1
|
Ma YF, Chen K, Xie B, Zhu J, He X, Chen C, Yang YR, Liu Y. Enhanced antibody response to the conformational non-RBD region via DNA prime-protein boost elicits broad cross-neutralization against SARS-CoV-2 variants. Emerg Microbes Infect 2025; 14:2447615. [PMID: 39727342 PMCID: PMC11878195 DOI: 10.1080/22221751.2024.2447615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/28/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Preventing immune escape of SARS-CoV-2 variants is crucial in vaccine development to ensure broad protection against the virus. Conformational epitopes beyond the RBD region are vital components of the spike protein but have received limited attention in the development of broadly protective SARS-CoV-2 vaccines. In this study, we used a DNA prime-protein boost regimen to evaluate the broad cross-neutralization potential of immune response targeting conformational non-RBD region against SARS-CoV-2 viruses in mice. Mice with enhanced antibody responses targeting conformational non-RBD region show better performance in cross-neutralization against the Wuhan-01, Delta, and Omicron subvariants. Via analyzing the distribution of conformational epitopes, and quantifying epitope-specific binding antibodies, we verified a positive correlation between the proportion of binding antibodies against the N-terminal domain (NTD) supersite (a conformational non-RBD epitope) and SARS-CoV-2 neutralization potency. The current work highlights the importance of high ratio of conformational non-RBD-specific binding antibodies in mediating viral cross-neutralization and provides new insight into overcoming the immune escape of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yun-Fei Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People’s Republic of China
| | - Kun Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Bowen Xie
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People’s Republic of China
| | - Jiayi Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xuan He
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Chunying Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, People’s Republic of China
| | - Yuhe Renee Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ye Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People’s Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, People’s Republic of China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Rebolledo LP, Andrade LNS, Bajgelman MC, Banks L, Breakefield XO, Dobrovolskaia MA, Dokholyan NV, Kimura ET, Villa L, Zerbini LF, Zucolotto V, Afonin KA, Strauss BE, Chammas R, de Freitas Saito R. Nucleic acid nanobiosystems for cancer theranostics: an overview of emerging trends and challenges. Nanomedicine (Lond) 2025:1-18. [PMID: 40326805 DOI: 10.1080/17435889.2025.2501919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025] Open
Abstract
Different cancers remain major global health challenges due to their diverse biological behaviors and significant treatment hurdles. The aging of populations and lifestyle factors increase cancer occurrence and place increasing pressure on healthcare systems. Despite continuous advancements, many cancers remain fatal due to late-stage diagnosis, tumor heterogeneity, and drug resistance, thus necessitating urgent development of innovative treatment solutions. Therapeutic nucleic acids, a new class of biological drugs, offer a promising approach to overcoming these challenges. The recent Nucleic Acids and Nanobiosystems in Cancer Theranostics (NANCT) conference brought together internationally recognized experts from 15 countries to discuss cutting-edge research, spanning from oncolytic viruses to anticancer RNA nanoparticles and other emerging nanotechnologies. This review captures key insights and developments, emphasizing the need for interdisciplinary translation of scientific advancements into clinical practice and shaping the future of personalized cancer treatments for improved therapeutic outcomes.
Collapse
Affiliation(s)
- Laura P Rebolledo
- Chemistry and Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Luciana N S Andrade
- Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
- Comprehensive Center for Precision Oncology (C2PO), Universidade de Sao Paulo, São Paulo, Brazil
| | - Marcio C Bajgelman
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, São Paulo, Brazil
- Medical School, University of Campinas, São Paulo, Brazil
| | - Lawrence Banks
- Tumour Virology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Xandra O Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, sponsored by the National Cancer Institute, Frederick Maryland, USA
| | - Nikolay V Dokholyan
- Departments of Pharmacology, and Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Edna T Kimura
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luisa Villa
- Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz F Zerbini
- Department of Cancer Genomics, International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo, Brazil
| | - Kirill A Afonin
- Chemistry and Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Bryan E Strauss
- Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
- Comprehensive Center for Precision Oncology (C2PO), Universidade de Sao Paulo, São Paulo, Brazil
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
- Comprehensive Center for Precision Oncology (C2PO), Universidade de Sao Paulo, São Paulo, Brazil
| | - Renata de Freitas Saito
- Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
- Comprehensive Center for Precision Oncology (C2PO), Universidade de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Handa T, Saha A, Narayanan A, Ronzier E, Kumar P, Singla J, Tomar S. Structural Virology: The Key Determinants in Development of Antiviral Therapeutics. Viruses 2025; 17:417. [PMID: 40143346 PMCID: PMC11945554 DOI: 10.3390/v17030417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Structural virology has emerged as the foundation for the development of effective antiviral therapeutics. It is pivotal in providing crucial insights into the three-dimensional frame of viruses and viral proteins at atomic-level or near-atomic-level resolution. Structure-based assessment of viral components, including capsids, envelope proteins, replication machinery, and host interaction interfaces, is instrumental in unraveling the multiplex mechanisms of viral infection, replication, and pathogenesis. The structural elucidation of viral enzymes, including proteases, polymerases, and integrases, has been essential in combating viruses like HIV-1 and HIV-2, SARS-CoV-2, and influenza. Techniques including X-ray crystallography, Nuclear Magnetic Resonance spectroscopy, Cryo-electron Microscopy, and Cryo-electron Tomography have revolutionized the field of virology and significantly aided in the discovery of antiviral therapeutics. The ubiquity of chronic viral infections, along with the emergence and reemergence of new viral threats necessitate the development of novel antiviral strategies and agents, while the extensive structural diversity of viruses and their high mutation rates further underscore the critical need for structural analysis of viral proteins to aid antiviral development. This review highlights the significance of structure-based investigations for bridging the gap between structure and function, thus facilitating the development of effective antiviral therapeutics, vaccines, and antibodies for tackling emerging viral threats.
Collapse
Affiliation(s)
- Tanuj Handa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; (T.H.); (A.S.); (P.K.); (J.S.)
| | - Ankita Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; (T.H.); (A.S.); (P.K.); (J.S.)
| | - Aarthi Narayanan
- Department of Biology, College of Science, George Mason University, Fairfax, VA 22030, USA;
| | - Elsa Ronzier
- Biomedical Research Laboratory, Institute for Biohealth Innovation, George Mason University, Fairfax, VA 22030, USA;
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; (T.H.); (A.S.); (P.K.); (J.S.)
| | - Jitin Singla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; (T.H.); (A.S.); (P.K.); (J.S.)
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; (T.H.); (A.S.); (P.K.); (J.S.)
| |
Collapse
|
4
|
Wu X, Li W, Rong H, Pan J, Zhang X, Hu Q, Shi ZL, Zhang XE, Cui Z. A Nanoparticle Vaccine Displaying Conserved Epitopes of the Preexisting Neutralizing Antibody Confers Broad Protection against SARS-CoV-2 Variants. ACS NANO 2024; 18:17749-17763. [PMID: 38935412 DOI: 10.1021/acsnano.4c03075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The rapid development of the SARS-CoV-2 vaccine has been used to prevent the spread of coronavirus 2019 (COVID-19). However, the ongoing and future pandemics caused by SARS-CoV-2 variants and mutations underscore the need for effective vaccines that provide broad-spectrum protection. Here, we developed a nanoparticle vaccine with broad protection against divergent SARS-CoV-2 variants. The corresponding conserved epitopes of the preexisting neutralizing (CePn) antibody were presented on a self-assembling Helicobacter pylori ferritin to generate the CePnF nanoparticle. Intranasal immunization of mice with CePnF nanoparticles induced robust humoral, cellular, and mucosal immune responses and a long-lasting immunity. The CePnF-induced antibodies exhibited cross-reactivity and neutralizing activity against different coronaviruses (CoVs). CePnF vaccination significantly inhibited the replication and pathology of SARS-CoV-2 Delta, WIV04, and Omicron strains in hACE2 transgenic mice and, thus, conferred broad protection against these SARS-CoV-2 variants. Our constructed nanovaccine targeting the conserved epitopes of the preexisting neutralizing antibodies can serve as a promising candidate for a universal SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Xuefan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Heng Rong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jingdi Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Zheng-Li Shi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Xian-En Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
5
|
Vishweshwaraiah YL, Hnath B, Wang J, Chandler M, Mukherjee A, Yennawar NH, Booker SJ, Afonin KA, Dokholyan NV. A Piecewise Design Approach to Engineering a Miniature ACE2 Mimic to Bind SARS-CoV-2. ACS APPLIED BIO MATERIALS 2024; 7:3238-3246. [PMID: 38700999 PMCID: PMC11586090 DOI: 10.1021/acsabm.4c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues its global spread, the exploration of novel therapeutic and diagnostic strategies is still needed. The virus enters host cells by binding the angiotensin-converting enzyme 2 (ACE2) receptor through the spike protein. Here, we develop an engineered, small, stable, and catalytically inactive version of ACE2, termed miniature ACE2 (mACE2), designed to bind the spike protein with high affinity. Employing a magnetic nanoparticle-based assay, we harnessed the strong binding affinity of mACE2 to develop a sensitive and specific platform for the detection or neutralization of SARS-CoV-2. Our findings highlight the potential of engineered mACE2 as a valuable tool in the fight against SARS-CoV-2. The success of developing such a small reagent based on a piecewise molecular design serves as a proof-of-concept approach for the rapid deployment of such agents to diagnose and fight other viral diseases.
Collapse
Affiliation(s)
| | - Brianna Hnath
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| | - Jian Wang
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
| | - Morgan Chandler
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Arnab Mukherjee
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
- The Howard Hughes Medical Institute, Penn State University, University Park, Pennsylvania 16802, United States
| | - Neela H Yennawar
- The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States
| | - Squire J Booker
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
- The Howard Hughes Medical Institute, Penn State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry & Molecular Biology, Penn State University, University Park, Pennsylvania 16802, United States
| | - Kirill A Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
| |
Collapse
|
6
|
Padhi AK, Kalita P, Maurya S, Poluri KM, Tripathi T. From De Novo Design to Redesign: Harnessing Computational Protein Design for Understanding SARS-CoV-2 Molecular Mechanisms and Developing Therapeutics. J Phys Chem B 2023; 127:8717-8735. [PMID: 37815479 DOI: 10.1021/acs.jpcb.3c04542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The continuous emergence of novel SARS-CoV-2 variants and subvariants serves as compelling evidence that COVID-19 is an ongoing concern. The swift, well-coordinated response to the pandemic highlights how technological advancements can accelerate the detection, monitoring, and treatment of the disease. Robust surveillance systems have been established to understand the clinical characteristics of new variants, although the unpredictable nature of these variants presents significant challenges. Some variants have shown resistance to current treatments, but innovative technologies like computational protein design (CPD) offer promising solutions and versatile therapeutics against SARS-CoV-2. Advances in computing power, coupled with open-source platforms like AlphaFold and RFdiffusion (employing deep neural network and diffusion generative models), among many others, have accelerated the design of protein therapeutics with precise structures and intended functions. CPD has played a pivotal role in developing peptide inhibitors, mini proteins, protein mimics, decoy receptors, nanobodies, monoclonal antibodies, identifying drug-resistance mutations, and even redesigning native SARS-CoV-2 proteins. Pending regulatory approval, these designed therapies hold the potential for a lasting impact on human health and sustainability. As SARS-CoV-2 continues to evolve, use of such technologies enables the ongoing development of alternative strategies, thus equipping us for the "New Normal".
Collapse
Affiliation(s)
- Aditya K Padhi
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Parismita Kalita
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Shweata Maurya
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
- Department of Zoology, School of Life Sciences, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
7
|
Palma M. Epitopes and Mimotopes Identification Using Phage Display for Vaccine Development against Infectious Pathogens. Vaccines (Basel) 2023; 11:1176. [PMID: 37514992 PMCID: PMC10384025 DOI: 10.3390/vaccines11071176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Traditional vaccines use inactivated or weakened forms of pathogens which could have side effects and inadequate immune responses. To overcome these challenges, phage display has emerged as a valuable tool for identifying specific epitopes that could be used in vaccines. This review emphasizes the direct connection between epitope identification and vaccine development, filling a crucial gap in the field. This technique allows vaccines to be engineered to effectively stimulate the immune system by presenting carefully selected epitopes. Phage display involves screening libraries of random peptides or gene/genome fragments using serum samples from infected, convalescent, or vaccinated individuals. This method has been used to identify epitopes from various pathogens including SARS-CoV-2, Mycobacterium tuberculosis, hepatitis viruses, H5N1, HIV-1, Human T-lymphotropic virus 1, Plasmodium falciparum, Trypanosoma cruzi, and Dirofilaria repens. Bacteriophages offer advantages such as being immunogenic carriers, low production costs, and customization options, making them a promising alternative to traditional vaccines. The purpose of this study has been to highlight an approach that encompasses the entire process from epitope identification to vaccine production using a single technique, without requiring additional manipulation. Unlike conventional methods, phage display demonstrates exceptional efficiency and speed, which could provide significant advantages in critical scenarios such as pandemics.
Collapse
Affiliation(s)
- Marco Palma
- Institute for Globally Distributed Open Research and Education (IGDORE), 03181 Torrevieja, Spain
- Protheragen Inc., Ronkonkoma, NY 11779, USA
| |
Collapse
|
8
|
Hartung J, McCann N, Doe E, Hayth H, Benkato K, Johnson MB, Viard M, Afonin KA, Khisamutdinov EF. Toehold-Mediated Shape Transition of Nucleic Acid Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25300-25312. [PMID: 37204867 PMCID: PMC10331730 DOI: 10.1021/acsami.3c01604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We introduce a toehold-mediated strand displacement strategy for regulated shape-switching of nucleic acid nanoparticles (NANPs) enabling their sequential transformation from triangular to hexagonal architectures at isothermal conditions. The successful shape transitions were confirmed by electrophoretic mobility shift assays, atomic force microscopy, and dynamic light scattering. Furthermore, implementation of split fluorogenic aptamers allowed for monitoring the individual transitions in real time. Three distinct RNA aptamers─malachite green (MG), broccoli, and mango─were embedded within NANPs as reporter domains to confirm shape transitions. While MG "lights up" within the square, pentagonal, and hexagonal constructs, the broccoli is activated only upon formation of pentagon and hexagon NANPs, and mango reports only the presence of hexagons. Moreover, the designed RNA fluorogenic platform can be employed to construct a logic gate that performs an AND operation with three single-stranded RNA inputs by implementing a non-sequential polygon transformation approach. Importantly, the polygonal scaffolds displayed promising potential as drug delivery agents and biosensors. All polygons exhibited effective cellular internalization followed by specific gene silencing when decorated with fluorophores and RNAi inducers. This work offers a new perspective for the design of toehold-mediated shape-switching nanodevices to activate different light-up aptamers for the development of biosensors, logic gates, and therapeutic devices in the nucleic acid nanotechnology.
Collapse
Affiliation(s)
- Jordan Hartung
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Nathan McCann
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Erwin Doe
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Hannah Hayth
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Kheiria Benkato
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - M Brittany Johnson
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Mathias Viard
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
- Basic Science Program, Leidos Biomedical Research Inc. National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Kirill A Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Emil F Khisamutdinov
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| |
Collapse
|
9
|
Rolband L, Beasock D, Wang Y, Shu YG, Dinman JD, Schlick T, Zhou Y, Kieft JS, Chen SJ, Bussi G, Oukhaled A, Gao X, Šulc P, Binzel D, Bhullar AS, Liang C, Guo P, Afonin KA. Biomotors, viral assembly, and RNA nanobiotechnology: Current achievements and future directions. Comput Struct Biotechnol J 2022; 20:6120-6137. [PMID: 36420155 PMCID: PMC9672130 DOI: 10.1016/j.csbj.2022.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
The International Society of RNA Nanotechnology and Nanomedicine (ISRNN) serves to further the development of a wide variety of functional nucleic acids and other related nanotechnology platforms. To aid in the dissemination of the most recent advancements, a biennial discussion focused on biomotors, viral assembly, and RNA nanobiotechnology has been established where international experts in interdisciplinary fields such as structural biology, biophysical chemistry, nanotechnology, cell and cancer biology, and pharmacology share their latest accomplishments and future perspectives. The results summarized here highlight advancements in our understanding of viral biology and the structure-function relationship of frame-shifting elements in genomic viral RNA, improvements in the predictions of SHAPE analysis of 3D RNA structures, and the understanding of dynamic RNA structures through a variety of experimental and computational means. Additionally, recent advances in the drug delivery, vaccine design, nanopore technologies, biomotor and biomachine development, DNA packaging, RNA nanotechnology, and drug delivery are included in this critical review. We emphasize some of the novel accomplishments, major discussion topics, and present current challenges and perspectives of these emerging fields.
Collapse
Affiliation(s)
- Lewis Rolband
- University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Damian Beasock
- University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Yang Wang
- Wenzhou Institute, University of China Academy of Sciences, 1st, Jinlian Road, Longwan District, Wenzhou, Zhjiang 325001, China
| | - Yao-Gen Shu
- Wenzhou Institute, University of China Academy of Sciences, 1st, Jinlian Road, Longwan District, Wenzhou, Zhjiang 325001, China
| | | | - Tamar Schlick
- New York University, Department of Chemistry and Courant Institute of Mathematical Sciences, Simons Center for Computational Physical Chemistry, New York, NY 10012, USA
| | - Yaoqi Zhou
- Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China
| | - Jeffrey S. Kieft
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Shi-Jie Chen
- University of Missouri at Columbia, Columbia, MO 65211, USA
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34136 Trieste, Italy
| | | | - Xingfa Gao
- National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Petr Šulc
- Arizona State University, Tempe, AZ, USA
| | | | | | - Chenxi Liang
- The Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- The Ohio State University, Columbus, OH 43210, USA
| | - Kirill A. Afonin
- University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|