1
|
Chen Z, Chen J, Lin D, Kang H, Luo Y, Wang X, Wang L, Liu D. Forming Single-Cell-Derived Colon Cancer Organoid Arrays on a Microfluidic Chip for High Throughput Tumor Heterogeneity Analysis. ACS Biomater Sci Eng 2024; 10:5265-5273. [PMID: 39087916 DOI: 10.1021/acsbiomaterials.4c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Single-cell-derived tumor organoids (STOs) possess a distinct genetic background, making them valuable tools for demonstrating tumor heterogeneity. In order to fulfill the high throughput demands of STO assays, we have developed a microfluidic chip containing 30 000 microwells, which is dedicated to a single cell culture approach for selective expansion and differential induction of cancer stem cells. The microwells are coated with a hydrophilic copolymer to eliminate cell adhesion, and the cell culture is supported by poly(ethylene glycol) (PEG) to establish a nonadhesive culture environment. By utilizing an input cell density of 7 × 103·mL-1, it is possible to construct a 4000 single cell culture system through stochastic cell occupation. We demonstrate that the addition of 15% PEG10000 in the cell culture medium effectively prevents cell loss while facilitating tumor stem cell expansion. As were demonstrated by HCT116, HT29, and SW480 colon cancer cells, the microfluidic approach achieved a STO formation rate of ∼20%, resulting in over 800 STOs generated from a single culture. Comprehensive analysis through histomorphology, immunohistochemistry, drug response evaluation, assessment of cell invasion, and biomarker detection reveals the heterogeneity among individual STOs. Specifically, the smaller STOs exhibited higher invasion and drug resistance capabilities compared with the larger ones. The developed microfluidic approach effectively facilitates STO formation and offers promising prospects for investigating tumor heterogeneity, as well as conducting personalized therapy-focused drug screening.
Collapse
Affiliation(s)
- Zihe Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Jueming Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Dongguo Lin
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou 510180, China
| | - Hui Kang
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yanzhang Luo
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Xiaogang Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Lihui Wang
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Dayu Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou 510180, China
| |
Collapse
|
2
|
Adams SK, Ducharme GE, Loveday EK. All the single cells: if you like it then you should put some virus on it. J Virol 2024; 98:e0127323. [PMID: 38904395 PMCID: PMC11324023 DOI: 10.1128/jvi.01273-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Across a rich 70-year history, single-cell virology has revealed the impact of host and pathogen heterogeneity during virus infections. Recent technological innovations have enabled higher-resolution analyses of cellular and viral heterogeneity. Furthermore, single-cell analysis has revealed extreme phenotypes and provided additional insights into host-pathogen dynamics. Using a single-cell approach to explore fundamental virology questions, contemporary researchers have contributed to a revival of interest in single-cell virology with increased insights and enthusiasm.
Collapse
Affiliation(s)
- Sophia K. Adams
- Department of
Chemistry and Biochemistry, Montana State
University, Bozeman,
Montana, USA
- Center for Biofilm
Engineering, Montana State University,
Bozeman, Montana, USA
| | - Grace E. Ducharme
- Center for Biofilm
Engineering, Montana State University,
Bozeman, Montana, USA
- Department of Chemical
and Biological Engineering, Montana State
University, Bozeman,
Montana, USA
| | - Emma K. Loveday
- Center for Biofilm
Engineering, Montana State University,
Bozeman, Montana, USA
- Department of Chemical
and Biological Engineering, Montana State
University, Bozeman,
Montana, USA
| |
Collapse
|
3
|
Ma X, Guo J, Tian M, Fu Y, Jiang P, Zhang Y, Chai R. Advance and Application of Single-cell Transcriptomics in Auditory Research. Neurosci Bull 2024; 40:963-980. [PMID: 38015350 PMCID: PMC11250760 DOI: 10.1007/s12264-023-01149-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/03/2023] [Indexed: 11/29/2023] Open
Abstract
Hearing loss and deafness, as a worldwide disability disease, have been troubling human beings. However, the auditory organ of the inner ear is highly heterogeneous and has a very limited number of cells, which are largely uncharacterized in depth. Recently, with the development and utilization of single-cell RNA sequencing (scRNA-seq), researchers have been able to unveil the complex and sophisticated biological mechanisms of various types of cells in the auditory organ at the single-cell level and address the challenges of cellular heterogeneity that are not resolved through by conventional bulk RNA sequencing (bulk RNA-seq). Herein, we reviewed the application of scRNA-seq technology in auditory research, with the aim of providing a reference for the development of auditory organs, the pathogenesis of hearing loss, and regenerative therapy. Prospects about spatial transcriptomic scRNA-seq, single-cell based genome, and Live-seq technology will also be discussed.
Collapse
Affiliation(s)
- Xiangyu Ma
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jiamin Guo
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Mengyao Tian
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yaoyang Fu
- Department of Psychiatry, Affiliated Hangzhou First People's Hospital, Zhejiang University school of Medicine, Hangzhou, 310030, China
| | - Pei Jiang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 101408, China.
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
4
|
Enders A, Grünberger A, Bahnemann J. Towards Small Scale: Overview and Applications of Microfluidics in Biotechnology. Mol Biotechnol 2024; 66:365-377. [PMID: 36515858 PMCID: PMC10881759 DOI: 10.1007/s12033-022-00626-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/26/2022] [Indexed: 12/15/2022]
Abstract
Thanks to recent and continuing technological innovations, modern microfluidic systems are increasingly offering researchers working across all fields of biotechnology exciting new possibilities (especially with respect to facilitating high throughput analysis, portability, and parallelization). The advantages offered by microfluidic devices-namely, the substantially lowered chemical and sample consumption they require, the increased energy and mass transfer they offer, and their comparatively small size-can potentially be leveraged in every sub-field of biotechnology. However, to date, most of the reported devices have been deployed in furtherance of healthcare, pharmaceutical, and/or industrial applications. In this review, we consider examples of microfluidic and miniaturized systems across biotechnology sub-fields. In this context, we point out the advantages of microfluidics for various applications and highlight the common features of devices and the potential for transferability to other application areas. This will provide incentives for increased collaboration between researchers from different disciplines in the field of biotechnology.
Collapse
Affiliation(s)
- Anton Enders
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167, Hannover, Germany
| | - Alexander Grünberger
- Institute of Process Engineering in Life Sciences: Microsystems in Bioprocess Engineering, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Janina Bahnemann
- Institute of Physics, University of Augsburg, Universitätsstraße 1, 86159, Augsburg, Germany.
| |
Collapse
|
5
|
Fredrikson JP, Domanico LF, Pratt SL, Loveday EK, Taylor MP, Chang CB. Single-cell herpes simplex virus type 1 infection of neurons using drop-based microfluidics reveals heterogeneous replication kinetics. SCIENCE ADVANCES 2024; 10:eadk9185. [PMID: 38416818 PMCID: PMC10901367 DOI: 10.1126/sciadv.adk9185] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/25/2024] [Indexed: 03/01/2024]
Abstract
Single-cell analyses of viral infections reveal heterogeneity that is not detected by traditional population-level studies. This study applies drop-based microfluidics to investigate the dynamics of herpes simplex virus type 1 (HSV-1) infection of neurons at the single-cell level. We used micrometer-scale Matrigel beads, termed microgels, to culture individual murine superior cervical ganglia (SCG) neurons or epithelial cells. Microgel-cultured cells are encapsulated in individual media-in-oil droplets with a dual-fluorescent reporter HSV-1, enabling real-time observation of viral gene expression and replication. Infection within drops revealed that the kinetics of initial viral gene expression and replication were dependent on the inoculating dose. Notably, increasing inoculating doses led to earlier onset of viral gene expression and more frequent productive viral replication. These observations provide crucial insights into the complexity of HSV-1 infection in neurons and emphasize the importance of studying single-cell outcomes of viral infection. These techniques for cell culture and infection in drops provide a foundation for future virology and neurobiology investigations.
Collapse
Affiliation(s)
- Jacob P. Fredrikson
- Department of Chemical and Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, USA
| | - Luke F. Domanico
- Department of Microbiology and Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, USA
| | - Shawna L. Pratt
- Department of Chemical and Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, USA
| | - Emma K. Loveday
- Department of Chemical and Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, USA
| | - Matthew P. Taylor
- Department of Microbiology and Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, USA
| | - Connie B. Chang
- Department of Chemical and Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| |
Collapse
|
6
|
ISHIHARA K. Biomimetic polymers with phosphorylcholine groups as biomaterials for medical devices. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:579-606. [PMID: 39662944 PMCID: PMC11704457 DOI: 10.2183/pjab.100.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/01/2024] [Indexed: 12/13/2024]
Abstract
Biomimetic molecular designs can yield superior biomaterials. Polymers with a phosphorylcholine group, a polar group of phospholipid molecules, are particularly interesting. A methacrylate monomer, 2-methacryloyloxyethyl phosphorylcholine (MPC), was developed using efficient synthetic reactions and purification techniques. This process has been applied in industrial production to supply MPC globally. Polymers with various structures can be readily synthesized using MPC and their properties have been studied. The MPC polymer surface has a highly hydrated structure in biological conditions, leading to the prevention of adsorption of proteins and lipid molecules, adhesion of cells, and inhibition of bacterial adhesion and biofilm formation. Additionally, it provides an extremely lubricious surface. MPC polymers are used in various applications and can be stably immobilized on material surfaces such as metals and ceramics and polymers such as elastomers. They are also stable under sterilization and in vivo conditions. This makes them ideal for application in the surface treatment of various medical devices, including artificial organs, implanted in humans.
Collapse
Affiliation(s)
- Kazuhiko ISHIHARA
- Division of Materials & Manufacturing Science, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
7
|
Fredrikson JP, Domanico LF, Pratt SL, Loveday EK, Taylor MP, Chang CB. Single-cell Herpes Simplex Virus type-1 infection of neurons using drop-based microfluidics reveals heterogeneous replication kinetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558333. [PMID: 37790515 PMCID: PMC10542126 DOI: 10.1101/2023.09.18.558333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Single-cell analyses of viral infections often reveal heterogeneity that is not detected by traditional population-level studies. This study applies drop-based microfluidics to investigate the dynamics of HSV-1 infection of neurons at the single-cell level. We used micron-scale Matrigel beads, termed microgels, to culture individual murine Superior Cervical ganglia (SCG) neurons or epithelial cells. Microgel-cultured cells are subsequently enclosed in individual media-in-oil droplets with a dual fluorescent-reporter HSV-1, enabling real-time observation of viral gene expression and replication. Infection within drops revealed that the kinetics of initial viral gene expression and replication were dependent on the inoculating dose. Notably, increasing inoculating doses led to earlier onset of viral gene expression and more frequent productive viral replication. These observations provide crucial insights into the complexity of HSV-1 infection in neurons and emphasize the importance of studying single-cell outcomes of viral infection. The innovative techniques presented here for cell culture and infection in drops provide a foundation for future virology and neurobiology investigations.
Collapse
Affiliation(s)
- Jacob P. Fredrikson
- Department of Chemical & Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, USA
| | - Luke F. Domanico
- Department of Microbiology & Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, USA
| | - Shawna L. Pratt
- Department of Chemical & Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, USA
| | - Emma K. Loveday
- Department of Chemical & Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, USA
| | - Matthew P. Taylor
- Department of Microbiology & Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, USA
| | - Connie B. Chang
- Department of Chemical & Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Pellegrino L, Rusconi R. Sonic snares: Trapping microorganisms for deeper insights into swimming behavior and ciliary dynamics. Proc Natl Acad Sci U S A 2023; 120:e2308908120. [PMID: 37418559 PMCID: PMC10629515 DOI: 10.1073/pnas.2308908120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023] Open
Affiliation(s)
- Luca Pellegrino
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele20072, Italy
| | - Roberto Rusconi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele20072, Italy
- IRCCS Humanitas Research Hospital, Rozzano20089, Italy
| |
Collapse
|
9
|
Okeyo KO, Hiyaji R, Oana H. A single-cell surgery microfluidic device for transplanting tumor cytoplasm into dendritic cells without nuclei mixing. Biotechnol J 2023; 18:e2200135. [PMID: 36412930 DOI: 10.1002/biot.202200135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022]
Abstract
This study aimed to demonstrate the feasibility of generating tumor cell vaccine models by single-cell surgery in a microfluidic device that integrates one-to-one electrofusion, shear flow reseparation, and on-device culture. The device was microfabricated from polydimethylsiloxane (PDMS) and consisted of microorifices (aperture size: ∼3 μm) for one-to-one fusion, and microcages for on-device culture. Using the device, we could achieve one-to-one electrofusion of leukemic plasmacytoid dendritic cells (DC-like cells) and Jurkat cells with a fusion efficiency of ∼ 80%. Fusion via the narrow microorifices allowed DC-like cells to acquire cytoplasmic contents of the Jurkat cells while preventing nuclei mixing. After fusion, the DC-like cells were selectively reseparated from the Jurkat cells by shear flow application to generate tumor nuclei-free antigen-recipient DC-like (tarDC-like) cells. When cultured as single cells on the device, these cells could survive under gentle medium perfusion with a median survival time of 11.5 h, although a few cells could survive longer than 36 h. Overall, this study demonstrates single-cell surgery in a microfluidic device for potential generation of dendritic cell vaccines which are uncontaminated with tumor nucleic materials. We believe that this study will inspire the generation of safer tumor cell vaccines for cancer immunotherapy.
Collapse
Affiliation(s)
- Kennedy Omondi Okeyo
- Institute for Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Ryuta Hiyaji
- Department of Mechanical Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hidehiro Oana
- Department of Mechanical Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
10
|
Chen H, Meng H, Chen Z, Wang T, Chen C, Zhu Y, Jin J. Size-Based Sorting and In Situ Clonal Expansion of Single Cells Using Microfluidics. BIOSENSORS 2022; 12:1100. [PMID: 36551067 PMCID: PMC9775143 DOI: 10.3390/bios12121100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Separation and clonal culture and growth kinetics analysis of target cells in a mixed population is critical for pathological research, disease diagnosis, and cell therapy. However, long-term culture with time-lapse imaging of the isolated cells for clonal analysis is still challenging. This paper reports a microfluidic device with four-level filtration channels and a pneumatic microvalve for size sorting and in situ clonal culture of single cells. The valve was on top of the filtration channels and used to direct fluid flow by membrane deformation during separation and long-term culture to avoid shear-induced cell deformation. Numerical simulations were performed to evaluate the influence of device parameters affecting the pressure drop across the filtration channels. Then, a droplet model was employed to evaluate the impact of cell viscosity, cell size, and channel width on the pressure drop inducing cell deformation. Experiments showed that filtration channels with a width of 7, 10, 13, or 17 μm successfully sorted K562 cells into four different size ranges at low driving pressure. The maximum efficiency of separating K562 cells from media and whole blood was 98.6% and 89.7%, respectively. Finally, the trapped single cells were cultured in situ for 4-7 days with time-lapse imaging to obtain the lineage trees and growth curves. Then, the time to the first division, variation of cell size before and after division, and cell fusion were investigated. This proved that cells at the G1 and G2 phases were of significantly distinct sizes. The microfluidic device for size sorting and clonal expansion will be of tremendous application potential in single-cell studies.
Collapse
Affiliation(s)
- Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzen, Shenzhen 518055, China
| | - Haixu Meng
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzen, Shenzhen 518055, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, College of Engineering, Kowloon, City University of Hong Kong, Hong Kong, China
| | - Tong Wang
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzen, Shenzhen 518055, China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha 410013, China
| | - Yonggang Zhu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzen, Shenzhen 518055, China
| | - Jing Jin
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzen, Shenzhen 518055, China
| |
Collapse
|
11
|
Xia D, Wang Y, Xiao Y, Li W. Applications of single-cell RNA sequencing in atopic dermatitis and psoriasis. Front Immunol 2022; 13:1038744. [PMID: 36505405 PMCID: PMC9732227 DOI: 10.3389/fimmu.2022.1038744] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is a novel technology that characterizes molecular heterogeneity at the single-cell level. With the development of more automated, sensitive, and cost-effective single-cell isolation methods, the sensitivity and efficiency of scRNA-seq have improved. Technological advances in single-cell analysis provide a deeper understanding of the biological diversity of cells present in tissues, including inflamed skin. New subsets of cells have been discovered among common inflammatory skin diseases, such as atopic dermatitis (AD) and psoriasis. ScRNA-seq technology has also been used to analyze immune cell distribution and cell-cell communication, shedding new light on the complex interplay of components involved in disease responses. Moreover, scRNA-seq may be a promising tool in precision medicine because of its ability to define cell subsets with potential treatment targets and to characterize cell-specific responses to drugs or other stimuli. In this review, we briefly summarize the progress in the development of scRNA-seq technologies and discuss the latest scRNA-seq-related findings and future trends in AD and psoriasis. We also discuss the limitations and technical problems associated with current scRNA-seq technology.
Collapse
Affiliation(s)
- Dengmei Xia
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China,Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yiyi Wang
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Xiao
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Li
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Wei Li,
| |
Collapse
|
12
|
Jing X, Gong Y, Pan H, Meng Y, Ren Y, Diao Z, Mu R, Xu T, Zhang J, Ji Y, Li Y, Wang C, Qu L, Cui L, Ma B, Xu J. Single-cell Raman-activated sorting and cultivation (scRACS-Culture) for assessing and mining in situ phosphate-solubilizing microbes from nature. ISME COMMUNICATIONS 2022; 2:106. [PMID: 37938284 PMCID: PMC9723661 DOI: 10.1038/s43705-022-00188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 01/25/2023]
Abstract
Due to the challenges in detecting in situ activity and cultivating the not-yet-cultured, functional assessment and mining of living microbes from nature has typically followed a 'culture-first' paradigm. Here, employing phosphate-solubilizing microbes (PSM) as model, we introduce a 'screen-first' strategy that is underpinned by a precisely one-cell-resolution, complete workflow of single-cell Raman-activated Sorting and Cultivation (scRACS-Culture). Directly from domestic sewage, individual cells were screened for in-situ organic-phosphate-solubilizing activity via D2O intake rate, sorted by the function via Raman-activated Gravity-driven Encapsulation (RAGE), and then cultivated from precisely one cell. By scRACS-Culture, pure cultures of strong organic PSM including Comamonas spp., Acinetobacter spp., Enterobacter spp. and Citrobacter spp., were derived, whose phosphate-solubilizing activities in situ are 90-200% higher than in pure culture, underscoring the importance of 'screen-first' strategy. Moreover, employing scRACS-Seq for post-RACS cells that remain uncultured, we discovered a previously unknown, low-abundance, strong organic-PSM of Cutibacterium spp. that employs secretary metallophosphoesterase (MPP), cell-wall-anchored 5'-nucleotidase (encoded by ushA) and periplasmic-membrane located PstSCAB-PhoU transporter system for efficient solubilization and scavenging of extracellular phosphate in sewage. Therefore, scRACS-Culture and scRACS-Seq provide an in situ function-based, 'screen-first' approach for assessing and mining microbes directly from the environment.
Collapse
Affiliation(s)
- Xiaoyan Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Huihui Pan
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Yu Meng
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Yishang Ren
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Zhidian Diao
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Runzhi Mu
- Qingdao Zhang Cun River Water Co., Ltd, Qingdao, Shandong, China
| | - Teng Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Jia Zhang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Yuetong Ji
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
- Qingdao Single-Cell Biotechnology Co., Ltd, Qingdao, Shandong, China
| | - Yuandong Li
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Chen Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Lingyun Qu
- The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, Shandong, China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian, China
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Shandong Energy Institute, Qingdao, Shandong, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China.
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Shandong Energy Institute, Qingdao, Shandong, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China.
| |
Collapse
|
13
|
Weaver E, O'Hagan C, Lamprou DA. The sustainability of emerging technologies for use in pharmaceutical manufacturing. Expert Opin Drug Deliv 2022; 19:861-872. [PMID: 35732275 DOI: 10.1080/17425247.2022.2093857] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Sustainability within the pharmaceutical industry is becoming a focal point for many companies, to improve the longevity and social perception of the industry. Both additive manufacturing (AM) and microfluidics (MFs) are continuously progressing, so are far from their optimization in terms of sustainability; hence, it is the aim of this review to highlight potential gaps alongside their beneficial features. Discussed throughout this review also will be an in-depth discussion on the environmental, legal, economic, and social particulars relating to these emerging technologies. AREAS COVERED Additive manufacturing (AM) and microfluidics (MFs) are discussed in depth within this review, drawing from up-to-date literature relating to sustainability and circular economies. This applies to both technologies being utilized for therapeutic and analytical purposes within the pharmaceutical industry. EXPERT OPINION It is the role of emerging technologies to be at the forefront of promoting a sustainable message by delivering plausible environmental standards whilst maintaining efficacy and economic viability. AM processes are highly customizable, allowing for their optimization in terms of sustainability, from reducing printing time to reducing material usage by removing supports. MFs too are supporting sustainability via reduced material wastage and providing a sustainable means for point of care analysis.
Collapse
Affiliation(s)
- Edward Weaver
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | | |
Collapse
|
14
|
Zhou WM, Yan YY, Guo QR, Ji H, Wang H, Xu TT, Makabel B, Pilarsky C, He G, Yu XY, Zhang JY. Microfluidics applications for high-throughput single cell sequencing. J Nanobiotechnology 2021; 19:312. [PMID: 34635104 PMCID: PMC8507141 DOI: 10.1186/s12951-021-01045-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
The inherent heterogeneity of individual cells in cell populations plays significant roles in disease development and progression, which is critical for disease diagnosis and treatment. Substantial evidences show that the majority of traditional gene profiling methods mask the difference of individual cells. Single cell sequencing can provide data to characterize the inherent heterogeneity of individual cells, and reveal complex and rare cell populations. Different microfluidic technologies have emerged for single cell researches and become the frontiers and hot topics over the past decade. In this review article, we introduce the processes of single cell sequencing, and review the principles of microfluidics for single cell analysis. Also, we discuss the common high-throughput single cell sequencing technologies along with their advantages and disadvantages. Lastly, microfluidics applications in single cell sequencing technology for the diagnosis of cancers and immune system diseases are briefly illustrated.
Collapse
Affiliation(s)
- Wen-Min Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yan-Yan Yan
- School of Medicine, Shanxi Datong University, Datong, 037009, People's Republic of China
| | - Qiao-Ru Guo
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Hong Ji
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Hui Wang
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Tian-Tian Xu
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Bolat Makabel
- Xinjiang Institute of Materia Medica, Urumqi, 830004, People's Republic of China
| | - Christian Pilarsky
- Department of Surgery, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| | - Gen He
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| | - Jian-Ye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
15
|
Aranda Hernandez J, Heuer C, Bahnemann J, Szita N. Microfluidic Devices as Process Development Tools for Cellular Therapy Manufacturing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 179:101-127. [PMID: 34410457 DOI: 10.1007/10_2021_169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cellular therapies are creating a paradigm shift in the biomanufacturing industry. Particularly for autologous therapies, small-scale processing methods are better suited than the large-scale approaches that are traditionally employed in the industry. Current small-scale methods for manufacturing personalized cell therapies, however, are labour-intensive and involve a number of 'open events'. To overcome these challenges, new cell manufacturing platforms following a GMP-in-a-box concept have recently come on the market (GMP: Good Manufacturing Practice). These are closed automated systems with built-in pumps for fluid handling and sensors for in-process monitoring. At a much smaller scale, microfluidic devices exhibit many of the same features as current GMP-in-a-box systems. They are closed systems, fluids can be processed and manipulated, and sensors integrated for real-time detection of process variables. Fabricated from polymers, they can be made disposable, i.e. single-use. Furthermore, microfluidics offers exquisite spatiotemporal control over the cellular microenvironment, promising both reproducibility and control of outcomes. In this chapter, we consider the challenges in cell manufacturing, highlight recent advances of microfluidic devices for each of the main process steps, and summarize our findings on the current state of the art. As microfluidic cell culture devices have been reported for both adherent and suspension cell cultures, we report on devices for the key process steps, or unit operations, of both stem cell therapies and cell-based immunotherapies.
Collapse
Affiliation(s)
| | - Christopher Heuer
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Janina Bahnemann
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Nicolas Szita
- Biochemical Engineering Department, University College London (UCL), London, UK.
| |
Collapse
|
16
|
Pang L, Ding J, Liu XX, Kou Z, Guo L, Xu X, Fan SK. Microfluidics-Based Single-Cell Research for Intercellular Interaction. Front Cell Dev Biol 2021; 9:680307. [PMID: 34458252 PMCID: PMC8397490 DOI: 10.3389/fcell.2021.680307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022] Open
Abstract
Intercellular interaction between cell-cell and cell-ECM is critical to numerous biology and medical studies, such as stem cell differentiation, immunotherapy and tissue engineering. Traditional methods employed for delving into intercellular interaction are limited by expensive equipment and sophisticated procedures. Microfluidics technique is considered as one of the powerful measures capable of precisely capturing and manipulating cells and achieving low reagent consumption and high throughput with decidedly integrated functional components. Over the past few years, microfluidics-based systems for intercellular interaction study at a single-cell level have become frequently adopted. This review focuses on microfluidic single-cell studies for intercellular interaction in a 2D or 3D environment with a variety of cell manipulating techniques and applications. The challenges to be overcome are highlighted.
Collapse
Affiliation(s)
- Long Pang
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an Medical University, Xi’an, China
| | - Jing Ding
- Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS, United States
| | - Xi-Xian Liu
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Zhixuan Kou
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an Medical University, Xi’an, China
| | - Lulu Guo
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an Medical University, Xi’an, China
| | - Xi Xu
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an Medical University, Xi’an, China
| | - Shih-Kang Fan
- Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
17
|
Qin N, Zhao P, Ho EA, Xin G, Ren CL. Microfluidic Technology for Antibacterial Resistance Study and Antibiotic Susceptibility Testing: Review and Perspective. ACS Sens 2021; 6:3-21. [PMID: 33337870 DOI: 10.1021/acssensors.0c02175] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A review on microfluidic technology for antibacterial resistance study and antibiotic susceptibility testing (AST) is presented here. Antibiotic resistance has become a global health crisis in recent decades, severely threatening public health, patient care, economic growth, and even national security. It is extremely urgent that antibiotic resistance be well looked into and aggressively combated in order for us to survive this crisis. AST has been routinely utilized in determining bacterial susceptibility to antibiotics and identifying potential resistance. Yet conventional methods for AST are increasingly incompetent due to unsatisfactory test speed, high cost, and deficient reliability. Microfluidics has emerged as a powerful and very promising platform technology that has proven capable of addressing the limitation of conventional methods and advancing AST to a new level. Besides, potential technical challenges that are likely to hinder the development of microfluidic technology aimed at AST are observed and discussed. To conclude, it is noted that (1) the translation of microfluidic innovations from laboratories to be ready AST platforms remains a lengthy journey and (2) ensuring all relevant parties engaged in a collaborative and unified mode is foundational to the successful incubation of commercial microfluidic platforms for AST.
Collapse
Affiliation(s)
- Ning Qin
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Pei Zhao
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Emmanuel A. Ho
- School of Pharmacy, University of Waterloo, Kitchener, Ontario N2G 1C5, Canada
| | - Gongming Xin
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Carolyn L. Ren
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
18
|
Castro N, Ribeiro S, Fernandes MM, Ribeiro C, Cardoso V, Correia V, Minguez R, Lanceros‐Mendez S. Physically Active Bioreactors for Tissue Engineering Applications. ACTA ACUST UNITED AC 2020; 4:e2000125. [DOI: 10.1002/adbi.202000125] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/15/2020] [Indexed: 01/09/2023]
Affiliation(s)
- N. Castro
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures University of the Basque Country UPV/EHU Science Park Leioa E‐48940 Spain
| | - S. Ribeiro
- Physics Centre University of Minho Campus de Gualtar Braga 4710‐057 Portugal
- Centre of Molecular and Environmental Biology (CBMA) University of Minho Campus de Gualtar Braga 4710‐057 Portugal
| | - M. M. Fernandes
- Physics Centre University of Minho Campus de Gualtar Braga 4710‐057 Portugal
- CEB – Centre of Biological Engineering University of Minho Braga 4710‐057 Portugal
| | - C. Ribeiro
- Physics Centre University of Minho Campus de Gualtar Braga 4710‐057 Portugal
- CEB – Centre of Biological Engineering University of Minho Braga 4710‐057 Portugal
| | - V. Cardoso
- CMEMS‐UMinho Universidade do Minho Campus de Azurém Guimarães 4800‐058 Portugal
| | - V. Correia
- Algoritmi Research Centre University of Minho Campus de Azurém Guimarães 4800‐058 Portugal
| | - R. Minguez
- Department of Graphic Design and Engineering Projects University of the Basque Country UPV/EHU Bilbao E‐48013 Spain
| | - S. Lanceros‐Mendez
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures University of the Basque Country UPV/EHU Science Park Leioa E‐48940 Spain
- IKERBASQUE Basque Foundation for Science Bilbao E‐48013 Spain
| |
Collapse
|