1
|
More SH, Runser JY, Ontani A, Fores JR, Carvalho A, Blanck C, Serra CA, Schmutz M, Schaaf P, Jierry L. Supported Supramolecular Hydrogel Nanoarchitectonics for Tunable Biocatalytic Flow Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405326. [PMID: 39394755 DOI: 10.1002/smll.202405326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/20/2024] [Indexed: 10/14/2024]
Abstract
Enzymatically-active polyelectrolyte multilayers containing n layers of phosphatase (APn-PEM) induce the formation of supported biocatalytic supramolecular hydrogels when brought in contact with the precursor tripeptide Fmoc-FFpY (Fmoc = N-fluorenylmethyloxycarbonyl; F = Phenylalanine; Y = Tyrosine; p = phosphate group). APn-PEM triggers the spatially-localized hydrogelation reaching 2, 17 and 350 µm of thickness for n = 1, 2 and 3, respectively. As observed by cryo scanning electron microscopy, a dense nanofibrous network underpinning the hydrogel shows parallelly orientated Fmoc-FFY peptide-based fibrils, perpendicular to the substrate. For the gel generated by the AP3-PEM, fluorescence confocal microscopy images show that during the peptide self-assembly, some enzymes are distributed in the hydrogel, preferentially located in few dozens of micrometers above the substrate. In addition, a self-assembly growth rate of 5 µm min-1 is determined when the hydrogelation starts. Through transmission electron microscopy immuno-labelling experiments on self-assemblies generated in solution, we observe that AP are decorating the Fmoc-FFY nanofibers. It is observed both a long-term stability and a higher biocatalytic activity of the so AP-encapsulated hydrogel compared to the bare APn-PEM. This bioactivity can be tuned by the number n in batch and under continuous flow conditions. To illustrate the versatility of this enzyme-supported strategy, multi-catalytic transformations in continuous flow conditions have been successfully carried out using supported supramolecular hydrogel.
Collapse
Affiliation(s)
- Shahaji H More
- Inserm UMR_S 1121, CNRS EMR 7003, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, F-67000, France
- Institut Charles Sadron (UPR22), Université de Strasbourg, CNRS, 23 rue du Loess 67034, Cedex 2, Strasbourg, BP84047, France
| | - Jean-Yves Runser
- Inserm UMR_S 1121, CNRS EMR 7003, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, F-67000, France
- Institut Charles Sadron (UPR22), Université de Strasbourg, CNRS, 23 rue du Loess 67034, Cedex 2, Strasbourg, BP84047, France
| | - Aymeric Ontani
- Institut Charles Sadron (UPR22), Université de Strasbourg, CNRS, 23 rue du Loess 67034, Cedex 2, Strasbourg, BP84047, France
| | - Jennifer Rodon Fores
- Inserm UMR_S 1121, CNRS EMR 7003, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, F-67000, France
| | - Alain Carvalho
- Institut Charles Sadron (UPR22), Université de Strasbourg, CNRS, 23 rue du Loess 67034, Cedex 2, Strasbourg, BP84047, France
| | - Christian Blanck
- Institut Charles Sadron (UPR22), Université de Strasbourg, CNRS, 23 rue du Loess 67034, Cedex 2, Strasbourg, BP84047, France
| | - Christophe A Serra
- Institut Charles Sadron (UPR22), Université de Strasbourg, CNRS, 23 rue du Loess 67034, Cedex 2, Strasbourg, BP84047, France
| | - Marc Schmutz
- Institut Charles Sadron (UPR22), Université de Strasbourg, CNRS, 23 rue du Loess 67034, Cedex 2, Strasbourg, BP84047, France
| | - Pierre Schaaf
- Inserm UMR_S 1121, CNRS EMR 7003, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, F-67000, France
- Institut Charles Sadron (UPR22), Université de Strasbourg, CNRS, 23 rue du Loess 67034, Cedex 2, Strasbourg, BP84047, France
| | - Loïc Jierry
- Institut Charles Sadron (UPR22), Université de Strasbourg, CNRS, 23 rue du Loess 67034, Cedex 2, Strasbourg, BP84047, France
| |
Collapse
|
2
|
Carter BM, Day GJ, Zhang WH, Sessions RB, Jackson CJ, Perriman AW. Partitioning of an Enzyme-Polymer Surfactant Nanocomplex into Lipid-Rich Cellular Compartments Drives In Situ Hydrolysis of Organophosphates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401982. [PMID: 38992997 DOI: 10.1002/smll.202401982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/30/2024] [Indexed: 07/13/2024]
Abstract
Most organophosphates (OPs) are hydrophobic, and after exposure, can sequester into lipophilic regions within the body, such as adipose tissue, resulting in long term chronic effects. Consequently, there is an urgent need for therapeutic agents that can decontaminate OPs in these hydrophobic regions. Accordingly, an enzyme-polymer surfactant nanocomplex is designed and tested comprising chemically supercharged phosphotriesterase (Agrobacterium radiobacter; arPTE) electrostatically conjugated to amphiphilic polymer surfactant chains ([cat.arPTE][S-]). Experimentally-derived structural data are combined with molecular dynamics (MD) simulations to provide atomic level detail on conformational ensembles of the nanocomplex using dielectric constants relevant to aqueous and lipidic microenvironments. These show the formation of a compact admicelle pseudophase surfactant corona under aqueous conditions, which reconfigures to yield an extended conformation at a low dielectric constant, providing insight into the mechanism underpinning cell membrane binding. Significantly, it demonstrated that [cat.arPTE][S-] spontaneously binds to human mesenchymal stem cell membranes (hMSCs), resulting in on-cell OP hydrolysis. Moreover, the nanoconstruct can endocytose and partition into the intracellular fatty vacuoles of adipocytes and hydrolyze sequestered OP.
Collapse
Affiliation(s)
- Benjamin M Carter
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Graham J Day
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - William H Zhang
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | | | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
3
|
Dym O, Aggarwal N, Ashani Y, Leader H, Albeck S, Unger T, Hamer-Rogotner S, Silman I, Tawfik DS, Sussman JL. The impact of molecular variants, crystallization conditions and the space group on ligand-protein complexes: a case study on bacterial phosphotriesterase. Acta Crystallogr D Struct Biol 2023; 79:992-1009. [PMID: 37860961 PMCID: PMC10619419 DOI: 10.1107/s2059798323007672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/03/2023] [Indexed: 10/21/2023] Open
Abstract
A bacterial phosphotriesterase was employed as an experimental paradigm to examine the effects of multiple factors, such as the molecular constructs, the ligands used during protein expression and purification, the crystallization conditions and the space group, on the visualization of molecular complexes of ligands with a target enzyme. In this case, the ligands used were organophosphates that are fragments of the nerve agents and insecticides on which the enzyme acts as a bioscavenger. 12 crystal structures of various phosphotriesterase constructs obtained by directed evolution were analyzed, with resolutions of up to 1.38 Å. Both apo forms and holo forms, complexed with the organophosphate ligands, were studied. Crystals obtained from three different crystallization conditions, crystallized in four space groups, with and without N-terminal tags, were utilized to investigate the impact of these factors on visualizing the organophosphate complexes of the enzyme. The study revealed that the tags used for protein expression can lodge in the active site and hinder ligand binding. Furthermore, the space group in which the protein crystallizes can significantly impact the visualization of bound ligands. It was also observed that the crystallization precipitants can compete with, and even preclude, ligand binding, leading to false positives or to the incorrect identification of lead drug candidates. One of the co-crystallization conditions enabled the definition of the spaces that accommodate the substituents attached to the P atom of several products of organophosphate substrates after detachment of the leaving group. The crystal structures of the complexes of phosphotriesterase with the organophosphate products reveal similar short interaction distances of the two partially charged O atoms of the P-O bonds with the exposed β-Zn2+ ion and the buried α-Zn2+ ion. This suggests that both Zn2+ ions have a role in stabilizing the transition state for substrate hydrolysis. Overall, this study provides valuable insights into the challenges and considerations involved in studying the crystal structures of ligand-protein complexes, highlighting the importance of careful experimental design and rigorous data analysis in ensuring the accuracy and reliability of the resulting phosphotriesterase-organophosphate structures.
Collapse
Affiliation(s)
- Orly Dym
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Nidhi Aggarwal
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yacov Ashani
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Haim Leader
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shira Albeck
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Unger
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Shelly Hamer-Rogotner
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Israel Silman
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Dan S. Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Joel L. Sussman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Wang KY, Zhang J, Hsu YC, Lin H, Han Z, Pang J, Yang Z, Liang RR, Shi W, Zhou HC. Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chem Rev 2023; 123:5347-5420. [PMID: 37043332 PMCID: PMC10853941 DOI: 10.1021/acs.chemrev.2c00879] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Indexed: 04/13/2023]
Abstract
Enzymatic catalysis has fueled considerable interest from chemists due to its high efficiency and selectivity. However, the structural complexity and vulnerability hamper the application potentials of enzymes. Driven by the practical demand for chemical conversion, there is a long-sought quest for bioinspired catalysts reproducing and even surpassing the functions of natural enzymes. As nanoporous materials with high surface areas and crystallinity, metal-organic frameworks (MOFs) represent an exquisite case of how natural enzymes and their active sites are integrated into porous solids, affording bioinspired heterogeneous catalysts with superior stability and customizable structures. In this review, we comprehensively summarize the advances of bioinspired MOFs for catalysis, discuss the design principle of various MOF-based catalysts, such as MOF-enzyme composites and MOFs embedded with active sites, and explore the utility of these catalysts in different reactions. The advantages of MOFs as enzyme mimetics are also highlighted, including confinement, templating effects, and functionality, in comparison with homogeneous supramolecular catalysts. A perspective is provided to discuss potential solutions addressing current challenges in MOF catalysis.
Collapse
Affiliation(s)
- Kun-Yu Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaqi Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Chuan Hsu
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hengyu Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zongsu Han
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiandong Pang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- School
of Materials Science and Engineering, Tianjin Key Laboratory of Metal
and Molecule-Based Material Chemistry, Nankai
University, Tianjin 300350, China
| | - Zhentao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong-Ran Liang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wei Shi
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
5
|
Hydrogel oxygen reservoirs increase functional integration of neural stem cell grafts by meeting metabolic demands. Nat Commun 2023; 14:457. [PMID: 36709345 PMCID: PMC9884236 DOI: 10.1038/s41467-023-36133-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/17/2023] [Indexed: 01/29/2023] Open
Abstract
Injectable biomimetic hydrogels have great potential for use in regenerative medicine as cellular delivery vectors. However, they can suffer from issues relating to hypoxia, including poor cell survival, differentiation, and functional integration owing to the lack of an established vascular network. Here we engineer a hybrid myoglobin:peptide hydrogel that can concomitantly deliver stem cells and oxygen to the brain to support engraftment until vascularisation can occur naturally. We show that this hybrid hydrogel can modulate cell fate specification within progenitor cell grafts, resulting in a significant increase in neuronal differentiation. We find that the addition of myoglobin to the hydrogel results in more extensive innervation within the host tissue from the grafted cells, which is essential for neuronal replacement strategies to ensure functional synaptic connectivity. This approach could result in greater functional integration of stem cell-derived grafts for the treatment of neural injuries and diseases affecting the central and peripheral nervous systems.
Collapse
|
6
|
Van Raad D, Huber T. eCell Technology for Cell-Free Protein Synthesis, Biosensing, and Remediation. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 185:129-146. [PMID: 37306701 DOI: 10.1007/10_2023_225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The eCell technology is a recently introduced, specialized protein production platform with uses in a multitude of biotechnological applications. This chapter summarizes the use of eCell technology in four selected application areas. Firstly, for detecting heavy metal ions, specifically mercury, in an in vitro protein expression system. Results show improved sensitivity and lower limit of detection compared to comparable in vivo systems. Secondly, eCells are semipermeable, stable, and can be stored for extended periods of time, making them a portable and accessible technology for bioremediation of toxicants in extreme environments. Thirdly and fourthly, applications of eCell technology are shown to facilitate expression of correctly folded disulfide-rich proteins and incorporate chemically interesting derivatives of amino acids into proteins which are toxic to in vivo protein expression. Overall, eCell technology presents a cost-effective and efficient method for biosensing, bioremediation, and protein production.
Collapse
Affiliation(s)
- Damian Van Raad
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
7
|
Zhang X, Zhang G, Huang X, He J, Bai Y, Zhang L. Antifreezing and Nondrying Sensors of Ionic Hydrogels with a Double-Layer Structure for Highly Sensitive Motion Monitoring. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30256-30267. [PMID: 35749282 DOI: 10.1021/acsami.2c08589] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Freezing and dehydration together with interfacial failure are capable of causing the functional reduction of hydrogels for sensing applications. Herein, we develop a multifunctional bilayer that consists of a mussel-inspired adhesive layer and a functionally ionic layer that is composed of sodium p-styrene sulfonate (SSS) and an ionic liquid of [BMIM]Cl. The adhesive layer enables the strong adhesion of the bilayer to the surface of the skin. The introduction of ionic elements of SSS-[BMIM]Cl not only provides the bilayer with sensing adaptability in a wide temperature range of -25 to 75 °C, but also endows it with elastic, stretchable, self-healing, and conductive features. These mechanical properties are utilized to assemble a wearable sensor that has unprecedented sensitivity and reusability in monitoring human motions, including stretching, pulsing, frowning, and speaking. It is thus expected that the concept in this work would provide a promising route to design soft sensing devices that can work in a wide temperature range.
Collapse
Affiliation(s)
- Xiaoyong Zhang
- School of Materials Science and Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Gui Zhang
- School of Materials Science and Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Xinhua Huang
- School of Materials Science and Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Jinmei He
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150000, P. R. China
| | - Yongping Bai
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150000, P. R. China
| | - Lidong Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
8
|
Self-Assembled Peptide Habitats to Model Tumor Metastasis. Gels 2022; 8:gels8060332. [PMID: 35735676 PMCID: PMC9223161 DOI: 10.3390/gels8060332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022] Open
Abstract
Metastatic tumours are complex ecosystems; a community of multiple cell types, including cancerous cells, fibroblasts, and immune cells that exist within a supportive and specific microenvironment. The interplay of these cells, together with tissue specific chemical, structural and temporal signals within a three-dimensional (3D) habitat, direct tumour cell behavior, a subtlety that can be easily lost in 2D tissue culture. Here, we investigate a significantly improved tool, consisting of a novel matrix of functionally programmed peptide sequences, self-assembled into a scaffold to enable the growth and the migration of multicellular lung tumour spheroids, as proof-of-concept. This 3D functional model aims to mimic the biological, chemical, and contextual cues of an in vivo tumor more closely than a typically used, unstructured hydrogel, allowing spatial and temporal activity modelling. This approach shows promise as a cancer model, enhancing current understandings of how tumours progress and spread over time within their microenvironment.
Collapse
|
9
|
Wang Y, Penna V, Williams RJ, Parish CL, Nisbet DR. A Hydrogel as a Bespoke Delivery Platform for Stromal Cell-Derived Factor-1. Gels 2022; 8:gels8040224. [PMID: 35448125 PMCID: PMC9025061 DOI: 10.3390/gels8040224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
The defined self-assembly of peptides (SAPs) into nanostructured bioactive hydrogels has great potential for repairing traumatic brain injuries, as they maintain a stable, homeostatic environment at an injury site, preventing further degeneration. They also present a bespoke platform to restore function via the naturalistic presentation of therapeutic proteins, such as stromal-cell-derived factor 1 (SDF-1), expressed by meningeal cells. A key challenge to the use of the SDF protein, however, is its rapid diffusion and degradation. Here, we engineered a homeostatic hydrogel produced by incorporating recombinant SDF-1 protein within a self-assembled peptide hydrogel to create a supportive milieu for transplanted cells. Our hydrogel can concomitantly deliver viable primary neural progenitor cells and sustained active SDF-1 to support the nascent graft, resulting in increased neuronal differentiation. Moreover, this homeostatic hydrogel can ensure a healthy and larger graft core without impeding neuronal fiber growth and innervation. These findings demonstrate the regenerative potential of these hydrogels to improve the integration of grafted cells to treat neural injuries and diseases.
Collapse
Affiliation(s)
- Yi Wang
- The Graeme Clark Institute, The University of Melbourne, Melbourne 3010, Australia;
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne 3010, Australia
| | - Vanessa Penna
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne 3052, Australia; (V.P.); (C.L.P.)
| | - Richard J. Williams
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Melbourne 3216, Australia;
| | - Clare L. Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne 3052, Australia; (V.P.); (C.L.P.)
| | - David R. Nisbet
- The Graeme Clark Institute, The University of Melbourne, Melbourne 3010, Australia;
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne 3010, Australia
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra 2601, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne 3010, Australia
- Correspondence:
| |
Collapse
|
10
|
Day GJ, Zhang WH, Carter BM, Xiao W, Sambrook MR, Perriman AW. A Rationally Designed Supercharged Protein-Enzyme Chimera Self-Assembles In Situ to Yield Bifunctional Composite Textiles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60433-60445. [PMID: 34894651 DOI: 10.1021/acsami.1c18857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Catalytically active materials for the enhancement of personalized protective equipment (PPE) could be advantageous to help alleviate threats posed by neurotoxic organophosphorus compounds (OPs). Accordingly, a chimeric protein comprised of a supercharged green fluorescent protein (scGFP) and phosphotriesterase from Agrobacterium radiobacter (arPTE) was designed to drive the polymer surfactant (S-)-mediated self-assembly of microclusters to produce robust, enzymatically active materials. The chimera scGFP-arPTE was structurally characterized via circular dichroism spectroscopy and synchrotron radiation small-angle X-ray scattering, and its biophysical properties were determined. Significantly, the chimera exhibited greater thermal stability than the native constituent proteins, as well as a higher catalytic turnover number (kcat). Furthermore, scGFP-arPTE was electrostatically complexed with monomeric S-, driving self-assembly into [scGFP-arPTE][S-] nanoclusters, which could be dehydrated and cross-linked to yield enzymatically active [scGFP-arPTE][S-] porous films with a high-order structure. Moreover, these clusters could self-assemble within cotton fibers to generate active composite textiles without the need for the pretreatment of the fabrics. Significantly, the resulting materials maintained the biophysical activities of both constituent proteins and displayed recyclable and persistent activity against the nerve agent simulant paraoxon.
Collapse
Affiliation(s)
- Graham J Day
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - William H Zhang
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Ben M Carter
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Wenjin Xiao
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Mark R Sambrook
- CBR Division, Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury SP4 0JQ, United Kingdom
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
11
|
Zhang W, Day GJ, Zampetakis I, Carrabba M, Zhang Z, Carter BM, Govan N, Jackson C, Chen M, Perriman AW. Three-Dimensional Printable Enzymatically Active Plastics. ACS APPLIED POLYMER MATERIALS 2021; 3:6070-6077. [PMID: 35983011 PMCID: PMC9376927 DOI: 10.1021/acsapm.1c00845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Here, we describe a facile route to the synthesis of enzymatically active highly fabricable plastics, where the enzyme is an intrinsic component of the material. This is facilitated by the formation of an electrostatically stabilized enzyme-polymer surfactant nanoconstruct, which, after lyophilization and melting, affords stable macromolecular dispersions in a wide range of organic solvents. A selection of plastics can then be co-dissolved in the dispersions, which provides a route to bespoke 3D enzyme plastic nanocomposite structures using a wide range of fabrication techniques, including melt electrowriting, casting, and piston-driven 3D printing. The resulting constructs comprising active phosphotriesterase (arPTE) readily detoxify organophosphates with persistent activity over repeated cycles and for long time periods. Moreover, we show that the protein guest molecules, such as arPTE or sfGFP, increase the compressive Young's modulus of the plastics and that the identity of the biomolecule influences the nanomorphology and mechanical properties of the resulting materials. Overall, we demonstrate that these biologically active nanocomposite plastics are compatible with state-of-the-art 3D fabrication techniques and that the methodology could be readily applied to produce robust and on-demand smart nanomaterial structures.
Collapse
Affiliation(s)
- William
H. Zhang
- School
of Cellular and Molecular Medicine, University
of Bristol, Bristol BS8 1TD, United Kingdom
| | - Graham J. Day
- School
of Cellular and Molecular Medicine, University
of Bristol, Bristol BS8 1TD, United Kingdom
| | - Ioannis Zampetakis
- Bristol
Composites Institute (ACCIS), University
of Bristol, Bristol BS8 1TR, United Kingdom
| | - Michele Carrabba
- Bristol
Medical School, Translational Health Sciences, University of Bristol, Bristol BS2 8DZ, United Kingdom
| | - Zhongyang Zhang
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Aarhus DK-8000, Denmark
| | - Ben M. Carter
- School
of Cellular and Molecular Medicine, University
of Bristol, Bristol BS8 1TD, United Kingdom
| | - Norman Govan
- Defence
Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom
| | - Colin Jackson
- Australian
National University, Research School of
Chemistry, Canberra ACT 2601, Australia
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- Australian
Research Council Centre of Excellence in Synthetic Biology, Research
School of Chemistry, Australian National
University, Canberra, ACT 2601, Australia
| | - Menglin Chen
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Aarhus DK-8000, Denmark
| | - Adam W. Perriman
- School
of Cellular and Molecular Medicine, University
of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
12
|
Liang W, Wied P, Carraro F, Sumby CJ, Nidetzky B, Tsung CK, Falcaro P, Doonan CJ. Metal–Organic Framework-Based Enzyme Biocomposites. Chem Rev 2021; 121:1077-1129. [DOI: 10.1021/acs.chemrev.0c01029] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Weibin Liang
- Department of Chemistry and Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Peter Wied
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Francesco Carraro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Christopher J. Sumby
- Department of Chemistry and Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/1, 8010 Graz, Austria
| | - Chia-Kuang Tsung
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Christian J. Doonan
- Department of Chemistry and Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
13
|
Lang X, Hong X, Baker CA, Otto TC, Wheeldon I. Molecular binding scaffolds increase local substrate concentration enhancing the enzymatic hydrolysis of VX nerve agent. Biotechnol Bioeng 2020; 117:1970-1978. [PMID: 32239488 DOI: 10.1002/bit.27346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/25/2022]
Abstract
Kinetic enhancement of organophosphate hydrolysis is a long-standing challenge in catalysis. For prophylactic treatment against organophosphate exposure, enzymatic hydrolysis needs to occur at high rates in the presence of low substrate concentrations and enzymatic activity should persist over days and weeks. Here, the conjugation of small DNA scaffolds was used to introduce substrate binding sites with micromolar affinity to VX, paraoxon, and methyl-parathion in close proximity to the enzyme phosphotriesterase (PTE). The result was a decrease in KM and increase in the rate at low substrate concentrations. An optimized system for paraoxon hydrolysis decreased KM by 11-fold, with a corresponding increase in second-order rate constant. The initial rates of VX and methyl-parathion hydrolysis were also increased by 3.1- and 6.7-fold, respectively. The designed scaffolds not only increased the local substrate concentration, but they also resulted in increased stability and PTE-DNA particle size tuning between 25 and ~150 nm. The scaffold engineering approach taken here is focused on altering the local chemical and physical microenvironment around the enzyme and is therefore compatible with active site engineering via combinatorial and computational approaches.
Collapse
Affiliation(s)
- Xuye Lang
- Chemical and Environmental Engineering Department, University of California, Riverside, California
| | - Xiao Hong
- Biochemistry Department, University of California, Riverside, California
| | - Cetara A Baker
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland
| | - Tamara C Otto
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland
| | - Ian Wheeldon
- Chemical and Environmental Engineering Department, University of California, Riverside, California.,Center for Industrial Biotechnology, University of California, Riverside, California
| |
Collapse
|
14
|
Klein WP, Thomsen RP, Turner KB, Walper SA, Vranish J, Kjems J, Ancona MG, Medintz IL. Enhanced Catalysis from Multienzyme Cascades Assembled on a DNA Origami Triangle. ACS NANO 2019; 13:13677-13689. [PMID: 31751123 DOI: 10.1021/acsnano.9b05746] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Developing reliable methods of constructing cell-free multienzyme biocatalytic systems is a milestone goal of synthetic biology. It would enable overcoming the limitations of current cell-based systems, which suffer from the presence of competing pathways, toxicity, and inefficient access to extracellular reactants and removal of products. DNA nanostructures have been suggested as ideal scaffolds for assembling sequential enzymatic cascades in close enough proximity to potentially allow for exploiting of channeling effects; however, initial demonstrations have provided somewhat contradictory results toward confirming this phenomenon. In this work, a three-enzyme sequential cascade was realized by site-specifically immobilizing DNA-conjugated amylase, maltase, and glucokinase on a self-assembled DNA origami triangle. The kinetics of seven different enzyme configurations were evaluated experimentally and compared to simulations of optimized activity. A 30-fold increase in the pathway's kinetic activity was observed for enzymes assembled to the DNA. Detailed kinetic analysis suggests that this catalytic enhancement originated from increased enzyme stability and a localized DNA surface affinity or hydration layer effect and not from a directed enzyme-to-enzyme channeling mechanism. Nevertheless, the approach used to construct this pathway still shows promise toward improving other more elaborate multienzymatic cascades and could potentially allow for the custom synthesis of complex (bio)molecules that cannot be realized with conventional organic chemistry approaches.
Collapse
Affiliation(s)
- William P Klein
- National Research Council , Washington , D.C. 20001 , United States
| | - Rasmus P Thomsen
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics , Aarhus University , 8000 Aarhus , Denmark
| | | | - Scott A Walper
- National Research Council , Washington , D.C. 20001 , United States
| | - James Vranish
- Ave Maria University , Ave Maria , Florida 34142 , United States
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics , Aarhus University , 8000 Aarhus , Denmark
| | | | - Igor L Medintz
- National Research Council , Washington , D.C. 20001 , United States
| |
Collapse
|
15
|
Protein engineering: the potential of remote mutations. Biochem Soc Trans 2019; 47:701-711. [PMID: 30902926 DOI: 10.1042/bst20180614] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 01/18/2019] [Accepted: 02/18/2019] [Indexed: 12/19/2022]
Abstract
Engineered proteins, especially enzymes, are now commonly used in many industries owing to their catalytic power, specific binding of ligands, and properties as materials and food additives. As the number of potential uses for engineered proteins has increased, the interest in engineering or designing proteins to have greater stability, activity and specificity has increased in turn. With any rational engineering or design pursuit, the success of these endeavours relies on our fundamental understanding of the systems themselves; in the case of proteins, their structure-dynamics-function relationships. Proteins are most commonly rationally engineered by targeting the residues that we understand to be functionally important, such as enzyme active sites or ligand-binding sites. This means that the majority of the protein, i.e. regions remote from the active- or ligand-binding site, is often ignored. However, there is a growing body of literature that reports on, and rationalises, the successful engineering of proteins at remote sites. This minireview will discuss the current state of the art in protein engineering, with a particular focus on engineering regions that are remote from active- or ligand-binding sites. As the use of protein technologies expands, exploiting the potential improvements made possible through modifying remote regions will become vital if we are to realise the full potential of protein engineering and design.
Collapse
|