1
|
Chen L, Quinn L, York JT, Polaske TJ, Nelson AE, Appadoo V, Audu CO, Blackwell HE, Lynn DM. Sprayable Biocide-Free Polyurethane Paint that Reduces Biofouling and Facilitates Removal of Pathogenic Bacteria from Surfaces. ACS OMEGA 2025; 10:7295-7305. [PMID: 40028086 PMCID: PMC11866211 DOI: 10.1021/acsomega.4c11020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/22/2025] [Accepted: 01/29/2025] [Indexed: 03/05/2025]
Abstract
The ability to prevent bacterial adhesion on surfaces and to facilitate the removal of bacteria once they have already contaminated or colonized a surface is important in a broad range of fundamental and applied contexts. The work reported here sought to characterize the physicochemical properties of a family of biocide-free hydrophobic polyurethane coatings containing polysiloxane segments and evaluate their ability to mitigate bacterial fouling and/or facilitate subsequent surface cleaning after exposure to pathogenic bacteria. We developed benchtop microbiological assays to characterize surface fouling and subsequent removal of bacteria after repeated (i) short-term intermittent physical contact with and (ii) longer-term continuous flow-based contact with liquid growth media containing either S. aureus or E. coli, two common Gram-positive or Gram-negative bacterial pathogens, respectively. Characterization of fouled and cleaned surfaces using fluorescence microscopy and standard agar-based plaque assays revealed significant differences in both reductions in initial fouling and subsequent cleanability after gentle rinsing with water. These differences correlated to differences in the surface properties of these materials (e.g., hydrophobicity and contact angle hysteresis), with coatings exhibiting lower contact angle hysteresis generally having the greatest antibiofouling and easy-to-clean properties. Our results suggest that these biocide-free, siloxane-containing polyurethane-based clearcoat materials show significant promise for the mitigation of surface fouling and bacterial adhesion, which could prove useful in a range of commercial applications, including in "high touch" environments where microbial contamination is endemic.
Collapse
Affiliation(s)
- Lawrence
M. Chen
- Department
of Chemical and Biological Engineering, University of Wisconsin−Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
| | - La’Darious
J. Quinn
- Department
of Chemistry, University of Wisconsin−Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Jordan T. York
- Department
of Chemistry, University of Wisconsin−Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Thomas J. Polaske
- Department
of Chemistry, University of Wisconsin−Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Alexandra E. Nelson
- Department
of Chemistry, University of Wisconsin−Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Visham Appadoo
- PPG
Industries, Inc., Coating Innovation Center, 4325 Rosanna Dr., Allison Park, Pennsylvania 15101, United States
| | - Cornelius O. Audu
- PPG
Industries, Inc., Coating Innovation Center, 4325 Rosanna Dr., Allison Park, Pennsylvania 15101, United States
| | - Helen E. Blackwell
- Department
of Chemistry, University of Wisconsin−Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - David M. Lynn
- Department
of Chemical and Biological Engineering, University of Wisconsin−Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
- Department
of Chemistry, University of Wisconsin−Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Kasapgil E, Garay-Sarmiento M, Rodriguez-Emmenegger C. Advanced Antibacterial Strategies for Combatting Biomaterial-Associated Infections: A Comprehensive Review. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2018. [PMID: 39654369 DOI: 10.1002/wnan.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024]
Abstract
Biomaterial-associated infections (BAIs) pose significant challenges in modern medical technologies, being a major postoperative complication and leading cause of implant failure. These infections significantly risk patient health, resulting in prolonged hospitalization, increased morbidity and mortality rates, and elevated treatment expenses. This comprehensive review examines the mechanisms driving bacterial adhesion and biofilm formation on biomaterial surfaces, offering an in-depth analysis of current antimicrobial strategies for preventing BAIs. We explore antimicrobial-eluting biomaterials, contact-killing surfaces, and antifouling coatings, emphasizing the application of antifouling polymer brushes on medical devices. Recent advancements in multifunctional antimicrobial biomaterials, which integrate multiple mechanisms for superior protection against BAIs, are also discussed. By evaluating the advantages and limitations of these strategies, this review aims to guide the design and development of highly efficient and biocompatible antimicrobial biomaterials. We highlight potential design routes that facilitate the transition from laboratory research to clinical applications. Additionally, we provide insights into the potential of synthetic biology as a novel approach to combat antimicrobial resistance. This review aspires to inspire future research and innovation, ultimately improving patient outcomes and advancing medical device technology.
Collapse
Affiliation(s)
- Esra Kasapgil
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Bakircay University, Izmir, Turkey
- Bioinspired Interactive Materials and Protocellular Systems Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Manuela Garay-Sarmiento
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
- Department of Biotechnology, RWTH Aachen University, Aachen, Germany
- Department of Chemical and Biological Engineering, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - César Rodriguez-Emmenegger
- Bioinspired Interactive Materials and Protocellular Systems Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials and Nanomedicine, The Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Benny AT, Thamim M, Easwaran N, Gothandam KM, Thirumoorthy K, Radhakrishnan EK. Attenuation of Quorum Sensing Mediated Virulence Factors and Biofilm Formation in Pseudomonas Aeruginosa PAO1 by Substituted Chalcones and Flavonols. Chem Biodivers 2024; 21:e202400393. [PMID: 38946224 DOI: 10.1002/cbdv.202400393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Flavonoids epitomize structural scaffolds in many biologically active synthetic and natural compounds. They showcase a diverse spectrum of biological activities including anticancer, antidiabetic, antituberculosis, antimalarial, and antibiofilm activities. The antibiofilm activity of a series of new chalcones and flavonols against clinically significant Pseudomonas aeruginosa PAO1 strain was studied. Antivirulence activities were screened by analysing the effect of compounds on the production of virulence factors like pyocyanin, LasA protease, cell surface hydrophobicity, and rhamnolipid. The best ligands towards the quorum sensing proteins LasR, RhlR, and PqsR were recognised using a molecular docking study. The gene expression in P. aeruginosa after treatment with test compounds was evaluated on quorum sensing genes including rhlA, lasB, and pqsE. The antibiofilm potential of chalcones and flavonols was confirmed by the efficient reduction in the production of virulence factors and downregulation of gene expression.
Collapse
Affiliation(s)
- Anjitha Theres Benny
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - Masthan Thamim
- Department of Chemistry, School of Advanced Sciences and Languages, VIT Bhopal University, Bhopal, 466114
| | - Nalini Easwaran
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632014
| | | | - Krishnan Thirumoorthy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | | |
Collapse
|
4
|
Benny AT, Thamim M, Srivastava P, Suresh S, Thirumoorthy K, Rangasamy L, S K, Easwaran N, Radhakrishnan EK. Synthesis and study of antibiofilm and antivirulence properties of flavonol analogues generated by palladium catalyzed ligand free Suzuki-Miyaura coupling against Pseudomonas aeruginosa PAO1. RSC Adv 2024; 14:12278-12293. [PMID: 38633488 PMCID: PMC11019961 DOI: 10.1039/d3ra08617h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
The Suzuki-Miyaura coupling is one of the ubiquitous method for the carbon-carbon bond-forming reactions in organic chemistry. Its popularity is due to its ability to undergo extensive coupling reactions to generate a broad range of biaryl motifs in a straightforward manner displaying a high level of functional group tolerance. A convenient and efficient synthetic route to arylate different substituted flavonols through the Suzuki-Miyaura cross-coupling reaction has been explained in this study. The arylated products were acquired by the coupling of a variety of aryl boronic acids with flavonols under Pd(OAc)2 catalyzed reaction conditions in a ligand-free reaction strategy. Subsequently, the antibiofilm and antivirulence properties of the arylated flavonols against Pseudomonas aeruginosa PAO1 were studied thoroughly. The best ligands for quorum sensing proteins LasR, RhlR, and PqsR were identified using molecular docking study. These best fitting ligands were then studied for their impact on gene expression level of P. aeruginosa by RT-PCR towards quorum sensing genes lasB, rhlA, and pqsE. The downregulation in the gene expression with the effect of synthesized flavonols endorse the antibiofilm efficiency of the compounds.
Collapse
Affiliation(s)
- Anjitha Theres Benny
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 India
| | - Masthan Thamim
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 India
| | | | - Sindoora Suresh
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 India
| | - Krishnan Thirumoorthy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 India
| | - Loganathan Rangasamy
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology Vellore-632014 India
| | - Karthikeyan S
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology Vellore-632014 India
| | - Nalini Easwaran
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology VIT Vellore-632014 India
| | | |
Collapse
|
5
|
Qu Y, Zou Y, Wang G, Zhang Y, Yu Q. Disruption of Communication: Recent Advances in Antibiofilm Materials with Anti-Quorum Sensing Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13353-13383. [PMID: 38462699 DOI: 10.1021/acsami.4c01428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Biofilm contamination presents a significant threat to public health, the food industry, and aquatic/marine-related applications. In recent decades, although various methods have emerged to combat biofilm contamination, the intricate and persistent nature of biofilms makes complete eradication challenging. Therefore, innovative alternative solutions are imperative for addressing biofilm formation. Instead of solely focusing on the eradication of mature biofilms, strategically advantageous measures involve the delay or prevention of biofilm formation on surfaces. Quorum sensing, a communication system enabling bacteria to coordinate their behavior based on population density, plays a pivotal role in biofilm formation for numerous microbial species. Materials possessing antibiofilm properties that target quorum sensing have gained considerable attention for their potential to prevent biofilm formation. This Review consolidates recent research progress on the utilization of materials with antiquorum sensing properties for combating biofilm formation. These materials can be categorized into three distinct types: (i) antibiofilm nanomaterials, (ii) antibiofilm surfaces, and (iii) antibiofilm hydrogels with antiquorum sensing capabilities. Finally, the Review concludes with a brief discussion of current challenges and outlines potential avenues for future research.
Collapse
Affiliation(s)
- Yangcui Qu
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, P. R. China
| | - Yi Zou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Guannan Wang
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, P. R. China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215006, P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
6
|
Zheng SY, Ni Y, Zhou J, Gu Y, Wang Y, Yuan J, Wang X, Zhang D, Liu S, Yang J. Photo-switchable supramolecular comb-like polymer brush based on host-guest recognition for use as antimicrobial smart surface. J Mater Chem B 2022; 10:3039-3047. [PMID: 35355043 DOI: 10.1039/d2tb00206j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bacterial infections from biomedical devices pose a great threat to the health of humans and thus place a heavy burden on society. Therefore, developing efficient antibacterial surfaces has attracted much attention. However, it is a challenge to identify or develop a combination that efficiently integrates multiple functions via topological tailoring and on-demand function-switch via non-contact and noninvasive stimuli. To resolve this issue, a highly hydrophilic comb polymer brush was constructed here based on supramolecular host-guest recognition. Azobenzene (azo)-modified antifouling and antibacterial polymers were incorporated into cyclodextrin (CD)-modified antifouling polymer brushes grafted on the surface. The surface thus obtained possessed excellent antifouling performance with a low bacterial density of ∼6.25 × 105 cells per cm2 after 48 h and exhibited a high efficiency of ∼88.2% for killing bacteria. Besides, irradiation with UV light resulted in the desorption of the azo-polymers and a release of ∼85.1% attached bacteria. Irradiating visible light led to the re-adsorption of azo-polymers, which regenerated the fresh surface; the process could be repeated for at least three cycles, and the surface still maintained low bacterial attachments with a cell density of ∼7.10 × 105 cells per cm2, high sterilization efficiency of ∼93.8%, and a bacteria release rate of ∼83.1% in the 3rd cycle. The photo-switchable antibacterial surface presented in this research will provide new insights into the development of smart biomedical surfaces.
Collapse
Affiliation(s)
- Si Yu Zheng
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yifeng Ni
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jiahui Zhou
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yucong Gu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yiting Wang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jingfeng Yuan
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiaoyu Wang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, College of Engineering and Polymer Science, The University of Akron, Ohio 44325, USA.
| | - Shanqiu Liu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jintao Yang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
7
|
West KHJ, Gahan CG, Kierski PR, Calderon DF, Zhao K, Czuprynski CJ, McAnulty JF, Lynn DM, Blackwell HE. Sustained Release of a Synthetic Autoinducing Peptide Mimetic Blocks Bacterial Communication and Virulence In Vivo. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Curran G. Gahan
- University of Wisconsin-Madison Chemical and Biological Engineering UNITED STATES
| | | | - Diego F. Calderon
- University of Wisconsin-Madison Pathobiological Sciences UNITED STATES
| | - Ke Zhao
- University of Wisconsin-Madison Chemistry 1101 University Ave. 53706 Madison UNITED STATES
| | | | | | - David M. Lynn
- University of Wisconsin-Madison Chemical and Biological Engineering UNITED STATES
| | - Helen E. Blackwell
- University of Wisconsin Department of Chemistry 1101 University Ave.Room 5211a Chemistry 53706-1322 Madison UNITED STATES
| |
Collapse
|
8
|
West KHJ, Gahan CG, Kierski PR, Calderon DF, Zhao K, Czuprynski CJ, McAnulty JF, Lynn DM, Blackwell HE. Sustained Release of a Synthetic Autoinducing Peptide Mimetic Blocks Bacterial Communication and Virulence In Vivo. Angew Chem Int Ed Engl 2022; 61:e202201798. [PMID: 35334139 PMCID: PMC9322450 DOI: 10.1002/anie.202201798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 11/07/2022]
Abstract
A synthetic peptide was found to block cell-to-cell signalling, or quorum sensing, in bacteria and be highly bioavailable in mouse tissue. The controlled release of this agent from degradable polymeric microparticles strongly inhibited skin infection in a wound model at levels that far surpassed the potency of the peptide when delivered conventionally.
Collapse
Affiliation(s)
- Korbin H. J. West
- Department of ChemistryUniversity of Wisconsin-Madison1101 University Ave.MadisonWI 53706USA
| | - Curran G. Gahan
- Department of Chemical and Biological EngineeringUniversity of Wisconsin-Madison1415 Engineering Dr.MadisonWI 53706USA
| | - Patricia R. Kierski
- Department of Surgical SciencesSchool of Veterinary MedicineUniversity of Wisconsin-Madison2015 Linden Dr.MadisonWI 53706USA
| | - Diego F. Calderon
- Department of Pathobiological SciencesSchool of Veterinary MedicineUniversity of Wisconsin-Madison2015 Linden Dr.MadisonWI 53706USA
| | - Ke Zhao
- Department of ChemistryUniversity of Wisconsin-Madison1101 University Ave.MadisonWI 53706USA
| | - Charles J. Czuprynski
- Department of Pathobiological SciencesSchool of Veterinary MedicineUniversity of Wisconsin-Madison2015 Linden Dr.MadisonWI 53706USA
| | - Jonathan F. McAnulty
- Department of Surgical SciencesSchool of Veterinary MedicineUniversity of Wisconsin-Madison2015 Linden Dr.MadisonWI 53706USA
| | - David M. Lynn
- Department of ChemistryUniversity of Wisconsin-Madison1101 University Ave.MadisonWI 53706USA
- Department of Chemical and Biological EngineeringUniversity of Wisconsin-Madison1415 Engineering Dr.MadisonWI 53706USA
| | - Helen E. Blackwell
- Department of ChemistryUniversity of Wisconsin-Madison1101 University Ave.MadisonWI 53706USA
| |
Collapse
|
9
|
Jiang T, Qi L, Hou C, Fang S, Qin W. Self-Sterilizing Polymeric Membrane Sensors Based on 6-Chloroindole Release for Prevention of Marine Biofouling. Anal Chem 2020; 92:12132-12136. [DOI: 10.1021/acs.analchem.0c03099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tianjia Jiang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China
| | - Longbin Qi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chao Hou
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Shengtao Fang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
10
|
Ortiz BJ, Boursier ME, Barrett KL, Manson DE, Amador-Noguez D, Abbott NL, Blackwell HE, Lynn DM. Liquid Crystal Emulsions That Intercept and Report on Bacterial Quorum Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29056-29065. [PMID: 32484648 PMCID: PMC7343617 DOI: 10.1021/acsami.0c05792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We report aqueous emulsions of thermotropic liquid crystals (LCs) that can intercept and report on the presence of N-acyl-l-homoserine lactones (AHLs), a class of amphiphiles used by pathogenic bacteria to regulate quorum sensing (QS), monitor population densities, and initiate group activities, including biofilm formation and virulence factor production. The concentration of AHL required to promote "bipolar" to "radial" transitions in micrometer-scale droplets of the nematic LC 4'-pentyl-cyanobiphenyl (5CB) decreases with increasing carbon number in the acyl tail, reaching a threshold concentration of 7.1 μM for 3-oxo-C12-AHL, a native QS signal in the pathogen Pseudomonas aeruginosa. The LC droplets in these emulsions also respond to biologically relevant concentrations of the biosurfactant rhamnolipid, a virulence factor produced by communities of P. aeruginosa under the control of QS. Systematic studies using bacterial mutants support the conclusion that these emulsions respond selectively to the production of rhamnolipid and AHLs and not to other products produced by bacteria at lower (subquorate) population densities. Finally, these emulsions remain configurationally stable in growth media, enabling them to be deployed either in bacterial supernatants or in situ in bacterial cultures to eavesdrop on QS and report on changes in bacterial group behavior that can be detected in real time using polarized light. Our results provide new tools to detect and report on bacterial QS and virulence and a materials platform for the rapid and in situ monitoring of bacterial communication and resulting group behaviors in bacterial communities.
Collapse
Affiliation(s)
- Benjamín J Ortiz
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Michelle E Boursier
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kelsey L Barrett
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Daniel E Manson
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Nicholas L Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - David M Lynn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
11
|
Chatterjee S, Biswas N, Datta A, Maiti PK. Periodicities in the roughness and biofilm growth on glass substrate with etching time: Hydrofluoric acid etchant. PLoS One 2019; 14:e0214192. [PMID: 30917172 PMCID: PMC6436708 DOI: 10.1371/journal.pone.0214192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/10/2019] [Indexed: 01/08/2023] Open
Abstract
Adherence of the microorganism to submerged solid surfaces leads to biofilm formation. Biofilm formation modifies the surfaces in favor of bacteria facilitating the survival of the bacteria under different stressed conditions. On the other hand, the formation of biofilm has a direct adverse economic impact in various industries and more importantly in medical practices. This adherence is the reason for the failure of many indwelling medical devices. Surface biofilm adhesion is the key to biofilm growth and stability. Hence this adhesion needs to be substantially lowered to inhibit biofilm stability. Both chemical and physical properties of the surface influence biofilm formation and modulating these properties can control this formation. In this study, we have investigated the effect of Hydrofluoric acid (HF), at a specific concentration as an etchant, on the surface morphology of substrates and the growth of biofilms of Pseudomonas aeruginosa. and Staphylococcus aureus. We find that the bacterial counts on the etched surfaces undergo a periodic increase and decrease. This, on one hand, shows the close correlation between the biofilm growth and the particular roughness scale, and on the other hand, explains the existing contradictory results regarding the effects of etching on substrate roughness and biofilm growth. We propose a simple model of a sequence of hole formation, hole expansion and etching away of the hole walls to form a new, comparatively smooth surface, coupled with the preferential accumulation of bacteria at the hole edges, to explain these periodicities.
Collapse
Affiliation(s)
- Susmita Chatterjee
- Institute of Post-Graduate Medical Education and Research, Kolkata, INDIA
- * E-mail:
| | - Nupur Biswas
- Surface Physics and Materials Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, INDIA
| | - Alokmay Datta
- Surface Physics and Materials Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, INDIA
| | | |
Collapse
|
12
|
Li M, Kang ET, Chua KL, Neoh KG. Sugar-powered nanoantimicrobials for combating bacterial biofilms. Biomater Sci 2019; 7:2961-2974. [DOI: 10.1039/c9bm00471h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sugar-modified cyclodextrin complexed with quorum sensing inhibitor and antibiotics showed enhanced efficacy in preventing and eradicating bacterial biofilms.
Collapse
Affiliation(s)
- Min Li
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
| | - Kim Lee Chua
- Department of Biochemistry
- National University of Singapore
- Singapore 117543
| | - Koon Gee Neoh
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
| |
Collapse
|
13
|
Wang X, Yan S, Song L, Shi H, Yang H, Luan S, Huang Y, Yin J, Khan AF, Zhao J. Temperature-Responsive Hierarchical Polymer Brushes Switching from Bactericidal to Cell Repellency. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40930-40939. [PMID: 29111641 DOI: 10.1021/acsami.7b09968] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Unlike conventional poly(N-isopropylacrylamide) (PNIPAM)-based surfaces switching from bactericidal activity to bacterial repellency upon decreasing temperature, we developed a hierarchical polymer architecture, which could maintain bactericidal activities at room temperature while presenting bacterial repellency at physiological temperature. In this architecture, a thermoresponsive bactericidal upper layer consisting of PNIPAM-based copolymer and vancomycin (Van) moieties was built on an antifouling poly(sulfobetaine methacrylate) (PSBMA) bottom layer via sequential surface-initiated photoiniferter-mediated polymerization. At room temperature below the lower critical solution temperature (LCST), the PNIPAM-based upper layer was stretchable, facilitating contact killing of bacteria by Van. At physiological temperature (above the LCST), the PNIPAM-based layer collapsed, thus leading to the burial of Van and exposure of bottom PSBMA brushes, finally displaying notable performances in bacterial inhibition, dead bacteria detachment, and biocompatibility, simultaneously. Our strategy provides a novel pathway in the rational design of temperature-sensitive switchable surfaces, which shows great advantages in the real-world infection-resistant applications.
Collapse
Affiliation(s)
- Xianghong Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Shunjie Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Lingjie Song
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Huawei Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Ather Farooq Khan
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology , Defence Road, Off. Raiwind Road, Lahore 54000, Pakistan
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University , Changchun 130022, People's Republic of China
| |
Collapse
|
14
|
Kratochvil MJ, Yang T, Blackwell HE, Lynn DM. Nonwoven Polymer Nanofiber Coatings That Inhibit Quorum Sensing in Staphylococcus aureus: Toward New Nonbactericidal Approaches to Infection Control. ACS Infect Dis 2017; 3:271-280. [PMID: 28118541 PMCID: PMC5392134 DOI: 10.1021/acsinfecdis.6b00173] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report the fabrication and biological evaluation of nonwoven polymer nanofiber coatings that inhibit quorum sensing (QS) and virulence in the human pathogen Staphylococcus aureus. Our results demonstrate that macrocyclic peptide 1, a potent and synthetic nonbactericidal quorum sensing inhibitor (QSI) in S. aureus, can be loaded into degradable polymer nanofibers by electrospinning and that this approach can deposit QSI-loaded nanofiber coatings onto model nonwoven mesh substrates. The QSI was released over ∼3 weeks when these materials were incubated in physiological buffer, retained its biological activity, and strongly inhibited agr-based QS in a GFP reporter strain of S. aureus for at least 14 days without promoting cell death. These materials also inhibited production of hemolysins, a QS-controlled virulence phenotype, and reduced the lysis of erythrocytes when placed in contact with wild-type S. aureus growing on surfaces. This approach is modular and can be used with many different polymers, active agents, and processing parameters to fabricate nanofiber coatings on surfaces important in healthcare contexts. S. aureus is one of the most common causative agents of bacterial infections in humans, and strains of this pathogen have developed significant resistance to conventional antibiotics. The QSI-based strategies reported here thus provide springboards for the development of new anti-infective materials and novel treatment strategies that target virulence as opposed to growth in S. aureus. This approach also provides porous scaffolds for cell culture that could prove useful in future studies on the influence of QS modulation on the development and structure of bacterial communities.
Collapse
Affiliation(s)
- Michael J. Kratochvil
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Tian Yang
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Helen E. Blackwell
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - David M. Lynn
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, Madison, Wisconsin 53706
- Department of Chemical and Biological Engineering, 1415 Engineering Drive, University of Wisconsin–Madison, Madison, Wisconsin 53706
| |
Collapse
|
15
|
Kratochvil MJ, Welsh MA, Manna U, Ortiz BJ, Blackwell HE, Lynn DM. Slippery Liquid-Infused Porous Surfaces that Prevent Bacterial Surface Fouling and Inhibit Virulence Phenotypes in Surrounding Planktonic Cells. ACS Infect Dis 2016; 2:509-17. [PMID: 27626103 PMCID: PMC5198836 DOI: 10.1021/acsinfecdis.6b00065] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Surfaces that can both prevent bacterial biofouling and inhibit the expression of virulence phenotypes in surrounding planktonic bacteria are of interest in a broad range of contexts. Here, we report new slippery-liquid infused porous surfaces (SLIPS) that resist bacterial colonization (owing to inherent "slippery" surface character) and also attenuate virulence phenotypes in non-adherent cells by gradually releasing small-molecule quorum sensing inhibitors (QSIs). QSIs active against Pseudomonas aeruginosa can be loaded into SLIPS without loss of their slippery and antifouling properties, and imbedded agents can be released into surrounding media over hours to days depending on the structures of the loaded agent. This controlled-release approach is useful for inhibiting virulence factor production and can also inhibit bacterial biofilm formation on nearby, non-SLIPS-coated surfaces. Finally, we demonstrate that this approach is compatible with the simultaneous release of more than one type of QSI, enabling greater control over virulence and suggesting new opportunities to tune the antifouling properties of these slippery surfaces.
Collapse
Affiliation(s)
- Michael J Kratochvil
- Department of Chemistry and ‡Department of Chemical and Biological Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Michael A Welsh
- Department of Chemistry and ‡Department of Chemical and Biological Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Uttam Manna
- Department of Chemistry and ‡Department of Chemical and Biological Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Benjamín J Ortiz
- Department of Chemistry and ‡Department of Chemical and Biological Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Helen E Blackwell
- Department of Chemistry and ‡Department of Chemical and Biological Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - David M Lynn
- Department of Chemistry and ‡Department of Chemical and Biological Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
16
|
Ajani OO, Aderohunmu DV, Ikpo CO, Adedapo AE, Olanrewaju IO. Functionalized Benzimidazole Scaffolds: Privileged Heterocycle for Drug Design in Therapeutic Medicine. Arch Pharm (Weinheim) 2016; 349:475-506. [PMID: 27213292 DOI: 10.1002/ardp.201500464] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/14/2016] [Accepted: 04/22/2016] [Indexed: 01/09/2023]
Abstract
Benzimidazole derivatives are crucial structural scaffolds found in diverse libraries of biologically active compounds which are therapeutically useful agents in drug discovery and medicinal research. They are structural isosteres of naturally occurring nucleotides, which allows them to interact with the biopolymers of living systems. Hence, there is a need to couple the latest information with the earlier documentations to understand the current status of the benzimidazole nucleus in medicinal chemistry research. This present work unveils the benzimidazole core as a multifunctional nucleus that serves as a resourceful tool of information for synthetic modifications of old existing candidates in order to tackle drug resistance bottlenecks in therapeutic medicine. This manuscript deals with the recent advances in the synthesis of benzimidazole derivatives, the widespread biological activities as well as pharmacokinetic reports. These present them as a toolbox for fighting infectious diseases and also make them excellent candidates for future drug design.
Collapse
Affiliation(s)
- Olayinka O Ajani
- Department of Chemistry, Covenant University, CST, Canaanland, Ota, Ogun State, Nigeria
| | - Damilola V Aderohunmu
- Department of Chemistry, Covenant University, CST, Canaanland, Ota, Ogun State, Nigeria
| | - Chinwe O Ikpo
- Department of Chemistry, University of the Western Cape, Bellville, Cape Town, South Africa
| | - Adebusayo E Adedapo
- Department of Chemistry, Covenant University, CST, Canaanland, Ota, Ogun State, Nigeria
| | | |
Collapse
|
17
|
Brackman G, Garcia-Fernandez MJ, Lenoir J, De Meyer L, Remon JP, De Beer T, Concheiro A, Alvarez-Lorenzo C, Coenye T. Dressings Loaded with Cyclodextrin-Hamamelitannin Complexes Increase Staphylococcus aureus Susceptibility Toward Antibiotics Both in Single as well as in Mixed Biofilm Communities. Macromol Biosci 2016; 16:859-69. [PMID: 26891369 DOI: 10.1002/mabi.201500437] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/12/2016] [Indexed: 01/16/2023]
Abstract
Bacteria reside within biofilms at the infection site, making them extremely difficult to eradicate with conventional wound care products. Bacteria use quorum sensing (QS) systems to regulate biofilm formation, and QS inhibitors (QSIs) have been proposed as promising antibiofilm agents. Despite this, few antimicrobial therapies that interfere with QS exist. Nontoxic hydroxypropyl-β-cyclodextrin-functionalized cellulose gauzes releasing a burst of the antibiotic vancomycin and the QSI hamamelitannin are developed, followed by a sustained release of both. The gauzes affect QS and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro model of chronic wound infection and can be considered as candidates to be used to prevent wound infection as well as treat infected wounds.
Collapse
Affiliation(s)
- Gilles Brackman
- Laboratory of Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Maria José Garcia-Fernandez
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Joke Lenoir
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Laurens De Meyer
- Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Jean-Paul Remon
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Angel Concheiro
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| |
Collapse
|
18
|
Wang X, Bhadra CM, Yen Dang TH, Buividas R, Wang J, Crawford RJ, Ivanova EP, Juodkazis S. A bactericidal microfluidic device constructed using nano-textured black silicon. RSC Adv 2016. [DOI: 10.1039/c6ra03864f] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nano-structured black silicon (bSi) was used as a substratum for the construction of a microfluidic device of the highly efficient bactericidal action of this nano-textured surface againstPseudomonas aeruginosabacteria.
Collapse
Affiliation(s)
- Xuewen Wang
- Faculty of Science, Engineering and Technology
- Swinburne University of Technology
- Australia
- Melbourne Centre for Nanofabrication (MCN)
- Australian National Fabrication Facility (ANFF)
| | - Chris M. Bhadra
- Faculty of Science, Engineering and Technology
- Swinburne University of Technology
- Australia
| | - Thi Hoang Yen Dang
- Faculty of Science, Engineering and Technology
- Swinburne University of Technology
- Australia
| | - Ričardas Buividas
- Faculty of Science, Engineering and Technology
- Swinburne University of Technology
- Australia
| | - James Wang
- Faculty of Science, Engineering and Technology
- Swinburne University of Technology
- Australia
| | - Russell J. Crawford
- Faculty of Science, Engineering and Technology
- Swinburne University of Technology
- Australia
| | - Elena P. Ivanova
- Faculty of Science, Engineering and Technology
- Swinburne University of Technology
- Australia
| | - Saulius Juodkazis
- Faculty of Science, Engineering and Technology
- Swinburne University of Technology
- Australia
- Melbourne Centre for Nanofabrication (MCN)
- Australian National Fabrication Facility (ANFF)
| |
Collapse
|
19
|
Balčytis A, Ryu M, Seniutinas G, Juodkazytė J, Cowie BCC, Stoddart PR, Zamengo M, Morikawa J, Juodkazis S. Black-CuO: surface-enhanced Raman scattering and infrared properties. NANOSCALE 2015; 7:18299-18304. [PMID: 26487549 DOI: 10.1039/c5nr04783h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Large surface area samples of nanotextured black CuO were prepared by chemical etching of Cu for use in surface-enhanced Raman scattering (SERS). The SERS intensity of a self-assembled monolayer (SAM) of thiophenol was proportional to the thickness of a nanoscale-conformal Au film deposited by magnetron sputtering over the black CuO. A very high SERS yield of ∼10(4) counts per s per mW was observed for the thiophenol SAM on the thickest Au films studied here. Synchrotron X-ray photoelectron spectroscopy was used to confirm that the surface of the chemically etched Cu was covered by high purity CuO. IR spectral characterization of the black CuO showed a close to linear increase in reflectivity from 25 to 100% over the range of 4000-500 cm(-1) wavenumbers (or 2.5-20 μm in wavelength). Sensing applications and thermal effects in SERS are discussed.
Collapse
Affiliation(s)
- Armandas Balčytis
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, VIC 3122, Australia. and Center for Physical Sciences and Technology, A. Goštauto 9, LT-01108 Vilnius, Lithuania
| | - Meguya Ryu
- Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Gediminas Seniutinas
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, VIC 3122, Australia.
| | - Jurga Juodkazytė
- Center for Physical Sciences and Technology, A. Goštauto 9, LT-01108 Vilnius, Lithuania
| | - Bruce C C Cowie
- Australian Synchrotron, 800 Blackburn Rd., Clayton, VIC 3168, Australia
| | - Paul R Stoddart
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, VIC 3122, Australia.
| | | | - Junko Morikawa
- Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Saulius Juodkazis
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, VIC 3122, Australia. and Center for Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
20
|
Kratochvil MJ, Tal-Gan Y, Yang T, Blackwell HE, Lynn DM. Nanoporous Superhydrophobic Coatings that Promote the Extended Release of Water-Labile Quorum Sensing Inhibitors and Enable Long-Term Modulation of Quorum Sensing in Staphylococcus aureus. ACS Biomater Sci Eng 2015; 1:1039-1049. [PMID: 26501126 PMCID: PMC4604486 DOI: 10.1021/acsbiomaterials.5b00313] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/26/2015] [Indexed: 11/30/2022]
Abstract
![]()
Materials and coatings that inhibit
bacterial colonization are
of interest in a broad range of biomedical, environmental, and industrial
applications. In view of the rapid increase in bacterial resistance
to conventional antibiotics, the development of new strategies that
target nonessential pathways in bacterial pathogens—and that
thereby limit growth and reduce virulence through nonbiocidal means—has
attracted considerable attention. Bacterial quorum sensing (QS) represents
one such target, and is intimately connected to virulence in many
human pathogens. Here, we demonstrate that the properties of nanoporous,
polymer-based superhydrophobic coatings can be exploited to host and
subsequently sustain the extended release of potent and water-labile
peptide-based inhibitors of QS (QSIs) in Staphylococcus aureus. Our results demonstrate that these peptidic QSIs can be released
into surrounding media for periods of at least 8 months, and that
they strongly inhibit agr-based QS in S. aureus for
at least 40 days. These results also suggest that these extremely
nonwetting coatings can confer protection against the rapid hydrolysis
of these water-labile peptides, thereby extending their useful lifetimes.
Finally, we demonstrate that these peptide-loaded superhydrophobic
coatings can strongly modulate the QS-controlled formation of biofilm
in wild-type S. aureus. These nanoporous superhydrophobic
films provide a new, useful, and nonbiocidal approach to the design
of coatings that attenuate bacterial virulence. This approach has
the potential to be general, and could prove suitable for the encapsulation,
protection, and release of other classes of water-sensitive agents.
We anticipate that the materials, strategies, and concepts reported
here will enable new approaches to the long-term attenuation of QS
and associated bacterial phenotypes in a range of basic research and
applied contexts.
Collapse
Affiliation(s)
- Michael J Kratochvil
- Department of Chemistry, 1101 University Avenue, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States
| | - Yftah Tal-Gan
- Department of Chemistry, 1101 University Avenue, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States
| | - Tian Yang
- Department of Chemistry, 1101 University Avenue, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States
| | - Helen E Blackwell
- Department of Chemistry, 1101 University Avenue, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States
| | - David M Lynn
- Department of Chemistry, 1101 University Avenue, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States ; Department of Chemical and Biological Engineering, 1415 Engineering Drive, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
21
|
Wang R, Chua KL, Neoh KG. Bifunctional Coating with Sustained Release of 4-Amide-piperidine-C12 for Long-Term Prevention of Bacterial Colonization on Silicone. ACS Biomater Sci Eng 2015; 1:405-415. [DOI: 10.1021/acsbiomaterials.5b00031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rong Wang
- Department
of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, National University of Singapore, Kent Ridge, Singapore 117576
| | - Kim Lee Chua
- Department
of Biochemistry, 5 Science
Drive 2, National University of Singapore, Kent Ridge, Singapore 117545
| | - Koon Gee Neoh
- Department
of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, National University of Singapore, Kent Ridge, Singapore 117576
| |
Collapse
|
22
|
Goswami S, Thiyagarajan D, Das G, Ramesh A. Biocompatible nanocarrier fortified with a dipyridinium-based amphiphile for eradication of biofilm. ACS APPLIED MATERIALS & INTERFACES 2014; 6:16384-16394. [PMID: 25162678 DOI: 10.1021/am504779t] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Annihilation of bacterial biofilms is challenging owing to their formidable resistance to therapeutic antibiotics and thus there is a constant demand for development of potent antibiofilm agents that can abolish established biofilms. In the present study, the activity of a dipyridinium-based cationic amphiphile (compound 1) against established bacterial biofilms and the subsequent development of a compound 1-loaded nanocarrier for potential antibiofilm therapy are highlighted. Solution-based assays and microscopic analysis revealed the antagonistic effect of compound 1 on biofilms formed by Staphylococcus aureus MTCC 96 and Pseudomonas aeruginosa MTCC 2488. In combination studies, compound 1 could efficiently potentiate the action of tobramycin and gentamicin on P. aeruginosa and S. aureus biofilm, respectively. A human serum albumin (HSA)-based nanocarrier loaded with compound 1 was generated, which exhibited sustained release of compound 1 at physiological pH. The compound 1-loaded HSA nanocarrier (C1-HNC) displayed the signature membrane-directed activity of the amphiphile on target bacteria, efficiently eliminated established bacterial biofilms, and was observed to be nontoxic to a model human cell line. Interestingly, compound 1 as well as the amphiphile-loaded HSA nanocarrier could eradicate established S. aureus biofilm from the surface of a Foley's urinary catheter. On the basis of its biocompatibility and high antibiofilm activity, it is conceived that the amphiphile-loaded nanocarrier may hold potential in antibiofilm therapy.
Collapse
Affiliation(s)
- Sudeep Goswami
- Department of Biotechnology, Indian Institute of Technology Guwahati , Guwahati 781039, India
| | | | | | | |
Collapse
|
23
|
Jennings MC, Ator LE, Paniak TJ, Minbiole KPC, Wuest WM. Biofilm-Eradicating Properties of Quaternary Ammonium Amphiphiles: Simple Mimics of Antimicrobial Peptides. Chembiochem 2014; 15:2211-5. [DOI: 10.1002/cbic.201402254] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Indexed: 11/06/2022]
|
24
|
Broderick AH, Stacy DM, Tal-Gan Y, Kratochvil MJ, Blackwell HE, Lynn DM. Surface coatings that promote rapid release of peptide-based AgrC inhibitors for attenuation of quorum sensing in Staphylococcus aureus. Adv Healthc Mater 2014; 3:97-105. [PMID: 23813683 DOI: 10.1002/adhm.201300119] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Indexed: 11/05/2022]
Abstract
Staphylococcus aureus is a major human pathogen responsible for a variety of life-threatening infections. The pathogenicity of this organism is attributed to its ability to produce a range of virulence factors and toxins, including the superantigen toxic shock syndrome toxin-1 (TSST-1). While many S. aureus infections can be treated using conventional antibiotics, strains resistant to these bactericidal agents have emerged. Approaches that suppress pathogenicity through mechanisms that are nonbactericidal (i.e., antivirulence approaches) could provide new options for treating infections, including those caused by resistant strains. Here, we report a nonbactericidal approach to suppressing pathogenicity based on the release of macrocyclic peptides (1 and 2) that inhibit the agr quorum sensing (QS) circuit in group-III S. aureus. It is demonstrated that these peptides can be immobilized on planar and complex objects (on glass slides, nonwoven meshes, or within absorbent tampons) using the rapidly dissolving polymer carboxymethylcellulose (CMC). Peptide-loaded CMC films released peptide rapidly (<5 min) and promoted strong (>95%) inhibition of the agr QS circuit without inducing cell death when incubated in the presence of a group-III S. aureus gfp-reporter strain. Peptide 1 is among the most potent inhibitors of QS in S. aureus reported to date, and the group-III QS circuit regulates production of TSST-1, the primary cause of toxic shock syndrome (TSS). These results thus suggest approaches to treat the outer covers of tampons, wound dressings, or other objects to suppress toxin production and reduce the severity of TSS in clinical and personal care contexts. Because peptide 1 also inhibits QS in S. aureus groups-I, -II, and -IV, this approach could also provide a pathway for attenuation of QS and associated virulence phenotypes in a broader range of contexts.
Collapse
Affiliation(s)
- Adam H Broderick
- Department of Chemical and Biological Engineering, 1415 Engineering Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|