsoub
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Egypt
| | - Rania M Bondok
- Department of Biochemistry, Faculty of Science, Port-Said University, Egypt
| |
Collapse
|
13
|
Lee J. Does IFITM3 link inflammation to tumorigenesis? BMB Rep 2022; 55:602-608. [PMID: 36404597 PMCID: PMC9813432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/29/2022] Open
Abstract
Uncontrolled chronic inflammation, in most cases due to excessive cytokine signaling through their receptors, is known to contribute to the development of tumorigenesis. Recently, it has been reported that the antiviral membrane protein interferon-induced transmembrane protein 3 (IFITM3), induced by interferon signaling as part of the inflammatory response after viral infection, contributes to the development of B-cell malignancy. The unexpected oncogenic signaling of IFITM3 upon malignant B cell activation elucidated the mechanism by which the uncontrolled expression of inflammatory proteins contributes to leukemogenesis. In this review, the potential effects of inflammatory cytokines on upregulation of IFITM3 and its contribution to tumorigenesis are discussed. [BMB Reports 2022; 55(12): 602-608].
Collapse
Affiliation(s)
- Jaewoong Lee
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Korea
| |
Collapse
|
14
|
Lee J. Does IFITM3 link inflammation to tumorigenesis? BMB Rep 2022; 55:602-608. [PMID: 36404597 PMCID: PMC9813432 DOI: 10.5483/bmbrep.2022.55.12.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/15/2023] Open
Abstract
Uncontrolled chronic inflammation, in most cases due to excessive cytokine signaling through their receptors, is known to contribute to the development of tumorigenesis. Recently, it has been reported that the antiviral membrane protein interferon-induced transmembrane protein 3 (IFITM3), induced by interferon signaling as part of the inflammatory response after viral infection, contributes to the development of B-cell malignancy. The unexpected oncogenic signaling of IFITM3 upon malignant B cell activation elucidated the mechanism by which the uncontrolled expression of inflammatory proteins contributes to leukemogenesis. In this review, the potential effects of inflammatory cytokines on upregulation of IFITM3 and its contribution to tumorigenesis are discussed. [BMB Reports 2022; 55(12): 602-608].
Collapse
Affiliation(s)
- Jaewoong Lee
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Korea
| |
Collapse
|
15
|
IFITM proteins: Understanding their diverse roles in viral infection, cancer, and immunity. J Biol Chem 2022; 299:102741. [PMID: 36435199 PMCID: PMC9800550 DOI: 10.1016/j.jbc.2022.102741] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/27/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs) are broad spectrum antiviral factors that inhibit the entry of a wide range of clinically important pathogens including influenza A virus, HIV-1, and Dengue virus. IFITMs are thought to act primarily by antagonizing virus-cell membrane fusion in this regard. However, recent work on these proteins has uncovered novel post-entry viral restriction mechanisms. IFITMs are also increasingly thought to have a role regulating immune responses, including innate antiviral and inflammatory responses as well as adaptive T-cell and B-cell responses. Further, IFITMs may have pathological activities in cancer, wherein IFITM expression can be a marker of therapeutically resistant and aggressive disease courses. In this review, we summarize the respective literatures concerning these apparently diverse functions with a view to identifying common themes and potentially yielding a more unified understanding of IFITM biology.
Collapse
|
16
|
Friedlová N, Zavadil Kokáš F, Hupp TR, Vojtěšek B, Nekulová M. IFITM protein regulation and functions: Far beyond the fight against viruses. Front Immunol 2022; 13:1042368. [PMID: 36466909 PMCID: PMC9716219 DOI: 10.3389/fimmu.2022.1042368] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Interferons (IFNs) are important cytokines that regulate immune responses through the activation of hundreds of genes, including interferon-induced transmembrane proteins (IFITMs). This evolutionarily conserved protein family includes five functionally active homologs in humans. Despite the high sequence homology, IFITMs vary in expression, subcellular localization and function. The initially described adhesive and antiproliferative or pro-oncogenic functions of IFITM proteins were diluted by the discovery of their antiviral properties. The large set of viruses that is inhibited by these proteins is constantly expanding, as are the possible mechanisms of action. In addition to their beneficial antiviral effects, IFITM proteins are often upregulated in a broad spectrum of cancers. IFITM proteins have been linked to most hallmarks of cancer, including tumor cell proliferation, therapeutic resistance, angiogenesis, invasion, and metastasis. Recent studies have described the involvement of IFITM proteins in antitumor immunity. This review summarizes various levels of IFITM protein regulation and the physiological and pathological functions of these proteins, with an emphasis on tumorigenesis and antitumor immunity.
Collapse
Affiliation(s)
- Nela Friedlová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Filip Zavadil Kokáš
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Ted R. Hupp
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Bořivoj Vojtěšek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Marta Nekulová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| |
Collapse
|
17
|
Chu PY, Huang WC, Tung SL, Tsai CY, Chen CJ, Liu YC, Lee CW, Lin YH, Lin HY, Chen CY, Yeh CT, Lin KH, Chi HC. IFITM3 promotes malignant progression, cancer stemness and chemoresistance of gastric cancer by targeting MET/AKT/FOXO3/c-MYC axis. Cell Biosci 2022; 12:124. [PMID: 35941699 PMCID: PMC9361616 DOI: 10.1186/s13578-022-00858-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/22/2022] [Indexed: 12/09/2022] Open
Abstract
Background Targeting the HGF/MET signaling pathway has been a viable therapeutic strategy for various cancer types due to hyperactivation of HGF/MET axis occurs frequently that leads to detrimental cancer progression and recurrence. Deciphering novel molecule mechanisms underlying complex HGF/MET signaling network is therefore critical to development of effective therapeutics for treating MET-dependent malignancies. Results Using isobaric mass tag-based quantitative proteomics approach, we identified IFITM3, an interferon-induced transmembrane protein that was highly expressed in micro-dissected gastric cancer (GC) tumor regions relative to adjacent non-tumor epithelia. Analyses of GC clinical specimens revealed that expression IFITM3 was closely correlated to advanced pathological stages. IFITM3 has been reported as a PIP3 scaffold protein that promotes PI3K signaling. In present study, we unprecedentedly unraveled that IFITM3 associated with MET and AKT to facilitate HGF/MET mediated AKT signaling crosstalk in suppressing FOXO3, consequently leading to c-MYC mediated GC progression. In addition, gene ontology analyses of the clinical GC cohort revealed significant correlation between IFITM3-associated genes and targets of c-MYC, which is a crucial downstream effector of HGF/MET pathway in cancer progression. Moreover, we demonstrated ectopic expression of IFITM3 suppressed FOXO3 expression, consequently led to c-MYC induction to promote tumor growth, cell metastasis, cancer stemness as well as chemoresistance. Conversely, depletion of IFITM3 resulted in suppression of HGF triggered cellular growth and migration via inhibition of AKT/c-MYC signaling in GC. Conclusions In summary, our present study unveiled a novel regulatory mechanism for c-MYC-driven oncogenesis underlined by IFITM3-mediated signaling crosstalk between MET associated AKT signaling cascade. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00858-8.
Collapse
|
18
|
Zhang R, Ai J, Wang J, Sun C, Lu H, He A, Li M, Liao Y, Lei J, Zhou F, Wu L, Liao W. NCAPG promotes the proliferation of hepatocellular carcinoma through the CKII-dependent regulation of PTEN. J Transl Med 2022; 20:325. [PMID: 35864529 PMCID: PMC9301831 DOI: 10.1186/s12967-022-03519-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND NCAPG, non-SMC subunit in the concentrate I complex, might promote the proliferation of hepatocellular carcinoma (HCC), but the mechanism is unclear. The aim of this study was to explore how NCAPG affects PTEN to influence the proliferation of HCC. METHODS Western blotting, qRT-PCR and immunohistochemistry were used to detect NCAPG expression in HCC tissues. The effect of NCAPG on the proliferation of HCC cell lines was evaluated using an EdU incorporation assay, a Cell Counting Kit-8 assay and Fluorescence in situ hybridization (FISH). BALB/c-nu/nu mice were used for the in vivo proliferation experiment. Transcriptome sequencing was used to determine the relationship between NCAPG and PTEN. Immunocoprecipitation-mass spectrometry (IP-MS), proteomic sequencing and Co-immunoprecipitation (CO-IP) were used to identify and examine the interaction between the NCAPG and CKII proteins. RESULTS We confirmed that NCAPG was abnormally overexpressed in HCC and promoted the proliferation of HCC cells. Transcriptome sequencing revealed that NCAPG inhibited the transcription of PTEN and promoted the activation of the PI3K-AKT pathway. We found a close association between NCAPG and CKII through proteomic sequencing; their interaction was confirmed by Co-IP. There was a positive correlation between NCAPG and CKII that promoted the phosphorylation of PTEN and thus inhibited its transcription and functions. We also proved that CKII was the key factor in the induction of proliferation by NCAPG. CONCLUSION We revealed the mechanism by which NCAPG regulates the proliferation of HCC: NCAPG inhibits PTEN through its interaction with CKII, and then activates the PI3K-AKT pathway to promote the proliferation of HCC.
Collapse
Affiliation(s)
- Rongguiyi Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Jiyuan Ai
- Department of General Surgery, The Third Hospital of Nanchang City, No. 2, Xiangshan South Road, Nanchang, 330006, China
| | - Jiakun Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Chi Sun
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Hongcheng Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Aoxiao He
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Min Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Yuting Liao
- Department of Nursing, Gannan Medical College, No. 1, Medical Road, Ganzhou, 341000, China
| | - Jun Lei
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Fan Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Linquan Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China.
| | - Wenjun Liao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China.
| |
Collapse
|
19
|
Jiang H, Wen X, Zhang X, Zhong X, Li Z, Zhang B. Lens culinaris agglutinin inhibits human hepatoma cell migration via mannose and fucose-mediated ERK1/2 and JNK1/2/3 signalling pathway. Mol Biol Rep 2022; 49:7665-7676. [PMID: 35717475 DOI: 10.1007/s11033-022-07582-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the main types of primary liver cancer, which shows some abnormal glycosylation, such as the increase of fucose. Lens culinaris agglutinin (LCA), a natural plant lectin that can bind to mannose and fucose, has been reported to be antiproliferative to may tumors. However, the effect of LCA on the vitality and migration ability of human hepatoma cells is not demonstrated. Therefore, the aim of this study is to investigate the effects of LCA on vitality and migration in human hepatoma cells and its potential mechanisms. METHODS AND RESULTS LCA had no significant effect on viability of human hepatoma cells (HCCLM3, MHCC97L and HepG2) and hepatocytes (L02) by CCK-8 kit, but it could inhibit human hepatoma cells migration significantly without affecting hepatocytes by Transwell method. Sugar inhibition assay was used to verify the possible binding site between LCA and human hepatoma cells. The result showed that Mannose- and fucose- related sites were associated with LCA inhibiting human hepatoma cells migration. Moreover, LCA could affect HCCLM3 migration by activating ERK1/2 and JNK1/2/3 signalling pathways. LCA did not affect MMP-2 and MMP-9 of HCCLM3 through gelatinase zymography. However, the results of immunofluorescence standing showed that LCA could reduce the F-actin formation in HCCLM3 via ERK1/2 and JNK1/2/3 signalling pathways. CONCLUSIONS LCA might inhibit human hepatoma cell migration by reducing the F-actin formation via the mannose and fucose-mediated ERK1/2 and JNK1/2/3 signalling pathway. This result will deepen people's understanding on plant lectin as a drug in tumor glycobiology.
Collapse
Affiliation(s)
- Haoran Jiang
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, College of Bioinformatics, Chongqing University of Posts and Telecommunications, 400065, Chongqing, China
| | - Xianxin Wen
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, College of Bioinformatics, Chongqing University of Posts and Telecommunications, 400065, Chongqing, China
| | - Xue Zhang
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, College of Bioinformatics, Chongqing University of Posts and Telecommunications, 400065, Chongqing, China
| | - Xianhua Zhong
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, College of Bioinformatics, Chongqing University of Posts and Telecommunications, 400065, Chongqing, China
| | - Zhangyong Li
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, College of Bioinformatics, Chongqing University of Posts and Telecommunications, 400065, Chongqing, China
| | - Bingyu Zhang
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, College of Bioinformatics, Chongqing University of Posts and Telecommunications, 400065, Chongqing, China.
| |
Collapse
|
20
|
Chen S, Lóssio CF, Verbeke I, Verduijn J, Parakhonskiy B, Van der Meeren L, Chen P, De Zaeytijd J, Skirtach AG, Van Damme EJM. The type-1 ribosome-inactivating protein OsRIP1 triggers caspase-independent apoptotic-like death in HeLa cells. Food Chem Toxicol 2021; 157:112590. [PMID: 34601042 DOI: 10.1016/j.fct.2021.112590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/04/2021] [Accepted: 09/29/2021] [Indexed: 01/07/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are capable of removing a specific adenine from 28S ribosomal RNA, thus inhibiting protein biosynthesis in an irreversible manner. In this study, recombinant OsRIP1, a type 1 RIP from rice (Oryza sativa L.), was investigated for its anti-proliferative properties. Human cervical cancer HeLa cells were incubated in the presence of OsRIP1 for 24-72 h. OsRIP1 treatment yielded an anti-proliferation response of the HeLa cells and resulted in apoptotic-like blebbing of the plasma membrane without causing DNA fragmentation. OsRIP1 labeled with FITC accumulated at the cell surface. Pull-down assays identified ASPP1 (Apoptosis-Stimulating Protein of p53 1) and IFITM3 (interferon-induced transmembrane protein 3) as potential interaction partners for OsRIP1. Transcript levels for several critical genes related to different signaling pathways were quantified by RT-qPCR. OsRIP1 provoked HeLa cells to undergo caspase-independent cell death, associated with a significant transcriptional upregulation of the apoptotic gene PUMA, interferon regulatory factor 1 (IRF1) and the autophagy-related marker LC3. No changes in caspase activities were observed. Together, these data suggest that apoptotic-like events were involved in OsRIP1-driven caspase-independent cell death that might trigger the IRF1 signaling pathway and LC3-mediated autophagy.
Collapse
Affiliation(s)
- Simin Chen
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Cláudia Figueiredo Lóssio
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium; Department of Biochemistry and Molecular Biology, The Federal University of Ceará, Fortaleza, Ceará, 2853, Brazil
| | - Isabel Verbeke
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Joost Verduijn
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Bogdan Parakhonskiy
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Louis Van der Meeren
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Pengyu Chen
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium; Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Jeroen De Zaeytijd
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - André G Skirtach
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium; Center for Advanced Light Microscopy, Ghent University, 9000, Ghent, Belgium
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium; Center for Advanced Light Microscopy, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
21
|
Ju PC, Ho YC, Chen PN, Lee HL, Lai SY, Yang SF, Yeh CB. Kaempferol inhibits the cell migration of human hepatocellular carcinoma cells by suppressing MMP-9 and Akt signaling. ENVIRONMENTAL TOXICOLOGY 2021; 36:1981-1989. [PMID: 34156145 DOI: 10.1002/tox.23316] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Metastasis is the most prevalent cause of cancer-related deaths and treatment failure in patients with hepatocellular carcinoma (HCC). Kaempferol is a natural flavonol belonging to the subgroup of flavonoids and exhibits potent anticancer activities. This study provides molecular evidence on the anti-invasive and anti-migratory effects of kaempferol on human HCC cells. The anti-invasive effect was investigated by applying kaempferol on two human HCC cell lines (Huh-7 and SK-Hep-1). Kaempferol reduced the invasion and migration of Huh-7 and SK-Hep-1 cells by Boyden chamber invasion assay and wound healing assay, respectively. A protease array analysis showed that Matrix Metalloproteinase-9 (MMP-9) was dramatically downregulated in HCC cells after kaempferol treatment. Gelatin zymography and Western blot assay showed that kaempferol reduced the activities and protein expression of MMP-9, respectively. Kaempferol also sufficiently suppressed the phosphorylation of the Akt expression. Overall, kaempferol inhibited the invasive properties of human HCC cells by targeting MMP-9 and Akt pathways. Hence, kaempferol could be used as an adjuvant therapeutic agent for the treatment of human HCC cells.
Collapse
Affiliation(s)
- Po-Chung Ju
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Psychiatry, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yung-Chuan Ho
- School of Medical Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsiang-Lin Lee
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Szu-Yu Lai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chao-Bin Yeh
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
22
|
Waqar W, Asghar S, Manzoor S. Platelets' RNA as biomarker trove for differentiation of early-stage hepatocellular carcinoma from underlying cirrhotic nodules. PLoS One 2021; 16:e0256739. [PMID: 34469466 PMCID: PMC8409664 DOI: 10.1371/journal.pone.0256739] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/15/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND & AIMS Among the multiplicity of factors involved in rising incidence of hepatocellular carcinoma (HCC)-the second deadliest cancer, late diagnosis of early-stage HCC nodules originating from late-stage cirrhotic nodules is the most crucial. In recent years, Tumor-educated platelets (TEPs) have emerged as a strong multimodal tool to be used in liquid-biopsy of cancers because of changes in their mRNA content. This study assessed the reliability of selected mRNA repertoire of platelets as biomarkers to differentiate early HCC from late-stage cirrhotic nodules. METHODS Quantitative real time PCR (qRT-PCR) was used to evaluate expression levels of selected platelets-specific mRNA between HCC patients compared to cirrhosis patients. ROC curve analysis assessed the sensitivity and specificity of the biomarkers. RESULTS RhoA, CTNNB1 and SPINK1 showed a significant 3.3-, 3.2- and 3.18-folds upregulation, respectively, in HCC patients compared to cirrhosis patients while IFITM3 and SERPIND1 presented a 2.24-fold change. Strikingly, CD41+ platelets also demonstrated a marked difference of expression in HCC and cirrhosis groups. CONCLUSIONS Our study reports liquid biopsy-based platelets mRNA signature for early diagnosis of HCC from underlying cirrhotic nodules. Moreover, differential expression of CD41+ platelets in two groups provides new insights into a probable link between CD41 expression on platelets with the progression of cirrhosis to HCC.
Collapse
MESH Headings
- Adult
- Aged
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/metabolism
- Blood Platelets/metabolism
- Carcinoma, Hepatocellular/blood
- Carcinoma, Hepatocellular/diagnosis
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Case-Control Studies
- Diagnosis, Differential
- Female
- Gene Expression Regulation, Neoplastic
- Healthy Volunteers
- Humans
- Liquid Biopsy/methods
- Liver/pathology
- Liver Cirrhosis/blood
- Liver Cirrhosis/diagnosis
- Liver Cirrhosis/genetics
- Liver Cirrhosis/pathology
- Liver Neoplasms/blood
- Liver Neoplasms/diagnosis
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Male
- Middle Aged
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Reproducibility of Results
- Trypsin Inhibitor, Kazal Pancreatic/genetics
- beta Catenin/genetics
- rhoA GTP-Binding Protein/genetics
Collapse
Affiliation(s)
- Walifa Waqar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sidra Asghar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sobia Manzoor
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
- * E-mail: ,
| |
Collapse
|
23
|
Cai Y, Ji W, Sun C, Xu R, Chen X, Deng Y, Pan J, Yang J, Zhu H, Mei J. Interferon-Induced Transmembrane Protein 3 Shapes an Inflamed Tumor Microenvironment and Identifies Immuno-Hot Tumors. Front Immunol 2021; 12:704965. [PMID: 34456915 PMCID: PMC8385493 DOI: 10.3389/fimmu.2021.704965] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022] Open
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) is an interferon-induced membrane protein, which has been identified as a functional gene in multiple human cancers. The role of IFITM3 in cancer has been preliminarily summarized, but its relationship to antitumor immunity is still unclear. A pancancer analysis was conducted to investigate the expression pattern and immunological role of IFITM3 based on transcriptomic data downloaded from The Cancer Genome Atlas (TCGA) database. Next, correlations between IFITM3 and immunological features in the bladder cancer (BLCA) tumor microenvironment (TME) were assessed. In addition, the role of IFITM3 in estimating the clinical characteristics and the response to various therapies in BLCA was also evaluated. These results were next confirmed in the IMvigor210 cohort and a recruited cohort. In addition, correlations between IFITM3 and emerging immunobiomarkers, such as microbiota and N6-methyladenosine (m6A) genes, were assessed. IFITM3 was enhanced in most tumor tissues in comparison with adjacent tissues. IFITM3 was positively correlated with immunomodulators, tumor-infiltrating immune cells (TIICs), cancer immunity cycles, and inhibitory immune checkpoints. In addition, IFITM3 was associated with an inflamed phenotype and several established molecular subtypes. IFITM3 expression also predicted a notably higher response to chemotherapy, anti-EGFR therapy, and immunotherapy but a low response to anti-ERBB2, anti-ERBB4, and antiangiogenic therapy. In addition, IFITM3 was correlated with immune-related microbiota and m6A genes. In addition to BLCA, IFITM3 is expected to be a marker of high immunogenicity in most human cancers. In conclusion, IFITM3 expression can be used to identify immuno-hot tumors in most cancers, and IFITM3 may be a promising pancancer biomarker to estimate the immunological features of tumors.
Collapse
Affiliation(s)
- Yun Cai
- Department of Oncology, Nantong Third People's Hospital Affiliated to Nantong University, Nantong, China
| | - Wenfei Ji
- Department of Oncology, Nantong Third People's Hospital Affiliated to Nantong University, Nantong, China
| | - Chuan Sun
- Department of Geriatrics, Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, Hangzhou, China
| | - Rui Xu
- Wuxi College of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Xuechun Chen
- College of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yifan Deng
- College of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Jiadong Pan
- Wuxi College of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jiayue Yang
- Department of Endocrinology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Hongjun Zhu
- Department of Oncology, Nantong Third People's Hospital Affiliated to Nantong University, Nantong, China
| | - Jie Mei
- Department of Oncology, Nantong Third People's Hospital Affiliated to Nantong University, Nantong, China.,Wuxi College of Clinical Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Simeonov KP, Byrns CN, Clark ML, Norgard RJ, Martin B, Stanger BZ, Shendure J, McKenna A, Lengner CJ. Single-cell lineage tracing of metastatic cancer reveals selection of hybrid EMT states. Cancer Cell 2021; 39:1150-1162.e9. [PMID: 34115987 PMCID: PMC8782207 DOI: 10.1016/j.ccell.2021.05.005] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/01/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022]
Abstract
The underpinnings of cancer metastasis remain poorly understood, in part due to a lack of tools for probing their emergence at high resolution. Here we present macsGESTALT, an inducible CRISPR-Cas9-based lineage recorder with highly efficient single-cell capture of both transcriptional and phylogenetic information. Applying macsGESTALT to a mouse model of metastatic pancreatic cancer, we recover ∼380,000 CRISPR target sites and reconstruct dissemination of ∼28,000 single cells across multiple metastatic sites. We find that cells occupy a continuum of epithelial-to-mesenchymal transition (EMT) states. Metastatic potential peaks in rare, late-hybrid EMT states, which are aggressively selected from a predominately epithelial ancestral pool. The gene signatures of these late-hybrid EMT states are predictive of reduced survival in both human pancreatic and lung cancer patients, highlighting their relevance to clinical disease progression. Finally, we observe evidence for in vivo propagation of S100 family gene expression across clonally distinct metastatic subpopulations.
Collapse
Affiliation(s)
- Kamen P Simeonov
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - China N Byrns
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan L Clark
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert J Norgard
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Beth Martin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Ben Z Stanger
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell & Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA, USA.
| | - Aaron McKenna
- Department of Molecular & Systems Biology, Dartmouth Geisel School of Medicine, Lebanon, NH, USA.
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell & Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Buchrieser J, Schwartz O. Pregnancy complications and Interferon-induced transmembrane proteins (IFITM): balancing antiviral immunity and placental development. C R Biol 2021; 344:145-156. [PMID: 34213852 DOI: 10.5802/crbiol.54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022]
Abstract
Pregnancy complications occur frequently and are particularly prevalent during the first trimester. They are caused by a multitude of factors, including karyotypic, genetic or environmental conditions, congenital infections and inflammation. The molecular mechanisms leading to placental complications under inflammatory conditions remain unclear. In this review, we discuss how uncontrolled inflammation, triggered by viral infections or other diseases can lead to placental complications. We first highlight the importance of syncytins, ancestral retroviral genes co-opted by mammals including humans, millions of years ago for the process of placenta formation. We then focus on recent advances elucidating how interferon-induced transmembrane (IFITM) proteins, antiviral proteins rendering cells refractory to viral infections, interfere with placental development.
Collapse
Affiliation(s)
- Julian Buchrieser
- CNRS-UMR3569, Paris, France
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France
| | - Olivier Schwartz
- CNRS-UMR3569, Paris, France
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France
| |
Collapse
|
26
|
Wang H, Wang L, Li J, Fu F, Zheng Y, Zhang L. Molecular characterization, expression and functional analysis of yak IFITM3 gene. Int J Biol Macromol 2021; 184:349-357. [PMID: 34119542 DOI: 10.1016/j.ijbiomac.2021.06.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 01/18/2023]
Abstract
IFITM3 is interferon-induced transmembrane 3, which plays an extremely key role in anti-proliferation, anti-virus and anti-tumor diseases. In this study, the yak (Bos grunniens) IFITM3 (BgIFITM3) gene contained a 5'-untranslated region (UTR) (25 bp), a coding region (441 bp), and a 3'-UTR (115 bp). The expression of BgIFITM3 gene in liver was significantly higher than that in heart, spleen, lung and kidney (P < 0.01). BgIFITM3 protein was localized on the yak hepatocyte plasma membrane, and its expression was significantly different between 1 day and 15 months of age (P < 0.05). Moreover, the prokaryotic expression vector of BgIFITM3 protein was constructed and expressed successfully, with a molecular weight of 19.5 kDa. The activities of yak hepatocyte were significantly inhibited after treating with BgIFITM3 protein (10 and 20 μg/mL) (P < 0.01). The expression levels of ERBB-2, IRS-1, PI3KR-1, AKT-1 and MAPK-3 were significantly lower after treating with 20 μg/mL BgIFITM3 protein (P < 0.05). Besides, the activities of HepG2 cells were significantly inhibited after treating with BgIFITM3 protein (1, 10 and 20 μg/mL) (P < 0.05). While, the cloning ability and migration ability of HepG2 cells were significantly inhibited after treating with 10 μg/mL BgIFITM3 protein (P < 0.05). Finally, the mitochondria of HepG2 cells was concentrated, cristae widened, and the double film density of mitochondria was increased after treating with 10 μg/mL BgIFITM3 protein. After 10 μg/mL BgIFITM3 protein treating, the expression levels of VDAC-2, VDAC-3 and p53 genes were significantly increased, but the expression level of GPX-4 gene was significantly decreased (P < 0.01). Taken together, the BgIFITM3 protein could inhibit the proliferations of yak hepatocyte and HepG2 cells by regulating the PI3K/Akt pathway or ferroptosis-related genes, respectively. These results benefit for further study of the function of BgIFITM3 protein.
Collapse
Affiliation(s)
- Haipeng Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Li Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China.
| | - Juan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Fang Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Yao Zheng
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Ling Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
27
|
Ge X, Yuan L, Cheng B, Dai K. Identification of seven tumor-educated platelets RNAs for cancer diagnosis. J Clin Lab Anal 2021; 35:e23791. [PMID: 33955587 PMCID: PMC8183939 DOI: 10.1002/jcla.23791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Tumor-educated platelets (TEPs) may enable blood-based cancer diagnosis. This study aimed to identify diagnostic TEPs genes involved in carcinogenesis. MATERIALS AND METHODS The TEPs differentially expressed genes (DEGs) between healthy samples and early/advanced cancer samples were obtained using bioinformatics. Gene ontology (GO) analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis were used to identify the pathways and functional annotation of TEPs DEGs. Protein-protein interaction of these TEPs DEGs was analyzed based on the STRING database and visualized by Cytoscape software. The correlation analysis and diagnostic analysis were performed to evaluate the diagnostic value of TEPs mRNAs expression for early/advanced cancers. Quantitative real-time PCR (qRT-PCR) was applied to validate the role of DEGs in cancers. RESULTS TEPs mRNAs were mostly involved in protein binding, extracellular matrix, and cellular protein metabolic process. RSL24D1 was negatively correlated to early-stage cancers compared to healthy controls and may be potentially used for early cancer diagnosis. In addition, HPSE, IFI27, LGALS3BP, CRYM, HBD, COL6A3, LAMB2, and IFITM3 showed an upward trend in the expression from early to advanced cancer stages. Moreover, ARL2, FCGR2A, and KLHDC8B were positively associated with advanced, metastatic cancers compared to healthy controls. Among the 12 selected DEGs, the expression of 7 DEGs, including RSL24D1, IFI27, CRYM, HBD, IFITM3, FCGR2A, and KLHDC8B, were verified by the qRT-PCR method. CONCLUSION This study suggests that the 7-gene TEPs liquid-biopsy biomarkers may be used for cancer diagnosis and monitoring.
Collapse
Affiliation(s)
- Xinxin Ge
- The First Affiliated Hospital and Collaborative Innovation Center of HematologyJiangsu Institute of HematologyCyrus Tang Medical InstituteState Key Laboratory of Radiation Medicine and ProtectionKey Laboratory of Thrombosis and HemostasisMinistry of HealthNational Clinical Research Center for Hematological DiseasesSoochow UniversitySuzhouChina
| | - Liuxia Yuan
- The First Affiliated Hospital and Collaborative Innovation Center of HematologyJiangsu Institute of HematologyCyrus Tang Medical InstituteState Key Laboratory of Radiation Medicine and ProtectionKey Laboratory of Thrombosis and HemostasisMinistry of HealthNational Clinical Research Center for Hematological DiseasesSoochow UniversitySuzhouChina
| | - Bin Cheng
- The First Affiliated Hospital and Collaborative Innovation Center of HematologyJiangsu Institute of HematologyCyrus Tang Medical InstituteState Key Laboratory of Radiation Medicine and ProtectionKey Laboratory of Thrombosis and HemostasisMinistry of HealthNational Clinical Research Center for Hematological DiseasesSoochow UniversitySuzhouChina
| | - Kesheng Dai
- The First Affiliated Hospital and Collaborative Innovation Center of HematologyJiangsu Institute of HematologyCyrus Tang Medical InstituteState Key Laboratory of Radiation Medicine and ProtectionKey Laboratory of Thrombosis and HemostasisMinistry of HealthNational Clinical Research Center for Hematological DiseasesSoochow UniversitySuzhouChina
| |
Collapse
|
28
|
Marziali F, Cimarelli A. Membrane Interference Against HIV-1 by Intrinsic Antiviral Factors: The Case of IFITMs. Cells 2021; 10:cells10051171. [PMID: 34065027 PMCID: PMC8151167 DOI: 10.3390/cells10051171] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
HIV-1 is a complex retrovirus that is adapted to replicate in cells of the immune system. To do so, HIV-1, like other viruses, developed strategies to use several cellular processes to its advantage, but had also to come to terms with an arsenal of cellular innate defense proteins, or antiviral factors, that target more or less efficiently, virtually every step of the virus replicative cycle. Among antiviral restriction factors, the family of interferon-induced transmembrane proteins (IFITMs) has emerged as a crucial component of cellular innate defenses for their ability to interfere with both early and late phases of viral replication by inhibiting cellular and viral membranes fusion. Here, we review the enormous advances made since the discovery of IFITMs as interferon-regulated genes more than thirty years ago, with a particular focus on HIV-1 and on the elements that modulate its susceptibility or resistance towards members of this family. Given the recent advances of the field in the elucidation of the mechanism of IFITM inhibition and on the mechanism(s) of viral resistance, we expect that future years will bring novel insights into the definition of the multiple facets of IFITMs and on their possible use for novel therapeutical approaches.
Collapse
Affiliation(s)
- Federico Marziali
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm U1111, CNRS, UMR5308, ENS de Lyon, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69007 Lyon, France
| | - Andrea Cimarelli
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm U1111, CNRS, UMR5308, ENS de Lyon, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69007 Lyon, France
| |
Collapse
|
29
|
A dual immune signature of CD8+ T cells and MMP9 improves the survival of patients with hepatocellular carcinoma. Biosci Rep 2021; 41:228011. [PMID: 33656546 PMCID: PMC7969702 DOI: 10.1042/bsr20204219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/20/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
The 5-year survival of hepatocellular carcinoma (HCC) is difficult due to the high recurrence rate and metastasis. Tumor infiltrating immune cells (TICs) and immune-related genes (IRGs) bring hope to improve survival and treatment of HCC patients. However, there are problems in predicting immune signatures and identifying novel therapeutic targets. In the study, the CIBERSORT algorithm was used to evaluate 22 immune cell infiltration patterns in gene expression omnibus (GEO) and the cancer genome atlas (TCGA) data. Eight immune cells were found to have significant infiltration differences between the tumor and normal groups. The CD8+ T cells immune signature was constructed by least absolute shrinkage and selection operator (LASSO) algorithm. The high infiltration level of CD8+ T cells could significantly improve survival of patients. The weighted gene co-expression network analysis (WGCNA) algorithm identified MMP9 was closely related to the overall survival of HCC patients. K-M survival and tROC analysis confirmed that MMP9 had an excellent prognostic prediction. Cox regression showed that a dual immune signature of CD8+ T cells and MMP9 was independent survival factor in HCC. Therefore, a dual prognostic immune signature could improve the survival of patient and may provide a new strategy for the immunotherapy of HCC.
Collapse
|
30
|
Interferon-Induced Transmembrane Protein 3 Expression Upregulation Is Involved in Progression of Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5612138. [PMID: 33816616 PMCID: PMC7990528 DOI: 10.1155/2021/5612138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 01/30/2021] [Accepted: 03/03/2021] [Indexed: 01/25/2023]
Abstract
Purpose Interferon-induced transmembrane protein 3 (IFITM3) is a key signaling molecule regulating cell growth in some tumors, but its function and mechanism in hepatocellular carcinoma (HCC) remain unknown. Our study investigated the relationship between the expression of IFITM3 and HCC development. Material and Methods. IFITM3 expression was identified via multiple gene expression databases and investigated in HCC tissue samples. Then, PLC/PRF/5 cells were transfected with lentivirus to knock down and overexpress the expression of IFITM3. IFITM3 expression, cell proliferation, and migration were detected by qRT-PCR, western blotting, QuantiGene Plex 2.0 assay, immunohistochemistry, CCK-8, and wound healing tests. RNA-seq technology identified the PI3K/AKT/mTOR pathway as an IFITM3-related signaling pathway for investigation. Results IFITM3 expression was higher in HCC tissues than in adjacent normal tissues, and the level of IFITM3 was higher in HCC tissues with low differentiation and metastatic potential than in those with high/medium differentiation and without metastatic potential. A higher RNA level of IFITM3 was found in samples with IFITM3 rs12252-CC genotype rather than the TT genotype. Knockdown of IFITM3 in PLC/PRF/5 cells inhibited cell proliferation and migration, blocked the expression of the PI3K/AKT/mTOR signaling pathway, and decreased the expression of vimentin. The results were opposite with the overexpression of IFITM3. Conclusion Upregulation of IFITM3 plays a role in the development of HCC. Possibly through regulating HCC cell proliferation and migration, these effects are associated with the PI3K/AKT/mTOR signaling pathway. Upregulation of IFITM3 is also associated with the IFITM3 rs12252-CC genotype.
Collapse
|
31
|
Liu Y, Jing J, Yu H, Zhang J, Cao Q, Zhang X, Liu J, Zhang S, Cheng W. Expression profiles of long non-coding RNAs in the cartilage of patients with knee osteoarthritis and normal individuals. Exp Ther Med 2021; 21:365. [PMID: 33732338 PMCID: PMC7903471 DOI: 10.3892/etm.2021.9796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/12/2019] [Indexed: 11/22/2022] Open
Abstract
Knee osteoarthritis is caused by a multifactorial imbalance in the synthesis and degradation of knee chondrocytes, subchondral bone and extracellular matrix. Abnormal expression of long non-coding RNAs (lncRNAs) affects the metabolism, synovitis, autophagy and apoptosis of chondrocytes, as well as the production of cartilage matrix. The aim of the present study was to identify novel targets for the treatment of osteoarthritis and to examine the pathogenesis of the disease. The lncRNA expression profiles of seven patients with knee osteoarthritis and six healthy controls were examined by RNA-sequencing. Differentially expressed lncRNAs were selected for bioinformatics analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Reverse transcription-quantitative PCR (RT-qPCR) was used to further investigate the differential expression of the lncRNAs. A total of 23,583 lncRNAs were identified in osteoarthritis cartilage, including 5,255 upregulated and 5,690 downregulated lncRNAs, compared with normal cartilage. Although there were more downregulated lncRNAs compared with upregulated lncRNAs, among the changed lncRNAs (fold-change >6), there were more upregulated lncRNAs compared with downregulated lncRNAs. Several lncRNAs exhibiting differences were identified as potential therapeutic targets in knee osteoarthritis. GO and KEGG pathway analyses were performed for the target genes of the differentially expressed lncRNAs. RT-qPCR validation was performed on three randomly selected upregulated and downregulated lncRNAs. The results of RT-qPCR were consistent with the findings obtained by RNA-sequencing analysis. The findings from the present study may contribute to the diagnosis of osteoarthritis and may predict the development of osteoarthritis. Furthermore, the differentially expressed lncRNAs may aid in the identification of novel candidate targets for the treatment of knee osteoarthritis.
Collapse
Affiliation(s)
- Yanchang Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Juehua Jing
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Haoran Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Jisen Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Qiliang Cao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Xin Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Jianjun Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Shuo Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Wendan Cheng
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
32
|
Xiao B, Liu L, Li A, Xiang C, Wang P, Li H, Xiao T. Identification and Verification of Immune-Related Gene Prognostic Signature Based on ssGSEA for Osteosarcoma. Front Oncol 2020; 10:607622. [PMID: 33384961 PMCID: PMC7771722 DOI: 10.3389/fonc.2020.607622] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is the most common malignant bone tumor in children and adolescence. Multiple immune-related genes have been reported in different cancers. The aim is to identify an immune-related gene signature for the prospective evaluation of prognosis for osteosarcoma patients. In this study, we evaluated the infiltration of immune cells in 101 osteosarcoma patients downloaded from TARGET using the ssGSEA to the RNA-sequencing of these patients, thus, high immune cell infiltration cluster, middle immune cell infiltration cluster and low immune cell infiltration cluster were generated. On the foundation of high immune cell infiltration cluster vs. low immune cell infiltration cluster and normal vs. osteosarcoma, we found 108 common differentially expressed genes which were sequentially submitted to univariate Cox and LASSO regression analysis. Furthermore, GSEA indicated some pathways with notable enrichment in the high- and low-immune cell infiltration cluster that may be helpful in understanding the potential mechanisms. Finally, we identified seven immune-related genes as prognostic signature for osteosarcoma. Kaplan-Meier analysis, ROC curve, univariate and multivariate Cox regression further confirmed that the seven immune-related genes signature was an innovative and significant prognostic factor independent of clinical features. These results of this study offer a means to predict the prognosis and survival of osteosarcoma patients with uncovered seven-gene signature as potential biomarkers.
Collapse
Affiliation(s)
- Bo Xiao
- Department of Orthopedics, Second Xiangya Hospital, Central South University, Changsha, China.,Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Liyan Liu
- Department of Orthopedics, Second Xiangya Hospital, Central South University, Changsha, China.,Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Aoyu Li
- Department of Orthopedics, Second Xiangya Hospital, Central South University, Changsha, China.,Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Cheng Xiang
- Department of Orthopedics, Second Xiangya Hospital, Central South University, Changsha, China.,Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Pingxiao Wang
- Department of Orthopedics, Second Xiangya Hospital, Central South University, Changsha, China.,Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Hui Li
- Department of Orthopedics, Second Xiangya Hospital, Central South University, Changsha, China.,Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Tao Xiao
- Department of Orthopedics, Second Xiangya Hospital, Central South University, Changsha, China.,Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| |
Collapse
|
33
|
Rajapaksa US, Jin C, Dong T. Malignancy and IFITM3: Friend or Foe? Front Oncol 2020; 10:593245. [PMID: 33364194 PMCID: PMC7753217 DOI: 10.3389/fonc.2020.593245] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/21/2020] [Indexed: 02/05/2023] Open
Abstract
The prevalence and incidence of cancers has risen over the last decade. Available treatments have improved outcomes, yet mortality and morbidity remain high, creating an urgent demand for personalized and new therapy targets. Interferon induced transmembrane protein (IFITM3) is highly expressed in cancers and is a marker of poor prognosis. In this review, we discuss recent advances in IFITM3 biology, the regulatory pathways, and its function within cancer as part of immunity and maintaining stemness. Overexpression of IFITM3 is likely an indirect effect of ongoing inflammation, immune and cancer epithelial-to-mesenchymal (EMT) related pathways i.e., interferons, TGF-β, WNT/β-catenin, etc. However, IFITM3 also influences tumorigenic phenotypes, such as cell proliferation, migration and invasion. Furthermore, IFITM3 plays a key role in cancer growth and maintenance. Silencing of IFITM3 reduces these phenotypes. Therefore, targeting of IFITM3 will likely have implications for potential cancer therapies.
Collapse
Affiliation(s)
- Ushani S Rajapaksa
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Chinese Academy of Medical Science Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Chen Jin
- Chinese Academy of Medical Science Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Department of Liver Surgery and Liver Transplantation, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Chinese Academy of Medical Science Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Interferon-Induced Transmembrane Protein 1 (IFITM1) Promotes Distant Metastasis of Small Cell Lung Cancer. Int J Mol Sci 2020; 21:ijms21144934. [PMID: 32668617 PMCID: PMC7404048 DOI: 10.3390/ijms21144934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/31/2022] Open
Abstract
Small cell lung cancer (SCLC) is a severe malignancy associated with early and widespread metastasis. To study SCLC metastasis, we previously developed an orthotopic transplantation model using the human SCLC cell line DMS273. In the model, metastatic foci were found in distant tissues such as bone and the adrenal gland, similarly as observed in patients with SCLC. In this study, we evaluated the differentially expressed genes between orthotopic and metastatic tumors in the model. We isolated tumor cells from orthotopic and metastatic sites, and the tumor cell RNA was analyzed using DNA microarray analysis. We found that 19 genes in metastatic tumors were upregulated by more than 4-fold compared with their expression in orthotopic tumors. One of these genes encodes a transmembrane protein, interferon (IFN)-induced transmembrane protein 1 (IFITM1), and immunohistochemical analysis confirmed the higher expression of the protein in metastatic sites than in orthotopic sites. IFITM1 was also detected in some SCLC cell lines and lung tumors from patients with SCLC. The overexpression of IFITM1 in DMS273 cells increased their metastatic formation in the orthotopic model and in an experimental metastasis model. Conversely, the silencing of IFITM1 suppressed metastatic formation by DMS273 cells. We also found that IFITM1 overexpression promoted the metastatic formation of NCI-H69 human SCLC cells. These results demonstrate that IFITM1 promotes distant metastasis in xenograft models of human SCLC.
Collapse
|
35
|
Lin SR, Mokgautsi N, Liu YN. Ras and Wnt Interaction Contribute in Prostate Cancer Bone Metastasis. Molecules 2020; 25:E2380. [PMID: 32443915 PMCID: PMC7287876 DOI: 10.3390/molecules25102380] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent and malignant cancer types in men, which causes more than three-hundred thousand cancer death each year. At late stage of PCa progression, bone marrow is the most often metastatic site that constitutes almost 70% of metastatic cases of the PCa population. However, the characteristic for the osteo-philic property of PCa is still puzzling. Recent studies reported that the Wnt and Ras signaling pathways are pivotal in bone metastasis and that take parts in different cytological changes, but their crosstalk is not well studied. In this review, we focused on interactions between the Wnt and Ras signaling pathways during each stage of bone metastasis and present the fate of those interactions. This review contributes insights that can guide other researchers by unveiling more details with regard to bone metastasis and might also help in finding potential therapeutic regimens for preventing PCa bone metastasis.
Collapse
Affiliation(s)
- Shian-Ren Lin
- Graduate Institute of Cancer Biology and Drug Discovery, Collage of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
| | - Ntlotlang Mokgautsi
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, Collage of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
| |
Collapse
|
36
|
Wu X, Spence JS, Das T, Yuan X, Chen C, Zhang Y, Li Y, Sun Y, Chandran K, Hang HC, Peng T. Site-Specific Photo-Crosslinking Proteomics Reveal Regulation of IFITM3 Trafficking and Turnover by VCP/p97 ATPase. Cell Chem Biol 2020; 27:571-585.e6. [PMID: 32243810 PMCID: PMC7194980 DOI: 10.1016/j.chembiol.2020.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/21/2020] [Accepted: 03/04/2020] [Indexed: 12/14/2022]
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) is a key interferon effector that broadly prevents infection by diverse viruses. However, the cellular factors that control IFITM3 homeostasis and antiviral activity have not been fully elucidated. Using site-specific photo-crosslinking and quantitative proteomic analysis, here we present the identification and functional characterization of VCP/p97 AAA-ATPase as a primary interaction partner of IFITM3. We show that IFITM3 ubiquitination at lysine 24 is crucial for VCP binding, trafficking, turnover, and engagement with incoming virus particles. Consistently, pharmacological inhibition of VCP/p97 ATPase activity leads to defective IFITM3 lysosomal sorting, turnover, and co-trafficking with virus particles. Our results showcase the utility of site-specific protein photo-crosslinking in mammalian cells and reveal VCP/p97 as a key cellular factor involved in IFITM3 trafficking and homeostasis. Photo-crosslinking proteomics identify VCP/p97 as an IFITM3-interacting protein Ubiquitination of IFITM3 is crucial for interaction with VCP Lysine 24 ubiquitination regulates IFITM3 trafficking and turnover Depletion or inhibition of VCP leads to delayed turnover and accumulation of IFITM3
Collapse
Affiliation(s)
- Xiaojun Wu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jennifer S Spence
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tandrila Das
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Xiaoqiu Yuan
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Chengjie Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yuqing Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yumeng Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yanan Sun
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA.
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
37
|
Liu G, Yin L, Ouyang X, Zeng K, Xiao Y, Li Y. M2 Macrophages Promote HCC Cells Invasion and Migration via miR-149-5p/MMP9 Signaling. J Cancer 2020; 11:1277-1287. [PMID: 31956374 PMCID: PMC6959084 DOI: 10.7150/jca.35444] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/26/2019] [Indexed: 12/11/2022] Open
Abstract
The roles of M2 macrophages on promoting tumor progression and chemotherapy resistance have been well studied in many cancers, such as pancreatic cancer, kidney cancer and so on, but its linkage to HCC cells still remains unclear. Here we found that M2 macrophages could alter miR-149-5p to increase MMP9 expression in HCC cells and mechanism dissection revealed that miR-149-5p might directly target the 3'UTR of MMP9-mRNA to suppress its translation. The in vivo orthotopic xenografts mouse model with oemiR-149-5p also validated in vitro data. Together, these findings suggest that M2 macrophages may through altering the miR-149-5p to promote HCC progression and targeting the M2 macrophages/miR149-5P/MMP9 signaling may help in the development of the novel therapies to better suppress the HCC progression.
Collapse
Affiliation(s)
- Guodong Liu
- Department of Biliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lei Yin
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, China
| | - Xiwu Ouyang
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ke Zeng
- CITIC Xiangya Reproductive and Genetic Specialist Hospital, Changsha, 410008, China
| | - Yao Xiao
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yixiong Li
- Department of Biliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
38
|
Min J, Hu J, Luo C, Zhu J, Zhao J, Zhu Z, Wu L, Yuan R. IFITM3 upregulates c-myc expression to promote hepatocellular carcinoma proliferation via the ERK1/2 signalling pathway. Biosci Trends 2019; 13:523-529. [PMID: 31852866 DOI: 10.5582/bst.2019.01289] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jiaqi Min
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of General Surgery, Aviation General Hospital, Beijing, China
| | - Junwen Hu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Chen Luo
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinfeng Zhu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiefeng Zhao
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhengming Zhu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linquan Wu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rongfa Yuan
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
39
|
Wang Y, Shi L, Li J, Li L, Wang H, Yang H. Involvement of p38 MAPK pathway in benzo(a)pyrene-induced human hepatoma cell migration and invasion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:35838-35845. [PMID: 31707611 DOI: 10.1007/s11356-019-06733-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
The objective of this study was to investigate the potential role of p38 mitogen-activated protein kinases (MAPK) in benzo(a)pyrene (BaP)-induced hepatoma cell migration and invasion. Western blot assay was applied to detect the expression of proteins. qRT-PCR assay was used to measure the expression of mRNA. Wound healing assay and Transwell invasion assay were performed to evaluate cell migratory ability and cell invasive ability, respectively. Our data showed that BaP exposure increased the expression of p-p38 protein in human hepatoma HepG2 cells. Exposure to BaP facilitated HepG2 cell migration and invasion, which could be blocked by p38 MAPK inhibitors. In addition, BaP exposure induced upregulation of MMP9 mRNA expression, which was modulated by p-p38. In conclusion, p38 MAPK pathway was involved in BaP-induced hepatoma cell migration and invasion.
Collapse
Affiliation(s)
- Yadong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, No. 105 of South Nongye Road, Zhengzhou, 450016, China.
| | - Li Shi
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Jiangmin Li
- Department of Toxicology, Henan Center for Disease Control and Prevention, No. 105 of South Nongye Road, Zhengzhou, 450016, China
| | - Li Li
- Department of Toxicology, Henan Center for Disease Control and Prevention, No. 105 of South Nongye Road, Zhengzhou, 450016, China
| | - Haiyu Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, No. 105 of South Nongye Road, Zhengzhou, 450016, China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
40
|
Chen K, Zhu P, Ye J, Liao Y, Du Z, Chen F, Juanjuan H, Zhang S, Zhai W. Oxymatrine inhibits the migration and invasion of hepatocellular carcinoma cells by reducing the activity of MMP-2/-9 via regulating p38 signaling pathway. J Cancer 2019; 10:5397-5403. [PMID: 31632484 PMCID: PMC6775708 DOI: 10.7150/jca.32875] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/23/2019] [Indexed: 12/14/2022] Open
Abstract
As one of the major alkaloid components in Sophoraflavescensait (kushen), oxymatrine has been used widely across the world in anti-inflammatory and anti-cancer therapies. However, the effect in the metastasis of hepatocellular carcinoma (HCC) and related mechanism(s) are still unclear. The present study aimed to investigate the anti-metastatic effect of oxymatrine on HCC cells. Oxymatrine could also inhibit the protein levels of MMP-2/-9 in a dose-dependent relationship. Moreover, oxymatrine reduces the activity of p38 signaling pathway via inhibiting the phosphorylation of p38. The inhibition effect of oxymatrine on the expression of MMP-2/-9 and the phosphorylated of p38 was also detected in vivo. Combined treatment with p38 signaling pathway inhibitor and oxymatrine may have a synergistic effect on MMP-2/-9 and invasion of HCC cells. Therefore, oxymatrine may have inhibited GBC invasiveness by reducing the expression of MMP-2/-9 via inhibiting the activity of p38 signaling pathway. As a potentially novel therapeutic drug, oxymatrine may play an important role in the treatment of HCC.
Collapse
Affiliation(s)
- Kunlun Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, 450052, P.R. China
| | - Pengfei Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, 450052, P.R. China
| | - Jianwen Ye
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, 450052, P.R. China
| | - Yuan Liao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, 450052, P.R. China
| | - Zhicheng Du
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, 450052, P.R. China
| | - Fangfang Chen
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P.R. China
| | - He Juanjuan
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P.R. China
| | - Shaojin Zhang
- Department of Ueology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P.R. China
| | - Wenlong Zhai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, 450052, P.R. China
| |
Collapse
|
41
|
Kellam P, Weiss RA. Protecting fetal development. SCIENCE (NEW YORK, N.Y.) 2019; 365:118-119. [PMID: 31296753 DOI: 10.1126/science.aay2054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Paul Kellam
- Department of Medicine, Division of Infectious Diseases, Imperial College London, London, UK.
| | - Robin A Weiss
- Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
42
|
Ai J, Gong C, Wu J, Gao J, Liu W, Liao W, Wu L. MicroRNA‑181c suppresses growth and metastasis of hepatocellular carcinoma by modulating NCAPG. Cancer Manag Res 2019; 11:3455-3467. [PMID: 31114379 PMCID: PMC6497848 DOI: 10.2147/cmar.s197716] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/28/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose: Numerous studies have shown that the expression of microRNA-181c (miR-181c) is inhibited in various cancers, which suggests that it has a cancer suppressive effect. In the current study, we evaluated the regulation and characteristics of miR-181c in human hepatocellular carcinoma (HCC). Materials and methods: Samples of tumor tissues and adjacent non-tumor tissues were collected from 52 patients with HCC, and expression levels of miR-181c in these samples were investigated via quantitative real-time polymerase chain reaction. HCC cell migration and invasion were investigated via wound healing assays and transwell assays. HCC cell apoptosis rates were assessed via flow cytometry, and HCC proliferation was assessed via 5-ethynyl-20-deoxyuridine assays. In vivo tumors were initiated by subcutaneously inoculating HCC cells into nude mice. And various biomarkers were investigated via western blotting. Results: In microarray datasets and tumor tissues, significant downregulation of miR-181c was apparent compared with non-tumorous adjacent tissues. Expression of miR-181c in HCC cells was also significantly lower than it was in normal human liver cells. miR-181c regulated the migration, invasion, apoptosis, and proliferation of HCC cell lines in vitro, and tumor development in vivo. Observations also suggest that miR-181c regulates NCAPG in HCC cells, and its expression affects cellular invasion, migration, proliferation, and apoptosis. There was a negative correlation between miR-181c expression and NCAPG in HCC tissue samples. Conclusion: miR-181c exhibits tumor-suppression via the regulation of NCAPG levels.
Collapse
Affiliation(s)
- Jiyuan Ai
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Chengwu Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Junjun Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Jun Gao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Weiwei Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Wenjun Liao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Linquan Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|