1
|
Athari SZ, Keyhanmanesh R, Farajdokht F, Karimipour M, Azizifar N, Alimohammadi S, Mohaddes G. AdipoRon improves mitochondrial homeostasis and protects dopaminergic neurons through activation of the AMPK signaling pathway in the 6-OHDA-lesioned rats. Eur J Pharmacol 2024; 985:177111. [PMID: 39515564 DOI: 10.1016/j.ejphar.2024.177111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/07/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The progressive decline of dopaminergic neurons in Parkinson's disease (PD) has been linked to an imbalance in energy and the failure of mitochondrial function. AMP-activated protein kinase (AMPK), the major intracellular energy sensor, regulates energy balance, and damage to nigral dopaminergic neurons induced by 6-hydroxydopamine (6-OHDA) is exacerbated in the absence of AMPK activity. This study aimed to examine the potential therapeutic advantages of AdipoRon, an AMPK activator, on motor function and mitochondrial homeostasis in a 6-OHDA-induced PD model. Male Wistar rats were subjected to unilateral injection of 6-OHDA (10 μg) into the left medial forebrain bundle at two points, and after 7 days, they were treated with intranasal AdipoRon (0.1, 1, and 10 μg) or Levodopa (10 mg/kg, p. o.) for 21 successive days. Following the last treatment day, motor behavior was evaluated through the Murprogo's test, bar test, beam walking test, and apomorphine-induced rotation test. After euthanasia, the left substantia nigra (SN) was separated for evaluation of ATP, mitochondrial membrane potential (MMP), and protein expressions of AMPK, p-AMPK, and mitochondrial dynamics markers (Mfn-2 and Drp-1). Moreover, the number of tyrosine hydroxylase-positive (TH+) cells was quantified in the left substantia nigra. Intranasal AdipoRon effectively reversed muscle rigidity, akinesia, bradykinesia, and rotation caused by 6-OHDA. Moreover, AdipoRon increased the phospho-AMPK/AMPK ratio, mitigated mitochondrial dysfunction, and improved mitochondrial dynamics in the SN. Furthermore, AdipoRon increased the number of TH+ cells in the SN of PD animals. These findings suggest that AdipoRon could protect dopaminergic neurons by activating the AMPK pathway and improving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Seyed Zanyar Athari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Azizifar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soraya Alimohammadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Department of Biomedical Education, California Health Sciences University, College of Osteopathic Medicine, Clovis, CA, USA.
| |
Collapse
|
2
|
Vanderhaeghe S, Prerad J, Tharkeshwar AK, Goethals E, Vints K, Beckers J, Scheveneels W, Debroux E, Princen K, Van Damme P, Fivaz M, Griffioen G, Van Den Bosch L. A pathogenic mutation in the ALS/FTD gene VCP induces mitochondrial hypermetabolism by modulating the permeability transition pore. Acta Neuropathol Commun 2024; 12:161. [PMID: 39390590 PMCID: PMC11465669 DOI: 10.1186/s40478-024-01866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Valosin-containing protein (VCP) is a ubiquitously expressed type II AAA+ ATPase protein, implicated in both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This study aimed to explore the impact of the disease-causing VCPR191Q/wt mutation on mitochondrial function using a CRISPR/Cas9-engineered neuroblastoma cell line. Mitochondria in these cells are enlarged, with a depolarized mitochondrial membrane potential associated with increased respiration and electron transport chain activity. Our results indicate that mitochondrial hypermetabolism could be caused, at least partially, by increased calcium-induced opening of the permeability transition pore (mPTP), leading to mild mitochondrial uncoupling. In conclusion, our findings reveal a central role of the ALS/FTD gene VCP in maintaining mitochondrial homeostasis and suggest a model of pathogenesis based on progressive alterations in mPTP physiology and mitochondrial energetics.
Collapse
Affiliation(s)
- Silke Vanderhaeghe
- Laboratory of Neurobiology, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- reMYND, Leuven, Belgium
| | | | - Arun Kumar Tharkeshwar
- Department of Human Genetics, KU Leuven - University of Leuven, Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven - University of Leuven, Leuven, Belgium
| | - Elien Goethals
- Laboratory of Neurobiology, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium
- reMYND, Leuven, Belgium
| | - Katlijn Vints
- Electron Microscopy Platform and VIB-Bioimaging Core, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Jimmy Beckers
- Laboratory of Neurobiology, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Wendy Scheveneels
- Laboratory of Neurobiology, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | | | | | - Philip Van Damme
- Laboratory of Neurobiology, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | | | | | - Ludo Van Den Bosch
- Laboratory of Neurobiology, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
| |
Collapse
|
3
|
Wang Y, Wu LH, Hou F, Wang ZJ, Wu MN, Hölscher C, Cai HY. Mitochondrial calcium uniporter knockdown in hippocampal neurons alleviates anxious and depressive behavior in the 3XTG Alzheimer's disease mouse model. Brain Res 2024; 1840:149060. [PMID: 38851312 DOI: 10.1016/j.brainres.2024.149060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/03/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Alzheimer's disease (AD) is a progressive and degenerative disorder accompanied by emotional disturbance, especially anxiety and depression. More and more evidence shows that the imbalance of mitochondrial Ca2+ (mCa2+) homeostasis has a close connection with the pathogenesis of anxiety and depression. The Mitochondrial Calcium Uniporter (MCU), a key channel of mCa2+ uptake, induces the imbalance of mCa2+ homeostasis and may be a therapeutic target for anxiety and depression of AD. In the present study, we revealed for the first time that MCU knockdown in hippocampal neurons alleviated anxious and depressive behaviors of APP/PS1/tau mice through elevated plus-maze (EPM), elevated zero maze (EZM), sucrose preference test (SPT) and tail suspension test (TST). Western blot analysis results demonstrated that MCU knockdown in hippocampal neurons increased levels of glutamate decarboxylase 67 (GAD67), vesicular GABA transporter (vGAT) and GABAA receptor α1 (GABRA1) and activated the PKA-CREB-BDNF signaling pathway. This study indicates that MCU inhibition has the potential to be developed as a novel therapy for anxiety and depression in AD.
Collapse
Affiliation(s)
- Yu Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Lin-Hong Wu
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Fei Hou
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Zhao-Jun Wang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology, Shanxi Province, China; Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Mei-Na Wu
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology, Shanxi Province, China; Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Christian Hölscher
- Neurodegeneration Research Group, Henan Academy of Innovations in Medical Science, Xinzheng, China.
| | - Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology, Shanxi Province, China.
| |
Collapse
|
4
|
Khan S, Bano N, Ahamad S, John U, Dar NJ, Bhat SA. Excitotoxicity, Oxytosis/Ferroptosis, and Neurodegeneration: Emerging Insights into Mitochondrial Mechanisms. Aging Dis 2024:AD.2024.0125-1. [PMID: 39122453 DOI: 10.14336/ad.2024.0125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Mitochondrial dysfunction plays a pivotal role in the development of age-related diseases, particularly neurodegenerative disorders. The etiology of mitochondrial dysfunction involves a multitude of factors that remain elusive. This review centers on elucidating the role(s) of excitotoxicity, oxytosis/ferroptosis and neurodegeneration within the context of mitochondrial bioenergetics, biogenesis, mitophagy and oxidative stress and explores their intricate interplay in the pathogenesis of neurodegenerative diseases. The effective coordination of mitochondrial turnover processes, notably mitophagy and biogenesis, is assumed to be critically important for cellular resilience and longevity. However, the age-associated decrease in mitophagy impedes the elimination of dysfunctional mitochondria, consequently impairing mitochondrial biogenesis. This deleterious cascade results in the accumulation of damaged mitochondria and deterioration of cellular functions. Both excitotoxicity and oxytosis/ferroptosis have been demonstrated to contribute significantly to the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's Disease (HD), Amyotrophic Lateral Sclerosis (ALS) and Multiple Sclerosis (MS). Excitotoxicity, characterized by excessive glutamate signaling, initiates a cascade of events involving calcium dysregulation, energy depletion, and oxidative stress and is intricately linked to mitochondrial dysfunction. Furthermore, emerging concepts surrounding oxytosis/ferroptosis underscore the importance of iron-dependent lipid peroxidation and mitochondrial engagement in the pathogenesis of neurodegeneration. This review not only discusses the individual contributions of excitotoxicity and ferroptosis but also emphasizes their convergence with mitochondrial dysfunction, a key driver of neurodegenerative diseases. Understanding the intricate crosstalk between excitotoxicity, oxytosis/ferroptosis, and mitochondrial dysfunction holds potential to pave the way for mitochondrion-targeted therapeutic strategies. Such strategies, with a focus on bioenergetics, biogenesis, mitophagy, and oxidative stress, emerge as promising avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India
| | - Urmilla John
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA
| | | |
Collapse
|
5
|
Odenkirk MT, Zheng X, Kyle JE, Stratton KG, Nicora CD, Bloodsworth KJ, Mclean CA, Masters CL, Monroe ME, Doecke JD, Smith RD, Burnum-Johnson KE, Roberts BR, Baker ES. Deciphering ApoE Genotype-Driven Proteomic and Lipidomic Alterations in Alzheimer's Disease Across Distinct Brain Regions. J Proteome Res 2024; 23:2970-2985. [PMID: 38236019 PMCID: PMC11255128 DOI: 10.1021/acs.jproteome.3c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with a complex etiology influenced by confounding factors such as genetic polymorphisms, age, sex, and race. Traditionally, AD research has not prioritized these influences, resulting in dramatically skewed cohorts such as three times the number of Apolipoprotein E (APOE) ε4-allele carriers in AD relative to healthy cohorts. Thus, the resulting molecular changes in AD have previously been complicated by the influence of apolipoprotein E disparities. To explore how apolipoprotein E polymorphism influences AD progression, 62 post-mortem patients consisting of 33 AD and 29 controls (Ctrl) were studied to balance the number of ε4-allele carriers and facilitate a molecular comparison of the apolipoprotein E genotype. Lipid and protein perturbations were assessed across AD diagnosed brains compared to Ctrl brains, ε4 allele carriers (APOE4+ for those carrying 1 or 2 ε4s and APOE4- for non-ε4 carriers), and differences in ε3ε3 and ε3ε4 Ctrl brains across two brain regions (frontal cortex (FCX) and cerebellum (CBM)). The region-specific influences of apolipoprotein E on AD mechanisms showcased mitochondrial dysfunction and cell proteostasis at the core of AD pathophysiology in the post-mortem brains, indicating these two processes may be influenced by genotypic differences and brain morphology.
Collapse
Affiliation(s)
- Melanie T Odenkirk
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27606, United States of America
| | - Xueyun Zheng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Kelly G Stratton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Kent J Bloodsworth
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Catriona A Mclean
- Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3181, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Colin L Masters
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - James D Doecke
- CSIRO Health and Biosecurity, Herston, Queensland 4029, Australia
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Kristin E Burnum-Johnson
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Blaine R Roberts
- Department of Biochemistry, Emory University, Atlanta, Georgia 30322, United States of America
- Department of Neurology, Emory University, Atlanta, Georgia 30322, United States of America
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States of America
| |
Collapse
|
6
|
Nheu D, Petratos S. How does Nogo-A signalling influence mitochondrial function during multiple sclerosis pathogenesis? Neurosci Biobehav Rev 2024; 163:105767. [PMID: 38885889 DOI: 10.1016/j.neubiorev.2024.105767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Multiple sclerosis (MS) is a severe neurological disorder that involves inflammation in the brain, spinal cord and optic nerve with key disabling neuropathological outcomes being axonal damage and demyelination. When degeneration of the axo-glial union occurs, a consequence of inflammatory damage to central nervous system (CNS) myelin, dystrophy and death can lead to large membranous structures from dead oligodendrocytes and degenerative myelin deposited in the extracellular milieu. For the first time, this review covers mitochondrial mechanisms that may be operative during MS-related neurodegenerative changes directly activated during accumulating extracellular deposits of myelin associated inhibitory factors (MAIFs), that include the potent inhibitor of neurite outgrowth, Nogo-A. Axonal damage may occur when Nogo-A binds to and signals through its cognate receptor, NgR1, a multimeric complex, to initially stall axonal transport and limit the delivery of important growth-dependent cargo and subcellular organelles such as mitochondria for metabolic efficiency at sites of axo-glial disintegration as a consequence of inflammation. Metabolic efficiency in axons fails during active demyelination and progressive neurodegeneration, preceded by stalled transport of functional mitochondria to fuel axo-glial integrity.
Collapse
Affiliation(s)
- Danica Nheu
- Department of Neuroscience, School of Translational Medicine, Monash University, Prahran, VIC 3004, Australia
| | - Steven Petratos
- Department of Neuroscience, School of Translational Medicine, Monash University, Prahran, VIC 3004, Australia.
| |
Collapse
|
7
|
Jhuo CF, Chen CJ, Tzen JTC, Chen WY. Teaghrelin protected dopaminergic neurons in MPTP-induced Parkinson's disease animal model by promoting PINK1/Parkin-mediated mitophagy and AMPK/SIRT1/PGC1-α-mediated mitochondrial biogenesis. ENVIRONMENTAL TOXICOLOGY 2024; 39:4022-4034. [PMID: 38622810 DOI: 10.1002/tox.24275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 04/17/2024]
Abstract
Mitochondrial dysfunction, a common cellular hallmark in both familial and sporadic forms of Parkinson's disease (PD), is assumed to play a significant role in pathologic development and progression of the disease. Teaghrelin, a unique bioactive compound in some oolong tea varieties, has been demonstrated to protect SH-SY5Y cells against 1-methyl-4-phenylpyridinium induced neurotoxicity by binding to the ghrelin receptor to activate the AMPK/SIRT1/PGC-1α pathway. In this study, an animal model was established using a neurotoxin, 1-methyl-4phenyl-1,2,3,6-tetrahydropyridine (MPTP), a byproduct of a prohibited drug, to evaluate the oral efficacy of teaghrelin on PD by monitoring motor dysfunction of mice in open field, pole, and bean walking tests. The results showed that MPTP-induced motor dysfunction of mice was significantly attenuated by teaghrelin supplementation. Tyrosine hydroxylase and dopamine transporter protein were found reduced in the striatum and midbrain of MPTP-treated mice, and significantly mitigated by teaghrelin supplementation. Furthermore, teaghrelin administration enhanced mitophagy and mitochondria biogenesis, which maintained cell homeostasis and prevented the accumulation of αSyn and apoptosis-related proteins. It seemed that teaghrelin protected dopaminergic neurons in MPTP-treated mice by increasing PINK1/Parkin-mediated mitophagy and AMPK/SIRT1/PGC-1α-mediated mitochondria biogenesis, highlighting its potential therapeutic role in maintaining dopaminergic neurons function in PD. Mitochondrial dysfunction, a common cellular hallmark in both familial and sporadic forms of Parkinson's disease (PD), is assumed to play a significant role in pathologic development and progression of the disease. Teaghrelin, a unique bioactive compound in some oolong tea varieties, has been demonstrated to protect SH-SY5Y cells against 1-methyl-4-phenylpyridinium induced neurotoxicity by binding to the ghrelin receptor to activate the AMPK/SIRT1/PGC-1α pathway. In this study, an animal model was established using a neurotoxin, 1-methyl-4phenyl-1,2,3,6-tetrahydropyridine (MPTP), a byproduct of a prohibited drug, to evaluate the oral efficacy of teaghrelin on PD by monitoring motor dysfunction of mice in open field, pole, and bean walking tests. The results showed that MPTP-induced motor dysfunction of mice was significantly attenuated by teaghrelin supplementation. Tyrosine hydroxylase and dopamine transporter protein were found reduced in the striatum and midbrain of MPTP-treated mice, and significantly mitigated by teaghrelin supplementation. Furthermore, teaghrelin administration enhanced mitophagy and mitochondria biogenesis, which maintained cell homeostasis and prevented the accumulation of αSyn and apoptosis-related proteins. It seemed that teaghrelin protected dopaminergic neurons in MPTP-treated mice by increasing PINK1/Parkin-mediated mitophagy and AMPK/SIRT1/PGC-1α-mediated mitochondria biogenesis, highlighting its potential therapeutic role in maintaining dopaminergic neurons function in PD.
Collapse
Affiliation(s)
- Cian-Fen Jhuo
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jason T C Tzen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
8
|
Tao Y, Yi X, Gu Y, Yang R, Li Z, Guo X, Zhao D, Zhang Y. Neurotoxicity of dibutyl phthalate in zebrafish larvae: Decreased energy acquisition by neurons. Food Chem Toxicol 2024; 188:114666. [PMID: 38621509 DOI: 10.1016/j.fct.2024.114666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/26/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
This work was designed to investigate the neurotoxic effects of the typical plasticizer dibutyl phthalate (DBP) using zebrafish larvae as a model. The results of exhibited that zebrafish larvae exposed to DBP at concentrations of 5 μg/L and 10 μg/L exhibited brain malformations (24 h) and behavioral abnormalities (72 h). After 72 h of exposure to DBP, microglia in the brain were over-activated, reactive oxygen species (ROS) formation was increased, and apoptosis was observed. Meanwhile, it was found that neurons exhibited impaired mitochondrial structure, absent mitochondrial membrane potential and up-regulated autophagy. Further comprehensive biochemical analyses and RNA-Seq, validated by RT-qPCR, glutamate metabolism and PPAR signaling pathway were significantly enriched in the DBP stress group, this may be the main reason for the disruption of glycolysis/gluconeogenesis processes and the reduction of energy substrates for the astrocyte-neuron lactate shuttle (ANLS). In addition, the DBP-exposed group showed aberrant activation of endoplasmic reticulum (ER) stress signaling pathway, which may be related to ROS as well as neuronal apoptosis and autophagy. In conclusion, DBP-induced neurotoxicity may be the combined result of insufficient neuronal energy acquisition, damage to mitochondrial structure, apoptosis and autophagy. These results provide a theoretical basis for understanding the neurotoxic effects of DBP.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaodong Yi
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yanyan Gu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Rongyi Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xiangyong Guo
- Fuyu County Agricultural Technology Extension Center, Qiqihar, 161299, China
| | - Donglin Zhao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
9
|
Aaluri GR, Choudhary Y, Kumar S. Mitochondria-Associated MicroRNAs and Parkinson's Disease. Neurosci Insights 2024; 19:26331055241254846. [PMID: 38800624 PMCID: PMC11127579 DOI: 10.1177/26331055241254846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Parkinson's Disease (PD) occurs as a result of the progressive loss of dopaminergic neurons within the substantia nigra causing motor and non-motor symptoms and has become more prevalent within the last several decades. With mitochondria being essential to cellular survival, mitochondrial dysfunction contributes to the disease progression by increasing neuron loss through (1) insufficient ATP production and (2) reactive oxygen species generation. MicroRNAs (miRNAs) are small molecules located throughout cells that regulate gene expression, particularly mitochondrial function. Through their own dysregulation, miRNAs offset the delicate balance of mitochondrial function by altering or dysregulating the expression of proteins, increasing neuroinflammation, increasing retention of toxic substances, limiting the removal of reactive oxygen species, and preventing mitophagy. Improper mitochondrial function places cells at increased risk of apoptosis, a major concern in individuals with PD due to their reduced number of dopaminergic neurons. This article has identified the 17 most promising mitochondrial associated miRNAs within PD: hsa-miR-4639-5p, miR-376a, miR-205, miR-421, miR-34b/c, miR-150, miR-7, miR-132, miR-17-5p, miR-20a, miR-93, miR-106, miR-181, miR-193b, miR-128, miR-181a, and miR-124-3p. These miRNAs alter mitochondrial function and synaptic energy by impeding normal gene expression when up or downregulated. However, there is limited research regarding mitochondria-localized miRNAs that are typically seen in other diseases. Mitochondria-localized miRNA may have a greater impact on mitochondrial dysfunction due to their proximity. Further research is needed to determine the location of these miRNAs and to better understand their regulatory capabilities on mitochondrial and synaptic function within PD.
Collapse
Affiliation(s)
- Gayatri Reddy Aaluri
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L.
Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Yashmit Choudhary
- Maxine L. Silva Health Magnet High School, 121 Val Verde St., El Paso, TX, USA
| | - Subodh Kumar
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L.
Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| |
Collapse
|
10
|
Abyadeh M, Kaya A. Application of Multiomics Approach to Investigate the Therapeutic Potentials of Stem Cell-derived Extracellular Vesicle Subpopulations for Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593647. [PMID: 38798317 PMCID: PMC11118424 DOI: 10.1101/2024.05.10.593647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Alzheimer's disease (AD) presents a complex interplay of molecular alterations, yet understanding its pathogenesis remains a challenge. In this study, we delved into the intricate landscape of proteome and transcriptome changes in AD brains compared to healthy controls, examining 788 brain samples revealing common alterations at both protein and mRNA levels. Moreover, our analysis revealed distinct protein-level changes in aberrant energy metabolism pathways in AD brains that were not evident at the mRNA level. This suggests that the changes in protein expression could provide a deeper molecular representation of AD pathogenesis. Subsequently, using a comparative proteomic approach, we explored the therapeutic potential of mesenchymal stem cell-derived extracellular vehicles (EVs), isolated through various methods, in mitigating AD-associated changes at the protein level. Our analysis revealed a particular EV-subtype that can be utilized for compensating dysregulated mitochondrial proteostasis in the AD brain. By using network biology approaches, we further revealed the potential regulators of key therapeutic proteins. Overall, our study illuminates the significance of proteome alterations in AD pathogenesis and identifies the therapeutic promise of a specific EV subpopulation with reduced pro-inflammatory protein cargo and enriched proteins to target mitochondrial proteostasis.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|
11
|
Li S, Lin Y, Jones D, Walker DI, Duarte Folle A, Del Rosario I, Yu Y, Zhang K, Keener AM, Bronstein J, Ritz B, Paul KC. Untargeted serum metabolic profiling of diabetes mellitus among Parkinson's disease patients. NPJ Parkinsons Dis 2024; 10:100. [PMID: 38730245 PMCID: PMC11087477 DOI: 10.1038/s41531-024-00711-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a common comorbidity among Parkinson's disease (PD) patients. Yet, little is known about dysregulated pathways that are unique in PD patients with T2DM. We applied high-resolution metabolomic profiling in serum samples of 636 PD and 253 non-PD participants recruited from Central California. We conducted an initial discovery metabolome-wide association and pathway enrichment analysis. After adjusting for multiple testing, in positive (or negative) ion mode, 30 (25) metabolic features were associated with T2DM in both PD and non-PD participants, 162 (108) only in PD participants, and 32 (7) only in non-PD participants. Pathway enrichment analysis identified 17 enriched pathways associated with T2DM in both the PD and non-PD participants, 26 pathways only in PD participants, and 5 pathways only in non-PD participants. Several amino acid, nucleic acids, and fatty acid metabolisms were associated with T2DM only in the PD patient group suggesting a possible link between PD and T2DM.
Collapse
Affiliation(s)
- Shiwen Li
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Yuyuan Lin
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Dean Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, USA
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Aline Duarte Folle
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Irish Del Rosario
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Yu Yu
- Center for Health Policy Research, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Keren Zhang
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Adrienne M Keener
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jeff Bronstein
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Beate Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Kimberly C Paul
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Sandoval A, Duran P, Corzo-López A, Fernández-Gallardo M, Muñoz-Herrera D, Leyva-Leyva M, González-Ramírez R, Felix R. The role of voltage-gated calcium channels in the pathogenesis of Parkinson's disease. Int J Neurosci 2024; 134:452-461. [PMID: 35993158 DOI: 10.1080/00207454.2022.2115905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/07/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Aim: Voltage-gated calcium (CaV) channels play an essential role in maintaining calcium homeostasis and regulating numerous physiological processes in neurons. Therefore, dysregulation of calcium signaling is relevant in many neurological disorders, including Parkinson's disease (PD). This review aims to introduce the role of CaV channels in PD and discuss some novel aspects of channel regulation and its impact on the molecular pathophysiology of the disease. Methods: an exhaustive search of the literature in the field was carried out using the PubMed database of The National Center for Biotechnology Information. Systematic searches were performed from the initial date of publication to May 2022. Results: Although α-synuclein aggregates are the main feature of PD, L-type calcium (CaV1) channels seem to play an essential role in the pathogenesis of PD. Changes in the functional expression of CaV1.3 channels alter Calcium homeostasis and contribute to the degeneration of dopaminergic neurons. Furthermore, recent studies suggest that CaV channel trafficking towards the cell membrane depends on the activity of the ubiquitin-proteasome system (UPS). In PD, there is an increase in the expression of L-type channels associated with a decrease in the expression of Parkin, an E3 enzyme of the UPS. Therefore, a link between Parkin and CaV channels could play a fundamental role in the pathogenesis of PD and, as such, could be a potentially attractive target for therapeutic intervention. Conclusion: The study of alterations in the functional expression of CaV channels will provide a framework to understand better the neurodegenerative processes that occur in PD and a possible path toward identifying new therapeutic targets to treat this condition.
Collapse
Affiliation(s)
- Alejandro Sandoval
- School of Medicine FES Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla, Mexico
| | - Paz Duran
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Alejandra Corzo-López
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | | | - David Muñoz-Herrera
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Margarita Leyva-Leyva
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Ricardo Felix
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| |
Collapse
|
13
|
Wang S, Gai L, Chen Y, Ji X, Lu H, Guo Z. Mitochondria-targeted BODIPY dyes for small molecule recognition, bio-imaging and photodynamic therapy. Chem Soc Rev 2024; 53:3976-4019. [PMID: 38450547 DOI: 10.1039/d3cs00456b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Mitochondria are essential for a diverse array of biological functions. There is increasing research focus on developing efficient tools for mitochondria-targeted detection and treatment. BODIPY dyes, known for their structural versatility and excellent spectroscopic properties, are being actively explored in this context. Numerous studies have focused on developing innovative BODIPYs that utilize optical signals for imaging mitochondria. This review presents a comprehensive overview of the progress made in this field, aiming to investigate mitochondria-related biological events. It covers key factors such as design strategies, spectroscopic properties, and cytotoxicity, as well as mechanism to facilitate their future application in organelle imaging and targeted therapy. This work is anticipated to provide valuable insights for guiding future development and facilitating further investigation into mitochondria-related biological sensing and phototherapy.
Collapse
Affiliation(s)
- Sisi Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Lizhi Gai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Xiaobo Ji
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Hua Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
14
|
Fiore APZP, Maity S, Jeffery L, An D, Rendleman J, Iannitelli D, Choi H, Mazzoni E, Vogel C. Identification of molecular signatures defines the differential proteostasis response in induced spinal and cranial motor neurons. Cell Rep 2024; 43:113885. [PMID: 38457337 PMCID: PMC11018139 DOI: 10.1016/j.celrep.2024.113885] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 12/12/2023] [Accepted: 02/13/2024] [Indexed: 03/10/2024] Open
Abstract
Amyotrophic lateral sclerosis damages proteostasis, affecting spinal and upper motor neurons earlier than a subset of cranial motor neurons. To aid disease understanding, we exposed induced cranial and spinal motor neurons (iCrMNs and iSpMNs) to proteotoxic stress, under which iCrMNs showed superior survival, quantifying the transcriptome and proteome for >8,200 genes at 0, 12, and 36 h. Two-thirds of the proteome showed cell-type differences. iSpMN-enriched proteins related to DNA/RNA metabolism, and iCrMN-enriched proteins acted in the endoplasmic reticulum (ER)/ER chaperone complex, tRNA aminoacylation, mitochondria, and the plasma/synaptic membrane, suggesting that iCrMNs expressed higher levels of proteins supporting proteostasis and neuronal function. When investigating the increased proteasome levels in iCrMNs, we showed that the activity of the 26S proteasome, but not of the 20S proteasome, was higher in iCrMNs than in iSpMNs, even after a stress-induced decrease. We identified Ublcp1 as an iCrMN-specific regulator of the nuclear 26S activity.
Collapse
Affiliation(s)
| | - Shuvadeep Maity
- New York University, Department of Biology, New York, NY 10003, USA; Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Lauren Jeffery
- New York University, Department of Biology, New York, NY 10003, USA
| | - Disi An
- New York University, Department of Biology, New York, NY 10003, USA
| | - Justin Rendleman
- New York University, Department of Biology, New York, NY 10003, USA
| | - Dylan Iannitelli
- New York University, Department of Biology, New York, NY 10003, USA
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Esteban Mazzoni
- New York University, Department of Biology, New York, NY 10003, USA; Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Christine Vogel
- New York University, Department of Biology, New York, NY 10003, USA.
| |
Collapse
|
15
|
Ghaffari Zaki A, Yiğit EN, Aydın MŞ, Vatandaslar E, Öztürk G, Eroglu E. Genetically Encoded Biosensors Unveil Neuronal Injury Dynamics via Multichromatic ATP and Calcium Imaging. ACS Sens 2024; 9:1261-1271. [PMID: 38293866 DOI: 10.1021/acssensors.3c02111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
When a cell sustains damage, it liberates cytosolic ATP, which can serve as an injury signal, affecting neighboring cells. This study presents a methodological approach that employs in vitro axotomy and in vivo laser ablation to simulate cellular injury. Specially tailored biosensors are employed to monitor ATP dynamics and calcium transients in injured cells and their surroundings. To simultaneously visualize extracellular and cytosolic ATP, we developed bicistronic constructs featuring GRABATP1.0 and MaLionR biosensors alongside the calcium sensor RCaMP, enabling multiparametric imaging. In addition to transducing primary neuron cultures, we developed another method where we cocultured dorsal root ganglion neurons together with specialized "sniffer" cell lines expressing the bicistronic biosensors. Exploiting these approaches, we successfully demonstrated the release of ATP from the injured neurons and its extracellular diffusion in response to cellular injury in vitro and in vivo. Axotomy triggered intracellular calcium mobilization not only in the injured neuron but also in the intact neighboring cells, providing new insights into ATP's role as an injury signal. The tools developed in this study have demonstrated remarkable efficiency in unraveling the intricacies of ATP-mediated injury signaling.
Collapse
Affiliation(s)
- Asal Ghaffari Zaki
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Turkey
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Esra N Yiğit
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Turkey
| | - Mehmet Ş Aydın
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Turkey
| | - Emre Vatandaslar
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Turkey
| | - Gürkan Öztürk
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Turkey
- Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Emrah Eroglu
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Turkey
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
16
|
Xiao L, Wei Y, Yang H, Fan W, Jiang L, Ye Y, Qin Y, Wang X, Ma C, Liao L. Proteomic Characteristics of the Prefrontal Cortex and Hippocampus in Mice with Chronic Ketamine-Induced Anxiety and Cognitive Impairment. Neuroscience 2024; 541:23-34. [PMID: 38266908 DOI: 10.1016/j.neuroscience.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 01/26/2024]
Abstract
Schizophrenia, a complex psychiatric disorder with diverse symptoms, has been linked to ketamine, known for its N-methyl-D-aspartate (NMDA) receptor antagonistic properties. Understanding the distinct roles and mechanisms of ketamine is crucial, especially regarding its induction of schizophrenia-like symptoms. Recent research highlights the impact of ketamine on key brain regions associated with schizophrenia, specifically the prefrontal cortex (PFC) and hippocampus (Hip). This study focused on these regions to explore proteomic changes related to anxiety and cognitive impairment in a chronic ketamine-induced mouse model of schizophrenia. After twelve consecutive days of ketamine administration, brain tissues from these regions were dissected and analyzed. Using tandem mass tag (TMT) labeling quantitative proteomics techniques, 34,797 and 46,740 peptides were identified in PFC and Hip, corresponding to 5,668 and 6,463 proteins, respectively. In the PFC, a total of 113 proteins showed differential expression, primarily associated with the immuno-inflammatory process, calmodulin, postsynaptic density protein, and mitochondrial function. In the Hip, 129 differentially expressed proteins were screened, mainly related to synaptic plasticity proteins and mitochondrial respiratory chain complex-associated proteins. Additionally, we investigated key proteins within the glutamatergic synapse pathway and observed decreased expression levels of phosphorylated CaMKII and CREB. Overall, the study unveiled a significant proteomic signature in the chronic ketamine-induced schizophrenia mouse model, characterized by anxiety and cognitive impairment in both the PFC and Hip, and this comprehensive proteomic dataset may not only enhance our understanding of the molecular mechanisms underlying ketamine-related mental disorders but also offer valuable insights for future disease treatments.
Collapse
Affiliation(s)
- Li Xiao
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Ying Wei
- College of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Hong Yang
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Weihao Fan
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Linzhi Jiang
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yi Ye
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yongping Qin
- Clinical Pharmacology Laboratory, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Wang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China.
| | - Linchuan Liao
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Azargoonjahromi A. Role of the SARS-CoV-2 Virus in Brain Cells. Viral Immunol 2024; 37:61-78. [PMID: 38315740 DOI: 10.1089/vim.2023.0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
COVID-19, caused by the SARS-CoV-2 virus, can have neurological effects, including cognitive symptoms like brain fog and memory problems. Research on the neurological effects of COVID-19 is ongoing, and factors such as inflammation, disrupted blood flow, and damage to blood vessels may contribute to cognitive symptoms. Notably, some authors and existing evidence suggest that the SARS-CoV-2 virus can enter the central nervous system through different routes, including the olfactory nerve and the bloodstream. COVID-19 infection has been associated with neurological symptoms such as altered consciousness, headaches, dizziness, and mental disorders. The exact mechanisms and impact on memory formation and brain shrinkage are still being studied. This review will focus on pathways such as the olfactory nerve and blood-brain barrier disruption, and it will then highlight the interactions of the virus with different cell types in the brain, namely neurons, astrocytes, oligodendrocytes, and microglia.
Collapse
Affiliation(s)
- Ali Azargoonjahromi
- Researcher in Neuroscience, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
18
|
Belfiori LF, Dueñas Rey A, Ralbovszki DM, Jimenez-Ferrer I, Fredlund F, Balikai SS, Ahrén D, Brolin KA, Swanberg M. Nigral transcriptomic profiles in Engrailed-1 hemizygous mouse models of Parkinson's disease reveal upregulation of oxidative phosphorylation-related genes associated with delayed dopaminergic neurodegeneration. Front Aging Neurosci 2024; 16:1337365. [PMID: 38374883 PMCID: PMC10875038 DOI: 10.3389/fnagi.2024.1337365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/18/2024] [Indexed: 02/21/2024] Open
Abstract
Introduction Parkinson's disease (PD) is the second most common neurodegenerative disorder, increasing both in terms of prevalence and incidence. To date, only symptomatic treatment is available, highlighting the need to increase knowledge on disease etiology in order to develop new therapeutic strategies. Hemizygosity for the gene Engrailed-1 (En1), encoding a conserved transcription factor essential for the programming, survival, and maintenance of midbrain dopaminergic neurons, leads to progressive nigrostriatal degeneration, motor impairment and depressive-like behavior in SwissOF1 (OF1-En1+/-). The neurodegenerative phenotype is, however, absent in C57Bl/6j (C57-En1+/-) mice. En1+/- mice are thus highly relevant tools to identify genetic factors underlying PD susceptibility. Methods Transcriptome profiles were defined by RNAseq in microdissected substantia nigra from 1-week old OF1, OF1- En1+/-, C57 and C57- En1+/- male mice. Differentially expressed genes (DEGs) were analyzed for functional enrichment. Neurodegeneration was assessed in 4- and 16-week old mice by histology. Results Nigrostriatal neurodegeneration was manifested in OF1- En1+/- mice by increased dopaminergic striatal axonal swellings from 4 to 16 weeks and decreased number of dopaminergic neurons in the SNpc at 16 weeks compared to OF1. In contrast, C57- En1+/- mice had no significant increase in axonal swellings or cell loss in SNpc at 16 weeks. Transcriptomic analyses identified 198 DEGs between OF1- En1+/- and OF1 mice but only 52 DEGs between C57- En1+/- and C57 mice. Enrichment analysis of DEGs revealed that the neuroprotective phenotype of C57- En1+/- mice was associated with a higher expression of oxidative phosphorylation-related genes compared to both C57 and OF1- En1+/- mice. Discussion Our results suggest that increased expression of genes encoding mitochondrial proteins before the onset of neurodegeneration is associated with increased resistance to PD-like nigrostriatal neurodegeneration. This highlights the importance of genetic background in PD models, how different strains can be used to model clinical and sub-clinical pathologies and provides insights to gene expression mechanisms associated with PD susceptibility and progression.
Collapse
Affiliation(s)
- Lautaro Francisco Belfiori
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Alfredo Dueñas Rey
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Dorottya Mária Ralbovszki
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Itzia Jimenez-Ferrer
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Filip Fredlund
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Sagar Shivayogi Balikai
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Dag Ahrén
- Department of Biology, National Bioinformatics Infrastructure Sweden (NBIS), SciLifeLab, Stockholm, Sweden
| | - Kajsa Atterling Brolin
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Maria Swanberg
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
19
|
Chen C, Wang J, Zhu X, Hu J, Liu C, Liu L. Energy metabolism and redox balance: How phytochemicals influence heart failure treatment. Biomed Pharmacother 2024; 171:116136. [PMID: 38215694 DOI: 10.1016/j.biopha.2024.116136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
Heart Failure (HF) epitomizes a formidable global health quandary characterized by marked morbidity and mortality. It has been established that severe derangements in energy metabolism are central to the pathogenesis of HF, culminating in an inadequate cardiac energy milieu, which, in turn, precipitates cardiac pump dysfunction and systemic energy metabolic failure, thereby steering the trajectory and potential recuperation of HF. The conventional therapeutic paradigms for HF predominantly target amelioration of heart rate, and cardiac preload and afterload, proffering symptomatic palliation or decelerating the disease progression. However, the realm of therapeutics targeting the cardiac energy metabolism remains largely uncharted. This review delineates the quintessential characteristics of cardiac energy metabolism in healthy hearts, and the metabolic aberrations observed during HF, alongside the associated metabolic pathways and targets. Furthermore, we delve into the potential of phytochemicals in rectifying the redox disequilibrium and the perturbations in energy metabolism observed in HF. Through an exhaustive analysis of recent advancements, we underscore the promise of phytochemicals in modulating these pathways, thereby unfurling a novel vista on HF therapeutics. Given their potential in orchestrating cardiac energy metabolism, phytochemicals are emerging as a burgeoning frontier for HF treatment. The review accentuates the imperative for deeper exploration into how these phytochemicals specifically intervene in cardiac energy metabolism, and the subsequent translation of these findings into clinical applications, thereby broadening the horizon for HF treatment modalities.
Collapse
Affiliation(s)
- Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Chao Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Lanchun Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| |
Collapse
|
20
|
Koo KM, Kim CD, Kim TH. Recent Advances in Electrochemical Detection of Cell Energy Metabolism. BIOSENSORS 2024; 14:46. [PMID: 38248422 PMCID: PMC10813075 DOI: 10.3390/bios14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Cell energy metabolism is a complex and multifaceted process by which some of the most important nutrients, particularly glucose and other sugars, are transformed into energy. This complexity is a result of dynamic interactions between multiple components, including ions, metabolic intermediates, and products that arise from biochemical reactions, such as glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), the two main metabolic pathways that provide adenosine triphosphate (ATP), the main source of chemical energy driving various physiological activities. Impaired cell energy metabolism and perturbations or dysfunctions in associated metabolites are frequently implicated in numerous diseases, such as diabetes, cancer, and neurodegenerative and cardiovascular disorders. As a result, altered metabolites hold value as potential disease biomarkers. Electrochemical biosensors are attractive devices for the early diagnosis of many diseases and disorders based on biomarkers due to their advantages of efficiency, simplicity, low cost, high sensitivity, and high selectivity in the detection of anomalies in cellular energy metabolism, including key metabolites involved in glycolysis and mitochondrial processes, such as glucose, lactate, nicotinamide adenine dinucleotide (NADH), reactive oxygen species (ROS), glutamate, and ATP, both in vivo and in vitro. This paper offers a detailed examination of electrochemical biosensors for the detection of glycolytic and mitochondrial metabolites, along with their many applications in cell chips and wearable sensors.
Collapse
Affiliation(s)
| | | | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea; (K.-M.K.); (C.-D.K.)
| |
Collapse
|
21
|
Yang X, Zhou P, Zhao Z, Li J, Fan Z, Li X, Cui Z, Fu A. Improvement Effect of Mitotherapy on the Cognitive Ability of Alzheimer's Disease through NAD +/SIRT1-Mediated Autophagy. Antioxidants (Basel) 2023; 12:2006. [PMID: 38001859 PMCID: PMC10669341 DOI: 10.3390/antiox12112006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 11/26/2023] Open
Abstract
To date, Alzheimer's disease (AD) has grown to be a predominant health challenge that disturbs the elderly population. Studies have shown that mitochondrial dysfunction is one of the most significant features of AD. Transplantation therapy of healthy mitochondria (mitotherapy), as a novel therapeutic strategy to restore mitochondrial function, is proposed to treat the mitochondria-associated disease. Also, the molecular mechanism of mitotherapy remains unclear. Here, we applied the mitotherapy in AD model mice induced by amyloid-β (Aβ) plaque deposition and suggested that autophagy would be an important mechanism of the mitotherapy. After the healthy mitochondria entered the defective neuronal cells damaged by the misfolded Aβ protein, autophagy was activated through the NAD+-dependent deacetylase sirtuin 1 (SIRT1) signal. The damaged mitochondria and Aβ protein were eliminated by autophagy, which could also decrease the content of radical oxygen species (ROS). Moreover, the levels of brain-derived neurotrophic factor (BDNF) and extracellular-regulated protein kinases (ERK) phosphorylation increased after mitotherapy, which would be beneficial to repair neuronal function. As a result, the cognitive ability of AD animals was ameliorated in a water maze test after the healthy mitochondria were administrated to the mice. The study indicated that mitotherapy would be an effective approach to AD treatment through the mechanism of autophagy activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ailing Fu
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.Y.); (P.Z.); (Z.Z.); (J.L.); (Z.F.); (X.L.); (Z.C.)
| |
Collapse
|
22
|
Reed AL, Mitchell W, Alexandrescu AT, Alder NN. Interactions of amyloidogenic proteins with mitochondrial protein import machinery in aging-related neurodegenerative diseases. Front Physiol 2023; 14:1263420. [PMID: 38028797 PMCID: PMC10652799 DOI: 10.3389/fphys.2023.1263420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Most mitochondrial proteins are targeted to the organelle by N-terminal mitochondrial targeting sequences (MTSs, or "presequences") that are recognized by the import machinery and subsequently cleaved to yield the mature protein. MTSs do not have conserved amino acid compositions, but share common physicochemical properties, including the ability to form amphipathic α-helical structures enriched with basic and hydrophobic residues on alternating faces. The lack of strict sequence conservation implies that some polypeptides can be mistargeted to mitochondria, especially under cellular stress. The pathogenic accumulation of proteins within mitochondria is implicated in many aging-related neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Mechanistically, these diseases may originate in part from mitochondrial interactions with amyloid-β precursor protein (APP) or its cleavage product amyloid-β (Aβ), α-synuclein (α-syn), and mutant forms of huntingtin (mHtt), respectively, that are mediated in part through their associations with the mitochondrial protein import machinery. Emerging evidence suggests that these amyloidogenic proteins may present cryptic targeting signals that act as MTS mimetics and can be recognized by mitochondrial import receptors and transported into different mitochondrial compartments. Accumulation of these mistargeted proteins could overwhelm the import machinery and its associated quality control mechanisms, thereby contributing to neurological disease progression. Alternatively, the uptake of amyloidogenic proteins into mitochondria may be part of a protein quality control mechanism for clearance of cytotoxic proteins. Here we review the pathomechanisms of these diseases as they relate to mitochondrial protein import and effects on mitochondrial function, what features of APP/Aβ, α-syn and mHtt make them suitable substrates for the import machinery, and how this information can be leveraged for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Ashley L. Reed
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Wayne Mitchell
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrei T. Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
23
|
Vo A, Tremblay C, Rahayel S, Shafiei G, Hansen JY, Yau Y, Misic B, Dagher A. Network connectivity and local transcriptomic vulnerability underpin cortical atrophy progression in Parkinson's disease. Neuroimage Clin 2023; 40:103523. [PMID: 38016407 PMCID: PMC10687705 DOI: 10.1016/j.nicl.2023.103523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 11/30/2023]
Abstract
Parkinson's disease pathology is hypothesized to spread through the brain via axonal connections between regions and is further modulated by local vulnerabilities within those regions. The resulting changes to brain morphology have previously been demonstrated in both prodromal and de novo Parkinson's disease patients. However, it remains unclear whether the pattern of atrophy progression in Parkinson's disease over time is similarly explained by network-based spreading and local vulnerability. We address this gap by mapping the trajectory of cortical atrophy rates in a large, multi-centre cohort of Parkinson's disease patients and relate this atrophy progression pattern to network architecture and gene expression profiles. Across 4-year follow-up visits, increased atrophy rates were observed in posterior, temporal, and superior frontal cortices. We demonstrated that this progression pattern was shaped by network connectivity. Regional atrophy rates were strongly related to atrophy rates across structurally and functionally connected regions. We also found that atrophy progression was associated with specific gene expression profiles. The genes whose spatial distribution in the brain was most related to atrophy rate were those enriched for mitochondrial and metabolic function. Taken together, our findings demonstrate that both global and local brain features influence vulnerability to neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Andrew Vo
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Christina Tremblay
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Shady Rahayel
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada; Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, Canada
| | - Golia Shafiei
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Justine Y Hansen
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Yvonne Yau
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Alain Dagher
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.
| |
Collapse
|
24
|
Clemente-Suárez VJ, Beltrán-Velasco AI, Redondo-Flórez L, Martín-Rodríguez A, Yáñez-Sepúlveda R, Tornero-Aguilera JF. Neuro-Vulnerability in Energy Metabolism Regulation: A Comprehensive Narrative Review. Nutrients 2023; 15:3106. [PMID: 37513524 PMCID: PMC10383861 DOI: 10.3390/nu15143106] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
This comprehensive narrative review explores the concept of neuro-vulnerability in energy metabolism regulation and its implications for metabolic disorders. The review highlights the complex interactions among the neural, hormonal, and metabolic pathways involved in the regulation of energy metabolism. The key topics discussed include the role of organs, hormones, and neural circuits in maintaining metabolic balance. The review investigates the association between neuro-vulnerability and metabolic disorders, such as obesity, insulin resistance, and eating disorders, considering genetic, epigenetic, and environmental factors that influence neuro-vulnerability and subsequent metabolic dysregulation. Neuroendocrine interactions and the neural regulation of food intake and energy expenditure are examined, with a focus on the impact of neuro-vulnerability on appetite dysregulation and altered energy expenditure. The role of neuroinflammation in metabolic health and neuro-vulnerability is discussed, emphasizing the bidirectional relationship between metabolic dysregulation and neuroinflammatory processes. This review also evaluates the use of neuroimaging techniques in studying neuro-vulnerability and their potential applications in clinical settings. Furthermore, the association between neuro-vulnerability and eating disorders, as well as its contribution to obesity, is examined. Potential therapeutic interventions targeting neuro-vulnerability, including pharmacological treatments and lifestyle modifications, are reviewed. In conclusion, understanding the concept of neuro-vulnerability in energy metabolism regulation is crucial for addressing metabolic disorders. This review provides valuable insights into the underlying neurobiological mechanisms and their implications for metabolic health. Targeting neuro-vulnerability holds promise for developing innovative strategies in the prevention and treatment of metabolic disorders, ultimately improving metabolic health outcomes.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Tajo Street s/n, 28670 Madrid, Spain
| | | | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile
| | | |
Collapse
|
25
|
Liu J, Mai P, Yang Z, Wang Z, Yang W, Wang Z. Piceatannol Protects PC-12 Cells against Oxidative Damage and Mitochondrial Dysfunction by Inhibiting Autophagy via SIRT3 Pathway. Nutrients 2023; 15:2973. [PMID: 37447299 DOI: 10.3390/nu15132973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Oxidative stress has been identified as a major cause of cellular injury in a variety of neurodegenerative disorders. This study aimed to investigate the cytoprotective effects of piceatannol on hydrogen peroxide (H2O2)-induced pheochromocytoma-12 (PC-12) cell damage and explore the underlying mechanisms. Our findings indicated that piceatannol pre-treatment significantly attenuated H2O2-induced PC-12 cell death. Furthermore, piceatannol effectively improved mitochondrial content and mitochondrial function, including enhancing mitochondrial reactive oxygen species (ROS) elimination capacity and increasing mitochondrial transcription factor (TFAM), peroxisome-proliferator-activated receptor-γ coactivator-1α (PGC-1α) and mitochondria Complex IV expression. Meanwhile, piceatannol treatment inhibited mitochondria-mediated autophagy as demonstrated by restoring mitochondrial membrane potential, reducing autophagosome formation and light chain 3B II/I (LC3B II/I) and autophagy-related protein 5 (ATG5) expression level. The protein expression level of SIRT3 was significantly increased by piceatannol in a concentration-dependent manner. However, the cytoprotective effect of piceatannol was dramatically abolished by sirtuin 3 (SIRT3) inhibitor, 3-(1H-1,2,3-Triazol-4-yl) pyridine (3-TYP), which led to an exacerbated mitochondrial dysfunction and autophagy in PC-12 cells under oxidative stress. In addition, the autophagy activator (rapamycin) abrogated the protective effects of piceatannol on PC-12 cell death. These findings demonstrated that piceatannol could alleviate PC-12 cell oxidative damage and mitochondrial dysfunction by inhibiting autophagy via the SIRT3 pathway.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University (BTBU), Beijing 100048, China
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Peishi Mai
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Zihui Yang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Zongwei Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Wei Yang
- College of Basic Science, Tianjin Agricultural University, Tianjin 300392, China
| | - Ziyuan Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University (BTBU), Beijing 100048, China
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
26
|
Neel DV, Basu H, Gunner G, Bergstresser MD, Giadone RM, Chung H, Miao R, Chou V, Brody E, Jiang X, Lee E, Watts ME, Marques C, Held A, Wainger B, Lagier-Tourenne C, Zhang YJ, Petrucelli L, Young-Pearse TL, Chen-Plotkin AS, Rubin LL, Lieberman J, Chiu IM. Gasdermin-E mediates mitochondrial damage in axons and neurodegeneration. Neuron 2023; 111:1222-1240.e9. [PMID: 36917977 PMCID: PMC10121894 DOI: 10.1016/j.neuron.2023.02.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 10/27/2022] [Accepted: 02/10/2023] [Indexed: 03/14/2023]
Abstract
Mitochondrial dysfunction and axon loss are hallmarks of neurologic diseases. Gasdermin (GSDM) proteins are executioner pore-forming molecules that mediate cell death, yet their roles in the central nervous system (CNS) are not well understood. Here, we find that one GSDM family member, GSDME, is expressed by both mouse and human neurons. GSDME plays a role in mitochondrial damage and axon loss. Mitochondrial neurotoxins induced caspase-dependent GSDME cleavage and rapid localization to mitochondria in axons, where GSDME promoted mitochondrial depolarization, trafficking defects, and neurite retraction. Frontotemporal dementia (FTD)/amyotrophic lateral sclerosis (ALS)-associated proteins TDP-43 and PR-50 induced GSDME-mediated damage to mitochondria and neurite loss. GSDME knockdown protected against neurite loss in ALS patient iPSC-derived motor neurons. Knockout of GSDME in SOD1G93A ALS mice prolonged survival, ameliorated motor dysfunction, rescued motor neuron loss, and reduced neuroinflammation. We identify GSDME as an executioner of neuronal mitochondrial dysfunction that may contribute to neurodegeneration.
Collapse
Affiliation(s)
- Dylan V Neel
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Himanish Basu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Georgia Gunner
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Richard M Giadone
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Haeji Chung
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Miao
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Vicky Chou
- Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Eliza Brody
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xin Jiang
- Department of Neurology, Mass General Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Edward Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michelle E Watts
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Christine Marques
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Aaron Held
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Brian Wainger
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Clotilde Lagier-Tourenne
- Department of Neurology, Mass General Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alice S Chen-Plotkin
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Tassone A, Meringolo M, Ponterio G, Bonsi P, Schirinzi T, Martella G. Mitochondrial Bioenergy in Neurodegenerative Disease: Huntington and Parkinson. Int J Mol Sci 2023; 24:ijms24087221. [PMID: 37108382 PMCID: PMC10138549 DOI: 10.3390/ijms24087221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Strong evidence suggests a correlation between degeneration and mitochondrial deficiency. Typical cases of degeneration can be observed in physiological phenomena (i.e., ageing) as well as in neurological neurodegenerative diseases and cancer. All these pathologies have the dyshomeostasis of mitochondrial bioenergy as a common denominator. Neurodegenerative diseases show bioenergetic imbalances in their pathogenesis or progression. Huntington's chorea and Parkinson's disease are both neurodegenerative diseases, but while Huntington's disease is genetic and progressive with early manifestation and severe penetrance, Parkinson's disease is a pathology with multifactorial aspects. Indeed, there are different types of Parkinson/Parkinsonism. Many forms are early-onset diseases linked to gene mutations, while others could be idiopathic, appear in young adults, or be post-injury senescence conditions. Although Huntington's is defined as a hyperkinetic disorder, Parkinson's is a hypokinetic disorder. However, they both share a lot of similarities, such as neuronal excitability, the loss of striatal function, psychiatric comorbidity, etc. In this review, we will describe the start and development of both diseases in relation to mitochondrial dysfunction. These dysfunctions act on energy metabolism and reduce the vitality of neurons in many different brain areas.
Collapse
Affiliation(s)
- Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Tommaso Schirinzi
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
28
|
Flores-Romero H, Dadsena S, García-Sáez AJ. Mitochondrial pores at the crossroad between cell death and inflammatory signaling. Mol Cell 2023; 83:843-856. [PMID: 36931255 DOI: 10.1016/j.molcel.2023.02.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
Mitochondria are cellular organelles with a major role in many cellular processes, including not only energy production, metabolism, and calcium homeostasis but also regulated cell death and innate immunity. Their proteobacterial origin makes them a rich source of potent immune agonists, normally hidden within the mitochondrial membrane barriers. Alteration of mitochondrial permeability through mitochondrial pores thus provides efficient mechanisms not only to communicate mitochondrial stress to the cell but also as a key event in the integration of cellular responses. In this regard, eukaryotic cells have developed diverse signaling networks that sense and respond to the release of mitochondrial components into the cytosol and play a key role in controlling cell death and inflammatory pathways. Modulating pore formation at mitochondria through direct or indirect mechanisms may thus open new opportunities for therapy. In this review, we discuss the current understanding of the structure and molecular mechanisms of mitochondrial pores and how they function at the interface between cell death and inflammatory signaling to regulate cellular outcomes.
Collapse
Affiliation(s)
- Hector Flores-Romero
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Shashank Dadsena
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Ana J García-Sáez
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany.
| |
Collapse
|
29
|
Al-Sayyar A, Hammad MM, Williams MR, Al-Onaizi M, Abubaker J, Alzaid F. Neurotransmitters in Type 2 Diabetes and the Control of Systemic and Central Energy Balance. Metabolites 2023; 13:384. [PMID: 36984824 PMCID: PMC10058084 DOI: 10.3390/metabo13030384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Efficient signal transduction is important in maintaining the function of the nervous system across tissues. An intact neurotransmission process can regulate energy balance through proper communication between neurons and peripheral organs. This ensures that the right neural circuits are activated in the brain to modulate cellular energy homeostasis and systemic metabolic function. Alterations in neurotransmitters secretion can lead to imbalances in appetite, glucose metabolism, sleep, and thermogenesis. Dysregulation in dietary intake is also associated with disruption in neurotransmission and can trigger the onset of type 2 diabetes (T2D) and obesity. In this review, we highlight the various roles of neurotransmitters in regulating energy balance at the systemic level and in the central nervous system. We also address the link between neurotransmission imbalance and the development of T2D as well as perspectives across the fields of neuroscience and metabolism research.
Collapse
Affiliation(s)
| | | | | | - Mohammed Al-Onaizi
- Dasman Diabetes Institute, Kuwait City 15462, Kuwait
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| | | | - Fawaz Alzaid
- Dasman Diabetes Institute, Kuwait City 15462, Kuwait
- Institut Necker Enfants Malades-INEM, Université Paris Cité, CNRS, INSERM, F-75015 Paris, France
| |
Collapse
|
30
|
Hees JT, Harbauer AB. Metabolic Regulation of Mitochondrial Protein Biogenesis from a Neuronal Perspective. Biomolecules 2022; 12:1595. [PMID: 36358945 PMCID: PMC9687362 DOI: 10.3390/biom12111595] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 09/29/2023] Open
Abstract
Neurons critically depend on mitochondria for ATP production and Ca2+ buffering. They are highly compartmentalized cells and therefore a finely tuned mitochondrial network constantly adapting to the local requirements is necessary. For neuronal maintenance, old or damaged mitochondria need to be degraded, while the functional mitochondrial pool needs to be replenished with freshly synthesized components. Mitochondrial biogenesis is known to be primarily regulated via the PGC-1α-NRF1/2-TFAM pathway at the transcriptional level. However, while transcriptional regulation of mitochondrial genes can change the global mitochondrial content in neurons, it does not explain how a morphologically complex cell such as a neuron adapts to local differences in mitochondrial demand. In this review, we discuss regulatory mechanisms controlling mitochondrial biogenesis thereby making a case for differential regulation at the transcriptional and translational level. In neurons, additional regulation can occur due to the axonal localization of mRNAs encoding mitochondrial proteins. Hitchhiking of mRNAs on organelles including mitochondria as well as contact site formation between mitochondria and endolysosomes are required for local mitochondrial biogenesis in axons linking defects in any of these organelles to the mitochondrial dysfunction seen in various neurological disorders.
Collapse
Affiliation(s)
- Jara Tabitha Hees
- TUM Medical Graduate Center, Technical University of Munich, 81675 Munich, Germany
- Max Planck Institute for Biological Intelligence, in Foundation, 82152 Planegg-Martinsried, Germany
| | - Angelika Bettina Harbauer
- Max Planck Institute for Biological Intelligence, in Foundation, 82152 Planegg-Martinsried, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, 80802 Munich, Germany
- Munich Cluster for Systems Neurology, 81377 Munich, Germany
| |
Collapse
|
31
|
Neel DV, Basu H, Gunner G, Chiu IM. Catching a killer: Mechanisms of programmed cell death and immune activation in Amyotrophic Lateral Sclerosis. Immunol Rev 2022; 311:130-150. [PMID: 35524757 PMCID: PMC9489610 DOI: 10.1111/imr.13083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/13/2022]
Abstract
In the central nervous system (CNS), execution of programmed cell death (PCD) is crucial for proper neurodevelopment. However, aberrant activation of these pathways in adult CNS leads to neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). How a cell dies is critical, as it can drive local immune activation and tissue damage. Classical apoptosis engages several mechanisms to evoke "immunologically silent" responses, whereas other forms of programmed death such as pyroptosis, necroptosis, and ferroptosis release molecules that can potentiate immune responses and inflammation. In ALS, a fatal neuromuscular disorder marked by progressive death of lower and upper motor neurons, several cell types in the CNS express machinery for multiple PCD pathways. The specific cell types engaging PCD, and ultimate mechanisms by which neuronal death occurs in ALS are not well defined. Here, we provide an overview of different PCD pathways implicated in ALS. We also examine immune activation in ALS and differentiate apoptosis from necrotic mechanisms based on downstream immunological consequences. Lastly, we highlight therapeutic strategies that target cell death pathways in the treatment of neurodegeneration and inflammation in ALS.
Collapse
Affiliation(s)
- Dylan V Neel
- Harvard Medical School, Department of Immunology, Blavatnik Institute, Boston, MA, USA
| | - Himanish Basu
- Harvard Medical School, Department of Immunology, Blavatnik Institute, Boston, MA, USA
| | - Georgia Gunner
- Harvard Medical School, Department of Immunology, Blavatnik Institute, Boston, MA, USA
| | - Isaac M Chiu
- Harvard Medical School, Department of Immunology, Blavatnik Institute, Boston, MA, USA
- Lead contact
| |
Collapse
|
32
|
Babetto E, Beirowski B. Of axons that struggle to make ends meet: Linking axonal bioenergetic failure to programmed axon degeneration. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148545. [PMID: 35339437 DOI: 10.1016/j.bbabio.2022.148545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
Axons are the long, fragile, and energy-hungry projections of neurons that are challenging to sustain. Together with their associated glia, they form the bulk of the neuronal network. Pathological axon degeneration (pAxD) is a driver of irreversible neurological disability in a host of neurodegenerative conditions. Halting pAxD is therefore an attractive therapeutic strategy. Here we review recent work demonstrating that pAxD is regulated by an auto-destruction program that revolves around axonal bioenergetics. We then focus on the emerging concept that axonal and glial energy metabolism are intertwined. We anticipate that these discoveries will encourage the pursuit of new treatment strategies for neurodegeneration.
Collapse
Affiliation(s)
- Elisabetta Babetto
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| | - Bogdan Beirowski
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
33
|
Recent trends of natural based therapeutics for mitochondria targeting in Alzheimer’s disease. Mitochondrion 2022; 64:112-124. [DOI: 10.1016/j.mito.2022.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022]
|
34
|
The PINK1 Activator Niclosamide Mitigates Mitochondrial Dysfunction and Thermal Hypersensitivity in a Paclitaxel-Induced Drosophila Model of Peripheral Neuropathy. Biomedicines 2022; 10:biomedicines10040863. [PMID: 35453613 PMCID: PMC9025238 DOI: 10.3390/biomedicines10040863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022] Open
Abstract
Paclitaxel is a widely used anticancer drug that induces dose-limiting peripheral neuropathy. Mitochondrial dysfunction has been implicated in paclitaxel-induced neuronal damage and in the onset of peripheral neuropathy. We have previously shown that the expression of PINK1, a key mediator of mitochondrial quality control, ameliorated the paclitaxel-induced thermal hyperalgesia phenotype and restored mitochondrial homeostasis in Drosophila larvae. In this study, we show that the small-molecule PINK1 activator niclosamide exhibits therapeutic potential for paclitaxel-induced peripheral neuropathy. Specifically, niclosamide cotreatment significantly ameliorated the paclitaxel-induced thermal hyperalgesia phenotype in Drosophila larvae in a PINK1-dependent manner. Paclitaxel-induced alteration of the dendrite structure of class IV dendritic arborization (C4da) neurons was not reduced upon niclosamide treatment. In contrast, paclitaxel treatment-induced increases in both mitochondrial ROS and aberrant mitophagy levels in C4da neurons were significantly suppressed by niclosamide. In addition, niclosamide suppressed paclitaxel-induced mitochondrial dysfunction in human SH-SY5Y cells in a PINK1-dependent manner. These results suggest that niclosamide alleviates thermal hyperalgesia by attenuating paclitaxel-induced mitochondrial dysfunction. Taken together, our results suggest that niclosamide is a potential candidate for the treatment of paclitaxel-induced peripheral neuropathy with low toxicity in neurons and that targeting mitochondrial dysfunction is a promising strategy for the treatment of chemotherapy-induced peripheral neuropathy.
Collapse
|
35
|
Solana-Manrique C, Sanz FJ, Torregrosa I, Palomino-Schätzlein M, Hernández-Oliver C, Pineda-Lucena A, Paricio N. Metabolic Alterations in a Drosophila Model of Parkinson's Disease Based on DJ-1 Deficiency. Cells 2022; 11:cells11030331. [PMID: 35159141 PMCID: PMC8834223 DOI: 10.3390/cells11030331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
Parkinson’s disease (PD) is the second-most common neurodegenerative disorder, whose physiopathology is still unclear. Moreover, there is an urgent need to discover new biomarkers and therapeutic targets to facilitate its diagnosis and treatment. Previous studies performed in PD models and samples from PD patients already demonstrated that metabolic alterations are associated with this disease. In this context, the aim of this study is to provide a better understanding of metabolic disturbances underlying PD pathogenesis. To achieve this goal, we used a Drosophila PD model based on inactivation of the DJ-1β gene (ortholog of human DJ-1). Metabolomic analyses were performed in 1-day-old and 15-day-old DJ-1β mutants and control flies using 1H nuclear magnetic resonance spectroscopy, combined with expression and enzymatic activity assays of proteins implicated in altered pathways. Our results showed that the PD model flies exhibited protein metabolism alterations, a shift fromthe tricarboxylic acid cycle to glycolytic pathway to obtain ATP, together with an increase in the expression of some urea cycle enzymes. Thus, these metabolic changes could contribute to PD pathogenesis and might constitute possible therapeutic targets and/or biomarkers for this disease.
Collapse
Affiliation(s)
- Cristina Solana-Manrique
- Departamento de Genética, Facultad CC Biológicas, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (I.T.)
| | - Francisco José Sanz
- Departamento de Genética, Facultad CC Biológicas, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (I.T.)
| | - Isabel Torregrosa
- Departamento de Genética, Facultad CC Biológicas, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (I.T.)
| | | | - Carolina Hernández-Oliver
- Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (C.H.-O.); (A.P.-L.)
| | - Antonio Pineda-Lucena
- Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (C.H.-O.); (A.P.-L.)
- Programa de Terapias Moleculares, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008 Pamplona, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (I.T.)
- Correspondence: ; Tel.: +34-96-354-3005; Fax: +34-96-354-3029
| |
Collapse
|
36
|
Azoxystrobin Impairs Neuronal Migration and Induces ROS Dependent Apoptosis in Cortical Neurons. Int J Mol Sci 2021; 22:ijms222212495. [PMID: 34830376 PMCID: PMC8622671 DOI: 10.3390/ijms222212495] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
Fungicides often cause genotoxic stress and neurodevelopmental disorders such as autism (ASD). Fungicide-azoxystrobin (AZOX) showed acute and chronic toxicity to various organisms, and remained a concern for ill effects in developing neurons. We evaluated the neurotoxicity of AZOX in developing mouse brains, and observed prenatal exposure to AZOX reduced neuronal viability, neurite outgrowth, and cortical migration process in developing brains. The 50% inhibitory concentration (IC50) of AZOX for acute (24 h) and chronic (7 days) exposures were 30 and 10 μM, respectively. Loss in viability was due to the accumulation of reactive oxygen species (ROS), and inhibited neurite outgrowth was due to the deactivation of mTORC1 kinase activity. Pretreatment with ROS scavenger- N-acetylcysteine (NAC) reserved the viability loss and forced activation of mTORC1 kinase revived the neurite outgrowth in AZOX treated neurons. Intra-amniotic injection of AZOX coupled with in utero electroporation of GFP-labelled plasmid in E15.5 mouse was performed and 20 mg/kg AZOX inhibited radial neuronal migration. Moreover, the accumulation of mitochondria was significantly reduced in AZOX treated primary neurons, indicative of mitochondrial deactivation and induction of apoptosis, which was quantified by Bcl2/Bax ratio and caspase 3 cleavage assay. This study elucidated the neurotoxicity of AZOX and explained the possible cure from it.
Collapse
|