1
|
Hooper C, Coley N, Delrieu J, Guyonnet S. Lifestyle factors and plasma biomarkers of Alzheimer's disease: A narrative review. J Prev Alzheimers Dis 2025:100130. [PMID: 40082178 DOI: 10.1016/j.tjpad.2025.100130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterised by amyloid-β (Aβ), tau hyperphosphorylation and neurodegeneration. Blood-based biomarkers are emerging as a minimally invasive tool for disease detection and monitoring. This review depicts the relationships between modifiable lifestyle factors (nutrition, physical activity (PA), sleep, alcohol consumption, smoking, and social isolation) and plasma biomarkers of AD: Aβ42, Aβ40, Aβ42/40, phosphorylated tau, total tau, neurofilament light chain (NfL) and glial fibrillary acidic protein. Limited evidence suggests that better nutrition is associated with favourable AD plasma biomarker profiles and that PA is associated with less plasma NfL and Aβ, whilst poor sleep is associated with elevated plasma Aβ. However, lack of data and inconsistent findings highlight the need for further investigation to substantiate or refute these trends. Moreover, future research should include the analysis of lifestyle on plasma biomarkers according to gender, metabolic health and APOE status. Considering the growing emphasis on modifiable lifestyle factors for preventing and delaying dementia onset further investigation is justified.
Collapse
Affiliation(s)
- Claudie Hooper
- IHU HealthAge, Gérontopôle, Department of Geriatrics, CHU Toulouse, Toulouse, France.
| | - Nicola Coley
- Aging Research Team, Centre for Epidemiology and Research in Population health (CERPOP), INSERM-University of Toulouse, 37 allées Jules Guesde, 31073 Toulouse, Toulouse, France; Department of Epidemiology and Public Health, Toulouse University Hospital, 37 allées Jules Guesde, 31073 Toulouse, Toulouse, France; IHU HealthAge, Cité de la santé, place Lange, 31059 Toulouse, France.
| | - Julien Delrieu
- IHU HealthAge, Gérontopôle, Department of Geriatrics, CHU Toulouse, Toulouse, France; CERPOP Inserm UMR 1295, Toulouse, France. University of Toulouse, Toulouse, France.
| | - Sophie Guyonnet
- IHU HealthAge, Gérontopôle, Department of Geriatrics, CHU Toulouse, Toulouse, France; CERPOP Inserm UMR 1295, Toulouse, France. University of Toulouse, Toulouse, France.
| |
Collapse
|
2
|
Loika Y, Loiko E, Culminskaya I, Kulminski AM. Pleiotropic Associations with Alzheimer's Disease and Physical Activity: Sex Differences and the Effects of Environment. Int J Mol Sci 2024; 25:12571. [PMID: 39684283 DOI: 10.3390/ijms252312571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Physical activity (PA) is a modifiable factor in mitigating/preventing Alzheimer's disease (AD). It is crucial to identify the conditions under which PA's effects on AD risk would be beneficial. This study aims to gain insights into pleiotropic predisposition to AD and PA within and across sexes and environmental effects. We performed a genome-wide association study (GWAS) of pleiotropic AD-PA associations in individuals (65 years and older) of European ancestry in a US sample (14,628 individuals), for men and women separately and combined, and contrasted them with the UK biobank (204,789 individuals) to elucidate the effects of the environment. Fisher's method and Wald's test were used for estimating the significance of pleiotropic associations and differences between the samples. We identified genetic markers in 60 loci with significant pleiotropic associations. Of them, 91.7% of loci exhibited antagonistic relationships characterized by a misalignment of the signs of the associations of the same alleles with AD and PA and a correlation between these phenotypes. Only 16.7% of associations were replicated in the UKB. Phosphorylation and the regulation of transcription were identified as more pronounced biological mechanisms of AD-PA pleiotropy in females and males, respectively. Our results demonstrate the intrinsic heterogeneity of AD-PA pleiotropy and suggest that PA should be used as an intervention against AD with caution, after identifying groups of individuals and combinations of gene-environment interactions with beneficial effects.
Collapse
Affiliation(s)
- Yury Loika
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Elena Loiko
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Irina Culminskaya
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Alexander M Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| |
Collapse
|
3
|
Cordeiro A, Gomes C, Bicker J, Fortuna A. Aging and cognitive resilience: Molecular mechanisms as new potential therapeutic targets. Drug Discov Today 2024; 29:104093. [PMID: 38992420 DOI: 10.1016/j.drudis.2024.104093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
As the global population ages, the need to prolong lifespan and healthspan becomes increasingly imperative. Understanding the molecular determinants underlying cognitive resilience, together with changes during aging and the (epi)genetic factors that predispose an individual to decreased cognitive resilience, open avenues for researching novel therapies. This review provides a critical and timely appraisal of the molecular mechanisms underlying cognitive resilience, framed within a critical analysis of emerging therapeutic strategies to mitigate age-related cognitive decline. Significant insights from both animals and human subjects are discussed herein, directed either toward active pharmaceutical ingredients (drug repositioning or macromolecules), or, alternatively, advanced cellular therapies.
Collapse
Affiliation(s)
- Ana Cordeiro
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Catarina Gomes
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
4
|
Pedrero-Chamizo R, Zhuang K, Juarez A, Janabi M, Jagust WJ, Landau SM. Alzheimer's disease prevention: Apolipoprotein e4 moderates the effect of physical activity on brain beta-amyloid deposition in healthy older adults. J Sci Med Sport 2024; 27:402-407. [PMID: 38664148 DOI: 10.1016/j.jsams.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 02/07/2024] [Accepted: 03/27/2024] [Indexed: 06/09/2024]
Abstract
OBJECTIVES To investigate if higher baseline physical activity levels are associated with less β-amyloid burden and whether the ApoE4 genotype moderates this association cross-sectionally and longitudinally. DESIGN Prospective cohort study. METHODS 204 cognitively normal older adults (74.5 ± 6.6 years; 26 % ApoE4-carrier) were analyzed. Baseline physical activity was measured using the Minnesota Physical Activity Questionnaire. Brain β-amyloid burden was measured with positron emission tomography using 11C-labeled Pittsburgh compound. A subsample of 128 participants underwent longitudinal positron emission tomography (2.0 ± 0.9 scans over 5 ± 3 years). Statistical analysis was run according to physical activity (high/low group) and the ApoE4 genotype (carrier/noncarrier). RESULTS The ApoE4 genotype moderated the relationship between physical activity and β-amyloid, such that low physical activity had a greater impact on β-amyloid deposition in ApoE4-carriers than noncarriers. This ApoE4 × physical activity effect on brain β-amyloid deposition was also observed when all available β-amyloid scan timepoints were included in the model. β-amyloid deposition increased over time (p < 0.001), and ApoE4-carriers had disproportionately greater β-amyloid accumulation than ApoE4-noncarriers. The lower physical activity group had marginally greater β-amyloid accumulation than the higher physical activity group (p = 0.099), but there was no significant ApoE4 effect on β-amyloid accumulation. CONCLUSIONS Low physical activity in combination with the ApoE4-carrier genotype is associated with increased β-amyloid burden, suggesting that ApoE4 moderates the effect of physical activity on β-amyloid load. However, this effect was insufficient for baseline physical activity to modulate the change in β-amyloid accumulation over time.
Collapse
Affiliation(s)
- Raquel Pedrero-Chamizo
- ImFINE Research Group, Department of Health and Human Performance, Universidad Politécnica de Madrid, Spain; EXERNET Spanish Research Network on Physical Exercise and Health, Spain.
| | - Kailin Zhuang
- Helen Wills Neuroscience Institute, University of California Berkeley, USA
| | - Alexis Juarez
- Helen Wills Neuroscience Institute, University of California Berkeley, USA
| | - Mustafa Janabi
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, USA
| | - Susan M Landau
- Helen Wills Neuroscience Institute, University of California Berkeley, USA
| |
Collapse
|
5
|
Callow DD, Spira AP, Zipunnikov V, Lu H, Wanigatunga SK, Rabinowitz JA, Albert M, Bakker A, Soldan A. Sleep and physical activity measures are associated with resting-state network segregation in non-demented older adults. Neuroimage Clin 2024; 43:103621. [PMID: 38823249 PMCID: PMC11179421 DOI: 10.1016/j.nicl.2024.103621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024]
Abstract
Greater physical activity and better sleep are associated with reduced risk of cognitive decline and dementia among older adults, but little is known about their combined associations with measures of brain function and neuropathology. This study investigated potential independent and interactive cross-sectional relationships between actigraphy-estimated total volume of physical activity (TVPA) and sleep patterns [i.e., total sleep time (TST), sleep efficiency (SE)] with resting-state functional magnetic resonance imaging (rs-fMRI) measures of large scale network connectivity and positron emission tomography (PET) measures of amyloid-β. Participants were 135 non-demented older adults from the BIOCARD study (116 cognitively normal and 19 with mild cognitive impairment; mean age = 70.0 years). Using multiple linear regression analyses, we assessed the association between TVPA, TST, and SE with connectivity within the default-mode, salience, and fronto-parietal control networks, and with network modularity, a measure of network segregation. Higher TVPA and SE were independently associated with greater network modularity, although the positive relationship of SE with modularity was only present in amyloid-negative individuals. Additionally, higher TVPA was associated with greater connectivity within the default-mode network, while greater SE was related to greater connectivity within the salience network. In contrast, longer TST was associated with lower network modularity, particularly among amyloid-positive individuals, suggesting a relationship between longer sleep duration and greater network disorganization. Physical activity and sleep measures were not associated with amyloid positivity. These data suggest that greater physical activity levels and more efficient sleep may promote more segregated and potentially resilient functional networks and increase functional connectivity within specific large-scale networks and that the relationship between sleep and functional networks connectivity may depend on amyloid status.
Collapse
Affiliation(s)
- Daniel D Callow
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD.
| | - Adam P Spira
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, the United States of America; Johns Hopkins Center on Aging and Health, Baltimore, MD, the United States of America
| | - Vadim Zipunnikov
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, the United States of America
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America
| | - Sarah K Wanigatunga
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, the United States of America
| | - Jill A Rabinowitz
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ US
| | - Marilyn Albert
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America
| | - Arnold Bakker
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America
| | - Anja Soldan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America
| |
Collapse
|
6
|
Rodriguez-Ayllon M, Solis-Urra P, Arroyo-Ávila C, Álvarez-Ortega M, Molina-García P, Molina-Hidalgo C, Gómez-Río M, Brown B, Erickson KI, Esteban-Cornejo I. Physical activity and amyloid beta in middle-aged and older adults: A systematic review and meta-analysis. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:133-144. [PMID: 37558161 PMCID: PMC10980893 DOI: 10.1016/j.jshs.2023.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/11/2023] [Accepted: 06/30/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND One of the pathological hallmarks distinguishing Alzheimer's disease from other dementias is the accumulation of amyloid beta (Aβ). Higher physical activity is associated with decreased dementia risk, and one potential path could be through Aβ levels modulation. We aimed to explore the relationship between physical activity and Aβ in middle-aged and older adults. METHODS A systematic search of PubMed, Web of Science, PsycINFO, Cochrane Central Register of Controlled Trials, and SPORTDiscus was performed from inception to April 28, 2022. Studies were eligible if they included physical activity and Aβ data in adults aged 45 years or older. Multi-level meta-analyses of intervention and observational studies were performed to examine the role of physical activity in modulating Aβ levels. RESULTS In total, 37 articles were included (8 randomized controlled trials, 3 non-randomized controlled trials, 4 prospective longitudinal studies, and 22 cross-sectional studies). The overall effect size of physical activity interventions on changes in blood Aβ was medium (pooled standardized mean difference = -0.69, 95% confidence interval (95%CI): -1.41 to 0.03; I2 = 74.6%). However, these results were not statistically significant, and there were not enough studies to explore the effects of physical activity on cerebrospinal fluid (CSF) and brain Aβ. Data from observational studies were examined based on measurements of Aβ in the brain using positron emission tomography scans, CSF, and blood. Higher physical activity was positively associated with Aβ only in the CSF (Estimate r = 0.12; 95%CI: 0.05-0.18; I2 = 38.00%). CONCLUSION Physical activity might moderately reduce blood Aβ in middle-aged and older adults. However, results were only near statistical significance and might be interpreted with caution given the methodological limitations observed in some of the included studies. In observational studies, higher levels of physical activity were positively associated with Aβ only in CSF. Therefore, further research is needed to understand the modulating role of physical activity in the brain, CSF, and blood Aβ, as well as its implication for cognitive health.
Collapse
Affiliation(s)
- María Rodriguez-Ayllon
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, GD 3015, the Netherlands
| | - Patricio Solis-Urra
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada 18071, Spain; Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2531015, Chile; Department of Nuclear Medicine, Virgen de las Nieves University Hospital, Institute of Biosanitary Research of Granada (IBS), Granada 18014, Spain
| | - Cristina Arroyo-Ávila
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada 18071, Spain
| | - Miriam Álvarez-Ortega
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada 18071, Spain
| | - Pablo Molina-García
- Physical Medicine and Rehabilitation Service, Virgen de las Nieves University Hospital, Institute of Biosanitary Research of Granada (IBS), Granada 18014, Spain
| | | | - Manuel Gómez-Río
- Department of Nuclear Medicine, Virgen de las Nieves University Hospital, Institute of Biosanitary Research of Granada (IBS), Granada 18014, Spain
| | - Belinda Brown
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Kirk I Erickson
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada 18071, Spain; Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; Advent Health Research Institute, Neuroscience Institute Orlando, Orlando, FL 32803, USA
| | - Irene Esteban-Cornejo
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada 18071, Spain; Physiopathology of Obesity and Nutrition Research Center (CIBERobn), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain.
| |
Collapse
|
7
|
Astell-Burt T, Navakatikyan MA, Feng X. Why might urban tree canopy reduce dementia risk? A causal mediation analysis of 109,688 adults with 11 years of hospital and mortality records. Health Place 2023; 82:103028. [PMID: 37182375 DOI: 10.1016/j.healthplace.2023.103028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023]
Abstract
Urban tree canopy is associated with lower dementia risk, but no mediation analysis has been attempted to reveal potential mechanisms. We examined 3,639 dementia diagnoses in 109,688 participants of the Sax Institute's 45 and Up Study. Adjusted models indicated ≥20% tree canopy lowered the odds of developing dementia by 14% over 11 years (Odds Ratio = 0.86, 95%CI = 0.79-0.93). Association between tree canopy and dementia was partially mediated by physical activity (4.5%) and absences of psychological distress (5.7%), social support (2.9%), sleep duration (2.3%) and diabetes (1.8%). Social loneliness and absence of heart disease or hypertension did not mediate the tree canopy-dementia association.
Collapse
Affiliation(s)
- Thomas Astell-Burt
- Population Wellbeing and Environment Research Lab (PowerLab), NSW, Australia; School of Health and Society, University of Wollongong, Northfields Avenue, Wollongong, Australia.
| | - Michael A Navakatikyan
- Population Wellbeing and Environment Research Lab (PowerLab), NSW, Australia; School of Health and Society, University of Wollongong, Northfields Avenue, Wollongong, Australia
| | - Xiaoqi Feng
- Population Wellbeing and Environment Research Lab (PowerLab), NSW, Australia; School of Population Health, University of New South Wales, Sydney, Australia; The George Institute of Global Health, Sydney, NSW, Australia
| |
Collapse
|
8
|
Yamasaki T. Preventive Strategies for Cognitive Decline and Dementia: Benefits of Aerobic Physical Activity, Especially Open-Skill Exercise. Brain Sci 2023; 13:brainsci13030521. [PMID: 36979331 PMCID: PMC10046723 DOI: 10.3390/brainsci13030521] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
As there is no curative treatment for dementia, including Alzheimer's disease (AD), it is important to establish an optimal nonpharmaceutical preventive intervention. Physical inactivity is a representative modifiable risk factor for dementia, especially for AD in later life (>65 years). As physical activity and exercise are inexpensive and easy to initiate, they may represent an effective nonpharmaceutical intervention for the maintenance of cognitive function. Several studies have reported that physical activity and exercise interventions are effective in preventing cognitive decline and dementia. This review outlines the effects of physical activity and exercise-associated interventions in older adults with and without cognitive impairment and subsequently summarizes their possible mechanisms. Furthermore, this review describes the differences between two types of physical exercise-open-skill exercise (OSE) and closed-skill exercise (CSE)-in terms of their effects on cognitive function. Aerobic physical activity and exercise interventions are particularly useful in preventing cognitive decline and dementia, with OSE exerting a stronger protective effect on cognitive functions than CSE. Therefore, the need to actively promote physical activity and exercise interventions worldwide is emphasized.
Collapse
Affiliation(s)
- Takao Yamasaki
- Department of Neurology, Minkodo Minohara Hospital, Fukuoka 811-2402, Japan
- Kumagai Institute of Health Policy, Fukuoka 816-0812, Japan
- School of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka 831-8501, Japan
| |
Collapse
|
9
|
Thwarting Alzheimer's Disease through Healthy Lifestyle Habits: Hope for the Future. Neurol Int 2023; 15:162-187. [PMID: 36810468 PMCID: PMC9944470 DOI: 10.3390/neurolint15010013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that slowly disintegrates memory and thinking skills. Age is known to be the major risk factor in AD, but there are several nonmodifiable and modifiable causes. The nonmodifiable risk factors such as family history, high cholesterol, head injuries, gender, pollution, and genetic aberrations are reported to expediate disease progression. The modifiable risk factors of AD that may help prevent or delay the onset of AD in liable people, which this review focuses on, includes lifestyle, diet, substance use, lack of physical and mental activity, social life, sleep, among other causes. We also discuss how mitigating underlying conditions such as hearing loss and cardiovascular complications could be beneficial in preventing cognitive decline. As the current medications can only treat the manifestations of AD and not the underlying process, healthy lifestyle choices associated with modifiable factors is the best alternative strategy to combat the disease.
Collapse
|
10
|
Warpechowski M, Warpechowski J, Kulczyńska-Przybik A, Mroczko B. Biomarkers of Activity-Dependent Plasticity and Persistent Enhancement of Synaptic Transmission in Alzheimer Disease: A Review of the Current Status. Med Sci Monit 2023; 29:e938826. [PMID: 36600577 PMCID: PMC9832729 DOI: 10.12659/msm.938826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Alzheimer disease (AD) is a chronic and heterogeneous neurodegenerative disorder characterized by complex pathological processes involving neuroinflammation, neurodegeneration, and synaptic dysfunction. Understanding the exact neurobiological mechanisms underlying AD pathology may help to provide a biomarker for early diagnosis or at least for assessment of vulnerability to dementia development. Neural plasticity is defined as a capability of the brain to respond to alterations including aging, injury, or learning, with a crucial role of synaptic elements. Long-term potentiation (LTP) and long-term depression (LTD) are important in regulating synaptic connections between neural cells in functional plasticity. Synaptic loss and impairment of the brain's plasticity in AD leads to cognitive impairment, and one of important roles of synaptic biomarkers is monitoring synaptic dysfunction, response to treatment, and predicting future development of AD. Synaptic biomarkers are undoubtedly very promising in developing novel approach to AD treatment and control, especially in the era of aging of societies, which is one of the most common risk factor of AD. Implementing a widespread measurement of synaptic biomarkers of AD will probably be crucial in early diagnosis of AD, early therapeutic intervention, monitoring progression of the disease, or response to treatment. One of the most important challenges is finding a biomarker whose blood concentration correlates with its level in the central nervous system (CNS). This review aims to present the current status of biomarkers of activity-dependent plasticity and persistent enhancement of synaptic transmission in Alzheimer disease.
Collapse
Affiliation(s)
- Marcin Warpechowski
- Department of Statistics and Medical Informatics, Medical University of Białystok, Białystok, Poland
| | | | | | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland,Department of Biochemical Diagnostics, University Hospital of Białystok, Białystok, Poland
| |
Collapse
|
11
|
Amin SB, Hansen AB, Mugele H, Simpson LL, Marume K, Moore JP, Cornwell WK, Lawley JS. High intensity exercise and passive hot water immersion cause similar post intervention changes in peripheral and cerebral shear. J Appl Physiol (1985) 2022; 133:390-402. [PMID: 35708700 DOI: 10.1152/japplphysiol.00780.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Passive hot water immersion (PHWI) provides a peripheral vasculature shear stimulus comparable to low intensity exercise within the active skeletal muscle, whereas moderate and high intensity exercise elicit substantially greater shear rates in the peripheral vasculature, likely conferring greater vascular benefits. Few studies have compared post intervention shear rates in the peripheral and cerebral vasculature following high intensity exercise and PHWI, especially considering that the post intervention recovery period represents a key window in which adaptation occurs. Therefore, we aimed to compare shear rates in the internal carotid artery (ICA), vertebral artery (VA) and common femoral artery (CFA) between high intensity exercise and PHWI for up to 80 minutes post intervention. Fifteen healthy (27 ± 4 years), moderately trained individuals underwent three-time matched interventions in a randomised order which included 30 minutes of whole-body immersion in a 42°C hot bath, 30 minutes of treadmill running and 5x4 minute high intensity intervals (HIIE). There were no differences in ICA (P= 0.4643) and VA (P=0.1940) shear rates between PHWI and exercise (both continuous and HIIE) post intervention. All three interventions elicited comparable increases in CFA shear rate post intervention (P=0.0671), however, CFA shear rate was slightly higher 40 minutes post threshold running (P=0.0464) and, slightly higher, although not statically for HIIE (P=0.0565) compared with PHWI. Our results suggest that time and core temperature matched high intensity exercise and PHWI elicit limited changes in cerebral shear and comparable increases in peripheral vasculature shear rates when measured for up to 80 minutes post intervention.
Collapse
Affiliation(s)
- Sachin B Amin
- University Innsbruck, Department Sport Science, Innsbruck, Austria
| | | | - Hendrik Mugele
- University Innsbruck, Department Sport Science, Innsbruck, Austria
| | - Lydia L Simpson
- University Innsbruck, Department Sport Science, Innsbruck, Austria
| | - Kyohei Marume
- University Innsbruck, Department Sport Science, Innsbruck, Austria
| | - Jonathan P Moore
- School of Sport, Health and Exercise Science, Bangor University, Bangor, United Kingdom
| | - William K Cornwell
- Department of Medicine - Cardiology, University of Colorado Anschutz Medical Campus, Aurora CO, United States.,Clinical and Translational Research Center, University of Colorado Anschutz Medical Campus, Aurora CO, United States
| | - Justin S Lawley
- University Innsbruck, Department Sport Science, Innsbruck, Austria
| |
Collapse
|
12
|
Effects of Leisure-Time Physical Activity on Cognitive Reserve Biomarkers and Leisure Motivation in the Pre-Diabetes Elderly. Healthcare (Basel) 2022; 10:healthcare10040737. [PMID: 35455914 PMCID: PMC9032024 DOI: 10.3390/healthcare10040737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 02/01/2023] Open
Abstract
The purpose of this study was to investigate the change in cognitive reserve biomarkers of the pre-diabetic individual according to the types of leisure-time physical activity (aerobic or resistance physical activity). The research subjects (n = 184) who participated in the survey were pre-diabetic and diabetic patients who were visiting university hospitals and welfare centers. The intervention subjects (n = 36) who were elderly females with pre-diabetes volunteered to participate in the study by performing regular physical exercise (aerobic or resistance exercise). The study participants were 65 years of age or older with pre-diabetes defined by a glycated hemoglobin (HbA1c) level of (5.7−6.4)%. All research subjects performed motivation and stress questionnaire survey. All intervention subjects participated in leisure-time physical activity (LTPA) for 12 weeks. Body composition, HbA1c, and cognitive reserve biomarkers were measured at baseline, and at 6 and 12 weeks. LTPA motivation confirmed that the LTPA participants had a high level of motivation. Stress confirmed that the stress level of LTPA participants was low. Two-way within-factor ANOVA revealed significant group × time interaction for weight (p < 0.05), BMI (p < 0.01), % fat (p < 0.001), SBP (p < 0.05), HbA1c (p < 0.001), BDNF (p < 0.001), and Beta-Amyloid 1−42 (p < 0.001). In both physical activity groups, HbA1c (p < 0.001), NGF (p < 0.05), BDNF (p < 0.05), and Cathepsin B (p < 0.05) improved significantly at 12 weeks, compared to baseline and 6 weeks. In the resistance physical activity group, Beta-Amyloid 1−42 (p < 0.01) and Homocysteine (p < 0.05) significantly decreased at 12 weeks, compared to baseline and at 6 weeks. The LTPA showed high levels of integrated and identified regulation among leisure motive types, and the level of stress was found to be low. The LTPA is effective in reducing the HbA1c levels of the pre-diabetes elderly. In addition, the pre-diabetes elderly were found to have increased NGF, BDNF, and cathepsin B, and decreased Beta-Amyloid 1−42 and homocysteine. Regular leisure-time physical activity has a positive effect on cognitive reserve biomarkers through improving glycemic control by reducing weight and % fat in the pre-diabetes elderly.
Collapse
|
13
|
Pedrini S, Chatterjee P, Nakamura A, Tegg M, Hone E, Rainey-Smith SR, Rowe CC, Dore V, Villemagne VL, Ames D, Kaneko N, Gardener SL, Taddei K, Fernando B, Martins I, Bharadwaj P, Sohrabi HR, Masters CL, Brown B, Martins RN. The Association Between Alzheimer's Disease-Related Markers and Physical Activity in Cognitively Normal Older Adults. Front Aging Neurosci 2022; 14:771214. [PMID: 35418852 PMCID: PMC8996810 DOI: 10.3389/fnagi.2022.771214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
Previous studies have indicated that physical activity may be beneficial in reducing the risk for Alzheimer's disease (AD), although the underlying mechanisms are not fully understood. The goal of this study was to evaluate the relationship between habitual physical activity levels and brain amyloid deposition and AD-related blood biomarkers (i.e., measured using a novel high-performance mass spectrometry-based assay), in apolipoprotein E (APOE) ε4 carriers and noncarriers. We evaluated 143 cognitively normal older adults, all of whom had brain amyloid deposition assessed using positron emission tomography and had their physical activity levels measured using the International Physical Activity Questionnaire (IPAQ). We observed an inverse correlation between brain amyloidosis and plasma beta-amyloid (Aβ)1−42 but found no association between brain amyloid and plasma Aβ1−40 and amyloid precursor protein (APP)669−711. Additionally, higher levels of physical activity were associated with lower plasma Aβ1−40, Aβ1−42, and APP669−711 levels in APOE ε4 noncarriers. The ratios of Aβ1−40/Aβ1−42 and APP669−711/Aβ1−42, which have been associated with higher brain amyloidosis in previous studies, differed between APOE ε4 carriers and non-carriers. Taken together, these data indicate a complex relationship between physical activity and brain amyloid deposition and potential blood-based AD biomarkers in cognitively normal older adults. In addition, the role of APOE ε4 is still unclear, and more studies are necessary to bring further clarification.
Collapse
Affiliation(s)
- Steve Pedrini
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Pratishtha Chatterjee
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Akinori Nakamura
- Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Michelle Tegg
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Eugene Hone
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Stephanie R. Rainey-Smith
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Christopher C. Rowe
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, VIC, Australia
| | - Vincent Dore
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, VIC, Australia
| | - Victor L. Villemagne
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - David Ames
- National Ageing Research Institute, Parkville, VIC, Australia
- Academic Unit for Psychiatry of Old Age, St George's Hospital, University of Melbourne, Kew, VIC, Australia
| | - Naoki Kaneko
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Sam L. Gardener
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Kevin Taddei
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Binosha Fernando
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Ian Martins
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Prashant Bharadwaj
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Hamid R. Sohrabi
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Colin L. Masters
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Belinda Brown
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Ralph N. Martins
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
- *Correspondence: Ralph N. Martins
| |
Collapse
|
14
|
Erickson KI, Donofry SD, Sewell KR, Brown BM, Stillman CM. Cognitive Aging and the Promise of Physical Activity. Annu Rev Clin Psychol 2022; 18:417-442. [PMID: 35044793 DOI: 10.1146/annurev-clinpsy-072720-014213] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Is the field of cognitive aging irretrievably concerned with decline and deficits, or is it shifting to emphasize the hope of preservation and enhancement of cognitive function in late life? A fragment of an answer comes from research attempting to understand the reasons for individual variability in the extent and rate of cognitive decline. This body of work has created a sense of optimism based on evidence that there are some health behaviors that amplify cognitive performance or mitigate the rate of age-related cognitive decline. In this context, we discuss the role of physical activity on neurocognitive function in late adulthood and summarize how it can be conceptualized as a constructive approach both for the maintenance of cognitive function and as a therapeutic for enhancing or optimizing cognitive function in late life. In this way, physical activity research can be used to shape perceptions of cognitive aging. Expected final online publication date for the Annual Review of Clinical Psychology, Volume 18 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kirk I Erickson
- Department of Psychology and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; .,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,PROFITH "PROmoting FITness and Health through physical activity" Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Shannon D Donofry
- Department of Psychology and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; .,Psychiatry and Behavioral Health Institute, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Kelsey R Sewell
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia
| | - Belinda M Brown
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia
| | - Chelsea M Stillman
- Department of Psychology and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
15
|
Donofry SD, Stillman CM, Hanson JL, Sheridan M, Sun S, Loucks EB, Erickson KI. Promoting brain health through physical activity among adults exposed to early life adversity: Potential mechanisms and theoretical framework. Neurosci Biobehav Rev 2021; 131:688-703. [PMID: 34624365 PMCID: PMC8642290 DOI: 10.1016/j.neubiorev.2021.09.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022]
Abstract
Adverse childhood experiences such as abuse, neglect, and poverty, profoundly alter neurobehavioral development in a manner that negatively impacts health across the lifespan. Adults who have been exposed to such adversities exhibit premature and more severe age-related declines in brain health. Unfortunately, it remains unclear whether the negative effects of early life adversity (ELA) on brain health can be remediated through intervention in adulthood. Physical activity may represent a low-cost behavioral approach to address the long-term consequences of ELA on brain health. However, there has been limited research examining the impact of physical activity on brain health among adults with a history of ELA. Accordingly, the purpose of this review is to (1) review the influence of ELA on brain health in adulthood and (2) highlight evidence for the role of neurotrophic factors, hypothalamic-adrenal-pituitary axis regulation, inflammatory processes, and epigenetic modifications in mediating the effects of both ELA and physical activity on brain health outcomes in adulthood. We then propose a theoretical framework to guide future research in this area.
Collapse
Affiliation(s)
- Shannon D Donofry
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States; Psychiatric and Behavioral Health Institute, Allegheny Health Network Pittsburgh, PA, United States.
| | - Chelsea M Stillman
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jamie L Hanson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States; Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
| | - Margaret Sheridan
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Shufang Sun
- Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, RI, United States; Mindfulness Center, Brown University, Providence, RI, United States
| | - Eric B Loucks
- Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, RI, United States; Mindfulness Center, Brown University, Providence, RI, United States; Department of Epidemiology, Brown University School of Public Health, Providence, RI, United States
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Murdoch University, College of Science, Health, Engineering, and Education, Perth, Western Australia, Australia; PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
16
|
Umegaki H, Sakurai T, Arai H. Active Life for Brain Health: A Narrative Review of the Mechanism Underlying the Protective Effects of Physical Activity on the Brain. Front Aging Neurosci 2021; 13:761674. [PMID: 34916925 PMCID: PMC8670095 DOI: 10.3389/fnagi.2021.761674] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
A growing body of evidence clearly indicates the beneficial effects of physical activity (PA) on cognition. The importance of PA is now being reevaluated due to the increase in sedentary behavior in older adults during the COVID-19 pandemic. Although many studies in humans have revealed that PA helps to preserve brain health, the underlying mechanisms have not yet been fully elucidated. In this review, which mainly focuses on studies in humans, we comprehensively summarize the mechanisms underlying the beneficial effects of PA or exercise on brain health, particularly cognition. The most intensively studied mechanisms of the beneficial effects of PA involve an increase in brain-derived neurotrophic factor (BDNF) and preservation of brain volume, especially that of the hippocampus. Nonetheless, the mutual associations between these two factors remain unclear. For example, although BDNF presumably affects brain volume by inhibiting neuronal death and/or increasing neurogenesis, human data on this issue are scarce. It also remains to be determined whether PA modulates amyloid and tau metabolism. However, recent advances in blood-based biomarkers are expected to help elucidate the beneficial effects of PA on the brain. Clinical data suggest that PA functionally modulates cognition independently of neurodegeneration, and the mechanisms involved include modulation of functional connectivity, neuronal compensation, neuronal resource allocation, and neuronal efficiency. However, these mechanisms are as yet not fully understood. A clear understanding of the mechanisms involved could help motivate inactive persons to change their behavior. More accumulation of evidence in this field is awaited.
Collapse
Affiliation(s)
- Hiroyuki Umegaki
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Sakurai
- Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hidenori Arai
- National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
17
|
Memel M, Buchman AS, Bennett DA, Casaletto K. Relationship between objectively measured physical activity on neuropathology and cognitive outcomes in older adults: Resistance versus resilience? ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12245. [PMID: 34692982 PMCID: PMC8515358 DOI: 10.1002/dad2.12245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Physical activity (PA) is associated with better cognitive and brain health. However, it remains unclear whether PA relates to accumulation of disease pathology ("resistance") or indirectly moderates adverse effects of pathology on cognition ("cognitive resilience"). METHODS Five hundred thirteen Rush Memory and Aging Project (MAP) decedents completed longitudinal actigraphy monitoring, cognitive testing, and neuropathological examination. Cross-sectional models tested the relationship between average PA and pathology, and the moderating effect of baseline PA on the association between pathology and cognition. Longitudinal models examined whether changes in PA moderated associations between pathology and cognition. RESULTS PA was negatively associated with Lewy body disease (LBD), but positively associated with Alzheimer's disease (AD) burdens. Baseline PA attenuated the association between cerebrovascular pathology and cognition, whereas longitudinal change in PA attenuated associations between AD, cerebral amyloid angiopathy, TAR DNA-binding protein 43, and atherosclerosis on cognitive decline. DISCUSSION Whereas PA relates to "cognitive resilience" against cerebrovascular disease, AD, and other neuropathologies, "resistance" effects were limited.
Collapse
Affiliation(s)
- Molly Memel
- San Francisco VA Medical CenterSan FranciscoCaliforniaUSA
- UCSF Memory and Aging CenterSan FranciscoCaliforniaUSA
| | - Aron S. Buchman
- Rush University Medical Center–Rush Alzheimer's Disease CenterChicagoIllinoisUSA
| | - David A. Bennett
- Rush University Medical Center–Rush Alzheimer's Disease CenterChicagoIllinoisUSA
| | | |
Collapse
|
18
|
Hou XH, Xu W, Bi YL, Shen XN, Ma YH, Dong Q, Tan L, Yu JT. Associations of healthy lifestyles with cerebrospinal fluid biomarkers of Alzheimer's disease pathology in cognitively intact older adults: the CABLE study. ALZHEIMERS RESEARCH & THERAPY 2021; 13:81. [PMID: 33875016 PMCID: PMC8056495 DOI: 10.1186/s13195-021-00822-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/06/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE We aimed to investigate the associations between healthy lifestyles and Alzheimer's disease (AD) biomarkers in cerebrospinal fluid (CSF). METHODS A total of 1108 cognitively intact individuals from Chinese Alzheimer's Biomarker and LifestylE (CABLE) study were examined to evaluate the associations of AD biomarkers with healthy lifestyle factors, including no current smoking, no harmful drinking, absence of social isolation, and regular physical activity. The participants were categorized into groups of favorable, intermediate, and unfavorable lifestyles according to the lifestyle factors. The associations between overall lifestyle and CSF biomarkers were also analyzed. RESULTS Among cognitively intact older adults, those having more social engagement had lower CSF tau (p = 0.009) and p-tau (p < 0.001) than those who had social isolation. Regular physical activity was associated with higher CSF Aβ42 (p = 0.013) and lower levels of CSF tau (p = 0.036) and p-tau (p = 0.007). However, no significant associations were found of smoking status or alcohol intake with CSF biomarkers. When the overall lifestyle of the participants was evaluated by all the four lifestyle factors, favorable lifestyle profiles were related to lower levels of CSF tau (p < 0.001) and p-tau (p < 0.001). CONCLUSIONS These findings suggest that healthy lifestyles had a beneficial effect on AD pathology among cognitively intact elders.
Collapse
Affiliation(s)
- Xiao-He Hou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan-Lin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China.
| |
Collapse
|
19
|
Raffin J, Rolland Y, Aggarwal G, Nguyen AD, Morley JE, Li Y, Bateman RJ, Vellas B, Barreto PDS. Associations Between Physical Activity, Blood-Based Biomarkers of Neurodegeneration, and Cognition in Healthy Older Adults: The MAPT Study. J Gerontol A Biol Sci Med Sci 2021; 76:1382-1390. [PMID: 33864068 DOI: 10.1093/gerona/glab094] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Indexed: 01/12/2023] Open
Abstract
Physical activity (PA) demonstrated benefits on brain health, but its relationship with blood biomarkers of neurodegeneration remains poorly investigated. We explored the cross-sectional associations of PA with blood concentrations of neurofilament light chain (NFL) and beta amyloid (Aβ)42/40. We further examined whether the interaction between PA and these biomarkers was longitudinally related to cognition. Four-hundred and sixty-five nondemented older adults engaged in an interventional study and who had a concomitant assessment of PA levels and blood measurements of NFL (pg/mL) and Aβ 42/40 were analyzed. A composite Z-score combining 4 cognitive tests was used for cognitive assessment up to a 4-year follow-up. Multiple linear regressions demonstrated that people achieving 500-999 and 2000+ MET-min/week of PA had lower (ln)NFL concentrations than their inactive peers. Logistic regressions revealed that achieving at least 90 MET-min/week of PA was associated with a lower probability of having high NFL concentrations (ie, ≥91.961 pg/mL [third quartile]). PA was not associated with (Aβ)42/40. Mixed-model linear regressions demonstrated that the reverse relationship between PA and cognitive decline tended to be more pronounced as Aβ 42/40 increased, while it was dampened with increasing levels of (ln)NFL concentrations. This study demonstrates that PA is associated with blood NFL but not with Aβ 42/40. Furthermore, it suggests that PA may attenuate the negative association between amyloid load and cognition, while having high NFL levels mitigates the favorable relationship between PA and cognition. More investigations on non demented older adults are required for further validation of the present findings.
Collapse
Affiliation(s)
- Jérémy Raffin
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France
| | - Yves Rolland
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France.,UMR INSERM, 1027 University of Toulouse III and Faculté de Médecine, France
| | - Geetika Aggarwal
- Division of Geriatric Medicine, Saint Louis University School of Medicine, Missouri, USA.,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, Missouri, USA
| | - Andrew D Nguyen
- Division of Geriatric Medicine, Saint Louis University School of Medicine, Missouri, USA.,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, Missouri, USA
| | - John E Morley
- Division of Geriatric Medicine, Saint Louis University School of Medicine, Missouri, USA
| | - Yan Li
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA.,Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bruno Vellas
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France.,UMR INSERM, 1027 University of Toulouse III and Faculté de Médecine, France
| | - Philipe de Souto Barreto
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France.,UMR INSERM, 1027 University of Toulouse III and Faculté de Médecine, France
| | | |
Collapse
|
20
|
Exercise for the prevention and treatment of neurocognitive disorders: new evidence and clinical recommendations. Curr Opin Psychiatry 2021; 34:136-141. [PMID: 33470667 DOI: 10.1097/yco.0000000000000678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW As current pharmacological treatments of dementia have only modest effects, nonpharmacological treatments like exercise interventions have attracted much research interest. This review summarizes recent evidence regarding the efficacy of exercise in preventing and treating neurocognitive disorders. RECENT FINDINGS Recent evidence suggests that exercise may prevent cognitive impairment in older adults with normal cognition. Besides, it may slow down the deterioration in older adults who have mild cognitive impairment (MCI) and dementia. But inconsistent findings have been reported, and larger randomized controlled trials are required to confirm its treatment value. This article also reviews existing evidence-based clinical guidelines advising on the optimal format and intensity of exercise interventions for older adults with different cognitive functions. SUMMARY There is a growing body of evidence supporting the cognitive benefits of exercise for older adults with normal cognition, MCI, and dementia. Exercise is a relatively safe and low-cost lifestyle intervention and should be recommended for older adults to prevent dementia and treat cognitive impairment. However, as the factors affecting the efficacy of exercise in improving cognition are complex, exercise prescription should be individually tailored.
Collapse
|
21
|
Piccarducci R, Daniele S, Polini B, Carpi S, Chico L, Fusi J, Baldacci F, Siciliano G, Bonuccelli U, Nieri P, Martini C, Franzoni F. Apolipoprotein E Polymorphism and Oxidative Stress in Human Peripheral Blood Cells: Can Physical Activity Reactivate the Proteasome System through Epigenetic Mechanisms? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8869849. [PMID: 33488947 PMCID: PMC7796851 DOI: 10.1155/2021/8869849] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is characterized by proteasome activity impairment, oxidative stress, and epigenetic changes, resulting in β-amyloid (Aβ) production/degradation imbalance. Apolipoprotein E (ApoE) is implicated in Aβ clearance, and particularly, the ApoE ε4 isoform predisposes to AD development. Regular physical activity is known to reduce AD progression. However, the impact of ApoE polymorphism and physical exercise on Aβ production and proteasome system activity has never been investigated in human peripheral blood cells, particularly in erythrocytes, an emerging peripheral model used to study biochemical alteration. Therefore, the influence of ApoE polymorphism on the antioxidant defences, amyloid accumulation, and proteasome activity was here evaluated in human peripheral blood cells depending on physical activity, to assess putative peripheral biomarkers for AD and candidate targets that could be modulated by lifestyle. Healthy subjects were enrolled and classified based on the ApoE polymorphism (by the restriction fragment length polymorphism technique) and physical activity level (Borg scale) and grouped into ApoE ε4/non-ε4 carriers and active/non-active subjects. The plasma antioxidant capability (AOC), the erythrocyte Aβ production/accumulation, and the nuclear factor erythroid 2-related factor 2 (Nrf2) mediated proteasome functionality were evaluated in all groups by the chromatographic and immunoenzymatic assay, respectively. Moreover, epigenetic mechanisms were investigated considering the expression of histone deacetylase 6, employing a competitive ELISA, and the modulation of two key miRNAs (miR-153-3p and miR-195-5p), through the miRNeasy Serum/Plasma Mini Kit. ApoE ε4 subjects showed a reduction in plasma AOC and an increase in the Nrf2 blocker, miR-153-3p, contributing to an enhancement of the erythrocyte concentration of Aβ. Physical exercise increased plasma AOC and reduced the amount of Aβ and its precursor, involving a reduced miR-153-3p expression and a miR-195-5p enhancement. Our data highlight the impact of the ApoE genotype on the amyloidogenic pathway and the proteasome system, suggesting the positive impact of physical exercise, also through epigenetic mechanisms.
Collapse
Affiliation(s)
- Rebecca Piccarducci
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Beatrice Polini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Sara Carpi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- NEST, Istituto di Nanoscienze, Consiglio Nazionale delle Ricerche, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Lucia Chico
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Jonathan Fusi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Ferdinando Franzoni
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| |
Collapse
|
22
|
Zhao X, Huang X, Li B, Cai Y, Cao P, Wan Q. The relative effectiveness of different types of exercise for people with Mild Cognitive Impairment or dementia: Systematic review protocol. J Adv Nurs 2020; 76:3662-3668. [PMID: 32996626 DOI: 10.1111/jan.14553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/11/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaoyan Zhao
- School of Nursing Peking University Beijing China
| | - Xiuxiu Huang
- School of Nursing Peking University Beijing China
| | - Bei Li
- School of Nursing Peking University Beijing China
| | - Ying Cai
- School of Nursing Peking University Beijing China
| | - Peiye Cao
- Peking University People's Hospital Beijing China
| | - Qiaoqin Wan
- School of Nursing Peking University Beijing China
| |
Collapse
|
23
|
De la Rosa A, Olaso-Gonzalez G, Arc-Chagnaud C, Millan F, Salvador-Pascual A, García-Lucerga C, Blasco-Lafarga C, Garcia-Dominguez E, Carretero A, Correas AG, Viña J, Gomez-Cabrera MC. Physical exercise in the prevention and treatment of Alzheimer's disease. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:394-404. [PMID: 32780691 PMCID: PMC7498620 DOI: 10.1016/j.jshs.2020.01.004] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/26/2019] [Accepted: 12/12/2019] [Indexed: 05/02/2023]
Abstract
Dementia is one of the greatest global challenges for health and social care in the 21st century. Alzheimer's disease (AD), the most common type of dementia, is by no means an inevitable consequence of growing old. Several lifestyle factors may increase, or reduce, an individual's risk of developing AD. Much has been written over the ages about the benefits of exercise and physical activity. Among the risk factors associated with AD is a low level of physical activity. The relationship between physical and mental health was established several years ago. In this review, we discuss the role of exercise (aerobic and resistance) training as a therapeutic strategy for the treatment and prevention of AD. Older adults who exercise are more likely to maintain cognition. We address the main protective mechanism on brain function modulated by physical exercise by examining both human and animal studies. We will pay especial attention to the potential role of exercise in the modulation of amyloid β turnover, inflammation, synthesis and release of neurotrophins, and improvements in cerebral blood flow. Promoting changes in lifestyle in presymptomatic and predementia disease stages may have the potential for delaying one-third of dementias worldwide. Multimodal interventions that include the adoption of an active lifestyle should be recommended for older populations.
Collapse
Affiliation(s)
- Adrian De la Rosa
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain
| | - Gloria Olaso-Gonzalez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain
| | - Coralie Arc-Chagnaud
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain; INRA, UMR866 Muscle dynamics and metabolism, University of Montpellier, F-34060, Montpellier, France
| | - Fernando Millan
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain
| | - Andrea Salvador-Pascual
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain
| | | | | | - Esther Garcia-Dominguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain
| | - Aitor Carretero
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain
| | - Angela G Correas
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain
| | - Jose Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain.
| | - Mari Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain.
| |
Collapse
|
24
|
Stojanovic M, Jin Y, Fagan AM, Benzinger TL, Hassenstab J, Cruchaga C, Morris JC, Head D. Physical Exercise and Longitudinal Trajectories in Alzheimer Disease Biomarkers and Cognitive Functioning. Alzheimer Dis Assoc Disord 2020; 34:212-219. [PMID: 32520736 PMCID: PMC7483844 DOI: 10.1097/wad.0000000000000385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Associations of physical exercise with Alzheimer disease (AD) biomarkers and cognitive functioning have been observed cross-sectionally. However, the effects of exercise on longitudinal change in AD biomarkers have not been thoroughly investigated. The current study examined whether individuals with higher baseline exercise exhibited less longitudinal change in AD biomarkers and cognitive functioning, and whether APOE and/or brain-derived neurotrophic factor (BDNF) genotypes moderated the effects of exercise on longitudinal changes. METHODS Clinically normal individuals completed a questionnaire on physical exercise over the prior 10-year period at baseline. Ninety-five individuals had serial cerebrospinal fluid samples collected to examine Aβ42, ptau181 and total tau; 181 individuals underwent multiple assessments of amyloid positron emission tomography imaging with Pittsburgh Compound-B; 327 individuals underwent multiple cognitive assessments, including measures of episodic memory, executive functions, verbal fluency, and processing speed. RESULTS Greater exercise was associated with less steep decline in processing speed. Baseline exercise did not robustly impact longitudinal change for any other outcomes. Neither APOE nor BDNF genotype robustly moderated the effect of exercise on trajectories of AD biomarkers or cognitive decline. INTERPRETATION Results suggest that self-reported physical exercise may be limited as a moderator of changes in AD biomarkers.
Collapse
Affiliation(s)
| | | | - Anne M Fagan
- Knight Alzheimer Disease Research Center
- Hope Center for Neurological Disorders
- Department of Neurology
| | | | | | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri 63130, United States of America
| | - John C Morris
- Knight Alzheimer Disease Research Center
- Department of Neurology
| | - Denise Head
- Department of Psychological and Brain Sciences
- Knight Alzheimer Disease Research Center
- Department of Radiology
| |
Collapse
|
25
|
Piccarducci R, Daniele S, Fusi J, Chico L, Baldacci F, Siciliano G, Bonuccelli U, Franzoni F, Martini C. Impact of ApoE Polymorphism and Physical Activity on Plasma Antioxidant Capability and Erythrocyte Membranes. Antioxidants (Basel) 2019; 8:E538. [PMID: 31717561 PMCID: PMC6912376 DOI: 10.3390/antiox8110538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
The allele epsilon 4 (ε4) of apolipoprotein E (ApoE) is the strongest genetic risk factor for Alzheimer's disease (AD). ApoE protein plays a pivotal role in the synthesis and metabolism of amyloid beta (Aβ), the major component of the extracellular plaques that constitute AD pathological hallmarks. Regular exercise is an important preventive/therapeutic tool in aging and AD. Nevertheless, the impact of physical exercise on the well-being of erythrocytes, a good model of oxidative stress and neurodegenerative processes, remains to be investigated, particularly depending on ApoE polymorphism. Herein, we evaluate the oxidative status, Aβ levels, and the membrane's composition of erythrocytes in a cohort of human subjects. In our hands, the plasma antioxidant capability (AOC), erythrocytes membrane fluidity, and the amount of phosphatidylcholine (PC) were demonstrated to be significantly decreased in the ApoE ε4 genotype and non-active subjects. In contrast, erythrocyte Aβ content and lipid peroxidation increased in ε4 carriers. Regular physical exercise was associated with an increased plasma AOC and membrane fluidity, as well as to a reduced amount of erythrocytes Aβ. Altogether, these data highlight the influence of the ApoE genotype on erythrocytes' well-being and confirm the positive impact of regular physical exercise.
Collapse
Affiliation(s)
- Rebecca Piccarducci
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (R.P.); (S.D.)
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (R.P.); (S.D.)
| | - Jonathan Fusi
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy; (J.F.); (L.C.); (F.B.); (G.S.); (U.B.)
| | - Lucia Chico
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy; (J.F.); (L.C.); (F.B.); (G.S.); (U.B.)
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy; (J.F.); (L.C.); (F.B.); (G.S.); (U.B.)
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy; (J.F.); (L.C.); (F.B.); (G.S.); (U.B.)
| | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy; (J.F.); (L.C.); (F.B.); (G.S.); (U.B.)
| | - Ferdinando Franzoni
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy; (J.F.); (L.C.); (F.B.); (G.S.); (U.B.)
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (R.P.); (S.D.)
| |
Collapse
|
26
|
Brown BM, Peiffer J, Rainey-Smith SR. Exploring the relationship between physical activity, beta-amyloid and tau: A narrative review. Ageing Res Rev 2019; 50:9-18. [PMID: 30615936 DOI: 10.1016/j.arr.2019.01.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/06/2018] [Accepted: 01/03/2019] [Indexed: 12/19/2022]
Abstract
Several prospective cohort studies have reported an association between higher levels of physical activity and decreased risk of cognitive decline and dementia, years later. To support physical activity as a preventative measure against dementia, including Alzheimer's disease (AD; the most common form of dementia), evidence regarding the underlying mechanisms is vital. Here, we review previous work examining the role of physical activity in modulating levels of AD pathological hallmarks, beta-amyloid (Aβ) and tau (in the brain, cerebrospinal fluid and blood). Robust evidence from transgenic animal studies suggests that physical activity (voluntary wheel running) and exercise (forced wheel running) are implicated in lowering levels of brain Aβ and tau. Nevertheless, evidence from human studies, utilising measurements from positron emission tomography and cerebrospinal fluid biomarkers, is less consistent. Rigorous randomised controlled trials utilising long exercise interventions are vital to further understand the relationship between physical activity and Alzheimer's disease.
Collapse
|
27
|
Nakamura T, Kawarabayashi T, Seino Y, Hirohata M, Nakahata N, Narita S, Itoh K, Nakaji S, Shoji M. Aging and APOE-ε4 are determinative factors of plasma A β42 levels. Ann Clin Transl Neurol 2018; 5:1184-1191. [PMID: 30349853 PMCID: PMC6186936 DOI: 10.1002/acn3.635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 01/29/2023] Open
Abstract
Objective The aim of this study was to confirm determinative factors for plasma Aβ and its association with cognitive function. Methods Fasting plasma Aβ40 and Aβ42 levels were measured by ELISA in 1019 participants in the Iwaki Health Promotion Project. The relationships between plasma Aβ and health-related items, including physical characteristics, cognitive function tests, blood chemistry, and APOE-ε4 genotype were analyzed. Results The plasma levels of Aβ40 and Aβ42, and Aβ40/42 ratio were found to significantly increase with aging. The age-dependent increase in Aβ42 level was significantly suppressed by APOE-ε4. Renal function was an associated factor for the plasma Aβ40 level. The plasma Aβ42 level and Aβ40/42 ratio correlated with cognitive function. Interpretation Age and APOE-ε4 are major determinative factors of plasma levels of Aβ42 and the Aβ40/42 ratio. These factors are critical adjustment factors for the usage of plasma Aβ as a biomarker of central nervous system amyloidosis.
Collapse
Affiliation(s)
- Takumi Nakamura
- Department of Neurology Hrosaki University Graduate School of Medicine 5 Zaifu-cho Hirosaki 037-8562 Japan
| | - Takeshi Kawarabayashi
- Department of Neurology Hrosaki University Graduate School of Medicine 5 Zaifu-cho Hirosaki 037-8562 Japan
| | - Yusuke Seino
- Department of Neurology Hrosaki University Graduate School of Medicine 5 Zaifu-cho Hirosaki 037-8562 Japan
| | - Mie Hirohata
- Department of Neurology Hrosaki University Graduate School of Medicine 5 Zaifu-cho Hirosaki 037-8562 Japan
| | - Naoko Nakahata
- Department of Neurology Hrosaki University Graduate School of Medicine 5 Zaifu-cho Hirosaki 037-8562 Japan
| | - Sakiko Narita
- Department of Neurology Hrosaki University Graduate School of Medicine 5 Zaifu-cho Hirosaki 037-8562 Japan
| | - Ken Itoh
- Department of Stress Response Science Hirosaki University Graduate School of Medicine 5 Zaifu-cho Hirosaki 037-8562 Japan
| | - Shigeyuki Nakaji
- Department of Social Medicine Hirosaki University Graduate School of Medicine 5 Zaifu-cho Hirosaki 037-8562 Japan
| | - Mikio Shoji
- Department of Neurology Hrosaki University Graduate School of Medicine 5 Zaifu-cho Hirosaki 037-8562 Japan
| |
Collapse
|
28
|
Hall PA, Bickel WK, Erickson KI, Wagner DD. Neuroimaging, neuromodulation, and population health: the neuroscience of chronic disease prevention. Ann N Y Acad Sci 2018; 1428:240-256. [PMID: 29863790 PMCID: PMC6175225 DOI: 10.1111/nyas.13868] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/24/2018] [Accepted: 05/04/2018] [Indexed: 01/10/2023]
Abstract
Preventable chronic diseases are the leading cause of death in the majority of countries throughout the world, and this trend will continue for the foreseeable future. The potential to offset the social, economic, and personal burdens associated with such conditions depends on our ability to influence people's thought processes, decisions, and behaviors, all of which can be understood with reference to the brain itself. Within the health neuroscience framework, the brain can be viewed as a predictor, mediator, moderator, or outcome in relation to health-related phenomena. This review explores examples of each of these, with specific reference to the primary prevention (i.e., prevention of initial onset) of chronic diseases. Within the topic of primary prevention, we touch on several cross-cutting themes (persuasive communications, delay discounting of rewards, and self-control), and place a special focus on obesity as a disorder influenced by both eating behavior and exercise habits.
Collapse
Affiliation(s)
- Peter A. Hall
- School of Public Health and Health SystemsUniversity of WaterlooWaterlooOntarioCanada
| | - Warren K. Bickel
- Departments of PsychologyNeuroscience and Health Sciences, Virginia TechRoanokeVirginia
| | - Kirk I. Erickson
- Department of PsychologyUniversity of PittsburghPittsburghPennsylvania
| | | |
Collapse
|
29
|
Gary C, Hérard AS, Hanss Z, Dhenain M. Plasma Amyloid Is Associated with White Matter and Subcortical Alterations and Is Modulated by Age and Seasonal Rhythms in Mouse Lemur Primates. Front Aging Neurosci 2018; 10:35. [PMID: 29491833 PMCID: PMC5817060 DOI: 10.3389/fnagi.2018.00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/30/2018] [Indexed: 01/03/2023] Open
Abstract
Accumulation of amyloid-β (Aβ) peptides in the brain is a critical early event in the pathogenesis of Alzheimer's disease (AD), the most common age-related neurodegenerative disorder. There is increasing interest in measuring levels of plasma Aβ since this could help in diagnosis of brain pathology. However, the value of plasma Aβ in such a diagnosis is still controversial and factors modulating its levels are still poorly understood. The mouse lemur (Microcebus murinus) is a primate model of cerebral aging which can also present with amyloid plaques and whose Aβ is highly homologous to humans'. In an attempt to characterize this primate model and to evaluate the potential of plasma Aβ as a biomarker for brain alterations, we measured plasma Aβ40 concentration in 21 animals aged from 5 to 9.5 years. We observed an age-related increase in plasma Aβ40 levels. We then evaluated the relationships between plasma Aβ40 levels and cerebral atrophy in these mouse lemurs. Voxel-based analysis of cerebral MR images (adjusted for the age/sex/brain size of the animals), showed that low Aβ40 levels are associated with atrophy of several white matter and subcortical brain regions. These results suggest that low Aβ40 levels in middle-aged/old animals are associated with brain deterioration. One special feature of mouse lemurs is that their metabolic and physiological parameters follow seasonal changes strictly controlled by illumination. We evaluated seasonal-related variations of plasma Aβ40 levels and found a strong effect, with higher plasma Aβ40 concentrations in winter conditions compared to summer. This question of seasonal modulation of Aβ plasma levels should be addressed in clinical studies. We also focused on the amplitude of the difference between plasma Aβ40 levels during the two seasons and found that this amplitude increases with age. Possible mechanisms leading to these seasonal changes are discussed.
Collapse
Affiliation(s)
- Charlotte Gary
- Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction de la Recherche Fondamentale, Institut François Jacob, MIRCen, Fontenay-aux-Roses, France
| | - Anne-Sophie Hérard
- Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction de la Recherche Fondamentale, Institut François Jacob, MIRCen, Fontenay-aux-Roses, France
| | - Zoé Hanss
- Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction de la Recherche Fondamentale, Institut François Jacob, MIRCen, Fontenay-aux-Roses, France
| | - Marc Dhenain
- Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction de la Recherche Fondamentale, Institut François Jacob, MIRCen, Fontenay-aux-Roses, France
| |
Collapse
|
30
|
Law LL, Rol RN, Schultz SA, Dougherty RJ, Edwards DF, Koscik RL, Gallagher CL, Carlsson CM, Bendlin BB, Zetterberg H, Blennow K, Asthana S, Sager MA, Hermann BP, Johnson SC, Cook DB, Okonkwo OC. Moderate intensity physical activity associates with CSF biomarkers in a cohort at risk for Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2018; 10:188-195. [PMID: 29527551 PMCID: PMC5842318 DOI: 10.1016/j.dadm.2018.01.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is characterized by the presence of amyloid β (Aβ) plaques, neurofibrillary tangles, and neurodegeneration, evidence of which may be detected in vivo via cerebrospinal fluid (CSF) sampling. Physical activity (PA) has emerged as a possible modifier of these AD-related pathological changes. Consequently, the aim of this study was to cross-sectionally examine the relationship between objectively measured PA and CSF levels of Aβ42 and tau in asymptomatic late-middle-aged adults at risk for AD. METHODS Eighty-five cognitively healthy late-middle-aged adults (age = 64.31 years, 61.2% female) from the Wisconsin Registry for Alzheimer's Prevention participated in this study. They wore an accelerometer (ActiGraph GT3X+) for one week to record free-living PA, yielding measures of sedentariness and various intensities of PA (i.e., light, moderate, and vigorous). They also underwent lumbar puncture to collect CSF, from which Aβ42, total tau, and phosphorylated tau were immunoassayed. Regression analyses were used to examine the association between accelerometer measures and CSF biomarkers, adjusting for age, sex, and other relevant covariates. RESULTS Engagement in moderate PA was associated with higher Aβ42 (P = .008), lower total tau/Aβ42 (P = .006), and lower phosphorylated tau/Aβ42 (P = .030). In contrast, neither light nor vigorous PA was associated with any of the biomarkers. Increased sedentariness was associated with reduced Aβ42 (P = .014). DISCUSSIONS In this cohort, moderate PA, but not light or vigorous, was associated with a favorable AD biomarker profile, while sedentariness was associated with greater Aβ burden. These findings suggest that a physically active lifestyle may play a protective role against the development of AD.
Collapse
Affiliation(s)
- Lena L. Law
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Rachael N. Rol
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Stephanie A. Schultz
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Ryan J. Dougherty
- Department of Kinesiology, University of Wisconsin School of Education, Madison, WI, USA
| | - Dorothy F. Edwards
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Kinesiology, University of Wisconsin School of Education, Madison, WI, USA
| | - Rebecca L. Koscik
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Catherine L. Gallagher
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Cynthia M. Carlsson
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Barbara B. Bendlin
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Sanjay Asthana
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mark A. Sager
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bruce P. Hermann
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C. Johnson
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Dane B. Cook
- Department of Kinesiology, University of Wisconsin School of Education, Madison, WI, USA
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Ozioma C. Okonkwo
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
31
|
Siddarth P, Rahi B, Emerson ND, Burggren AC, Miller KJ, Bookheimer S, Lavretsky H, Dobkin B, Small G, Merrill DA. Physical Activity and Hippocampal Sub-Region Structure in Older Adults with Memory Complaints. J Alzheimers Dis 2018; 61:1089-1096. [PMID: 29254088 PMCID: PMC6461048 DOI: 10.3233/jad-170586] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Physical activity (PA) plays a major role in maintaining cognition in older adults. PA has been shown to be correlated with total hippocampal volume, a memory-critical region within the medial temporal lobe (MTL). However, research on associations between PA and MTL sub-region integrity is limited. OBJECTIVE To examine the relationship between PA, MTL thickness, and its sub-regions, and cognitive function in non-demented older adults with memory complaints. METHODS Twenty-nine subjects aged ≥60 years, with memory complaints were recruited for this cross-sectional study. PA was tracked for 7 days using accelerometers, and average number of steps/day determined. Subjects were categorized into two groups: those who walked ≤4000 steps/day (lower PA) and those with >4000 steps/day (higher PA). Subjects received neuropsychological testing and 3T MRI scans. Nonparametric ANCOVAs controlling for age examined differences between the two groups. RESULTS Twenty-six subjects aged 72.7(8.1) years completed the study. The higher PA group (n = 13) had thicker fusiform gyrus (median difference = 0.11 mm, effect size (ES) = 1.43, p = 0.001) and parahippocampal cortex (median difference = 0.12 mm, ES = 0.93, p = 0.04) compared to the lower PA group. The higher PA group also exhibited superior performance in attention and information-processing speed (median difference = 0.90, ES = 1.61, p = 0.003) and executive functioning (median difference = 0.97, ES = 1.24, p = 0.05). Memory recall was not significantly different between the two groups. CONCLUSION Older non-demented individuals complaining of memory loss who walked >4000 steps each day had thicker MTL sub-regions and better cognitive functioning than those who walked ≤4000 steps. Future studies should include longitudinal analyses and explore mechanisms mediating hippocampal related atrophy.
Collapse
Affiliation(s)
- Prabha Siddarth
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- UCLA Longevity Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Berna Rahi
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- UCLA Longevity Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Natacha D. Emerson
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Alison C. Burggren
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Center for Cognitive Neuroscience, University of California, Los Angeles, CA, USA
| | - Karen J. Miller
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- UCLA Longevity Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Susan Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Center for Cognitive Neuroscience, University of California, Los Angeles, CA, USA
| | - Helen Lavretsky
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Bruce Dobkin
- Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Gary Small
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- UCLA Longevity Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - David A. Merrill
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- UCLA Longevity Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
32
|
Innes KE, Selfe TK, Brundage K, Montgomery C, Wen S, Kandati S, Bowles H, Khalsa DS, Huysmans Z. Effects of Meditation and Music-Listening on Blood Biomarkers of Cellular Aging and Alzheimer's Disease in Adults with Subjective Cognitive Decline: An Exploratory Randomized Clinical Trial. J Alzheimers Dis 2018; 66:947-970. [PMID: 30320574 PMCID: PMC6388631 DOI: 10.3233/jad-180164] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Telomere length (TL), telomerase activity (TA), and plasma amyloid-β (Aβ) levels have emerged as possible predictors of cognitive decline and dementia. OBJECTIVE To assess the: 1) effects of two 12-week relaxation programs on TL, TA, and Aβ levels in adults with subjective cognitive decline; and 2) relationship of biomarker changes to those in cognitive function, psychosocial status, and quality of life (QOL). METHODS Participants were randomized to a 12-week Kirtan Kriya meditation (KK) or music listening (ML) program and asked to practice 12 minutes/day. Plasma Aβ(38/40/42) and peripheral blood mononuclear cell TL and TA were measured at baseline and 3 months. Cognition, stress, sleep, mood, and QOL were assessed at baseline, 3 months, and 6 months. RESULTS Baseline blood samples were available for 53 participants (25 KK, 28 ML). The KK group showed significantly greater increases in Aβ40 than the ML group. TA rose in both groups, although increases were significant only among those with higher practice adherence and lower baseline TA. Changes in both TL and TA varied by their baseline values, with greater increases among participants with values ≤50th percentile (ps-interaction <0.006). Both groups improved in cognitive and psychosocial status (ps ≤0.05), with improvements in stress, mood, and QOL greater in the KK group. Rising Aβ levels were correlated with gains in cognitive function, mood, sleep, and QOL at both 3 and 6 months, associations that were particularly pronounced in the KK group. Increases in TL and TA were also correlated with improvements in certain cognitive and psychosocial measures. CONCLUSION Practice of simple mind-body therapies may alter plasma Aβ levels, TL, and TA. Biomarker increases were associated with improvements in cognitive function, sleep, mood, and QOL, suggesting potential functional relationships.
Collapse
Affiliation(s)
- Kim E. Innes
- Department of Epidemiology, School of Public Health, West Virginia University (WVU) Morgantown, WV, USA
| | - Terry Kit Selfe
- Department of Epidemiology, School of Public Health, West Virginia University (WVU) Morgantown, WV, USA
- Department of Biomedical and Health Information Services, Health Science Center Libraries, University of Florida, Gainesville, FL, USA
| | - Kathleen Brundage
- Department of Microbiology, Flow Cytometry & Single Cell Core Facility, Immunology & Cell Biology, School of Medicine, WVU Morgantown, WV, USA
| | - Caitlin Montgomery
- Department of Epidemiology, School of Public Health, West Virginia University (WVU) Morgantown, WV, USA
| | - Sijin Wen
- Department of Biostatistics, School of Public Health, WVU, Morgantown, WV, USA
| | - Sahiti Kandati
- Department of Epidemiology, School of Public Health, West Virginia University (WVU) Morgantown, WV, USA
| | - Hannah Bowles
- Department of Epidemiology, School of Public Health, West Virginia University (WVU) Morgantown, WV, USA
| | | | - Zenzi Huysmans
- College of Physical Activity and Sport Sciences, WVU, Morgantown, WV, USA
| |
Collapse
|