1
|
Liu Z, Zhou Y, Lu J, Gong T, Ibáñez E, Cifuentes A, Lu W. Microfluidic biosensors for biomarker detection in body fluids: a key approach for early cancer diagnosis. Biomark Res 2024; 12:153. [PMID: 39639411 PMCID: PMC11622463 DOI: 10.1186/s40364-024-00697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Early detection of cancer significantly improves patient outcomes, with biomarkers offering a promising avenue for earlier and more precise diagnoses. Microfluidic biosensors have emerged as a powerful tool for detecting these biomarkers in body fluids, providing enhanced sensitivity, specificity, and rapid analysis. This review focuses on recent advances in microfluidic biosensors from 2018 to 2024, detailing their operational principles, fabrication techniques, and integration with nanotechnology for cancer biomarker detection. Additionally, we have reviewed recent innovations in several aspects of microfluidic biosensors, such as novel detection technologies, nanomaterials and novel microfluidic chip structures, which significantly enhance detection capabilities. We highlight key biomarkers pertinent to early cancer detection and explore how these innovations in biosensor technology contribute to the evolving landscape of personalized medicine. We further explore how these technologies could be incorporated into clinical cancer diagnostic workflows to improve early detection and treatment outcomes. These innovations could help enable more precise and personalized cancer diagnostics. In addition, this review addresses several important issues such as enhancing the scalability and sensitivity of these biosensors in clinical settings and points out future possibilities of combining artificial intelligence diagnostics with microfluidic biosensors to optimize their practical applications. This overview aims to guide future research and clinical applications by addressing current challenges and identifying opportunities for further development in the field of biomarker research.
Collapse
Affiliation(s)
- Zhiting Liu
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China
- National and Local Joint Engineering Laboratory for Synthesis Transformation and Separation of Extreme Environmental Nutrients, 92 Xidazhi Street, Nangang District, Harbin, 150001, China
| | - Yingyu Zhou
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China.
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan, China.
- National and Local Joint Engineering Laboratory for Synthesis Transformation and Separation of Extreme Environmental Nutrients, 92 Xidazhi Street, Nangang District, Harbin, 150001, China.
| | - Jia Lu
- School of Mechatronics Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China.
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan, China.
| | - Ting Gong
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China
- National and Local Joint Engineering Laboratory for Synthesis Transformation and Separation of Extreme Environmental Nutrients, 92 Xidazhi Street, Nangang District, Harbin, 150001, China
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, Madrid, 28049, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, Madrid, 28049, Spain
| | - Weihong Lu
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China.
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan, China.
- National and Local Joint Engineering Laboratory for Synthesis Transformation and Separation of Extreme Environmental Nutrients, 92 Xidazhi Street, Nangang District, Harbin, 150001, China.
| |
Collapse
|
2
|
Onda I, Tadakuma K, Watanabe M, Abe K, Watanabe T, Konyo M, Tadokoro S. Highly Articulated Tube Mechanism With Variable Stiffness and Shape Restoration Using a Pneumatic Actuator. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3147246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
Xin Y, Gao T, Xu J, Zhang J, Wu D. Transient Electrically Driven Stiffness-Changing Materials from Liquid Metal Polymer Composites. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50392-50400. [PMID: 34649421 DOI: 10.1021/acsami.1c15718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stiffness-changing materials (SCMs) have received lots of interests due to their reversible transition between their soft and rigid states for modern applications. However, the irreversible stiffness transition, slow response, and sustained external stimuli strictly hinder the broad utilizations of SCMs. Here, this work reports electrically driven SCMs based on supercooled liquid metals (LMs). A small voltage (5 V) can successfully initiate the stable and reversible stiffness change of the SCMs in electrolyte solution. Surprisingly, the LM-based SCMs (LM-SCMs) exhibited a significant change in 1000 times difference of moduli (65 kPa versus 79 MPa). Moreover, such a stiffness transition of the LM-SCM was ultrarapidly completed in a few seconds (<30 s). Importantly, after transient stimulation of LM nucleation, the rigidity of the LM-SCM could be maintained when the external stimulus (voltage) was removed, highly different from previously reported SCMs that require sustained energy to maintain their mechanical states. Based on the unique features of LM-SCMs, advanced robotics like smart valves and mechanical paws in seawater were successfully fabricated.
Collapse
Affiliation(s)
- Yumeng Xin
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
- Jiangsu Hi-Tech Key Laboratory for Biomedical Research, 211189 Nanjing, PR China
| | - Tenglong Gao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
- Jiangsu Hi-Tech Key Laboratory for Biomedical Research, 211189 Nanjing, PR China
| | - Jun Xu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55414, United States
| | - Jiuyang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
- Jiangsu Hi-Tech Key Laboratory for Biomedical Research, 211189 Nanjing, PR China
| | - Dongfang Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
- Jiangsu Hi-Tech Key Laboratory for Biomedical Research, 211189 Nanjing, PR China
| |
Collapse
|
4
|
Yan J, Shi P, Xu Z, Zhao J. A Wide-Range Stiffness-Tunable Soft Actuator Inspired by Deep-Sea Glass Sponges. Soft Robot 2021; 9:625-637. [PMID: 34191615 DOI: 10.1089/soro.2020.0163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Achieving both high compliance and stiffness is a key issue in stiffness-tunable soft robots. A wide-range variable-stiffness method keeping pure soft characteristic is proposed by bioinspired design of deep-sea glass sponges adopting thermoplastic starch. The stiffness-tunable mechanism is designed through force analysis and optimization of its bionic cellular structure. It is fabricated with load-weight ratio exceeding 470. Then, a wide-range stiffness-tunable omnidirectional-bending soft actuator (WOSA) is realized, and the bending stiffness model is established. Comparative experiments of stiffness and deformation are conducted on WOSA and a pure soft actuator (PSA) with the same size. Results show that the WOSA can get 92.3 times initial bending and 70.8 times torsional stiffness variation range, of which the flexibility is even better than PSA. A gripper assembled by three WOSAs is verified through stiffness adjustment that it can grasp different weight fragile, soft items from the unshelled fresh egg, boiled egg yolk to grapes. It can even lift a dumbbell weighting 3.32 kg. Finally, a manipulator demonstrated its potential in future minimally invasive surgical applications due to its wide stiffness range and large deformation capacity.
Collapse
Affiliation(s)
- Jihong Yan
- State Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China.,Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, China
| | - Peipei Shi
- State Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Zhidong Xu
- State Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Jie Zhao
- State Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
5
|
Coulson R, Stabile CJ, Turner KT, Majidi C. Versatile Soft Robot Gripper Enabled by Stiffness and Adhesion Tuning via Thermoplastic Composite. Soft Robot 2021; 9:189-200. [PMID: 33481683 DOI: 10.1089/soro.2020.0088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Within the field of robotics, stiffness tuning technologies have potential for a variety of applications-perhaps most notably for robotic grasping. Many stiffness tuning grippers have been developed that can grasp fragile or irregularly shaped objects without causing damage and while still accommodating large loads. In addition to limiting gripper deformation when lifting an object, increasing gripper stiffness after contact formation improves load sharing at the interface and enhances adhesion. In this study, we present a novel stiffness and adhesion tuning gripper, enabled by the thermally induced phase change of a thermoplastic composite material embedded within a silicone contact pad. The gripper operates by bringing the pad into contact with an object while in its heated, soft state, and then allowing the pad to cool and stiffen to form a strong adhesive bond before lifting the object. Pull-off tests conducted using the gripper show that transitioning from a soft to stiff state during grasping enables up to 6 × increase in adhesion strength. Additionally, a finite element model is developed to simulate the behavior of the gripper. Finally, pick-and-place demonstrations are performed, which highlight the gripper's ability to delicately grasp objects of various shapes, sizes, and weights.
Collapse
Affiliation(s)
- Ryan Coulson
- Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Christopher J Stabile
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kevin T Turner
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carmel Majidi
- Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.,Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Park S, Baugh N, Shah HK, Parekh DP, Joshipura ID, Dickey MD. Ultrastretchable Elastic Shape Memory Fibers with Electrical Conductivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901579. [PMID: 31728290 PMCID: PMC6839750 DOI: 10.1002/advs.201901579] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/04/2019] [Indexed: 05/23/2023]
Abstract
Herein, elastomeric fibers that have shape memory properties due to the presence of a gallium core that can undergo phase transition from solid to liquid in response to mild heating are described. The gallium is injected into the core of a hollow fiber formed by melt processing. This approach provides a straightforward method to create shape memory properties from any hollow elastic fiber. Solidifying the core changes the effective fiber modulus from 4 to 1253 MPa. This increase in stiffness can preserve the fiber in a deformed shape. The elastic energy stored in the polymer shell during deformation drives the fiber to relax back to its original geometry upon melting the solid gallium core, allowing for shape memory. Although waxes are used previously for this purpose, the use of gallium is compelling because of its metallic electrical and thermal conductivity. In addition, the use of a rigid metallic core provides perfect fixity of the shape memory fiber. Notably, the use of gallium-with a melting point above room temperature but below body temperature-allows the user to melt and deform local regions of the fiber by hand and thereby tune the effective modulus and shape of the fiber.
Collapse
Affiliation(s)
- Sungjune Park
- Department of Polymer‐Nano Science and TechnologyBK21 Plus Haptic Polymer Composite Research TeamDepartment of BIN Convergence TechnologyChonbuk National UniversityJeonju54896South Korea
| | - Neil Baugh
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University911 Partners WayRaleighNC27695USA
| | - Hardil K. Shah
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University911 Partners WayRaleighNC27695USA
| | - Dishit P. Parekh
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University911 Partners WayRaleighNC27695USA
| | - Ishan D. Joshipura
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University911 Partners WayRaleighNC27695USA
| | - Michael D. Dickey
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University911 Partners WayRaleighNC27695USA
| |
Collapse
|
7
|
Byun SH, Sim JY, Zhou Z, Lee J, Qazi R, Walicki MC, Parker KE, Haney MP, Choi SH, Shon A, Gereau GB, Bilbily J, Li S, Liu Y, Yeo WH, McCall JG, Xiao J, Jeong JW. Mechanically transformative electronics, sensors, and implantable devices. SCIENCE ADVANCES 2019; 5:eaay0418. [PMID: 31701008 PMCID: PMC6824851 DOI: 10.1126/sciadv.aay0418] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/14/2019] [Indexed: 05/14/2023]
Abstract
Traditionally, electronics have been designed with static form factors to serve designated purposes. This approach has been an optimal direction for maintaining the overall device performance and reliability for targeted applications. However, electronics capable of changing their shape, flexibility, and stretchability will enable versatile and accommodating systems for more diverse applications. Here, we report design concepts, materials, physics, and manufacturing strategies that enable these reconfigurable electronic systems based on temperature-triggered tuning of mechanical characteristics of device platforms. We applied this technology to create personal electronics with variable stiffness and stretchability, a pressure sensor with tunable bandwidth and sensitivity, and a neural probe that softens upon integration with brain tissue. Together, these types of transformative electronics will substantially broaden the use of electronics for wearable and implantable applications.
Collapse
Affiliation(s)
- Sang-Hyuk Byun
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Joo Yong Sim
- Welfare & Medical ICT Research Department, Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea
| | - Zhanan Zhou
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Juhyun Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Raza Qazi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Marie C. Walicki
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO 63110, USA
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kyle E. Parker
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO 63110, USA
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Matthew P. Haney
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Su Hwan Choi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ahnsei Shon
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Graydon B. Gereau
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO 63110, USA
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - John Bilbily
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO 63110, USA
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Shuo Li
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yuhao Liu
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jordan G. McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO 63110, USA
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jianliang Xiao
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- Corresponding author.
| |
Collapse
|
8
|
Yang FK, Cholewinski A, Yu L, Rivers G, Zhao B. A hybrid material that reversibly switches between two stable solid states. NATURE MATERIALS 2019; 18:874-882. [PMID: 31332323 DOI: 10.1038/s41563-019-0434-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/14/2019] [Indexed: 05/23/2023]
Abstract
Most types of solid matter have a single stable solid state for a particular set of conditions. Nonetheless, materials with distinct, interchangeable solid states would be advantageous for several technological applications. Here, we describe a material composed of a polymer impregnated with a supercooled salt solution, termed as sal-gel, that assumes two distinct but stable and reversible solid states under the same conditions for a range of temperatures (-90 to 58 °C) and pressure. On transient stimulation of nucleation, the material switches from a clear and soft solid to a white and hard state, which can be 104 times stiffer than the original (15 kPa versus 385 MPa). This hard solid becomes soft again by transient heating, demonstrating the reversibility of the transition. This concept, exploiting the robust physical metastability of a liquid state, is extended to sugar alcohols, resulting in a stimuli-responsive and non-evaporating sug-gel. These 'two-in-one' solid materials may find potential uses in soft robotics and adhesive applications.
Collapse
Affiliation(s)
- Fut Kuo Yang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Institute for Polymer Research, Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Aleksander Cholewinski
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Institute for Polymer Research, Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, Ontario, Canada
| | - Li Yu
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Institute for Polymer Research, Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, Ontario, Canada
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, China
| | - Geoffrey Rivers
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Institute for Polymer Research, Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, Ontario, Canada
| | - Boxin Zhao
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Institute for Polymer Research, Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
9
|
Shintake J, Cacucciolo V, Floreano D, Shea H. Soft Robotic Grippers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707035. [PMID: 29736928 DOI: 10.1002/adma.201707035] [Citation(s) in RCA: 435] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/23/2018] [Indexed: 05/18/2023]
Abstract
Advances in soft robotics, materials science, and stretchable electronics have enabled rapid progress in soft grippers. Here, a critical overview of soft robotic grippers is presented, covering different material sets, physical principles, and device architectures. Soft gripping can be categorized into three technologies, enabling grasping by: a) actuation, b) controlled stiffness, and c) controlled adhesion. A comprehensive review of each type is presented. Compared to rigid grippers, end-effectors fabricated from flexible and soft components can often grasp or manipulate a larger variety of objects. Such grippers are an example of morphological computation, where control complexity is greatly reduced by material softness and mechanical compliance. Advanced materials and soft components, in particular silicone elastomers, shape memory materials, and active polymers and gels, are increasingly investigated for the design of lighter, simpler, and more universal grippers, using the inherent functionality of the materials. Embedding stretchable distributed sensors in or on soft grippers greatly enhances the ways in which the grippers interact with objects. Challenges for soft grippers include miniaturization, robustness, speed, integration of sensing, and control. Improved materials, processing methods, and sensing play an important role in future research.
Collapse
Affiliation(s)
- Jun Shintake
- Laboratory of Intelligent Systems, Institute of Microengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Vito Cacucciolo
- Soft Transducers Laboratory, Institute of Microengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, 2000, Neuchâtel, Switzerland
| | - Dario Floreano
- Laboratory of Intelligent Systems, Institute of Microengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Herbert Shea
- Soft Transducers Laboratory, Institute of Microengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, 2000, Neuchâtel, Switzerland
| |
Collapse
|
10
|
|
11
|
Sim JY, Haney MP, Park SI, McCall JG, Jeong JW. Microfluidic neural probes: in vivo tools for advancing neuroscience. LAB ON A CHIP 2017; 17:1406-1435. [PMID: 28349140 DOI: 10.1039/c7lc00103g] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Microfluidic neural probes hold immense potential as in vivo tools for dissecting neural circuit function in complex nervous systems. Miniaturization, integration, and automation of drug delivery tools open up new opportunities for minimally invasive implants. These developments provide unprecedented spatiotemporal resolution in fluid delivery as well as multifunctional interrogation of neural activity using combined electrical and optical modalities. Capitalizing on these unique features, microfluidic technology will greatly advance in vivo pharmacology, electrophysiology, optogenetics, and optopharmacology. In this review, we discuss recent advances in microfluidic neural probe systems. In particular, we will highlight the materials and manufacturing processes of microfluidic probes, device configurations, peripheral devices for fluid handling and packaging, and wireless technologies that can be integrated for the control of these microfluidic probe systems. This article summarizes various microfluidic implants and discusses grand challenges and future directions for further developments.
Collapse
Affiliation(s)
- Joo Yong Sim
- Electronics and Telecommunications Research Institute, Bio-Medical IT Convergence Research Department, Daejeon, 34129, Republic of Korea
| | | | | | | | | |
Collapse
|
12
|
Van Meerbeek IM, Mac Murray BC, Kim JW, Robinson SS, Zou PX, Silberstein MN, Shepherd RF. Morphing Metal and Elastomer Bicontinuous Foams for Reversible Stiffness, Shape Memory, and Self-Healing Soft Machines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:2801-2806. [PMID: 26872152 DOI: 10.1002/adma.201505991] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/18/2015] [Indexed: 06/05/2023]
Abstract
A metal-elastomer-foam composite that varies in stiffness, that can change shape and store shape memory, that self-heals, and that welds into monolithic structures from smaller components is presented.
Collapse
Affiliation(s)
- Ilse M Van Meerbeek
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Benjamin C Mac Murray
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Jae Woo Kim
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Sanlin S Robinson
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Perry X Zou
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Meredith N Silberstein
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Robert F Shepherd
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|