1
|
Strutt R, Jusková P, Berlanda SF, Krämer SD, Dittrich PS. Engineering a Biohybrid System to Link Antibiotic Efficacy to Membrane Depth in Bacterial Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412399. [PMID: 40143780 DOI: 10.1002/smll.202412399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Indexed: 03/28/2025]
Abstract
Treating bacterial infections is dependent upon their site within a biological system, where the cumulative role of membrane transport is challenging to resolve. In this work, a cultivation method based on droplet interface bilayers (DIBs) is established. The architecture of infections in both cellular and tissue contexts is crafted where individual droplets serve as artificial cells infected by intracellular bacteria, or as interconnected units in a tissue-like structure. Through spatio-temporal control over droplets, addition, withdrawal, and sequential antibiotic gradients are tailored acting upon living bacteria. With droplet networks mimicking tissues, it is showed that the treatment response is dependent on the number of the cell-like barriers, corresponding to the number of membranes from an antibiotic source, here described as the membrane depth. Through mathematical modelling a correlation is revealed between the membrane depth of each bacterial population, the antibiotic distribution and thus the treatment efficacy. Ultimately, this approach holds promise as an in vitro bioassay for understanding the response of intracellular bacteria to antibiotics, developing new antibiotics, designing biologically inspired materials, and underpinning emerging bioprinting approaches.
Collapse
Affiliation(s)
- Robert Strutt
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, Basel, 4056, Switzerland
| | - Petra Jusková
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, Basel, 4056, Switzerland
| | - Simon F Berlanda
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, Basel, 4056, Switzerland
| | - Stefanie D Krämer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich, 8093, Switzerland
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, Basel, 4056, Switzerland
| |
Collapse
|
2
|
Mishra A, Taylor H, Patil AJ, Mann S. Dynamic Co-Clustering and Self-Sorting in Interactive Protocell Populations. Angew Chem Int Ed Engl 2025; 64:e202420209. [PMID: 39714324 DOI: 10.1002/anie.202420209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/23/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
The design and implementation of collective actions in model protocell communities is an on-going challenge in synthetic protobiology. Herein, we covalently graft alginate or chitosan onto the outer surface of semipermeable enzyme-containing silica colloidosomes to produce hairy catalytic protocells with pH-switchable membrane surface charge. Binary populations of the enzymatically active protocells exhibit self-initiated stimulus-responsive changes in spatial organization such that the mixed community undergoes alternative modes of electrostatically induced self-sorting and reversible co-clustering. We demonstrate that co-clustering, but not self-sorting, mitigates signal attenuation in a binary community of enzyme-containing sender and receiver protocells due to increased proximity effects. The level of signal attenuation is correlated with a time-dependent pH-mediated switch in the spatial organization of the sender and receiver populations. Our results pave the way towards the development of programmable networks of adaptive life-like objects and could have implications for the development of interactive cytomimetic materials and agent-based robotics.
Collapse
Affiliation(s)
- Ananya Mishra
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Hannah Taylor
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Avinash J Patil
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| |
Collapse
|
3
|
Pandey PK, Sathyavageeswaran A, Holmlund N, Perry SL. Polyelectrolyte-Carbon Dot Complex Coacervation. ACS Macro Lett 2025; 14:43-50. [PMID: 39701962 PMCID: PMC11756532 DOI: 10.1021/acsmacrolett.4c00745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
This Letter presents complex coacervation between the biopolymer diethylaminoethyl dextran hydrochloride (DEAE-Dex) and carbon dots. The formation of these coacervates was dependent on both DEAE-Dex concentration and solution ionic strength. Fluorescence spectroscopy revealed that the blue fluorescence of the carbon dots was unaffected by coacervation. Additionally, microrheological studies were conducted to determine the viscosity of these coacervates. These complex coacervates, formed through the interaction of nanoparticles and polyelectrolytes, hold a promising role for future applications where the combination of optical properties from the carbon dots and encapsulation via coacervation can be leveraged.
Collapse
Affiliation(s)
- Pankaj Kumar Pandey
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Arvind Sathyavageeswaran
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Nickolas Holmlund
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Sarah L. Perry
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
4
|
Koball A, Obst F, Gaitzsch J, Voit B, Appelhans D. Boosting Microfluidic Enzymatic Cascade Reactions with pH-Responsive Polymersomes by Spatio-Chemical Activity Control. SMALL METHODS 2024; 8:e2400282. [PMID: 38989686 PMCID: PMC11671858 DOI: 10.1002/smtd.202400282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Microfluidic flow reactors permit the implementation of sensitive biocatalysts in polymeric environments (e.g., hydrogel dots), mimicking nature through the use of diverse microstructures within defined confinements. However, establishing complex hybrid structures to mimic biological processes and functions under continuous flow with optimal utilization of all components involved in the reaction process represents a significant scientific challenge. To achieve spatial, chemical, and temporal control for any microfluidic application, compartmentalization is required, as well as the unification of different sensitive compartments in the reaction chamber for the microfluidic flow design. This study presents a self-regulating microfluidic system fabricated by a sequential photostructuring process with an intermediate chemical process step to realize pH-sensitive hybrid structures for the fabrication of a microfluidic double chamber reactor for controlled enzymatic cascade reaction (ECR). The key point is the adaptation and retention of the function of pH-responsive horseradish peroxidase-loaded polymersomes in a microfluidic chip under continuous flow. ECR is successfully triggered and controlled by an interplay between glucose oxidase-converted glucose, the membrane state of pH-responsive polymersomes, and other parameters (e.g., flow rate and fluid composition). This study establishes a promising noninvasive regulatory platform for extended spatio-chemical control of current and future ECR and other cascade reaction systems.
Collapse
Affiliation(s)
- Andrea Koball
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
- Technische Universität DresdenFakultät Chemie und LebensmittelchemieOrganische Chemie der PolymereD‐01062DresdenGermany
| | - Franziska Obst
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
- Technische Universität DresdenInstitut für Halbleiter‐ und MikrosystemtechnikNöthnitzer Straße 64D‐01187DresdenGermany
| | - Jens Gaitzsch
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
| | - Brigitte Voit
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
- Technische Universität DresdenFakultät Chemie und LebensmittelchemieOrganische Chemie der PolymereD‐01062DresdenGermany
| | - Dietmar Appelhans
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
| |
Collapse
|
5
|
Valente S, Galanti A, Maghin E, Najdi N, Piccoli M, Gobbo P. Matching Together Living Cells and Prototissues: Will There Be Chemistry? Chembiochem 2024; 25:e202400378. [PMID: 39031571 DOI: 10.1002/cbic.202400378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/22/2024]
Abstract
Scientific advancements in bottom-up synthetic biology have led to the development of numerous models of synthetic cells, or protocells. To date, research has mainly focused on increasing the (bio)chemical complexity of these bioinspired micro-compartmentalized systems, yet the successful integration of protocells with living cells remains one of the major challenges in bottom-up synthetic biology. In this review, we aim to summarize the current state of the art in hybrid protocell/living cell and prototissue/living cell systems. Inspired by recent breakthroughs in tissue engineering, we review the chemical, bio-chemical, and mechano-chemical aspects that hold promise for achieving an effective integration of non-living and living matter. The future production of fully integrated protocell/living cell systems and increasingly complex prototissue/living tissue systems not only has the potential to revolutionize the field of tissue engineering, but also paves the way for new technologies in (bio)sensing, personalized therapy, and drug delivery.
Collapse
Affiliation(s)
- Stefano Valente
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Agostino Galanti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Edoardo Maghin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Nahid Najdi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Martina Piccoli
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Pierangelo Gobbo
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
- National Interuniversity Consortium of Materials Science and Technology, Unit of Trieste, Via G. Giusti 9, 50121, Firenze, Italy
| |
Collapse
|
6
|
Palivan CG, Heuberger L, Gaitzsch J, Voit B, Appelhans D, Borges Fernandes B, Battaglia G, Du J, Abdelmohsen L, van Hest JCM, Hu J, Liu S, Zhong Z, Sun H, Mutschler A, Lecommandoux S. Advancing Artificial Cells with Functional Compartmentalized Polymeric Systems - In Honor of Wolfgang Meier. Biomacromolecules 2024; 25:5454-5467. [PMID: 39196319 DOI: 10.1021/acs.biomac.4c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The fundamental building block of living organisms is the cell, which is the universal biological base of all living entities. This micrometric mass of cytoplasm and the membrane border have fascinated scientists due to the highly complex and multicompartmentalized structure. This specific organization enables numerous metabolic reactions to occur simultaneously and in segregated spaces, without disturbing each other, but with a promotion of inter- and intracellular communication of biomolecules. At present, artificial nano- and microcompartments, whether as single components or self-organized in multicompartment architectures, hold significant value in the study of life development and advanced functional materials and in the fabrication of molecular devices for medical applications. These artificial compartments also possess the properties to encapsulate, protect, and control the release of bio(macro)molecules through selective transport processes, and they are capable of embedding or being connected with other types of compartments. The self-assembly mechanism of specific synthetic compartments and thus the fabrication of a simulated organelle membrane are some of the major aspects to gain insight. Considerable efforts have now been devoted to design various nano- and microcompartments and understand their functionality for precise control over properties. Of particular interest is the use of polymeric vesicles for communication in synthetic cells and colloidal systems to reinitiate chemical and biological communication and thus close the gap toward biological functions. Multicompartment systems can now be effectively created with a high level of hierarchical control. In this way, these structures can not only be explored to deepen our understanding of the functional organization of living cells, but also pave the way for many more exciting developments in the biomedical field.
Collapse
Affiliation(s)
- Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
| | - Lukas Heuberger
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
| | - Jens Gaitzsch
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Barbara Borges Fernandes
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
| | - Giuseppe Battaglia
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Spain
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Loai Abdelmohsen
- Department of Chemistry and Chemical Engineering, Institute for Complex Molecular Systems, Bio-Organic Chemistry, Eindhoven University of Technology, Helix, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Jan C M van Hest
- Department of Chemistry and Chemical Engineering, Institute for Complex Molecular Systems, Bio-Organic Chemistry, Eindhoven University of Technology, Helix, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine and Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine and Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
- College of Pharmaceutical Sciences, and International College of Pharmaceutical Innovation, Soochow University, Suzhou 215123, P. R. China
| | - Huanli Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Angela Mutschler
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | | |
Collapse
|
7
|
Gentili PL, Stano P. Living cells and biological mechanisms as prototypes for developing chemical artificial intelligence. Biochem Biophys Res Commun 2024; 720:150060. [PMID: 38754164 DOI: 10.1016/j.bbrc.2024.150060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/25/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Artificial Intelligence (AI) is having a revolutionary impact on our societies. It is helping humans in facing the global challenges of this century. Traditionally, AI is developed in software or through neuromorphic engineering in hardware. More recently, a brand-new strategy has been proposed. It is the so-called Chemical AI (CAI), which exploits molecular, supramolecular, and systems chemistry in wetware to mimic human intelligence. In this work, two promising approaches for boosting CAI are described. One regards designing and implementing neural surrogates that can communicate through optical or chemical signals and give rise to networks for computational purposes and to develop micro/nanorobotics. The other approach concerns "bottom-up synthetic cells" that can be exploited for applications in various scenarios, including future nano-medicine. Both topics are presented at a basic level, mainly to inform the broader audience of non-specialists, and so favour the rise of interest in these frontier subjects.
Collapse
Affiliation(s)
- Pier Luigi Gentili
- Department of Chemistry, Biology, and Biotechnology, Università degli Studi di Perugia, Perugia, Italy.
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.
| |
Collapse
|
8
|
Pan H, Zhang C, Jiang W, Zhou Y. Living Self-Assembly of Monodisperse Micron-Sized Polymer Vesicles. Angew Chem Int Ed Engl 2024; 63:e202404589. [PMID: 38654509 DOI: 10.1002/anie.202404589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Artificial vesicles are recognized as powerful platforms for a large body of research across the disciplines of chemistry, physics and biology. Despite the great progress, control of the size distribution to make uniform vesicles remains fundamentally difficult due to the highly uncontrollable growth kinetics, especially for micron-sized vesicles. Here we report a template-free living self-assembly method to prepare monodisperse vesicles around 1 μm from an alternating copolymer. The polymer forms nanodisks (ca. 9 nm) in N,N-dimethylformamide (DMF), acting as seeds for subsequent growth. By adding water, the nanodisks gradually grow into larger circular bilayer nanosheets, which bend to crowns and continue to grow into uniform micron-sized vesicles. The first-order growth kinetics as well as the small size polydispersity index (<0.1) suggests the living self-assembly characteristics. This work paves a new way in both living self-assembly and monodisperse polymer vesicles.
Collapse
Affiliation(s)
- Hui Pan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Changxu Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Wenfeng Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| |
Collapse
|
9
|
Westensee IN, Paffen LJMM, Pendlmayr S, De Dios Andres P, Ramos Docampo MA, Städler B. Artificial Cells and HepG2 Cells in 3D-Bioprinted Arrangements. Adv Healthc Mater 2024; 13:e2303699. [PMID: 38277695 DOI: 10.1002/adhm.202303699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Artificial cells are engineered units with cell-like functions for different purposes including acting as supportive elements for mammalian cells. Artificial cells with minimal liver-like function are made of alginate and equipped with metalloporphyrins that mimic the enzyme activity of a member of the cytochrome P450 family namely CYP1A2. The artificial cells are employed to enhance the dealkylation activity within 3D bioprinted structures composed of HepG2 cells and these artificial cells. This enhancement is monitored through the conversion of resorufin ethyl ether to resorufin. HepG2 cell aggregates are 3D bioprinted using an alginate/gelatin methacryloyl ink, resulting in the successful proliferation of the HepG2 cells. The composite ink made of an alginate/gelatin liquid phase with an increasing amount of artificial cells is characterized. The CYP1A2-like activity of artificial cells is preserved over at least 35 days, where 6 nM resorufin is produced in 8 h. Composite inks made of artificial cells and HepG2 cell aggregates in a liquid phase are used for 3D bioprinting. The HepG2 cells proliferate over 35 days, and the structure has boosted CYP1A2 activity. The integration of artificial cells and their living counterparts into larger 3D semi-synthetic tissues is a step towards exploring bottom-up synthetic biology in tissue engineering.
Collapse
Affiliation(s)
- Isabella N Westensee
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Lars J M M Paffen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Stefan Pendlmayr
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Paula De Dios Andres
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Miguel A Ramos Docampo
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| |
Collapse
|
10
|
Sánchez-Costa M, Urigoitia A, Comino N, Arnaiz B, Khatami N, Ruiz-Hernandez R, Diamanti E, Abarrategi A, López-Gallego F. In-Hydrogel Cell-Free Protein Expression System as Biocompatible and Implantable Biomaterial. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15993-16002. [PMID: 38509001 DOI: 10.1021/acsami.4c01388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Biomaterials capable of delivering therapeutic proteins are relevant in biomedicine, yet their manufacturing relies on centralized manufacturing chains that pose challenges to their remote implementation at the point of care. This study explores the viability of confined cell-free protein synthesis within porous hydrogels as biomaterials that dynamically produce and deliver proteins to in vitro and in vivo biological microenvironments. These functional biomaterials have the potential to be assembled as implants at the point of care. To this aim, we first entrap cell-free extracts (CFEs) from Escherichia coli containing the transcription-translation machinery, together with plasmid DNA encoding the super folded green fluorescence protein (sGFP) as a model protein, into hydrogels using various preparation methods. Agarose hydrogels result in the most suitable biomaterials to confine the protein synthesis system, demonstrating efficient sGFP production and diffusion from the core to the surface of the hydrogel. Freeze-drying (FD) of agarose hydrogels still allows for the synthesis and diffusion of sGFP, yielding a more attractive biomaterial for its reconstitution and implementation at the point of care. FD-agarose hydrogels are biocompatible in vitro, allowing for the colonization of cell microenvironments along with cell proliferation. Implantation assays of this biomaterial in a preclinical mouse model proved the feasibility of this protein synthesis approach in an in vivo context and indicated that the physical properties of the biomaterials influence their immune responses. This work introduces a promising avenue for biomaterial fabrication, enabling the in vivo synthesis and targeted delivery of proteins and opening new paths for advanced protein therapeutic approaches based on biocompatible biomaterials.
Collapse
Affiliation(s)
| | - Ane Urigoitia
- CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009Donostia, Spain
| | - Natalia Comino
- CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009Donostia, Spain
| | - Blanca Arnaiz
- CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009Donostia, Spain
| | - Neda Khatami
- CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009Donostia, Spain
- Polymat, University of Basque Country UPV/EHU, Donostia/San Sebastián 20018, Gipuzkoa, Spain
| | | | - Eleftheria Diamanti
- CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009Donostia, Spain
| | - Ander Abarrategi
- CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, 48013Bilbao, Spain
| | - Fernando López-Gallego
- CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, 48013Bilbao, Spain
| |
Collapse
|