1
|
Chan WJ, Li H. Recent advances in nano/micro systems for improved circulation stability, enhanced tumor targeting, penetration, and intracellular drug delivery: a review. Biomed Phys Eng Express 2024; 10:022001. [PMID: 38086099 DOI: 10.1088/2057-1976/ad14f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024]
Abstract
In recent years, nanoparticles (NPs) have been extensively developed as drug carriers to overcome the limitations of cancer therapeutics. However, there are several biological barriers to nanomedicines, which include the lack of stability in circulation, limited target specificity, low penetration into tumors and insufficient cellular uptake, restricting the active targeting toward tumors of nanomedicines. To address these challenges, a variety of promising strategies were developed recently, as they can be designed to improve NP accumulation and penetration in tumor tissues, circulation stability, tumor targeting, and intracellular uptake. In this Review, we summarized nanomaterials developed in recent three years that could be utilized to improve drug delivery for cancer treatments.
Collapse
Affiliation(s)
- Wei-Jen Chan
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Huatian Li
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| |
Collapse
|
2
|
Akhter MH, Beg S, Tarique M, Malik A, Afaq S, Choudhry H, Hosawi S. Receptor-based targeting of engineered nanocarrier against solid tumors: Recent progress and challenges ahead. Biochim Biophys Acta Gen Subj 2020; 1865:129777. [PMID: 33130062 DOI: 10.1016/j.bbagen.2020.129777] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Background In past few decades, the research on engineered nanocarriers (NCs) has gained significant attention in cancer therapy due to selective delivery of drug molecules on the diseased cells thereby preventing unwanted uptake into healthy cells to cause toxicity. Scope of review The applicability of enhanced permeability and retention (EPR) effect for the delivery of nanomedicines in cancer therapy has gained limited success due to poor accessibility of the drugs to the target cells where non-specific payload delivery to the off target region lack substantial reward over the conventional therapeutic systems. Major conclusions In spite of the fact, nanomedicines fabricated from the biocompatible nanocarriers have reduced targeting potential for meaningful clinical benefits. However, over expression of receptors on the tumor cells provides opportunity to design functional nanomedicine to bind substantially and deliver therapeutics to the cells or tissues of interest by alleviating the bio-toxicity and unwanted effects. This critique will give insight into the over expressed receptor in various tumor and targeting potential of functional nanomedicine as new therapeutic avenues for effective treatment. General significance This review shortly shed light on EPR-based drug targeting using nanomedicinal strategies, their limitation, and advances in therapeutic targeting to the tumor cells.
Collapse
Affiliation(s)
- Md Habban Akhter
- Department of Pharmaceutics, Faculty of Pharmacy, DIT University, Dehradun, India
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| | - Mohammed Tarique
- Center for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Arshi Malik
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Sarah Afaq
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Okoampah E, Mao Y, Yang S, Sun S, Zhou C. Gold nanoparticles-biomembrane interactions: From fundamental to simulation. Colloids Surf B Biointerfaces 2020; 196:111312. [PMID: 32841786 DOI: 10.1016/j.colsurfb.2020.111312] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/20/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022]
Abstract
Gold Nanoparticles (AuNPs) are a class of promising nanomaterial for biomedical applications ranging from bioimaging, drug delivery to phototherapy because of their biocompatibility, easily tunable size and shape, and versatile surface modifications. In recent years, the rapid development of AuNPs in nanomedicine has made it imperative to seek fundamental understanding on their nano-biointeractions to minimize adverse effects and improve targeting/imaging efficiency. In this review, we summarize the different pathways of NPs-biomembrane interactions with a focus on AuNPs, follow by an analysis on how the physiochemical properties (size, surface charge, shape, surface ligands, and hydrophobicity etc.) of AuNPs can be involved in the mechanisms of cellular uptake. Finally, some recent advances on simulation modelling of AuNPs-biomembrane interactions and a brief outlook in the field are discussed.
Collapse
Affiliation(s)
- Emmanuel Okoampah
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yusheng Mao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Shengyang Yang
- Department of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Shasha Sun
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Chen Zhou
- School of Natural Sciences, University of Central Missouri, Warrensburg, USA.
| |
Collapse
|
4
|
Karthivashan G, Ganesan P, Park SY, Lee HW, Choi DK. Lipid-based nanodelivery approaches for dopamine-replacement therapies in Parkinson's disease: From preclinical to translational studies. Biomaterials 2019; 232:119704. [PMID: 31901690 DOI: 10.1016/j.biomaterials.2019.119704] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022]
Abstract
The incidence of Parkinson's disease (PD), the second most common neurodegenerative disorder, has increased exponentially as the global population continues to age. Although the etiological factors contributing to PD remain uncertain, its average incidence rate is reported to be 1% of the global population older than 60 years. PD is primarily characterized by the progressive loss of dopaminergic (DAergic) neurons and/or associated neuronal networks and the subsequent depletion of dopamine (DA) levels in the brain. Thus, DA or levodopa (l-dopa), a precursor of DA, represent cardinal targets for both idiopathic and symptomatic PD therapeutics. While several therapeutic strategies have been investigated over the past decade for their abilities to curb the progression of PD, an effective cure for PD is currently unavailable. Even DA replacement therapy, an effective PD therapeutic strategy that provides an exogenous supply of DA or l-dopa, has been hindered by severe challenges, such as a poor capacity to bypass the blood-brain barrier and inadequate bioavailability. Nevertheless, with recent advances in nanotechnology, several drug delivery systems have been developed to bypass the barriers associated with central nervous system therapeutics. In here, we sought to describe the adapted lipid-based nanodrug delivery systems used in the field of PD therapeutics and their recent advances, with a particular focus placed on DA replacement therapies. This work initially explores the background of PD; offers descriptions of the most recent molecular targets; currently available clinical medications/limitations; an overview of several lipid-based PD nanotherapeutics, functionalized nanoparticles, and technical aspects in brain delivery; and, finally, presents future perspectives to enhance the use of nanotherapeutics in PD treatment.
Collapse
Affiliation(s)
- Govindarajan Karthivashan
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea; Research Institute of Inflammatory Diseases (RID), College of Biomedical and Health Science and BK21plus Glocal Education Program of Nutraceuticals Development, Konkuk University, Chungju, 27478, Republic of Korea
| | - Palanivel Ganesan
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea; Department of Biomedical Chemistry, Nanotechnology Research Center, Department of Applied Life Science, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea
| | - Shin-Young Park
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea
| | - Ho-Won Lee
- Department of Neurology, Kyungpook National University School of Medicine and Brain Science & Engineering Institute, Kyungpook National University, Daegu, 41404, Republic of Korea
| | - Dong-Kug Choi
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea; Research Institute of Inflammatory Diseases (RID), College of Biomedical and Health Science and BK21plus Glocal Education Program of Nutraceuticals Development, Konkuk University, Chungju, 27478, Republic of Korea.
| |
Collapse
|
5
|
Proshkina G, Deyev S, Ryabova A, Tavanti F, Menziani MC, Cohen R, Katrivas L, Kotlyar A. DARPin_9-29-Targeted Mini Gold Nanorods Specifically Eliminate HER2-Overexpressing Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34645-34651. [PMID: 31448887 DOI: 10.1021/acsami.9b10441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We have demonstrated that designed ankyrin repeat protein (DARPin) _9-29, which specifically targets human epidermal growth factor receptor 2 (HER2), binds tightly to gold mini nanorods (GNRs). Molecular dynamic simulations showed that a single layer of DARPin_9-29 molecules is formed on the surface of the nanorod and that conjugation with the nanorod does not involve the protein's domain responsible for specific binding to HER2. The nanorod-DARPin (DARPin-GNR) conjugate is specifically bound (in nanomolar concentrations) to human breast adenocarcinoma SK-BR-3 cells overexpressing HER2. Illumination by near-infrared light (850 nm) led to almost complete eradication of the conjugate-treated SK-BR-3 cells; the viability of epithelial human breast cancer cells expressing normal amounts of the receptor was much less affected by the illumination. The results reported here pave the way toward application of DARPin-GNR conjugates in phototherapy of cancer.
Collapse
Affiliation(s)
- Galina Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences , Miklukho-Maklaya St, 16/10 , Moscow 117997 , Russia
| | - Sergey Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences , Miklukho-Maklaya St, 16/10 , Moscow 117997 , Russia
| | - Anastasiya Ryabova
- Prokhorov General Physics Institute of the Russian Academy of Sciences , 38 Vavilova St , Moscow 119991 , Russia
| | - Francesco Tavanti
- Department of Chemical and Geological Sciences , University of Modena and Reggio Emilia , Via Campi 103 , 41125 Modena , Italy
| | - Maria Cristina Menziani
- Department of Chemical and Geological Sciences , University of Modena and Reggio Emilia , Via Campi 103 , 41125 Modena , Italy
| | - Roy Cohen
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and the Center of Nanoscience and Nanotechnology , Tel Aviv University , Ramat Aviv , Tel Aviv 69978 , Israel
| | - Liat Katrivas
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and the Center of Nanoscience and Nanotechnology , Tel Aviv University , Ramat Aviv , Tel Aviv 69978 , Israel
| | - Alexander Kotlyar
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and the Center of Nanoscience and Nanotechnology , Tel Aviv University , Ramat Aviv , Tel Aviv 69978 , Israel
| |
Collapse
|
6
|
Antunes JC, Benarroch L, Moraes FC, Juenet M, Gross MS, Aubart M, Boileau C, Caligiuri G, Nicoletti A, Ollivier V, Chaubet F, Letourneur D, Chauvierre C. Core-Shell Polymer-Based Nanoparticles Deliver miR-155-5p to Endothelial Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:210-222. [PMID: 31265949 PMCID: PMC6610682 DOI: 10.1016/j.omtn.2019.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022]
Abstract
Heart failure occurs in over 30% of the worldwide population and most commonly originates from cardiovascular diseases such as myocardial infarction. microRNAs (miRNAs) target and silence specific mRNAs, thereby regulating gene expression. Because the endogenous miR-155-5p has been ascribed to vasculoprotection, loading it onto positively charged, core-shell poly(isobutylcyanoacrylate) (PIBCA)-polysaccharide nanoparticles (NPs) was attempted. NPs showed a decrease (p < 0.0001) in surface electrical charge (ζ potential), with negligible changes in size or shape when loaded with the anionic miR-155-5p. Presence of miR-155-5p in loaded NPs was further quantified. Cytocompatibility up to 100 μg/mL of NPs for 2 days with human coronary artery endothelial cells (hCAECs) was documented. NPs were able to enter hCAECs and were localized in the endoplasmic reticulum (ER). Expression of miR-155-5p was increased within the cells by 75-fold after 4 hours of incubation (p < 0.05) and was still noticeable at day 2. Differences between loaded NP-cultured cells and free miRNA, at days 1 (p < 0.05) and 2 (p < 0.001) suggest the ability of prolonged load release in physiological conditions. Expression of miR-155-5p downstream target BACH1 was decreased in the cells by 4-fold after 1 day of incubation (p < 0.05). This study is a first proof of concept that miR-155-5p can be loaded onto NPs and remain intact and biologically active in endothelial cells (ECs). These nanosystems could potentially increase an endogenous cytoprotective response and decrease damage within infarcted hearts.
Collapse
Affiliation(s)
- Joana C Antunes
- Université de Paris, LVTS, INSERM U1148, Université Paris 13, 75018 Paris, France
| | - Louise Benarroch
- Université de Paris, LVTS, INSERM U1148, Université Paris 13, 75018 Paris, France
| | - Fernanda C Moraes
- Université de Paris, LVTS, INSERM U1148, Université Paris 13, 75018 Paris, France
| | - Maya Juenet
- Université de Paris, LVTS, INSERM U1148, Université Paris 13, 75018 Paris, France
| | - Marie-Sylvie Gross
- Université de Paris, LVTS, INSERM U1148, Université Paris 13, 75018 Paris, France
| | - Mélodie Aubart
- Université de Paris, LVTS, INSERM U1148, Université Paris 13, 75018 Paris, France
| | - Catherine Boileau
- Université de Paris, LVTS, INSERM U1148, Université Paris 13, 75018 Paris, France
| | - Giuseppina Caligiuri
- Université de Paris, LVTS, INSERM U1148, Université Paris 13, 75018 Paris, France
| | - Antonino Nicoletti
- Université de Paris, LVTS, INSERM U1148, Université Paris 13, 75018 Paris, France
| | - Véronique Ollivier
- Université de Paris, LVTS, INSERM U1148, Université Paris 13, 75018 Paris, France
| | - Frédéric Chaubet
- Université de Paris, LVTS, INSERM U1148, Université Paris 13, 75018 Paris, France
| | - Didier Letourneur
- Université de Paris, LVTS, INSERM U1148, Université Paris 13, 75018 Paris, France
| | - Cédric Chauvierre
- Université de Paris, LVTS, INSERM U1148, Université Paris 13, 75018 Paris, France.
| |
Collapse
|
7
|
Sun Z, Cheng K, Yao Y, Wu F, Fung J, Chen H, Ma X, Tu Y, Xing L, Xia L, Cheng Z. Controlled Nano-Bio Interface of Functional Nanoprobes for in Vivo Monitoring Enzyme Activity in Tumors. ACS NANO 2019; 13:1153-1167. [PMID: 30673268 DOI: 10.1021/acsnano.8b05825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Engineering inorganic nanoparticles with a biocompatible shell to improve their physicochemical properties is a vital step in taking advantage of their superior magnetic, optical, and photothermal properties as multifunctional molecular imaging probes for disease diagnosis and treatment. The grafting/peeling-off strategy we developed for nanoparticle surface coating can fully control the targeting capability of functional nanoprobes by changing their colloidal behaviors such as diffusion and sedimentation rates at the desired sites. We demonstrated that a cleavable coating layer initially immobilized on the surface of magnetic resonance imaging probes not only makes the nanoparticles water-soluble but also can be selectively removed by specific enzymes, thereby resulting in a significant decrease of their water solubility in an enzyme-rich environment. Upon removal of surface coating, the changes in hydrodynamic size and surface charges of nanoprobes as a result of interacting with biomolecules and proteins lead to dramatic changes in their in vivo colloidal behaviors ( i. e., slow diffusion rates, tendency to aggregate and precipitate), which were quantitatively evaluated by examining changes in their hydrodynamic sizes, magnetic properties, and count rates during the size measurement. Because the retention time of nanoprobes within the tumor tissues depends on the uptake and excretion rate of the nanoprobes through the tumors, selective activation of nanoprobes by a specific enzyme resulted in much higher tumor accumulation and longer retention time within the tumors than that of the inactive nanoprobes, which passively passed through the tumors. The imaging contrast effect of tumors using activatable nanoprobes was significantly improved over using inactive probes. Therefore, the grafting/peeling-off strategy, as a general design approach for surface modification of nanoprobes, offers a promising and highly efficient way to render the nanoparticles suitable for targeted imaging of tumors.
Collapse
Affiliation(s)
- Ziyan Sun
- Department of Radiology, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | | | | | - Fengyu Wu
- Department of Nuclear Medicine, PET/CT Center , Affiliated Hospital of Qingdao University , Qingdao 266003 , China
| | | | | | | | | | | | - Liming Xia
- Department of Radiology, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | | |
Collapse
|
8
|
Caputo D, Cartillone M, Cascone C, Pozzi D, Digiacomo L, Palchetti S, Caracciolo G, Coppola R. Improving the accuracy of pancreatic cancer clinical staging by exploitation of nanoparticle-blood interactions: A pilot study. Pancreatology 2018; 18:661-665. [PMID: 29914752 DOI: 10.1016/j.pan.2018.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/07/2018] [Accepted: 06/10/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) early diagnosis is crucial and new, cheap and user-friendly techniques for biomarker identification are needed. "Protein corona" (PC) is emerging a new bio-interface potentially useful in tumor early diagnosis. In a previous investigation, we showed that relevant differences between the protein patterns of PCs formed on lipid NPs after exposure to PDAC and non-cancer plasma samples exist. To extend that research, We performed this pilot study to investigate the effect of PDAC tumor size and distant metastases on PC composition. METHODS Twenty PDACs were clinically staged according to the UICC TNM staging system 8 t h Edition. Collected plasma samples were let to interact with lipid NPs; resulting PCs were characterized by SDS-PAGE. To properly evaluate changes in the PC, the protein intensity profiles were reduced to four regions of molecular weight: < 25 kDa, 25-50 kDa, 50-120 kDa, > 120 kDa. RESULTS: Data analysis allowed to distinguish T1-T2 cases from T3 and above all from metastatic ones (p < 0.05). Discrimination power was particularly due to a subset of plasma proteins with molecular weight comprised between 25-50 kDa and 50-120 kDa. CONCLUSIONS PC composition is critically influenced by tumor size and presence of distant metastases in PDAC. If our findings will be further confirmed, we envision that future developments of cheap and user-friendly PC-based tools will allow to improve the accuracy of PDAC clinical staging, identifying among resectable PDACs with potentially better prognosis (i.e. T1 and T2) those at higher risk of occult distant metastases.
Collapse
Affiliation(s)
- D Caputo
- Department of Surgery, University Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128, Rome, Italy.
| | - M Cartillone
- Department of Surgery, University Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - C Cascone
- Department of Surgery, University Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - D Pozzi
- Department of Molecular Medicine, 'Sapienza' University of Rome, Viale Regina Elena 291, 00161, Rome, Italy; Istituti Fisioterapici Ospitalieri, Istituto Regina Elena, Via Elio Chianesi 53, 00144, Rome, Italy
| | - L Digiacomo
- Department of Molecular Medicine, 'Sapienza' University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - S Palchetti
- Department of Molecular Medicine, 'Sapienza' University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - G Caracciolo
- Department of Molecular Medicine, 'Sapienza' University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - R Coppola
- Department of Surgery, University Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128, Rome, Italy
| |
Collapse
|
9
|
Intracellular delivery of colloids: Past and future contributions from microinjection. Adv Drug Deliv Rev 2018; 132:3-15. [PMID: 29935217 DOI: 10.1016/j.addr.2018.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/06/2018] [Accepted: 06/18/2018] [Indexed: 01/07/2023]
Abstract
The manipulation of single cells and whole tissues has been possible since the early 70's, when semi-automatic injectors were developed. Since then, microinjection has been used to introduce an ever-expanding range of colloids of up to 1000 nm in size into living cells. Besides injecting nucleic acids to study transfection mechanisms, numerous cellular pathways have been unraveled through the introduction of recombinant proteins and blocking antibodies. The injection of nanoparticles has also become popular in recent years to investigate toxicity mechanisms and intracellular transport, and to conceive semi-synthetic cells containing artificial organelles. This article reviews colloidal systems such as proteins, nucleic acids and nanoparticles that have been injected into cells for different research aims, and discusses the scientific advances achieved through them. The colloids' intracellular processing and ultimate fate are also examined from a drug delivery perspective with an emphasis on the differences observed for endocytosed versus microinjected material.
Collapse
|
10
|
Carnevale KJF, Riskowski RA, Strouse GF. A Gold Nanoparticle Bio-Optical Transponder to Dynamically Monitor Intracellular pH. ACS NANO 2018; 12:5956-5968. [PMID: 29874043 DOI: 10.1021/acsnano.8b02200] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A pH-sensitive bio-optical transponder (pH-BOT) capable of simultaneously reporting the timing of intracellular DNA cargo release from a gold nanoparticle (AuNP) and the evolving intracellular pH (pH i) during endosomal maturation is demonstrated. The pH-BOT is designed with a triple-dye-labeled duplex DNA appended to a 6.6 nm AuNP, utilizing pH-responsive fluorescein paired with DyLight405 as a surface energy transfer (SET) coupled dye pair to ratiometrically report the pH at and after cargo release. A non-SET-coupled dye, DyLight 700, is used to provide dynamic tracking throughout the experiment. The pH-BOT beacon of the cargo uptake, release, and processing was visualized using live-cell confocal fluorescent microscopy in Chinese hamster ovary cells, and it was observed that while maturation of endosomes carrying pH-BOT is slowed significantly, the pH-BOT is distributed throughout the endolysosomal system while remaining at pH ∼6. This observed decoupling of endosomal maturation from acidification lends support to those models that propose that pH alone is not sufficient to explain endosomal maturation and may enable greater insight into our understanding of the fundamental processes of biology.
Collapse
Affiliation(s)
- Kate J F Carnevale
- Department of Chemistry and Biochemistry , The Florida State University , Tallahassee , Florida 32306 , United States
| | - Ryan A Riskowski
- Department of Chemistry and Biochemistry , The Florida State University , Tallahassee , Florida 32306 , United States
| | - Geoffrey F Strouse
- Department of Chemistry and Biochemistry , The Florida State University , Tallahassee , Florida 32306 , United States
| |
Collapse
|
11
|
Mozar FS, Chowdhury EH. PEGylation of Carbonate Apatite Nanoparticles Prevents Opsonin Binding and Enhances Tumor Accumulation of Gemcitabine. J Pharm Sci 2018; 107:2497-2508. [PMID: 29883662 DOI: 10.1016/j.xphs.2018.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/10/2018] [Accepted: 05/17/2018] [Indexed: 10/14/2022]
Abstract
pH sensitives carbonate apatite (CA) has emerged as a targeted delivery vehicle for chemotherapeutics agent with tremendous potential to increase the effectivity of breast cancer treatment. The major challenge for intravenous delivery of drug-incorporated nanoparticles is their rapid opsonization, resulting in accumulation within the organs of reticuloendothelial system, such as liver and spleen. Therefore, surface modification by polyethylene glycol was implemented to improve the half-life of drug-particle complexes and enhance their uptake by target tissues. A simple, rapid, and sensitive triple quadrupole liquid chromatography-mass spectrometry method was developed and validated for quantification of gemcitabine in plasma, various organs and tumor tissues of mice with breast carcinoma, whereas sodium dodecyl sulfate-polyacrylamide gel electrophoresis, quadrupole-time of flight liquid chromatography-mass spectrometry and analysis by SwissProt.Mus_musculus database were performed for protein separation, identification, and homology search by comparing the de novo sequence tag. PEGylated CA exhibited almost 6-fold increase in gemcitabine accumulation in tumor with significant reduction in other organs within 1 h of intravenous administration, compared to free drug. In addition, plasma drug amount was found to be higher in PEGylated particles, implying their role in prolonging blood circulation time of particle-bound gemcitabine. Investigation of protein corona composition demonstrated notable reduction in opsonin interactions after PEGylation of CA particles. Overall, the results indicate that the composition and dynamics of protein corona subjected to alteration by PEGylation play crucial roles in affecting successful nanoparticle-based targeted delivery of a cytotoxic drug.
Collapse
Affiliation(s)
- Fitya Syarifa Mozar
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Ezharul Hoque Chowdhury
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
12
|
Zong C, Xu M, Xu LJ, Wei T, Ma X, Zheng XS, Hu R, Ren B. Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chem Rev 2018; 118:4946-4980. [PMID: 29638112 DOI: 10.1021/acs.chemrev.7b00668] [Citation(s) in RCA: 979] [Impact Index Per Article: 139.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) inherits the rich chemical fingerprint information on Raman spectroscopy and gains sensitivity by plasmon-enhanced excitation and scattering. In particular, most Raman peaks have a narrow width suitable for multiplex analysis, and the measurements can be conveniently made under ambient and aqueous conditions. These merits make SERS a very promising technique for studying complex biological systems, and SERS has attracted increasing interest in biorelated analysis. However, there are still great challenges that need to be addressed until it can be widely accepted by the biorelated communities, answer interesting biological questions, and solve fatal clinical problems. SERS applications in bioanalysis involve the complex interactions of plasmonic nanomaterials with biological systems and their environments. The reliability becomes the key issue of bioanalytical SERS in order to extract meaningful information from SERS data. This review provides a comprehensive overview of bioanalytical SERS with the main focus on the reliability issue. We first introduce the mechanism of SERS to guide the design of reliable SERS experiments with high detection sensitivity. We then introduce the current understanding of the interaction of nanomaterials with biological systems, mainly living cells, to guide the design of functionalized SERS nanoparticles for target detection. We further introduce the current status of label-free (direct) and labeled (indirect) SERS detections, for systems from biomolecules, to pathogens, to living cells, and we discuss the potential interferences from experimental design, measurement conditions, and data analysis. In the end, we give an outlook of the key challenges in bioanalytical SERS, including reproducibility, sensitivity, and spatial and time resolution.
Collapse
Affiliation(s)
- Cheng Zong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Mengxi Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Li-Jia Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Ting Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Xin Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Xiao-Shan Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Ren Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| |
Collapse
|
13
|
Caracciolo G. Clinically approved liposomal nanomedicines: lessons learned from the biomolecular corona. NANOSCALE 2018; 10:4167-4172. [PMID: 29450412 DOI: 10.1039/c7nr07450f] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Nowadays, liposomes are the most successful drug delivery systems with a dozen drug products available in the clinic. Grafting poly-(ethylene glycol) (PEG) onto the liposome surface prevents protein binding thus prolonging blood circulation, while synthetic modification of the terminal PEG molecule with ligands (e.g. monoclonal antibodies and peptides) should promote selective accumulation in the tumor region with respect to healthy tissues. However, despite big efforts, advances have not outgrown the development stage and just a few targeted liposomal drugs are commercially available. The latest studies have clarified that following exposure to physiological environments liposomes are covered by a biomolecular corona (BC). Main factors shaping the BC are the liposomes' physicochemical properties (i.e. size, surface charge and lipid composition), the biological fluid (e.g. plasma of healthy volunteers vs. plasma of cancer patients) and environmental factors (e.g. temperature). Combining the most recent evidence reported in the literature, herein we suggest that the liposome-BC could act as a personalized "endogenous trigger" affecting off-target interactions and controlling the indication for disease of clinically approved formulations. In this Opinion paper, we suggest that a better understanding of the liposome-BC together with improvements in mapping corona proteins will open the fascinating possibility to manipulate the BC by liposome design. This is not an easy task, but it could represent a turning point in the development of novel liposome-based targeting strategies for personalized nanomedicines.
Collapse
Affiliation(s)
- Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
| |
Collapse
|
14
|
Yeh YT, Tang Y, Lin Z, Fujisawa K, Lei Y, Zhou Y, Rotella C, Elías AL, Zheng SY, Mao Y, Liu Z, Lu H, Terrones M. Light-Emitting Transition Metal Dichalcogenide Monolayers under Cellular Digestion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1703321. [PMID: 29315867 DOI: 10.1002/adma.201703321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/26/2017] [Indexed: 06/07/2023]
Abstract
2D materials cover a wide spectrum of electronic properties. Their applications are extended from electronic, optical, and chemical to biological. In terms of biomedical uses of 2D materials, the interactions between living cells and 2D materials are of paramount importance. However, biointerfacial studies are still in their infancy. This work studies how living organisms interact with transition metal dichalcogenide monolayers. For the first time, cellular digestion of tungsten disulfide (WS2 ) monolayers is observed. After digestion, cells intake WS2 and become fluorescent. In addition, these light-emitting cells are not only viable, but also able to pass fluorescent signals to their progeny cells after cell division. By combining synthesis of 2D materials and a cell culturing technique, a procedure for monitoring the interactions between WS2 monolayers and cells is developed. These observations open up new avenues for developing novel cellular labeling and imaging approaches, thus triggering further studies on interactions between 2D materials and living organisms.
Collapse
Affiliation(s)
- Yin-Ting Yeh
- Department of Physics and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yi Tang
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zhong Lin
- Department of Physics and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kazunori Fujisawa
- Department of Physics and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yu Lei
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yijing Zhou
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Christopher Rotella
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ana Laura Elías
- Department of Physics and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Si-Yang Zheng
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yingwei Mao
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zhiwen Liu
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Huaguang Lu
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mauricio Terrones
- Department of Physics and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
15
|
Zhao J, Stenzel MH. Entry of nanoparticles into cells: the importance of nanoparticle properties. Polym Chem 2018. [DOI: 10.1039/c7py01603d] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Knowledge of the interactions between nanoparticles (NPs) and cell membranes is of great importance for the design of safe and efficient nanomedicines.
Collapse
Affiliation(s)
- Jiacheng Zhao
- Centre for Advanced Macromolecular Design
- The University of New South Wales
- Sydney
- Australia
- School of Chemical Engineering
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design
- The University of New South Wales
- Sydney
- Australia
- School of Chemistry
| |
Collapse
|
16
|
Deyev S, Proshkina G, Ryabova A, Tavanti F, Menziani MC, Eidelshtein G, Avishai G, Kotlyar A. Synthesis, Characterization, and Selective Delivery of DARPin-Gold Nanoparticle Conjugates to Cancer Cells. Bioconjug Chem 2017; 28:2569-2574. [PMID: 28806065 DOI: 10.1021/acs.bioconjchem.7b00410] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We demonstrate that the designed ankyrin repeat protein (DARPin)_9-29, which specifically targets human epidermal growth factor receptor 2 (HER 2), binds tightly to gold nanoparticles (GNPs). Binding of the protein strongly increases the colloidal stability of the particles. The results of experimental analysis and molecular dynamics simulations show that approximately 35 DARPin_9-29 molecules are bound to the surface of a 5 nm GNP and that the binding does not involve the receptor-binding domain of the protein. The confocal fluorescent microscopy studies show that the DARPin-coated GNP conjugate specifically interacts with the surface of human cancer cells overexpressing epidermal growth factor receptor 2 (HER2) and enters the cells by endocytosis. The high stability under physiological conditions and high affinity to the receptors overexpressed by cancer cells make conjugates of plasmonic gold nanostructures with DARPin molecules promising candidates for cancer therapy.
Collapse
Affiliation(s)
- Sergey Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya St, 16/10, Moscow 117997, Russia.,National Research Tomsk Polytechnic University , 30 av. Lenina, Tomsk, 634050 Russia
| | - Galina Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya St, 16/10, Moscow 117997, Russia
| | - Anastasiya Ryabova
- Prokhorov General Physics Institute, Russian Academy of Sciences , 38 Vavilova St, Moscow 119991, Russia
| | - Francesco Tavanti
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia , Via Campi 103, 41125 Modena, Italy
| | - Maria Cristina Menziani
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia , Via Campi 103, 41125 Modena, Italy
| | - Gennady Eidelshtein
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and the Center of Nanoscience and Nanotechnology, Tel Aviv University , Ramat Aviv, Tel Aviv 69978, Israel
| | - Gavriel Avishai
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and the Center of Nanoscience and Nanotechnology, Tel Aviv University , Ramat Aviv, Tel Aviv 69978, Israel
| | - Alexander Kotlyar
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and the Center of Nanoscience and Nanotechnology, Tel Aviv University , Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
17
|
Li D, Ma Y, Du J, Tao W, Du X, Yang X, Wang J. Tumor Acidity/NIR Controlled Interaction of Transformable Nanoparticle with Biological Systems for Cancer Therapy. NANO LETTERS 2017; 17:2871-2878. [PMID: 28375632 DOI: 10.1021/acs.nanolett.6b05396] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Precisely controlling the interaction of nanoparticles with biological systems (nanobio interactions) from the injection site to biological targets shows great potential for biomedical applications. Inspired by the ability of nanoparticles to alter their physicochemical properties according to different stimuli, we explored the tumor acidity and near-infrared (NIR) light activated transformable nanoparticle DATAT-NPIR&DOX. This nanoparticle consists of a tumor acidity-activated TAT [the TAT lysine residues' amines was modified with 2,3-dimethylmaleic anhydride (DA)], a flexible chain polyphosphoester core coencapsulated a NIR dye IR-780, and DOX (doxorubicin). The physicochemical properties of the nanoparticle can be controlled in a stepwise fashion using tumor acidity and NIR light, resulting in adjustable nanobio interactions. The resulting transformable nanoparticle DATAT-NPIR&DOX efficiently avoids the interaction with mononuclear phagocyte system (MPS) ("stealth" state) due to the masking of the TAT peptide during blood circulation. Once it has accumulated in the tumor tissues, DATAT-NPIR&DOX is reactivated by tumor acidity and transformed into the "recognize" state in order to promote interaction with tumor cells and enhance cellular internalization. Then, this nanoparticle is transformed into "attack" state under NIR irradiation, achieving the supersensitive DOX release from the flexible chain polyphosphoester core in order to increase the DOX-DNA interaction. This concept provides new avenues for the creation of transformable drug delivery systems that have the ability to control nanobio interactions.
Collapse
Affiliation(s)
- Dongdong Li
- Institutes for Life Sciences, School of Medicine and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology , Guangzhou, Guandong 510006, P. R. China
- School of Medical Engineering, Hefei University of Technology , Hefei, Anhui, 230009, P. R. China
| | - Yinchu Ma
- School of Medical Engineering, Hefei University of Technology , Hefei, Anhui, 230009, P. R. China
| | - Jinzhi Du
- Institutes for Life Sciences, School of Medicine and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology , Guangzhou, Guandong 510006, P. R. China
| | - Wei Tao
- School of Medical Engineering, Hefei University of Technology , Hefei, Anhui, 230009, P. R. China
| | - Xiaojiao Du
- Institutes for Life Sciences, School of Medicine and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology , Guangzhou, Guandong 510006, P. R. China
| | - Xianzhu Yang
- Institutes for Life Sciences, School of Medicine and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology , Guangzhou, Guandong 510006, P. R. China
- School of Medical Engineering, Hefei University of Technology , Hefei, Anhui, 230009, P. R. China
| | - Jun Wang
- Institutes for Life Sciences, School of Medicine and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology , Guangzhou, Guandong 510006, P. R. China
| |
Collapse
|
18
|
Nagamune T. Biomolecular engineering for nanobio/bionanotechnology. NANO CONVERGENCE 2017; 4:9. [PMID: 28491487 PMCID: PMC5401866 DOI: 10.1186/s40580-017-0103-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/29/2017] [Indexed: 05/02/2023]
Abstract
Biomolecular engineering can be used to purposefully manipulate biomolecules, such as peptides, proteins, nucleic acids and lipids, within the framework of the relations among their structures, functions and properties, as well as their applicability to such areas as developing novel biomaterials, biosensing, bioimaging, and clinical diagnostics and therapeutics. Nanotechnology can also be used to design and tune the sizes, shapes, properties and functionality of nanomaterials. As such, there are considerable overlaps between nanotechnology and biomolecular engineering, in that both are concerned with the structure and behavior of materials on the nanometer scale or smaller. Therefore, in combination with nanotechnology, biomolecular engineering is expected to open up new fields of nanobio/bionanotechnology and to contribute to the development of novel nanobiomaterials, nanobiodevices and nanobiosystems. This review highlights recent studies using engineered biological molecules (e.g., oligonucleotides, peptides, proteins, enzymes, polysaccharides, lipids, biological cofactors and ligands) combined with functional nanomaterials in nanobio/bionanotechnology applications, including therapeutics, diagnostics, biosensing, bioanalysis and biocatalysts. Furthermore, this review focuses on five areas of recent advances in biomolecular engineering: (a) nucleic acid engineering, (b) gene engineering, (c) protein engineering, (d) chemical and enzymatic conjugation technologies, and (e) linker engineering. Precisely engineered nanobiomaterials, nanobiodevices and nanobiosystems are anticipated to emerge as next-generation platforms for bioelectronics, biosensors, biocatalysts, molecular imaging modalities, biological actuators, and biomedical applications.
Collapse
Affiliation(s)
- Teruyuki Nagamune
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Abstract
Here, we present a review of recent advances in electroporation for the delivery of nanomedicine as intracellular carriers by electroporation (NICE) in a drug format with functional nanoparticles.
Collapse
Affiliation(s)
- Kisoo Kim
- Department of Mechanical Engineering
- Kyung Hee University
- Yongin 17104
- Republic of Korea
| | - Won Gu Lee
- Department of Mechanical Engineering
- Kyung Hee University
- Yongin 17104
- Republic of Korea
| |
Collapse
|
20
|
Martynenko IV, Litvin AP, Purcell-Milton F, Baranov AV, Fedorov AV, Gun'ko YK. Application of semiconductor quantum dots in bioimaging and biosensing. J Mater Chem B 2017; 5:6701-6727. [DOI: 10.1039/c7tb01425b] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review we present new concepts and recent progress in the application of semiconductor quantum dots (QD) as labels in two important areas of biology, bioimaging and biosensing.
Collapse
Affiliation(s)
- I. V. Martynenko
- BAM Federal Institute for Materials Research and Testing
- 12489 Berlin
- Germany
- ITMO University
- St. Petersburg
| | | | | | | | | | - Y. K. Gun'ko
- ITMO University
- St. Petersburg
- Russia
- School of Chemistry and CRANN
- Trinity College Dublin
| |
Collapse
|
21
|
Chen X, Zhang W. Diamond nanostructures for drug delivery, bioimaging, and biosensing. Chem Soc Rev 2017; 46:734-760. [DOI: 10.1039/c6cs00109b] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review summarizes the superior properties of diamond nanoparticles and vertically aligned diamond nanoneedles and their applications in biosensing, bioimaging and drug delivery.
Collapse
Affiliation(s)
- Xianfeng Chen
- Institute for Bioengineering
- School of Engineering
- The University of Edinburgh
- Edinburgh EH9 3JL
- UK
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science
- City University of Hong Kong
- China
| |
Collapse
|
22
|
The protein corona of circulating PEGylated liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:189-96. [DOI: 10.1016/j.bbamem.2015.11.012] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/16/2015] [Accepted: 11/18/2015] [Indexed: 11/23/2022]
|
23
|
Margineanu MB, Julfakyan K, Sommer C, Perez JE, Contreras MF, Khashab N, Kosel J, Ravasi T. Semi-automated quantification of living cells with internalized nanostructures. J Nanobiotechnology 2016; 14:4. [PMID: 26768888 PMCID: PMC4714438 DOI: 10.1186/s12951-015-0153-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/17/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nanostructures fabricated by different methods have become increasingly important for various applications in biology and medicine, such as agents for medical imaging or cancer therapy. In order to understand their interaction with living cells and their internalization kinetics, several attempts have been made in tagging them. Although methods have been developed to measure the number of nanostructures internalized by the cells, there are only few approaches aimed to measure the number of cells that internalize the nanostructures, and they are usually limited to fixed-cell studies. Flow cytometry can be used for live-cell assays on large populations of cells, however it is a single time point measurement, and does not include any information about cell morphology. To date many of the observations made on internalization events are limited to few time points and cells. RESULTS In this study, we present a method for quantifying cells with internalized magnetic nanowires (NWs). A machine learning-based computational framework, CellCognition, is adapted and used to classify cells with internalized and no internalized NWs, labeled with the fluorogenic pH-dependent dye pHrodo™ Red, and subsequently to determine the percentage of cells with internalized NWs at different time points. In a "proof-of-concept", we performed a study on human colon carcinoma HCT 116 cells and human epithelial cervical cancer HeLa cells interacting with iron (Fe) and nickel (Ni) NWs. CONCLUSIONS This study reports a novel method for the quantification of cells that internalize a specific type of nanostructures. This approach is suitable for high-throughput and real-time data analysis and has the potential to be used to study the interaction of different types of nanostructures in live-cell assays.
Collapse
Affiliation(s)
- Michael Bogdan Margineanu
- Division of Biological and Environmental Sciences and Engineering, KAUST Environmental Epigenetic Program (KEEP), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Kingdom of Saudi Arabia. .,Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | - Khachatur Julfakyan
- Division of Physical Science and Engineering, Smart Hybrid Materials Laboratory (SHMs), King Abdullah University of Science and Technology,, Thuwal, Kingdom of Saudi Arabia.
| | - Christoph Sommer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr-Gasse 3, Vienna, 1030, Austria.
| | - Jose Efrain Perez
- Division of Biological and Environmental Sciences and Engineering, KAUST Environmental Epigenetic Program (KEEP), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Kingdom of Saudi Arabia. .,Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | - Maria Fernanda Contreras
- Division of Biological and Environmental Sciences and Engineering, KAUST Environmental Epigenetic Program (KEEP), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Kingdom of Saudi Arabia.
| | - Niveen Khashab
- Division of Physical Science and Engineering, Smart Hybrid Materials Laboratory (SHMs), King Abdullah University of Science and Technology,, Thuwal, Kingdom of Saudi Arabia.
| | - Jürgen Kosel
- Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | - Timothy Ravasi
- Division of Biological and Environmental Sciences and Engineering, KAUST Environmental Epigenetic Program (KEEP), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Kingdom of Saudi Arabia. .,Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
24
|
Palchetti S, Pozzi D, Mahmoudi M, Caracciolo G. Exploitation of nanoparticle–protein corona for emerging therapeutic and diagnostic applications. J Mater Chem B 2016; 4:4376-4381. [DOI: 10.1039/c6tb01095d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exposure of nanoparticles (NPs) to biological fluids (e.g., plasma, interstitial fluid, and cytoplasm) leads to the absorption of proteins on the NP surface, forming a protein corona (PC) that drastically influences the NP physicochemical properties.
Collapse
Affiliation(s)
- S. Palchetti
- Department of Molecular Medicine
- Rome
- Italy
- Istituti Fisioterapici Ospitalieri
- Istituto Regina Elena
| | - D. Pozzi
- Department of Molecular Medicine
- Rome
- Italy
- Istituti Fisioterapici Ospitalieri
- Istituto Regina Elena
| | - M. Mahmoudi
- Department of Nanotechnology and Nanotechnology Research Center
- Faculty of Pharmacy
- Tehran University of Medical Sciences
- Tehran 13169-43551
- Iran
| | - G. Caracciolo
- Department of Molecular Medicine
- Rome
- Italy
- Istituti Fisioterapici Ospitalieri
- Istituto Regina Elena
| |
Collapse
|
25
|
Bisht G, Rayamajhi S. ZnO Nanoparticles: A Promising Anticancer Agent. Nanobiomedicine (Rij) 2016; 3:9. [PMID: 29942384 PMCID: PMC5998263 DOI: 10.5772/63437] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/04/2016] [Indexed: 01/16/2023] Open
Abstract
Nanoparticles, with their selective targeting capabilities and superior efficacy, are becoming increasingly important in modern cancer therapy and starting to overshadow traditional cancer therapies such as chemotherapy radiation and surgery. ZnO nanoparticles, with their unique properties such as biocompatibility, high selectivity, enhanced cytotoxicity and easy synthesis, may be a promising anticancer agent. Zinc, as one of the major trace elements of the human body and co-factor of more than 300 mammalian enzymes, plays an important role in maintaining crucial cellular processes including oxidative stress, DNA replication, DNA repair, cell cycle progression and apoptosis. Thus, it is evident that an alteration in zinc levels in cancer cells can cause a deleterious effect. Research has shown that low zinc concentration in cells leads to the initiation and progression of cancer and high zinc concentration shows toxic effects. Zinc-mediated protein activity disequilibrium and oxidative stress through reactive oxygen species (ROS) may be the probable mechanism of this cytotoxic effect. The selective localization of ZnO nanoparticles towards cancer cells due to enhanced permeability and retention (EPR) effect and electrostatic interaction and selective cytotoxicity due to increased ROS present in cancer cells show that ZnO nanoparticles can selectively target and kill cancer cells, making them a promising anticancer agent.
Collapse
Affiliation(s)
- Gunjan Bisht
- Department of Chemical Science and Engineering, Kathmandu University Dhulikhel, Nepal
| | - Sagar Rayamajhi
- Department of Biotechnology, Kathmandu University Dhulikhel, Nepal
| |
Collapse
|
26
|
Villaverde G, Baeza A, Melen GJ, Alfranca A, Ramirez M, Vallet-Regí M. A new targeting agent for the selective drug delivery of nanocarriers for treating neuroblastoma. J Mater Chem B 2015; 3:4831-4842. [PMID: 32262672 DOI: 10.1039/c5tb00287g] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Novel targeting agents against neuroblastoma based on the meta-iodobenzylguanidine (MIBG) moiety were synthesized and biologically evaluated for nanocarrier vectorization. These compounds have been anchored on the surface of drug loaded mesoporous silica nanocarriers, resulting in the improved cellular uptake in tumoral cells. Neuroblastoma (NB) is the most frequent extracranial pediatric tumor. Advanced forms of the disease (metastatic and/or refractory) have a dismal prognosis despite the combination of chemotherapy, radiotherapy, surgery and bone narrow transplants. These treatments carry severe side effects and, in some cases, compromise the life of the patient. MIBG has been widely applied in the medical diagnosis of NB due to its affinity for tumor cells through the norepinephrine transporter (NET), which is expressed in 90% of NB tumors. The exclusive accumulation of MIBG in neuroblastoma has been widely studied; however, its properties have been never exploited as a targeting agent in nanocarrier drug delivery systems. Several structural analogues of MIBG have been prepared and attached on the surface of nanocarriers. Their selective internalization has been tested against human neuroblastoma cells, which show, in the best case, cellular uptake four times higher than that of the naked nanosystem. Furthermore, in vivo experiments showed preferential and selective accumulation and retention of the targeted nanosystem comparing with the naked and only PEGylated counterpart systems. This novel nanosystem could be easily applicable to all kinds of drug delivery nanocarriers, providing a universal tool for neuroblastoma chemotherapies that is superior to classical approaches through a novel nanosystem exclusively designed to target this terrible malignancy.
Collapse
Affiliation(s)
- Gonzalo Villaverde
- Dpto. Química Inorgánica y Bioinorgánica, Instituto de Investigación Sanitaria Hospital, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 12 de Octubre i + 12.UCM, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
27
|
Santini B, Zanoni I, Marzi R, Cigni C, Bedoni M, Gramatica F, Palugan L, Corsi F, Granucci F, Colombo M. Cream formulation impact on topical administration of engineered colloidal nanoparticles. PLoS One 2015; 10:e0126366. [PMID: 25962161 PMCID: PMC4427132 DOI: 10.1371/journal.pone.0126366] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/01/2015] [Indexed: 01/17/2023] Open
Abstract
In order to minimize the impact of systemic toxicity of drugs in the treatment of local acute and chronic inflammatory reactions, the achievement of reliable and efficient delivery of therapeutics in/through the skin is highly recommended. While the use of nanoparticles is now an established practice for drug intravenous targeted delivery, their transdermal penetration is still poorly understood and this important administration route remains almost unexplored. In the present study, we have synthesized magnetic (iron oxide) nanoparticles (MNP) coated with an amphiphilic polymer, developed a water-in-oil emulsion formulation for their topical administration and compared the skin penetration routes with the same nanoparticles deposited as a colloidal suspension. Transmission and scanning electron microscopies provided ultrastructural evidence that the amphiphilic nanoparticles (PMNP) cream formulation allowed the efficient penetration through all the skin layers with a controllable kinetics compared to suspension formulation. In addition to the preferential follicular pathway, also the intracellular and intercellular routes were involved. PMNP that crossed all skin layers were quantified by inductively coupled plasma mass spectrometry. The obtained data suggests that combining PMNP amphiphilic character with cream formulation improves the intradermal penetration of nanoparticles. While PMNP administration in living mice via aqueous suspension resulted in preferential nanoparticle capture by phagocytes and migration to draining lymph nodes, cream formulation favored uptake by all the analyzed dermis cell types, including hematopoietic and non-hematopoietic. Unlike aqueous suspension, cream formulation also favored the maintenance of nanoparticles in the dermal architecture avoiding their dispersion and migration to draining lymph nodes via afferent lymphatics.
Collapse
Affiliation(s)
- Benedetta Santini
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Ivan Zanoni
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Unit of Cell Signalling and Innate Immunity, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Roberta Marzi
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Clara Cigni
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Marzia Bedoni
- Laboratorio di Nanomedicina e Biofotonica Clinica, Fondazione Don Carlo Gnocchi ONLUS, Milano, Italy
| | - Furio Gramatica
- Laboratorio di Nanomedicina e Biofotonica Clinica, Fondazione Don Carlo Gnocchi ONLUS, Milano, Italy
| | - Luca Palugan
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Fabio Corsi
- Dipartimento di Scienze Biomediche e Cliniche “Luigi Sacco”, Università degli Studi di Milano, Milano, Italy
| | - Francesca Granucci
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
- Unit of Cell Signalling and Innate Immunity, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Miriam Colombo
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
- * E-mail:
| |
Collapse
|
28
|
Bhardwaj V, Srinivasan S, McGoron AJ. Efficient intracellular delivery and improved biocompatibility of colloidal silver nanoparticles towards intracellular SERS immuno-sensing. Analyst 2015; 140:3929-34. [PMID: 25939798 DOI: 10.1039/c5an00435g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High throughput intracellular delivery strategies, electroporation, passive and TATHA2 facilitated diffusion of colloidal silver nanoparticles (AgNPs) are investigated for cellular toxicity and uptake using state-of-art analytical techniques. The TATHA2 facilitated approach efficiently delivered high payload with no toxicity, pre-requisites for intracellular applications of plasmonic metal nanoparticles (PMNPs) in sensing and therapeutics.
Collapse
Affiliation(s)
- Vinay Bhardwaj
- 10555 West Flagler Street, Department of Biomedical Engineering, Florida International University, Miami, FL, USA.
| | | | | |
Collapse
|
29
|
Content Delivery of Lipidic Nanovesicles in Electropermeabilized Cells. J Membr Biol 2015; 248:849-55. [DOI: 10.1007/s00232-015-9789-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/10/2015] [Indexed: 12/29/2022]
|
30
|
Nazarenus M, Zhang Q, Soliman MG, del Pino P, Pelaz B, Carregal-Romero S, Rejman J, Rothen-Rutishauser B, Clift MJD, Zellner R, Nienhaus GU, Delehanty JB, Medintz IL, Parak WJ. In vitro interaction of colloidal nanoparticles with mammalian cells: What have we learned thus far? BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:1477-90. [PMID: 25247131 PMCID: PMC4168913 DOI: 10.3762/bjnano.5.161] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 08/12/2014] [Indexed: 05/20/2023]
Abstract
The interfacing of colloidal nanoparticles with mammalian cells is now well into its second decade. In this review our goal is to highlight the more generally accepted concepts that we have gleaned from nearly twenty years of research. While details of these complex interactions strongly depend, amongst others, upon the specific properties of the nanoparticles used, the cell type, and their environmental conditions, a number of fundamental principles exist, which are outlined in this review.
Collapse
Affiliation(s)
- Moritz Nazarenus
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
| | - Qian Zhang
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
| | - Mahmoud G Soliman
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
| | - Pablo del Pino
- CIC Biomagune, Paseo Miramón 182, 20009 San Sebastian, Spain
| | - Beatriz Pelaz
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
| | | | - Joanna Rejman
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
| | - Barbara Rothen-Rutishauser
- BioNanomaterials, Adolphe Merkle Institute, University of Fribourg, Route de L’ancienne Papeterie CP 209, Marly 1, 1723, Fribourg, Switzerland
| | - Martin J D Clift
- BioNanomaterials, Adolphe Merkle Institute, University of Fribourg, Route de L’ancienne Papeterie CP 209, Marly 1, 1723, Fribourg, Switzerland
| | - Reinhard Zellner
- Institute of Physical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - G Ulrich Nienhaus
- Institute of Applied Physics and Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA
| | - James B Delehanty
- Center for Bio/Molecular Science & Engineering, Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Avenue Southwest, Washington D.C., 20375, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science & Engineering, Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Avenue Southwest, Washington D.C., 20375, USA
| | - Wolfgang J Parak
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
- CIC Biomagune, Paseo Miramón 182, 20009 San Sebastian, Spain
| |
Collapse
|
31
|
Verderio P, Pandolfi L, Mazzucchelli S, Marinozzi MR, Vanna R, Gramatica F, Corsi F, Colombo M, Morasso C, Prosperi D. Antiproliferative Effect of ASC-J9 Delivered by PLGA Nanoparticles against Estrogen-Dependent Breast Cancer Cells. Mol Pharm 2014; 11:2864-75. [DOI: 10.1021/mp500222k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Paolo Verderio
- Dipartimento
di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza
della Scienza 2, 20126 Milano, Italy
- Nerviano Medical Sciences s.r.l., Viale Pasteur 10, 20014 Nerviano, Italy
| | - Laura Pandolfi
- Dipartimento
di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza
della Scienza 2, 20126 Milano, Italy
- Dipartimento
di Scienze Biomediche e Cliniche “Luigi Sacco”, Università di Milano, Ospedale L. Sacco, Via G.B. Grassi 74, 20157 Milano, Italy
| | - Serena Mazzucchelli
- Dipartimento
di Scienze Biomediche e Cliniche “Luigi Sacco”, Università di Milano, Ospedale L. Sacco, Via G.B. Grassi 74, 20157 Milano, Italy
| | - Maria Rosaria Marinozzi
- Dipartimento
di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza
della Scienza 2, 20126 Milano, Italy
| | - Renzo Vanna
- LABION
- Laboratory of Nanomedicine and Clinical Biophotonics, Fondazione Don Carlo Gnocchi ONLUS, Piazzale R. Morandi 6, 20121 Milano, Italy
| | - Furio Gramatica
- LABION
- Laboratory of Nanomedicine and Clinical Biophotonics, Fondazione Don Carlo Gnocchi ONLUS, Piazzale R. Morandi 6, 20121 Milano, Italy
| | - Fabio Corsi
- Dipartimento
di Scienze Biomediche e Cliniche “Luigi Sacco”, Università di Milano, Ospedale L. Sacco, Via G.B. Grassi 74, 20157 Milano, Italy
| | - Miriam Colombo
- Dipartimento
di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza
della Scienza 2, 20126 Milano, Italy
| | - Carlo Morasso
- LABION
- Laboratory of Nanomedicine and Clinical Biophotonics, Fondazione Don Carlo Gnocchi ONLUS, Piazzale R. Morandi 6, 20121 Milano, Italy
| | - Davide Prosperi
- Dipartimento
di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza
della Scienza 2, 20126 Milano, Italy
- Dipartimento
di Scienze Biomediche e Cliniche “Luigi Sacco”, Università di Milano, Ospedale L. Sacco, Via G.B. Grassi 74, 20157 Milano, Italy
- LABION
- Laboratory of Nanomedicine and Clinical Biophotonics, Fondazione Don Carlo Gnocchi ONLUS, Piazzale R. Morandi 6, 20121 Milano, Italy
| |
Collapse
|