1
|
Roohani I, Wang S, Xu C, Newman P, Entezari A, Lai Y, Zreiqat H. Bioinspired Nanoscale 3D Printing of Calcium Phosphates Using Bone Prenucleation Clusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413626. [PMID: 40018861 PMCID: PMC11962677 DOI: 10.1002/adma.202413626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/13/2025] [Indexed: 03/01/2025]
Abstract
Calcium phosphates (CaPs) are ubiquitous in biological structures, such as vertebrate bones and teeth, and have been widely used in biomedical applications. However, fabricating CaPs at the nanoscale in 3D has remained a significant challenge, particularly due to limitations in current nanofabrication techniques, such as two-photon polymerization (2pp), which are not applicable for creating CaP nanostructures. In this study, a novel approach is presented to 3D print CaP structures with unprecedented resolution of ≈300 nm precision, achieving a level of detail three orders of magnitude finer than any existing additive manufacturing techniques for CaPs. This advancement is achieved by leveraging bioinspired chemistry, utilizing bone prenucleation nanoclusters (PNCs, average size of 5 nm), within a photosensitive resin. These nanoclusters form a highly transparent photoresist, overcoming the light-scattering typically associated with larger calcium phosphate-based nanoparticles. This method not only allows for nanopatterning of CaPs on diverse substrates, but also enables the precise control of microstructure down to the level of submicron grains. The method paves the way for the developing of bioinspired metamaterials, lightweight damage-tolerant materials, cell-modulating interfaces, and precision-engineered coatings.
Collapse
Affiliation(s)
- Iman Roohani
- School of Biomedical EngineeringUniversity of SydneySydneyNSW2006Australia
- Lab of Advanced Biomaterials and FabricationSchool of Biomedical EngineeringFaculty of Engineering and Information TechnologyUniversity of Technology SydneySydneyNSW2007Australia
| | - Shuning Wang
- School of Biomedical EngineeringUniversity of SydneySydneyNSW2006Australia
| | - Chaohui Xu
- School of Biomedical EngineeringUniversity of SydneySydneyNSW2006Australia
| | - Peter Newman
- School of Biomedical EngineeringUniversity of SydneySydneyNSW2006Australia
- EMBL AustraliaSingle Molecule Science nodeSchool of Biomedical SciencesUniversity of New South WalesSydneyNSW2052Australia
| | - Ali Entezari
- School of Biomedical EngineeringUniversity of SydneySydneyNSW2006Australia
- Lab of Advanced Biomaterials and FabricationSchool of Biomedical EngineeringFaculty of Engineering and Information TechnologyUniversity of Technology SydneySydneyNSW2007Australia
| | - Yichen Lai
- School of Biomedical EngineeringUniversity of SydneySydneyNSW2006Australia
| | - Hala Zreiqat
- School of Biomedical EngineeringUniversity of SydneySydneyNSW2006Australia
| |
Collapse
|
2
|
Stafin K, Śliwa P, Pia Tkowski M, Matýsek D. Chitosan as a Templating Agent of Calcium Phosphate Crystalline Phases in Biomimetic Mineralization: Theoretical and Experimental Studies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63155-63169. [PMID: 39526983 DOI: 10.1021/acsami.4c11887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Highlighting the essential role of chitosan (CS), known for its biocompatibility, biodegradability, and ability to promote cell adhesion and proliferation, this study explores its utility in modulating the biomimetic mineralization of calcium phosphate (CaP). This approach holds promise for developing biomaterials suitable for bone regeneration. However, the interactions between the CS surface and in situ precipitated CaP still require further exploration. In the theoretical section, molecular dynamics (MD) simulations demonstrate that, at an appropriate pH level during the prenucleation stage, calcium ions (Ca2+) and hydrogen phosphate ions (HPO42-) form Posner-like clusters. Additionally, the interaction between these clusters and the CS molecule enhances system stability. Together, these phenomena facilitate the transition to subsequent heterogeneous nucleation on the surface of the organic matrix, which is a more controlled process than homogeneous nucleation in solution. Dynamic simulation results suggest that CS acts as a stabilizing matrix at pH 8.0 during biomimetic mineralization. In the experimental section, the effects of pH and the molecular weight of CS were investigated, with a focus on their impact on the crystal structure of the resulting material. X-ray diffraction and scanning electron microscopy analyses reveal that, under conditions of approximately pH 8.0 and a CS molecular weight of 20 000 g/mol, and controlled ion concentration, ultrasound radiation, and temperature, the dominant CaP phases in the material are carbonate-doped hydroxyapatite (CHA) and octacalcium phosphate (OCP). These findings suggest that CS, when adjusted for molecular weight and pH, facilitates the formation of CaP crystal phases that closely resemble the natural inorganic composition of bone, highlighting its protective and regulatory roles in the growth and maturation of crystals during mineralization. The theoretical predictions and experimental outcomes confirm the crucial role of CS as a templating agent, enabling the development of a biomimetic mineralization pathway. CS's ability to guide this process may prove valuable in the design of materials for bone tissue engineering, particularly in developing effective materials for bone tissue healing and regeneration.
Collapse
Affiliation(s)
- Krzysztof Stafin
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| | - Paweł Śliwa
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| | - Marek Pia Tkowski
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| | - Dalibor Matýsek
- Faculty of Mining and Geology, Technical University of Ostrava, 708 00 Ostrava, Czech Republic
| |
Collapse
|
3
|
Cai F, Jiang B, He F. Formation and biological activities of foreign body giant cells in response to biomaterials. Acta Biomater 2024; 188:1-26. [PMID: 39245307 DOI: 10.1016/j.actbio.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
The integration of biomaterials in medical applications triggers the foreign body response (FBR), a multi-stage immune reaction characterized by the formation of foreign body giant cells (FBGCs). Originating from the fusion of monocyte/macrophage lineage cells, FBGCs are pivotal participants during tissue-material interactions. This review provides an in-depth examination of the molecular processes during FBGC formation, highlighting signaling pathways and fusion mediators in response to both exogenous and endogenous stimuli. Moreover, a wide range of material-specific characteristics, such as surface chemical and physical properties, has been proven to influence the fusion of macrophages into FBGCs. Multifaceted biological activities of FBGCs are also explored, with emphasis on their phagocytic capabilities and extracellular secretory functions, which profoundly affect the vascularization, degradation, and encapsulation of the biomaterials. This review further elucidates the heterogeneity of FBGCs and their diverse roles during FBR, as demonstrated by their distinct behaviors in response to different materials. By presenting a comprehensive understanding of FBGCs, this review intends to provide strategies and insights into optimizing biocompatibility and the therapeutic potential of biomaterials for enhanced stability and efficacy in clinical applications. STATEMENT OF SIGNIFICANCE: As a hallmark of the foreign body response (FBR), foreign body giant cells (FBGCs) significantly impact the success of implantable biomaterials, potentially leading to complications such as chronic inflammation, fibrosis, and device failure. Understanding the role of FBGCs and modulating their responses are vital for successful material applications. This review provides a comprehensive overview of the molecules and signaling pathways guiding macrophage fusion into FBGCs. By elucidating the physical and chemical properties of materials inducing distinct levels of FBGCs, potential strategies of materials in modulating FBGC formation are investigated. Additionally, the biological activities of FBGCs and their heterogeneity in responses to different material categories in vivo are highlighted in this review, offering crucial insights for improving the biocompatibility and efficacy of biomaterials.
Collapse
Affiliation(s)
- Fangyuan Cai
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Bulin Jiang
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Fuming He
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Wang S, Liu J, Caroprese M, Gianfreda F, Melloni F, DE Santis D. Exploring the potential of calcium-based biomaterials for bone regeneration in dentistry: a systematic review. Minerva Dent Oral Sci 2024; 73:169-180. [PMID: 38127421 DOI: 10.23736/s2724-6329.23.04859-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
INTRODUCTION Regenerative medicine emerged as a promising strategy for addressing bone defects, with several bone grafts currently being used, including autografts, allografts, xenografts and alloplasts. Calcium-based biomaterials (CaXs), a well-known class of synthetic materials, have demonstrated good biological properties and are being investigated for their potential to facilitate bone regeneration. This systematic review evaluates the current clinical applications of CaXs in dentistry for bone regeneration. EVIDENCE ACQUISITION A comprehensive search was conducted to collect information about CaXs and their applications in the dental field over the last ten years. The search was limited to relevant articles published in peer-reviewed journals. EVIDENCE SYNTHESIS A total of 72 articles were included in this scoping review, with eight studies related to periodontology, 63 in implantology and three in maxillofacial surgery respectively. The findings suggest that CaXs hold promise as an alternative intervention for minor bone regeneration in dentistry. CONCLUSIONS Calcium-based biomaterials have shown potential as a viable option for bone regeneration in dentistry. Further research is warranted to fully understand their efficacy and safety in larger bone defects. CaXs represent an exciting avenue for researchers and clinicians to explore in their ongoing efforts to advance regenerative medicine.
Collapse
Affiliation(s)
- Siwei Wang
- Department of Dental Implantology, The Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jianguo Liu
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Marino Caroprese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Francesco Gianfreda
- Department of Industrial Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Federica Melloni
- Section of Head and Neck Surgery, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Daniele DE Santis
- Section of Head and Neck Surgery, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy -
| |
Collapse
|
5
|
Alaoui Selsouli Y, Rho HS, Eischen-Loges M, Galván-Chacón VP, Stähli C, Viecelli Y, Döbelin N, Bohner M, Tahmasebi Birgani Z, Habibović P. Optimization of a tunable process for rapid production of calcium phosphate microparticles using a droplet-based microfluidic platform. Front Bioeng Biotechnol 2024; 12:1352184. [PMID: 38600949 PMCID: PMC11004461 DOI: 10.3389/fbioe.2024.1352184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/08/2024] [Indexed: 04/12/2024] Open
Abstract
Calcium phosphate (CaP) biomaterials are amongst the most widely used synthetic bone graft substitutes, owing to their chemical similarities to the mineral part of bone matrix and off-the-shelf availability. However, their ability to regenerate bone in critical-sized bone defects has remained inferior to the gold standard autologous bone. Hence, there is a need for methods that can be employed to efficiently produce CaPs with different properties, enabling the screening and consequent fine-tuning of the properties of CaPs towards effective bone regeneration. To this end, we propose the use of droplet microfluidics for rapid production of a variety of CaP microparticles. Particularly, this study aims to optimize the steps of a droplet microfluidic-based production process, including droplet generation, in-droplet CaP synthesis, purification and sintering, in order to obtain a library of CaP microparticles with fine-tuned properties. The results showed that size-controlled, monodisperse water-in-oil microdroplets containing calcium- and phosphate-rich solutions can be produced using a flow-focusing droplet-generator microfluidic chip. We optimized synthesis protocols based on in-droplet mineralization to obtain a range of CaP microparticles without and with inorganic additives. This was achieved by adjusting synthesis parameters, such as precursor concentration, pH value, and aging time, and applying heat treatment. In addition, our results indicated that the synthesis and fabrication parameters of CaPs in this method can alter the microstructure and the degradation behavior of CaPs. Overall, the results highlight the potential of the droplet microfluidic platform for engineering CaP microparticle biomaterials with fine-tuned properties.
Collapse
Affiliation(s)
- Y. Alaoui Selsouli
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - H. S. Rho
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - M. Eischen-Loges
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - V. P. Galván-Chacón
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - C. Stähli
- RMS Foundation, Bettlach, Switzerland
| | | | | | - M. Bohner
- RMS Foundation, Bettlach, Switzerland
| | - Z. Tahmasebi Birgani
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - P. Habibović
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
6
|
Cao B, Xie L, Xu Y, Shen J, Zhang Y, Wang Y, Weng X, Bao Z, Yang X, Gou Z, Wang C. Dual-core-component multiphasic bioceramic granules with selective-area porous structures facilitating bone tissue regeneration and repair. RSC Adv 2024; 14:10526-10537. [PMID: 38567335 PMCID: PMC10985589 DOI: 10.1039/d4ra00911h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Ca-phosphate/-silicate ceramic granules have been widely studied because their biodegradable fillers can enhance bone defect repair accompanied with bioactive ion release and material degradation; however, it is a challenge to endow bioceramic composites with time-dependent ion release and highly efficient osteogenesis in vivo. Herein, we prepared dual-core-type bioceramic granules with varying chemical compositions beneficial for controlling ion release and stimulating osteogenic capability. Core-shell-structured bioceramic granules (P8-Sr4@Zn3, P8-Sr4@TCP, and P8-Sr4@HAR) composed of 8% P- and 4% Sr-substituting wollastonite (P8, Sr4) dual core components and different shell components, such as 3% Zn-substituting wollastonite (Zn3), β-tricalcium phosphate (β-TCP), and hardystonite (HAR), were prepared by cutting extruded core-shell fibers through dual-core ternary nozzles, followed by high-temperature sintering post-treatment. The experimental results showed that nonstoichiometric wollastonite core components contributed to more biologically active ion release in Tris buffer in vitro, and the sparingly dissolvable shell component readily maintained the granule morphology in vivo; thus, such bioceramic implants can adjust new bone growth and material degradation over time. In particular, bioceramic granules encapsulated by the TCP shell exhibited the most appreciable osteogenic capacity and expected biodegradation, which was mostly favorable for bone repair in critical bone defects. It is reasonable to consider that this new multiphasic bioceramic granule design is versatile for developing next-generation implants for various bone damage repairs.
Collapse
Affiliation(s)
- Binji Cao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine #88 Jiefang Road Hangzhou 310009 Zhejiang Province China
| | - Lijun Xie
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine #88 Jiefang Road Hangzhou 310009 Zhejiang Province China
| | - Yan Xu
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University Hangzhou 310058 China (+86) 571-8697 1539 (+86) 571-8820 8353
| | - Jian Shen
- Department of Emergency Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine and Institute of Emergency Medicine #88 Jiefang Road Hangzhou 310009 Zhejiang Province China
| | - Yan Zhang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University Hangzhou 310058 China (+86) 571-8697 1539 (+86) 571-8820 8353
| | - Yingjie Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College Beijing 100730 China
| | - Xisheng Weng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College Beijing 100730 China
| | - Zhaonan Bao
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University Hangzhou 310058 China (+86) 571-8697 1539 (+86) 571-8820 8353
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University Hangzhou 310058 China (+86) 571-8697 1539 (+86) 571-8820 8353
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University Hangzhou 310058 China (+86) 571-8697 1539 (+86) 571-8820 8353
| | - Cong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine #88 Jiefang Road Hangzhou 310009 Zhejiang Province China
| |
Collapse
|
7
|
Jo HM, Jang K, Shim KM, Bae C, Park JB, Kang SS, Kim SE. Application of modified porcine xenograft by collagen coating in the veterinary field: pre-clinical and clinical evaluations. Front Vet Sci 2024; 11:1373099. [PMID: 38566748 PMCID: PMC10985340 DOI: 10.3389/fvets.2024.1373099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction This study aimed to identify a collagen-coating method that does not affect the physicochemical properties of bone graft material. Based on this, we developed a collagen-coated porcine xenograft and applied it to dogs to validate its effectiveness. Methods Xenografts and collagen were derived from porcine, and the collagen coating was performed through N-ethyl-N'-(3- (dimethylamino)propyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) activation. The physicochemical characteristics of the developed bone graft material were verified through field emission scanning electron microscope (FE-SEM), brunauer emmett teller (BET), attenuated total reflectance-fourier transform infrared (ATR-FTIR), and water absorption test. Subsequently, the biocompatibility and bone healing effects were assessed using a rat calvarial defect model. Results The physicochemical test results confirmed that collagen coating increased bone graft materials' surface roughness and fluid absorption but did not affect their porous structure. In vivo evaluations revealed that collagen coating had no adverse impact on the bone healing effect of bone graft materials. After confirming the biocompatibility and effectiveness, we applied the bone graft materials in two orthopedic cases and one dental case. Notably, successful fracture healing was observed in both orthopedic cases. In the dental case, successful bone regeneration was achieved without any loss of alveolar bone. Discussion This study demonstrated that porcine bone graft material promotes bone healing in dogs with its hemostatic and cohesive effects resulting from the collagen coating. Bone graft materials with enhanced biocompatibility through collagen coating are expected to be widely used in veterinary clinical practice.
Collapse
Affiliation(s)
- Hyun Min Jo
- Department of Veterinary Surgery, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
- Biomaterial R&BD Center, Chonnam National University, Gwangju, Republic of Korea
| | - Kwangsik Jang
- Department of Veterinary Surgery, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
- Biomaterial R&BD Center, Chonnam National University, Gwangju, Republic of Korea
| | - Kyung Mi Shim
- Department of Veterinary Surgery, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
- Biomaterial R&BD Center, Chonnam National University, Gwangju, Republic of Korea
| | - Chunsik Bae
- Department of Veterinary Surgery, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
- Biomaterial R&BD Center, Chonnam National University, Gwangju, Republic of Korea
| | | | - Seong Soo Kang
- Department of Veterinary Surgery, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
- Biomaterial R&BD Center, Chonnam National University, Gwangju, Republic of Korea
| | - Se Eun Kim
- Department of Veterinary Surgery, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
- Biomaterial R&BD Center, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
8
|
Miron RJ, Bohner M, Zhang Y, Bosshardt DD. Osteoinduction and osteoimmunology: Emerging concepts. Periodontol 2000 2024; 94:9-26. [PMID: 37658591 DOI: 10.1111/prd.12519] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 09/03/2023]
Abstract
The recognition and importance of immune cells during bone regeneration, including around bone biomaterials, has led to the development of an entire field termed "osteoimmunology," which focuses on the connection and interplay between the skeletal system and immune cells. Most studies have focused on the "osteogenic" capacity of various types of bone biomaterials, and much less focus has been placed on immune cells despite being the first cell type in contact with implantable devices. Thus, the amount of literature generated to date on this topic makes it challenging to extract needed information. This review article serves as a guide highlighting advancements made in the field of osteoimmunology emphasizing the role of the osteoimmunomodulatory properties of biomaterials and their impact on osteoinduction. First, the various immune cell types involved in bone biomaterial integration are discussed, including the prominent role of osteal macrophages (OsteoMacs) during bone regeneration. Thereafter, key biomaterial properties, including topography, wettability, surface charge, and adsorption of cytokines, growth factors, ions, and other bioactive molecules, are discussed in terms of their impact on immune responses. These findings highlight and recognize the importance of the immune system and osteoimmunology, leading to a shift in the traditional models used to understand and evaluate biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | | | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| | | |
Collapse
|
9
|
Cámara-Torres M, Sinha R, Sanchez A, Habibovic P, Patelli A, Mota C, Moroni L. Effect of high content nanohydroxyapatite composite scaffolds prepared via melt extrusion additive manufacturing on the osteogenic differentiation of human mesenchymal stromal cells. BIOMATERIALS ADVANCES 2022; 137:212833. [PMID: 35929265 DOI: 10.1016/j.bioadv.2022.212833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
The field of bone tissue engineering seeks to mimic the bone extracellular matrix composition, balancing the organic and inorganic components. In this regard, additive manufacturing (AM) of high content calcium phosphate (CaP)-polymer composites holds great promise towards the design of bioactive scaffolds. Yet, the biological performance of such scaffolds is still poorly characterized. In this study, melt extrusion AM (ME-AM) was used to fabricate poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT)-nanohydroxyapatite (nHA) scaffolds with up to 45 wt% nHA, which presented significantly enhanced compressive mechanical properties, to evaluate their in vitro osteogenic potential as a function of nHA content. While osteogenic gene upregulation and matrix mineralization were observed on all scaffold types when cultured in osteogenic media, human mesenchymal stromal cells did not present an explicitly clear osteogenic phenotype, within the evaluated timeframe, in basic media cultures (i.e. without osteogenic factors). Yet, due to the adsorption of calcium and inorganic phosphate ions from cell culture media and simulated body fluid, the formation of a CaP layer was observed on PEOT/PBT-nHA 45 wt% scaffolds, which is hypothesized to account for their bone forming ability in the long term in vitro, and osteoconductivity in vivo.
Collapse
Affiliation(s)
- Maria Cámara-Torres
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Ravi Sinha
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Alberto Sanchez
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain
| | - Pamela Habibovic
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Instructive Biomaterial Engineering Department, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Alessandro Patelli
- Department of Physics and Astronomy, Padova University, Via Marzolo, 8, 35131 Padova, Italy
| | - Carlos Mota
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Lorenzo Moroni
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands.
| |
Collapse
|
10
|
Raymond Y, Lehmann C, Thorel E, Benitez R, Riveiro A, Pou J, Manzanares MC, Franch J, Canal C, Ginebra MP. 3D printing with star-shaped strands: A new approach to enhance in vivo bone regeneration. BIOMATERIALS ADVANCES 2022; 137:212807. [PMID: 35929234 DOI: 10.1016/j.bioadv.2022.212807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/14/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Concave surfaces have shown to promote bone regeneration in vivo. However, bone scaffolds obtained by direct ink writing, one of the most promising approaches for the fabrication of personalized bone grafts, consist mostly of convex surfaces, since they are obtained by microextrusion of cylindrical strands. By modifying the geometry of the nozzle, it is possible to print 3D structures composed of non-cylindrical strands and favor the presence of concave surfaces. In this work, we compare the in vivo performance of 3D-printed calcium phosphate scaffolds with either conventional cylindrical strands or star-shaped strands, in a rabbit femoral condyle model. Monocortical defects, drilled in contralateral positions, are randomly grafted with the two scaffold configurations, with identical composition. The samples are explanted eight weeks post-surgery and assessed by μ-CT and resin-embedded histological observations. The results reveal that the scaffolds containing star-shaped strands have better osteoconductive properties, guiding the newly formed bone faster towards the core of the scaffolds, and enhance bone regeneration, although the increase is not statistically significant (p > 0.05). This new approach represents a turning point towards the optimization of pore shape in 3D-printed bone grafts, further boosting the possibilities that direct ink writing technology offers for patient-specific applications.
Collapse
Affiliation(s)
- Yago Raymond
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), EEBE, Av. Eduard Maristany, 16, 08019 Barcelona, Spain; Barcelona Research Centre for Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), EEBE, Av. Eduard Maristany, 10-14, 08019 Barcelona, Spain; Biomedical Engineering Research Center (CREB), Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain; Mimetis Biomaterials S.L., Carrer de Cartagena, 245, 3F, 08025 Barcelona, Spain
| | - Cyril Lehmann
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), EEBE, Av. Eduard Maristany, 16, 08019 Barcelona, Spain; Barcelona Research Centre for Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), EEBE, Av. Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Emilie Thorel
- Mimetis Biomaterials S.L., Carrer de Cartagena, 245, 3F, 08025 Barcelona, Spain
| | - Raúl Benitez
- Biomedical Engineering Research Center (CREB), Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), 39-57, 08950 Esplugues del Llobregat (Barcelona), Spain
| | - Antonio Riveiro
- Department of Materials Engineering, Applied Mechanics and Construction, University of Vigo (UVigo), EEI, Lagoas-Marcosende, 36310 Vigo, Spain
| | - Juan Pou
- Department of Applied Physics, University of Vigo (UVigo), EEI, Lagoas-Marcosende, 36310 Vigo, Spain
| | - Maria-Cristina Manzanares
- Human Anatomy and Embryology Unit, Department of Pathology and Experimental Therapeutics, Universitat de Barcelona, 08907 L'Hospitalet de Llobregat (Barcelona), Spain
| | - Jordi Franch
- Bone Healing Group, Small Animal Surgery Department, Veterinary School, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), EEBE, Av. Eduard Maristany, 16, 08019 Barcelona, Spain; Barcelona Research Centre for Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), EEBE, Av. Eduard Maristany, 10-14, 08019 Barcelona, Spain; Biomedical Engineering Research Center (CREB), Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), EEBE, Av. Eduard Maristany, 16, 08019 Barcelona, Spain; Barcelona Research Centre for Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), EEBE, Av. Eduard Maristany, 10-14, 08019 Barcelona, Spain; Biomedical Engineering Research Center (CREB), Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| |
Collapse
|
11
|
Zhang Y, Shu T, Wang S, Liu Z, Cheng Y, Li A, Pei D. The Osteoinductivity of Calcium Phosphate-Based Biomaterials: A Tight Interaction With Bone Healing. Front Bioeng Biotechnol 2022; 10:911180. [PMID: 35651546 PMCID: PMC9149242 DOI: 10.3389/fbioe.2022.911180] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Calcium phosphate (CaP)-based bioceramics are the most widely used synthetic biomaterials for reconstructing damaged bone. Accompanied by bone healing process, implanted materials are gradually degraded while bone ultimately returns to its original geometry and function. In this progress report, we reviewed the complex and tight relationship between the bone healing response and CaP-based biomaterials, with the emphasis on the in vivo degradation mechanisms of such material and their osteoinductive properties mediated by immune responses, osteoclastogenesis and osteoblasts. A deep understanding of the interaction between biological healing process and biomaterials will optimize the design of CaP-based biomaterials, and further translate into effective strategies for biomaterials customization.
Collapse
Affiliation(s)
- Yuchen Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Tianyu Shu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Silin Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Zhongbo Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Yilong Cheng
- School of Chemistry, Xi’an Jiaotong University, Xi’an, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Ang Li, ; Dandan Pei,
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Ang Li, ; Dandan Pei,
| |
Collapse
|
12
|
Vermeulen S, Birgani ZT, Habibovic P. Biomaterial-induced pathway modulation for bone regeneration. Biomaterials 2022; 283:121431. [DOI: 10.1016/j.biomaterials.2022.121431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/28/2022] [Accepted: 02/17/2022] [Indexed: 12/18/2022]
|
13
|
Lin A, Liu S, Xiao L, Fu Y, Liu C, Li Y. Controllable preparation of bioactive open porous microspheres for tissue engineering. J Mater Chem B 2022; 10:6464-6471. [DOI: 10.1039/d2tb01198k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biodegradable microspheres have been widely applied as cell carriers for tissue engineering and regenerative medicine. However, most cell carriers only have simple planar structure and show poor biological activity and...
Collapse
|
14
|
Konka J, Espanol M, Bosch BM, de Oliveira E, Ginebra MP. Maturation of biomimetic hydroxyapatite in physiological fluids: a physicochemical and proteomic study. Mater Today Bio 2021; 12:100137. [PMID: 34632362 PMCID: PMC8487082 DOI: 10.1016/j.mtbio.2021.100137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/20/2021] [Accepted: 09/04/2021] [Indexed: 11/26/2022] Open
Abstract
Biomimetic calcium-deficient hydroxyapatite (CDHA) as a bioactive material exhibits exceptional intrinsic osteoinductive and osteogenic properties because of its nanostructure and composition, which promote a favorable microenvironment. Its high reactivity has been hypothesized to play a relevant role in the in vivo performance, mediated by the interaction with the biological fluids, which is amplified by its high specific surface area. Paradoxically, this high reactivity is also behind the in vitro cytotoxicity of this material, especially pronounced in static conditions. The present work explores the structural and physicochemical changes that CDHA undergoes in contact with physiological fluids and to investigate its interaction with proteins. Calcium-deficient hydroxyapatite discs with different micro/nanostructures, coarse (C) and fine (F), were exposed to cell-free complete culture medium over extended periods of time: 1, 7, 14, 21, 28, and 50 days. Precipitate formation was not observed in any of the materials in contact with the physiological fluid, which would indicate that the ionic exchanges were linked to incorporation into the crystal structure of CDHA or in the hydrated layer. In fact, CDHA experienced a maturation process, with a progressive increase in crystallinity and the Ca/P ratio, accompanied by an uptake of Mg and a B-type carbonation process, with a gradual propagation into the core of the samples. However, the reactivity of biomimetic hydroxyapatite was highly dependent on the specific surface area and was amplified in nanosized needle-like crystal structures (F), whereas in coarse specimens the ionic exchanges were restricted to the surface, with low penetration in the material bulk. In addition to showing a higher protein adsorption on F substrates, the proteomics study revealed the existence of protein selectivity toward F or C microstructures, as well as the capability of CDHA, and more remarkably of F-CDHA, to concentrate specific proteins from the culture medium. Finally, a substantial improvement in the material's ability to support cell proliferation was observed after the CDHA maturation process.
Collapse
Affiliation(s)
- J Konka
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019, Barcelona, Spain
| | - M Espanol
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019, Barcelona, Spain
| | - B M Bosch
- Bioengineering Institute of Technology (BIT), Universitat Internacional de Catalunya (UIC), Josep Trueta s/n, 08195, Barcelona, Spain
| | - E de Oliveira
- Plataforma de Proteòmica, Parc Científic de Barcelona, PCB, Barcelona, Spain
| | - M-P Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019, Barcelona, Spain.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| |
Collapse
|
15
|
Fan L, Zhang Y, Hu J, Fang Y, Hu R, Shi W, Ren B, Lin C, Tian ZQ. Surface Properties of Octacalcium Phosphate Nanocrystals Are Crucial for Their Bioactivities. ACS OMEGA 2021; 6:25372-25380. [PMID: 34632195 PMCID: PMC8495883 DOI: 10.1021/acsomega.1c03278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 06/13/2023]
Abstract
The fundamental structure-biofunction relationship of calcium phosphates (CaPs) remains unclear despite their clinical successes as important biomaterials. Herein, a series of CaP coatings with gradual change of topography and crystallinity is constructed by electrochemical deposition, and the roles of the two basic physicochemical properties are scrutinized for further understanding the mechanism behind the superior bioactivities of octacalcium phosphate (OCP). We observe a distinct modulation on cell proliferation on the prepared CaP coatings for different cells. The magnitude of the modulation seems to depend on the cellular size, and the effect is attributed mainly to the microstructure of the coatings. On the other hand, the crystallinity manifests its significance for the osteogenic property of the OCP coatings. Further transmission electron microscopy analysis and density functional theory calculations reveal a surface rich in HPO4 2- for the high-crystalline OCP nanocrystals. The results highlight that the nanocrystal surface properties of the OCP coatings, including the periodic structure and the HPO4 2- composition, may play significant roles surpassing the ion release effect in determining its osteogenic property, probably via surface spatial and/or chemical recognitions. The present findings shed light on the fundamental understanding of the structure-biofunction relationship for CaP biomaterials.
Collapse
Affiliation(s)
- Lili Fan
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen, Fujian 361005, China
- Department
of Biomaterials, College of Materials, Xiamen
University, Xiamen, Fujian 361005, China
| | - Yanmei Zhang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen, Fujian 361005, China
| | - Jiejie Hu
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen, Fujian 361005, China
| | - Yuan Fang
- Department
of Chemistry, Fudan University, Shanghai 200433, China
| | - Ren Hu
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen, Fujian 361005, China
| | - Wei Shi
- Department
of Biomaterials, College of Materials, Xiamen
University, Xiamen, Fujian 361005, China
| | - Bin Ren
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen, Fujian 361005, China
| | - Changjian Lin
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen, Fujian 361005, China
| | - Zhong-Qun Tian
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen, Fujian 361005, China
| |
Collapse
|
16
|
Guttenplan APM, Tahmasebi Birgani Z, Giselbrecht S, Truckenmüller RK, Habibović P. Chips for Biomaterials and Biomaterials for Chips: Recent Advances at the Interface between Microfabrication and Biomaterials Research. Adv Healthc Mater 2021; 10:e2100371. [PMID: 34033239 PMCID: PMC11468311 DOI: 10.1002/adhm.202100371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/08/2021] [Indexed: 12/24/2022]
Abstract
In recent years, the use of microfabrication techniques has allowed biomaterials studies which were originally carried out at larger length scales to be miniaturized as so-called "on-chip" experiments. These miniaturized experiments have a range of advantages which have led to an increase in their popularity. A range of biomaterial shapes and compositions are synthesized or manufactured on chip. Moreover, chips are developed to investigate specific aspects of interactions between biomaterials and biological systems. Finally, biomaterials are used in microfabricated devices to replicate the physiological microenvironment in studies using so-called "organ-on-chip," "tissue-on-chip" or "disease-on-chip" models, which can reduce the use of animal models with their inherent high cost and ethical issues, and due to the possible use of human cells can increase the translation of research from lab to clinic. This review gives an overview of recent developments at the interface between microfabrication and biomaterials science, and indicates potential future directions that the field may take. In particular, a trend toward increased scale and automation is apparent, allowing both industrial production of micron-scale biomaterials and high-throughput screening of the interaction of diverse materials libraries with cells and bioengineered tissues and organs.
Collapse
Affiliation(s)
- Alexander P. M. Guttenplan
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Zeinab Tahmasebi Birgani
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Roman K. Truckenmüller
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
17
|
Sadowska JM, Ginebra MP. Inflammation and biomaterials: role of the immune response in bone regeneration by inorganic scaffolds. J Mater Chem B 2021; 8:9404-9427. [PMID: 32970087 DOI: 10.1039/d0tb01379j] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The regulatory role of the immune system in maintaining bone homeostasis and restoring its functionality, when disturbed due to trauma or injury, has become evident in recent years. The polarization of macrophages, one of the main constituents of the immune system, into the pro-inflammatory or anti-inflammatory phenotype has great repercussions for cellular crosstalk and the subsequent processes needed for proper bone regeneration such as angiogenesis and osteogenesis. In certain scenarios, the damaged osseous tissue requires the placement of synthetic bone grafts to facilitate the healing process. Inorganic biomaterials such as bioceramics or bioactive glasses are the most widely used due to their resemblance to the mineral phase of bone and superior osteogenic properties. The immune response of the host to the inorganic biomaterial, which is of an exogenous nature, might determine its fate, leading either to active bone regeneration or its failure. Therefore, various strategies have been employed, like the modification of structural/chemical features or the incorporation of bioactive molecules, to tune the interplay with the immune cells. Understanding how these particular modifications impact the polarization of macrophages and further osteogenic and osteoclastogenic events is of great interest in view of designing a new generation of osteoimmunomodulatory materials that support the regeneration of osseous tissue during all stages of bone healing.
Collapse
Affiliation(s)
- Joanna M Sadowska
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Ireland
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Av. Eduard Maristany 16, 08019 Barcelona, Spain. and Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|
18
|
Saulacic N, Fujioka-Kobayashi M, Kimura Y, Bracher AI, Zihlmann C, Lang NP. The effect of synthetic bone graft substitutes on bone formation in rabbit calvarial defects. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:14. [PMID: 33475862 PMCID: PMC7819904 DOI: 10.1007/s10856-020-06483-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/18/2020] [Indexed: 05/05/2023]
Abstract
The aim of this study was to evaluate the influence of the intensity of the biomimetic hydroxyapatite (HA) coating of α-tricalcium phosphate (α-TCP) on biomaterial degradation and bone formation. Twenty-four female NZW rabbits of approximately 12 weeks of age were used. Critical size defects were randomly treated with 3%:97% HA:α-TCP (BBCP1), 12%:88% HA:α-TCP (BBCP2), and 23%:77% HA:α-TCP (BBCP3), respectively or sham. All defects were covered with a resorbable collagen membrane. Animals were euthanized after 3 and 12 weeks of healing and samples were investigated by micro-CT and histologic analysis. Ingrowth of newly formed woven bone from the original bone at 3-week healing period was observed in all samples. At the 12-week healing period, the new bone in the peripheral area was mainly lamellar and in the central region composed of both woven and lamellar bone. New bony tissue was found on the surface of all three types of granules and at the interior of the BBCP1 granules. Samples with 3% HA showed significantly less residual biomaterial in comparison to the other two groups. Furthermore, BBCP1 significantly promoted new bone area as compared to other three groups and more bone volume as compared to the control. Within its limitations, this study indicated the highest degradation rate in case of BBCP1 concomitant with the highest rate of bone formation. Hence, formation of new bone can be affected by the level of biomimetic HA coating of α-TCP.
Collapse
Affiliation(s)
- Nikola Saulacic
- Department of Cranio-Maxillofacial Surgery, Faculty of Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Faculty of Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yasushi Kimura
- Department of Cranio-Maxillofacial Surgery, Faculty of Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Oral and Maxillofacial Surgery, National Defense Medical College Hospital, Saitama, Japan
| | - Ava Insa Bracher
- Department of Cranio-Maxillofacial Surgery, Faculty of Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Niklaus P Lang
- Department of Cranio-Maxillofacial Surgery, Faculty of Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Liu L, Zhang T, Li C, Jiang G, Wang F, Wang L. Regulating surface roughness of electrospun poly(ε-caprolactone)/β-tricalcium phosphate fibers for enhancing bone tissue regeneration. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Cao X, Lu H, Liu J, Lu W, Guo L, Ma M, Zhang B, Guo Y. 3D plotting in the preparation of newberyite, struvite, and brushite porous scaffolds: using magnesium oxide as a starting material. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:88. [PMID: 31325082 DOI: 10.1007/s10856-019-6290-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Calcium phosphate (CaP)-containing materials, such as hydroxyapatite and brushite, are well studied bone grafting materials owing to their similar chemical compositions to the mineral phase of natural bone and kidney calculi. In recent studies, magnesium phosphate (MgP)-containing compounds, such as newberyite and struvite, have shown promise as alternatives to CaP. However, the different ways in degradation and release of Mg2+ and Ca2+ ions in vitro may affect the biocompatibility of CaP and MgP-containing compounds. In the present paper, newberyite, struvite, and brushite 3D porous structures were constructed by 3D-plotting combining with a two-step cementation process, using magnesium oxide (MgO) as a starting material. Briefly, 3D porous green bodies fabricated by 3D-plotting were soaked in (NH4)2HPO4 solution to form semi-manufactured 3D porous structures. These structures were then soaked in different phosphate solutions to translate the structures into newberyite, struvite, and brushite porous scaffolds. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS) were used to characterize the phases, morphologies, and compositions of the 3D porous scaffolds. The porosity, compressive strength, in vitro degradation and cytotoxicity on MC3T3-E1 osteoblast cells were assessed as well. The results showed that extracts obtained from immersing scaffolds in alpha-modified essential media induced minimal cytotoxicity and the cells could be attached merely onto newberyite and brushite scaffolds. Newberyite and brushite scaffolds produced through our 3D-plotting and two-step cementation process showed the sustained in vitro degradation and excellent biocompatibility, which could be used as scaffolds for the bone tissue engineering.
Collapse
Affiliation(s)
- Xiaofeng Cao
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China
| | - Haojun Lu
- Hangzhou Branch of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Zhejiang, 310018, Hangzhou, PR China
| | - Junli Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China
| | - Weipeng Lu
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China
| | - Lin Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China
| | - Ming Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China
| | - Bing Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China.
- Hangzhou Branch of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Zhejiang, 310018, Hangzhou, PR China.
- University of Chinese Academy of Sciences, 100049, Beijing, PR China.
| |
Collapse
|
21
|
Othman Z, Fernandes H, Groot AJ, Luider TM, Alcinesio A, Pereira DDM, Guttenplan APM, Yuan H, Habibovic P. The role of ENPP1/PC-1 in osteoinduction by calcium phosphate ceramics. Biomaterials 2019; 210:12-24. [PMID: 31048198 DOI: 10.1016/j.biomaterials.2019.04.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/15/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022]
Abstract
In the past decade, calcium phosphate (CaP) ceramics have emerged as alternatives to autologous bone grafts for the treatment of large, critical-sized bone defects. In order to be effective in the regeneration of such defects, ceramics must show osteoinductive behaviour, defined as the ability to induce de novo heterotopic bone formation. While a set of osteoinductive CaP ceramics has been developed, the exact processes underlying osteoinduction, and the role of the physical and chemical properties of the ceramics, remain largely unknown. Previous studies have focused on the role of the transcriptome to shed light on the mechanism of osteoinduction at the mRNA level. To complement these studies, a proteomic analysis was performed to study the behaviour of hMSCs on osteoinductive and non-osteoinductive CaPs. The results of this analysis suggest that plasma cell glycoprotein 1 (PC-1), encoded by the ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene, plays a key role in the process of osteoinduction by CaP ceramics. Validation experiments have confirmed that indeed, the mRNA expression of ENPP1 and the production of PC-1 are higher on osteoinductive than on non-osteoinductive CaP ceramics, a trend that was also observed for other osteogenic markers such as bone morphogenetic protein 2 (BMP2) and osteopontin (OPN), but not for alkaline phosphatase (ALP). Our results also showed that the expression of PC-1 is restricted to those cells which are in direct contact with the CaP ceramic surface, plausibly due to the localised depletion of calcium and inorganic phosphate ions from the supersaturated cell culture medium as CaP crystallises on the ceramic surface. Replicating the surface of the osteoinductive ceramic in polystyrene resulted in a significant decrease in ENPP1 expression, suggesting that surface structural properties alone are not sufficient to induce ENPP1 expression. Finally, knocking down ENPP1 expression in hMSCs resulted in increased BMP2 expression, both at the mRNA and protein level, suggesting that ENPP1 is a negative regulator of BMP-2 signalling. Taken together, this study shows, for the first time, that ENPP1/PC-1 plays an important role in CaP-induced osteogenic differentiation of hMSCs and thus possibly osteoinduction by CaP ceramics. Furthermore, we have identified a crucial role for the interfacial (chemical) events occurring on the CaP ceramic surface in the process of osteoinduction. This knowledge can contribute to the development of new bone graft substitutes, with improved osteoinductive potential.
Collapse
Affiliation(s)
- Ziryan Othman
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Hugo Fernandes
- Faculty of Medicine, University of Coimbra, Health Science Campus, Central Unit, Azinhaga de Santa Comba, 3000-354, Coimbra, Portugal
| | - Arjan J Groot
- Department of Radiation Oncology (MaastRO), GROW - School for Oncology & Developmental Biology, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Theo M Luider
- Laboratory of Neuro-Oncology and Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, the Netherlands
| | - Alessandro Alcinesio
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Rd, OX1 3TA, Oxford, UK
| | - Daniel de Melo Pereira
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Alexander P M Guttenplan
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Huipin Yuan
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands.
| |
Collapse
|
22
|
Genova T, Pesce P, Mussano F, Tanaka K, Canullo L. The influence of bone-graft bio-functionalization with plasma of argon on bacterial contamination. J Biomed Mater Res A 2018; 107:67-70. [DOI: 10.1002/jbm.a.36531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/05/2018] [Accepted: 08/16/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Tullio Genova
- CIR Dental School, Department of Surgical Sciences, University of Torino; via Nizza 230, 10126, Turin Italy
- Department of Life Sciences and Systems Biology, University of Torino; via Accademia Albertina 13, 10123 Turin Italy
| | - Paolo Pesce
- Department of Surgical Sciences (DISC); University of Genoa; Implant and Prosthetic Dentistry Unit (PAD. 4), Ospedale S. Martino, L. Rosanna Benzi 10, 16132, Genova Italy
| | - Federico Mussano
- CIR Dental School, Department of Surgical Sciences, University of Torino; via Nizza 230, 10126, Turin Italy
| | | | | |
Collapse
|
23
|
Chen TH, Ghayor C, Siegenthaler B, Schuler F, Rüegg J, De Wild M, Weber FE. Lattice Microarchitecture for Bone Tissue Engineering from Calcium Phosphate Compared to Titanium. Tissue Eng Part A 2018; 24:1554-1561. [PMID: 29999466 PMCID: PMC6198759 DOI: 10.1089/ten.tea.2018.0014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Additive manufacturing of bone tissue engineering scaffolds will become a key element for personalized bone tissue engineering in the near future. Several additive manufacturing processes are based on extrusion where the deposition of the filament will result in a three-dimensional lattice structure. Recently, we studied diverse lattice structures for bone tissue engineering realized by laser sintering of titanium. In this work, we used lithography-based ceramic manufacturing of lattice structures to produce scaffolds from tricalcium phosphates (TCP) and compared them in vivo to congruent titanium scaffolds manufactured with the identical computer-aided design data to look for material-based differences in bony healing. The results show that, during a 4-week period in a noncritical-size defect in a rabbit calvarium, both scaffolds with the identical microarchitecture performed equally well in terms of bony regeneration and bony bridging of the defect. A significant increase in both parameters could only be achieved when the TCP-based scaffolds were doped with bone morphogenetic protein-2. In a critical-size defect in the calvarial bone of rabbits, however, the titanium scaffold performed significantly better than the TCP-based scaffold, most likely due to its higher mechanical stability. We conclude that titanium and TCP-based scaffolds of the same microarchitecture perform equally well in terms of bone regeneration, provided the microarchitecture meets the mechanical demand at the site of implantation.
Collapse
Affiliation(s)
- Tse-Hsiang Chen
- 1 Oral Biotechnology and Bioengineering, Center of Dental Medicine, University of Zurich , Zurich, Switzerland
| | - Chafik Ghayor
- 1 Oral Biotechnology and Bioengineering, Center of Dental Medicine, University of Zurich , Zurich, Switzerland
| | - Barbara Siegenthaler
- 1 Oral Biotechnology and Bioengineering, Center of Dental Medicine, University of Zurich , Zurich, Switzerland
| | - Felix Schuler
- 2 School of Life Sciences, Institute for Medical and Analytical Technologies, University of Applied Sciences Northwestern Switzerland , Muttenz, Switzerland
| | - Jasmine Rüegg
- 2 School of Life Sciences, Institute for Medical and Analytical Technologies, University of Applied Sciences Northwestern Switzerland , Muttenz, Switzerland
| | - Michael De Wild
- 2 School of Life Sciences, Institute for Medical and Analytical Technologies, University of Applied Sciences Northwestern Switzerland , Muttenz, Switzerland
| | - Franz E Weber
- 1 Oral Biotechnology and Bioengineering, Center of Dental Medicine, University of Zurich , Zurich, Switzerland .,3 CABMM, Center for Applied Biotechnology and Molecular Medicine, University of Zurich , Zurich, Switzerland .,4 Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich , Zurich, Switzerland
| |
Collapse
|
24
|
Diao J, OuYang J, Deng T, Liu X, Feng Y, Zhao N, Mao C, Wang Y. 3D-Plotted Beta-Tricalcium Phosphate Scaffolds with Smaller Pore Sizes Improve In Vivo Bone Regeneration and Biomechanical Properties in a Critical-Sized Calvarial Defect Rat Model. Adv Healthc Mater 2018; 7:e1800441. [PMID: 30044555 PMCID: PMC6355155 DOI: 10.1002/adhm.201800441] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/20/2018] [Indexed: 12/13/2022]
Abstract
Due to the difficulty in fabricating bioceramic scaffolds with smaller pore sizes by the current 3D printing technique, the effect of smaller pore sizes (below 400 µm) of 3D printed bioceramic scaffolds on the bone regeneration and biomechanical behavior is never studied. Herein beta-tricalcium phosphate (β-TCP) scaffolds with interconnected smaller pores of three different sizes (100, 250, and 400 µm) are fabricated by 3D plotting. The resultant scaffolds are then implanted into rat critical-sized calvarial defects without any seeded cells. A custom-designed device is developed to investigate the biomechanical properties of the scaffolds after surgical implantation for 4, 8, and 12 weeks. The scaffolds with the 100 µm pore size are found to present the highest maximum load and stiffness, comparable to those of the autogenous bone, after being implanted for 12 weeks. Micro-computed tomography (micro-CT) and histological analysis further indicate that the scaffolds with the 100 µm pore size achieve the highest percentage of new bone ingrowth, which correlates to their best in vivo biomechanical properties. This study demonstrates that tailoring the pore size of β-TCP scaffolds to a smaller range by 3D-plotting can be a facile and efficient approach to enhanced bone regeneration and biomechanical behaviors in bone repair.
Collapse
Affiliation(s)
- Jingjing Diao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Nation Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jun OuYang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Southern Medical University, Guangzhou, 510515, China
| | - Ting Deng
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Southern Medical University, Guangzhou, 510515, China
| | - Xiao Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Nation Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yanting Feng
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Southern Medical University, Guangzhou, 510515, China
| | - Naru Zhao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Nation Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Room 3310, Norman, OK, 73019-5300, USA
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yingjun Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Nation Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
25
|
Sadowska JM, Guillem-Marti J, Espanol M, Stähli C, Döbelin N, Ginebra MP. In vitro response of mesenchymal stem cells to biomimetic hydroxyapatite substrates: A new strategy to assess the effect of ion exchange. Acta Biomater 2018; 76:319-332. [PMID: 29933107 DOI: 10.1016/j.actbio.2018.06.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/29/2018] [Accepted: 06/18/2018] [Indexed: 02/08/2023]
Abstract
Biomaterials can interact with cells directly, that is, by direct contact of the cells with the material surface, or indirectly, through soluble species that can be released to or uptaken from the surrounding fluids. However, it is difficult to characterise the relevance of this fluid-mediated interaction separately from the topography and composition of the substrate, because they are coupled variables. These fluid-mediated interactions are amplified in the case of highly reactive calcium phosphates (CaPs) such as biomimetic calcium deficient hydroxyapatite (CDHA), particularly in static in vitro cultures. The present work proposes a strategy to decouple the effect of ion exchange from topographical features by adjusting the volume ratio between the cell culture medium and biomaterial (VCM/VB). Increasing this ratio allowed mitigating the drastic ionic exchanges associated to the compositional changes experienced by the material exposed to the cell culture medium. This strategy was validated using rat mesenchymal stem cells (rMSCs) cultured on CDHA and beta-tricalcium phosphate (β-TCP) discs using different VCM/VB ratios. Whereas in the case of β-TCP the cell response was not affected by this ratio, a significant effect on cell adhesion and proliferation was found for the more reactive CDHA. The ionic exchange, produced by CDHA at low VCM/VB, altered cell adhesion due to the reduced number of focal adhesions, caused cell shrinkage and further rMCSs apoptosis. This was mitigated when using a high VCM/VB, which attenuated the changes of calcium and phosphate concentrations in the cell culture medium, resulting in rMSCs spreading and a viability over time. Moreover, rMSCs showed an earlier expression of osteogenic genes on CDHA compared to sintered β-TCP when extracellular calcium fluctuations were reduced. STATEMENT OF SIGNIFICANCE Fluid mediated interactions play a significant role in the bioactivity of calcium phosphates. Ionic exchange is amplified in the case of biomimetic hydroxyapatite, which makes the in vitro characterisation of cell-material interactions especially challenging. The present work proposes a novel and simple strategy to explore the mechanisms of interaction of biomimetic and sintered calcium phosphates with mesenchymal stem cells. The effects of topography and ion exchange are analysed separately by modifying the volume ratio between cell culture medium and biomaterial. High ionic fluctuations interfered in the maturation of focal adhesions, hampering cell adhesion and leading to increased apoptosis and reduced proliferation rate.
Collapse
|
26
|
Canullo L, Genova T, Naenni N, Nakajima Y, Masuda K, Mussano F. Plasma of argon enhances the adhesion of murine osteoblasts on different graft materials. Ann Anat 2018; 218:265-270. [DOI: 10.1016/j.aanat.2018.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 11/26/2022]
|
27
|
Othman Z, Cillero Pastor B, van Rijt S, Habibovic P. Understanding interactions between biomaterials and biological systems using proteomics. Biomaterials 2018; 167:191-204. [PMID: 29571054 DOI: 10.1016/j.biomaterials.2018.03.020] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 12/22/2022]
Abstract
The role that biomaterials play in the clinical treatment of damaged organs and tissues is changing. While biomaterials used in permanent medical devices were required to passively take over the function of a damaged tissue in the long term, current biomaterials are expected to trigger and harness the self-regenerative potential of the body in situ and then to degrade, the foundation of regenerative medicine. To meet these different requirements, it is imperative to fully understand the interactions biomaterials have with biological systems, in space and in time. This knowledge will lead to a better understanding of the regenerative capabilities of biomaterials aiding their design with improved functionalities (e.g. biocompatibility, bioactivity). Proteins play a pivotal role in the interaction between biomaterials and cells or tissues. Protein adsorption on the material surface is the very first event of this interaction, which is determinant for the subsequent processes of cell growth, differentiation, and extracellular matrix formation. Against this background, the aim of the current review is to provide insight in the current knowledge of the role of proteins in cell-biomaterial and tissue-biomaterial interactions. In particular, the focus is on proteomics studies, mainly using mass spectrometry, and the knowledge they have generated on protein adsorption of biomaterials, protein production by cells cultured on materials, safety and efficacy of new materials based on nanoparticles and the analysis of extracellular matrices and extracellular matrix-derived products. In the outlook, the potential and limitations of this approach are discussed and mass spectrometry imaging is presented as a powerful technique that complements existing mass spectrometry techniques by providing spatial molecular information about the material-biological system interactions.
Collapse
Affiliation(s)
- Ziryan Othman
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Berta Cillero Pastor
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Sabine van Rijt
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Pamela Habibovic
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|
28
|
Zhuang C, Ke X, Jin Z, Zhang L, Yang X, Xu S, Yang G, Xie L, Prince GAE, Pan Z, Gou Z. Core–shell-structured nonstoichiometric bioceramic spheres for improving osteogenic capability. J Mater Chem B 2017; 5:8944-8956. [PMID: 32264121 DOI: 10.1039/c7tb02295f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Precisely controlling the composition distribution and pore-network evolution in the foreign ion doped, core–shell Ca-silicate bioceramic microspheres is favorable for tailoring osteogenicity in critical size bone defects.
Collapse
|