1
|
Harun-Ur-Rashid M, Foyez T, Krishna SBN, Poda S, Imran AB. Recent advances of silver nanoparticle-based polymer nanocomposites for biomedical applications. RSC Adv 2025; 15:8480-8505. [PMID: 40109922 PMCID: PMC11920860 DOI: 10.1039/d4ra08220f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
Silver nanoparticle-polymer nanocomposites (AgNP-PNCs) represent a transformative advancement in biomedical material science, integrating the potent antimicrobial properties of AgNPs with the structural versatility of polymer matrices. This synergy enables enhanced infection control, mechanical stability, and controlled drug delivery, making these nanocomposites highly suitable for applications such as wound healing, medical coatings, tissue engineering, and biosensors. Recent progress in synthesis and functionalization has led to greater control over particle morphology, dispersion, and stability, optimizing AgNP-PNCs for clinical and translational applications. However, challenges related to cytotoxicity, long-term stability, immune response, and scalability persist, necessitating systematic improvements in surface functionalization, hybridization strategies, and biocompatibility assessments. This review critically evaluates the latest advancements in AgNP-PNC development, focusing on their functionalization techniques, regulatory considerations, and emerging strategies to overcome biomedical challenges. Additionally, it discusses preclinical and translational aspects, including commercialization barriers and regulatory frameworks such as FDA and EMA guidelines, ensuring a comprehensive outlook on their clinical feasibility. By bridging the gap between innovation and practical application, this review investigates the transformative potential of AgNP-PNCs in advancing next-generation biomedical materials.
Collapse
Affiliation(s)
- Mohammad Harun-Ur-Rashid
- Department of Chemistry, International University of Business Agriculture and Technology (IUBAT) Sector 10, Uttara Model Town Dhaka 1230 Bangladesh
| | - Tahmina Foyez
- Department of Pharmacy, School of Life Sciences, United International University United City, Madani Ave Dhaka 1212 Bangladesh
| | - Suresh Babu Naidu Krishna
- Institute for Water and Wastewater Technology, Durban University of Technology P. O. Box 1334 Durban 4000 South Africa
| | - Sudhakar Poda
- Department of Biotechnology, Acharya Nagarjuna University Andhra Pradesh India
| | - Abu Bin Imran
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET) Dhaka 1000 Bangladesh
| |
Collapse
|
2
|
Adhikari M, Wang L, Adhikari D, Khadka S, Ullah M, Mbituyimana B, Bukatuka CF, Shi Z, Yang G. Electric stimulation: a versatile manipulation technique mediated microbial applications. Bioprocess Biosyst Eng 2025; 48:171-192. [PMID: 39611964 DOI: 10.1007/s00449-024-03107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/10/2024] [Indexed: 11/30/2024]
Abstract
Electric stimulation (ES) is a versatile technique that uses an electric field to manipulate microorganisms individually. Over the past several decades, the capabilities of ES have expanded from bioremediation to the precise motion control of cells and microorganisms. However, there is limited information on the underlying mechanisms, latest advancement and broader microbial applications of ES in various fields, such as the production of extracellular polymers with upgraded properties. This review article summarizes recent advancements in ES and discusses it as a unique external manipulation technique for microorganisms with wide applications in bioremediation, industry, biofilm deactivation, disinfection, and controlled biosynthesis. One specific application of ES discussed in this review is the extracellular biosynthesis, regulation, and organization of extracellular polymers, such as bacterial cellulose nanofibrils, curdlan, and microbial nanowires. Overall, this review aims to provide a platform for microbial biotechnologists and synthetic biologists to leverage the manipulation of microorganisms using ES for bio-based applications, including the production of extracellular polymers with enhanced properties. Researchers can engineer, manipulate, and control microorganisms for various applications by harnessing the potential of electric fields.
Collapse
Affiliation(s)
- Manjila Adhikari
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Li Wang
- Wuhan Branch of the National Science Library, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Dhurba Adhikari
- Genomic Division, Faculty of Biosciences and Aquaculture, Nord University, NO-8049, Bodø, Norway
| | - Sujan Khadka
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Mati Ullah
- Department of Biotechnology, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bricard Mbituyimana
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Clemence Futila Bukatuka
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
3
|
Ray S, Löffler S, Richter‐Dahlfors A. High-Resolution Large-Area Image Analysis Deciphers the Distribution of Salmonella Cells and ECM Components in Biofilms Formed on Charged PEDOT:PSS Surfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307322. [PMID: 38225703 PMCID: PMC11251553 DOI: 10.1002/advs.202307322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/12/2023] [Indexed: 01/17/2024]
Abstract
Biofilms, comprised of cells embedded in extracellular matrix (ECM), enable bacterial surface colonization and contribute to pathogenesis and biofouling. Yet, antibacterial surfaces are mainly evaluated for their effect on bacterial cells rather than the ECM. Here, a method is presented to separately quantify amounts and distribution of cells and ECM in Salmonella biofilms grown on electroactive poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS). Within a custom-designed biofilm reactor, biofilm forms on PEDOT:PSS surfaces electrically addressed with a bias potential and simultaneous recording of the resulting current. The amount and distribution of cells and ECM in biofilms are analyzed using a fluorescence-based spectroscopic mapping technique and fluorescence confocal microscopy combined with advanced image processing. The study shows that surface charge leads to upregulated ECM production, leaving the cell counts largely unaffected. An altered texture is also observed, with biofilms forming small foci or more continuous structures. Supported by mutants lacking ECM production, ECM is identified as an important target when developing antibacterial strategies. Also, a central role for biofilm distribution is highlighted that likely influences antimicrobial susceptibility in biofilms. This work provides yet a link between conductive polymer materials and bacterial metabolism and reveals for the first time a specific effect of electrochemical addressing on bacterial ECM formation.
Collapse
Affiliation(s)
- Sanhita Ray
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of TechnologyStockholmSE‐171 77Sweden
- Department of NeuroscienceKarolinska InstitutetStockholmSE‐171 77Sweden
| | - Susanne Löffler
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of TechnologyStockholmSE‐171 77Sweden
- Department of NeuroscienceKarolinska InstitutetStockholmSE‐171 77Sweden
| | - Agneta Richter‐Dahlfors
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of TechnologyStockholmSE‐171 77Sweden
- Department of NeuroscienceKarolinska InstitutetStockholmSE‐171 77Sweden
| |
Collapse
|
4
|
El-Sayed M, Al-Mofty SED, Mahdy NK, Sarhan WA, Azzazy HMES. A novel long-acting antimicrobial nanomicelle spray. NANOSCALE ADVANCES 2023; 5:2517-2529. [PMID: 37143809 PMCID: PMC10153481 DOI: 10.1039/d2na00950a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/20/2023] [Indexed: 05/06/2023]
Abstract
Contaminated surfaces play a major role in disease transmission to humans. The vast majority of commercial disinfectants provide short-term protection of surfaces against microbial contamination. The Covid-19 pandemic has attracted attention to the importance of long-term disinfectants as they would reduce the need for staff and save time. In this study, nanoemulsions and nanomicelles containing a combination of benzalkonium chloride (BKC; a potent disinfectant and a surfactant) and benzoyl peroxide (BPO; a stable form of peroxide that is activated upon contact with lipid/membranous material) were formulated. The prepared nanoemulsion and nanomicelle formulas were of small sizes <80 nm and high positive charge >45 mV. They showed enhanced stability and prolonged antimicrobial efficacy. The antibacterial potency was evaluated in terms of long-term disinfection on surfaces as verified by repeated bacterial inoculums. Additionally, the efficacy of killing bacteria upon contact was also investigated. A nanomicelle formula (NM-3) consisting of 0.8% BPO in acetone and 2% BKC plus 1% TX-100 in distilled water (1 : 5 volume ratio) demonstrated overall surface protection over a period of 7 weeks upon a single spray application. Furthermore, its antiviral activity was tested by the embryo chick development assay. The prepared NM-3 nanoformula spray showed strong antibacterial activities against Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus as well as antiviral activities against infectious bronchitis virus due to the dual effects of BKC and BPO. The prepared NM-3 spray shows great potential as an effective solution for prolonged surface protection against multiple pathogens.
Collapse
Affiliation(s)
- Mousa El-Sayed
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo New Cairo Cairo 11835 Egypt
| | - Saif El-Din Al-Mofty
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo New Cairo Cairo 11835 Egypt
| | - Noha Khalil Mahdy
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo New Cairo Cairo 11835 Egypt
| | - Wessam Awad Sarhan
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo New Cairo Cairo 11835 Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo New Cairo Cairo 11835 Egypt
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology Jena 07745 Germany
| |
Collapse
|
5
|
He D, Fu C, Ning M, Hu X, Li S, Chen Y. Biofilms possibly harbor occult SARS-CoV-2 may explain lung cavity, re-positive and long-term positive results. Front Cell Infect Microbiol 2022; 12:971933. [PMID: 36250053 PMCID: PMC9554432 DOI: 10.3389/fcimb.2022.971933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/14/2022] [Indexed: 01/08/2023] Open
Abstract
During the COVID-19 pandemic, there have been an increasing number of COVID-19 patients with cavitary or cystic lung lesions, re-positive or long-term positive nucleic acid tests, but the mechanism is still unclear. Lung cavities may appear at long time interval from initial onset of coronavirus infection, generally during the absorption phase of the disease. The main histopathological characteristic is diffuse alveolar damage and may have more severe symptoms after initial recovery from COVID-19 and an increased mortality rate. There are many possible etiologies of pulmonary cavities in COVID-19 patients and we hypothesize that occult SARS-CoV-2, in the form of biofilm, is harbored in the airway lacuna with other pathogenic microorganisms, which may be the cause of pulmonary cavities and repeated and long-term positive nucleic acid tests.
Collapse
Affiliation(s)
- Daqian He
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Chaojiang Fu
- Emergency Department (Outpatient Chemotherapy Center), The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Mingjie Ning
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Xianglin Hu
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Shanshan Li
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
- *Correspondence: Ying Chen, ; Shanshan Li,
| | - Ying Chen
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
- *Correspondence: Ying Chen, ; Shanshan Li,
| |
Collapse
|
6
|
Franco D, Calabrese G, Guglielmino SPP, Conoci S. Metal-Based Nanoparticles: Antibacterial Mechanisms and Biomedical Application. Microorganisms 2022; 10:microorganisms10091778. [PMID: 36144380 PMCID: PMC9503339 DOI: 10.3390/microorganisms10091778] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
The growing increase in antibiotic-resistant bacteria has led to the search for new antibacterial agents capable of overcoming the resistance problem. In recent years, nanoparticles (NPs) have been increasingly used to target bacteria as an alternative to antibiotics. The most promising nanomaterials for biomedical applications are metal and metal oxide NPs, due to their intrinsic antibacterial activity. Although NPs show interesting antibacterial properties, the mechanisms underlying their action are still poorly understood, limiting their use in clinical applications. In this review, an overview of the mechanisms underlying the antibacterial activity of metal and metal oxide NPs will be provided, relating their efficacy to: (i) bacterial strain; (ii) higher microbial organizations (biofilm); (iii) and physico-chemical properties of NPs. In addition, bacterial resistance strategies will be also discussed to better evaluate the feasibility of the different treatments adopted in the clinical safety fields. Finally, a wide analysis on recent biomedical applications of metal and metal oxide NPs with antibacterial activity will be provided.
Collapse
Affiliation(s)
- Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
- Correspondence:
| | - Salvatore Pietro Paolo Guglielmino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
- Department of Chemistry ‘‘Giacomo Ciamician’’, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- LabSense Beyond Nano, URT Department of Physic, National Research Council (CNR), Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
| |
Collapse
|
7
|
Krukiewicz K, Kazek-Kęsik A, Brzychczy-Włoch M, Łos MJ, Ateba CN, Mehrbod P, Ghavami S, Shyntum DY. Recent Advances in the Control of Clinically Important Biofilms. Int J Mol Sci 2022; 23:9526. [PMID: 36076921 PMCID: PMC9455909 DOI: 10.3390/ijms23179526] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Biofilms are complex structures formed by bacteria, fungi, or even viruses on biotic and abiotic surfaces, and they can be found in almost any part of the human body. The prevalence of biofilm-associated diseases has increased in recent years, mainly because of the frequent use of indwelling medical devices that create opportunities for clinically important bacteria and fungi to form biofilms either on the device or on the neighboring tissues. As a result of their resistance to antibiotics and host immunity factors, biofilms have been associated with the development or persistence of several clinically important diseases. The inability to completely eradicate biofilms drastically increases the burden of disease on both the patient and the healthcare system. Therefore, it is crucial to develop innovative ways to tackle the growth and development of biofilms. This review focuses on dental- and implant-associated biofilm infections, their prevalence in humans, and potential therapeutic intervention strategies, including the recent advances in pharmacology and biomedical engineering. It lists current strategies used to control the formation of clinically important biofilms, including novel antibiotics and their carriers, antiseptics and disinfectants, small molecule anti-biofilm agents, surface treatment strategies, and nanostructure functionalization, as well as multifunctional coatings particularly suitable for providing antibacterial effects to the surface of implants, to treat either dental- or implant-related bacterial infections.
Collapse
Affiliation(s)
- Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Alicja Kazek-Kęsik
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Street, 44-100 Gliwice, Poland
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Krakow, Poland
| | - Marek J. Łos
- Department of Pathology, Pomeranian Medical University, 71-344 Szczecin, Poland
| | - Collins Njie Ateba
- Food Security and Safety Niche Area, North West University, Private Bag X2046, Mahikeng 2735, South Africa
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada
| | - Divine Yufetar Shyntum
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Street, 44-100 Gliwice, Poland
| |
Collapse
|
8
|
Falak S, Shin BK, Huh DS. Antibacterial Activity of Polyaniline Coated in the Patterned Film Depending on the Surface Morphology and Acidic Dopant. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1085. [PMID: 35407202 PMCID: PMC9000663 DOI: 10.3390/nano12071085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/13/2022]
Abstract
We have fabricated poly(ε-caprolactone) (PCL) films with flat and honeycomb-patterned (HCP) structures to coat polyaniline (PANI) on the film surface. In addition, the effect of chemical modification of PANI by sulfuric acid (H2SO4) was also studied for antibacterial activity. The flat and HCP PCL films were obtained by simple evaporation of the solvent and via the breath figure (BF) method, respectively. The morphology and chemical composition of PANI coated on the film surface were evaluated by scanning electron microscopy (SEM) and X-ray spectroscopy (EDX). Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analyses (TGA) were obtained to identify the PANI coating. The wettability and conductivity of the films were also measured. Applicational aspects were evaluated by assessing antibacterial and antibiofilm activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The EDX, TGA, and FT-IR findings indicated chemical modification of PCL film by PANI and H2SO4. The conductivity of the films was increased by the coating of PANI to the patterned surface and additionally increased by the chemically modified PANI. The antibacterial activity was 69.79%, 78.27%, and 88% against E. coli, and 32.73%, 62.65%, and 87.97% against S. aureus, for flat PANI, HCP PANI, and H2SO4-treated HCP films, respectively. Likewise, the PANI coated flat, HCP, and H2SO4-treated HCP films inhibited E. coli biofilm formation by around 41.62%, 63%, and 83.88% and S. aureus biofilm formation by 17.81%, 69.83%, and 96.57%, respectively. The antibacterial activity of the HCP film was higher than that of flat PANI films, probably due to the higher coating of PANI on the HCP surface. Moreover, sulfonation of the HCP film with H2SO4 might have improved the wettability, thereby enhancing the antibacterial and antibiofilm properties. Our results showed that topographical changes, as well as doping, offer simple and cost-effective ways to modify the structural and functional properties of films.
Collapse
Affiliation(s)
| | | | - Do Sung Huh
- Department of Chemistry, Nano Science and Engineering, Center of Nano Manufacturing, Inje University, Gimhae-si 50834, Korea; (S.F.); (B.K.S.)
| |
Collapse
|
9
|
Printable Resin Modified by Grafted Silver Nanoparticles for Preparation of Antifouling Microstructures with Antibacterial Effect. Polymers (Basel) 2021; 13:polym13213838. [PMID: 34771393 PMCID: PMC8587023 DOI: 10.3390/polym13213838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/22/2022] Open
Abstract
The usage of three-dimensional (3D) printed materials in many bioapplications has been one of the fastest-growing sectors in the nanobiomaterial industry in the last couple of years. In this work, we present a chemical approach for grafting silver nanoparticles (AgNPs) into a resin matrix, which is convenient for 3D printing. In this way, the samples can be prepared and are able to release silver ions (Ag+) with excellent antibacterial effect against bacterial strains of E. coli and S. epidermidis. By the proposed process, the AgNPs are perfectly mixed and involved in the polymerization process and their distribution in the matrix is homogenous. It was also demonstrated that this approach does not affect the printing resolution and the resin is therefore suitable for the construction of microstructures enabling controlled silver ion release and antifouling properties. At the same time the physical properties of the material, such as viscosity and elasticity modulus are preserved. The described approach can be used for the fabrication of facile, low-cost 3D printed resin with antifouling-antibacterial properties with the possibility to control the release of Ag+ through microstructuring.
Collapse
|
10
|
Reynoso E, Durantini AM, Solis CA, Macor LP, Otero LA, Gervaldo MA, Durantini EN, Heredia DA. Photoactive antimicrobial coating based on a PEDOT-fullerene C 60 polymeric dyad. RSC Adv 2021; 11:23519-23532. [PMID: 35479802 PMCID: PMC9036534 DOI: 10.1039/d1ra03417k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/17/2021] [Indexed: 01/14/2023] Open
Abstract
A photostable and photodynamic antimicrobial surface was successfully obtained and applied to photoinactivate microorganisms. This approach was based on the synthesis of a fullerene C60 derivative (EDOT-C60) where fullerene C60 is covalently linked to 3,4-ethylenedioxythiophene (EDOT) through a 1,3-dipolar cycloaddition reaction. This dual-functional monomer bears an EDOT center connected via an alkyl chain to a fullerene C60 moiety. In this structure, EDOT acts as an electropolymerizable unit that allows the film formation over conducting substrates, while fullerene C60 performs the photodynamic antimicrobial activity. Electrochemical polymerization of EDOT was used to obtain stable and photodynamic polymeric films (PEDOT-C60) in a controllable procedure. Cyclic voltammetry and UV-visible spectroscopy studies showed that the fullerene C60 units were not altered during the electropolymerization process, obtaining surfaces with high fullerene content. Photobleaching measurements demonstrated that the electropolymerized films were highly photostable. Moreover, photodynamic properties of PEDOT-C60 were compared with fullerene C60 and showed that electrodeposited films were able to generate reactive oxygen species (ROS) through the two photomechanisms, producing singlet molecular oxygen (type II) and superoxide radical anion (type I). All studies demonstrated that fullerene C60 moieties covalently attached to the polymeric matrix mainly conserve the photodynamic characteristics. Hence, photodynamic action sensitized by PEDOT-C60 was assessed in vitro against Staphylococcus aureus. The photosensitized inactivation by the electropolymerized films on bacteria suspensions produced >99.9% reduction in S. aureus survival. Fluorescence microscopy experiments with S. aureus adhered to the PEDOT-C60 surface showed a complete microbe annihilation. Also, the eradication of biofilms formed on PEDOT-C60 surfaces resulted in a photokilling >99.9% after visible light irradiation. Our results demonstrated that these antimicrobial photodynamic polymeric films are a promising and versatile platform to photoinactivate microorganisms and to obtain photostable self-sterilizing surfaces.
Collapse
Affiliation(s)
- Eugenia Reynoso
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto Agencia Postal Nro. 3 X5804BYA Río Cuarto Córdoba Argentina +54 358 76233 +54 358 4676538
| | - Andrés M Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto Agencia Postal Nro. 3 X5804BYA Río Cuarto Córdoba Argentina +54 358 76233 +54 358 4676538
| | - Claudia A Solis
- IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto Agencia Postal Nro. 3 X5804BYA Río Cuarto Córdoba Argentina
| | - Lorena P Macor
- IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto Agencia Postal Nro. 3 X5804BYA Río Cuarto Córdoba Argentina
| | - Luis A Otero
- IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto Agencia Postal Nro. 3 X5804BYA Río Cuarto Córdoba Argentina
| | - Miguel A Gervaldo
- IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto Agencia Postal Nro. 3 X5804BYA Río Cuarto Córdoba Argentina
| | - Edgardo N Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto Agencia Postal Nro. 3 X5804BYA Río Cuarto Córdoba Argentina +54 358 76233 +54 358 4676538
| | - Daniel A Heredia
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto Agencia Postal Nro. 3 X5804BYA Río Cuarto Córdoba Argentina +54 358 76233 +54 358 4676538
| |
Collapse
|
11
|
Czerwińska-Główka D, Przystaś W, Zabłocka-Godlewska E, Student S, Cwalina B, Łapkowski M, Krukiewicz K. Electrically-responsive antimicrobial coatings based on a tetracycline-loaded poly(3,4-ethylenedioxythiophene) matrix. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112017. [PMID: 33812635 DOI: 10.1016/j.msec.2021.112017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022]
Abstract
The growth of bacteria and the formation of complex bacterial structures on biomedical devices is a major challenge in modern medicine. The aim of this study was to develop a biocompatible, conducting and antibacterial polymer coating applicable in biomedical engineering. Since conjugated polymers have recently aroused strong interest as controlled delivery systems for biologically active compounds, we decided to employ a poly(3,4-ethylenedioxythiophene) (PEDOT) matrix to immobilize a powerful, first-line antibiotic: tetracycline (Tc). Drug immobilization was carried out simultaneously with the electrochemical polymerization process, allowing to obtain a polymer coating with good electrochemical behaviour (charge storage capacity of 19.15 ± 6.09 mC/cm2) and high drug loading capacity (194.7 ± 56.2 μg/cm2). Biological activity of PEDOT/Tc matrix was compared with PEDOT matrix and a bare Pt surface against a model Gram-negative bacteria strain of Escherichia coli with the use of LIVE/DEAD assay and SEM microscopy. Finally, PEDOT/Tc was shown to serve as a robust electroactive coating exhibiting antibacterial activity.
Collapse
Affiliation(s)
- Dominika Czerwińska-Główka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland
| | - Wioletta Przystaś
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Ewa Zabłocka-Godlewska
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Sebastian Student
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Beata Cwalina
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Mieczysław Łapkowski
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, Zabrze, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland.
| |
Collapse
|
12
|
Mahat MM, Sabere ASM, Azizi J, Amdan NAN. Potential Applications of Conducting Polymers to Reduce Secondary Bacterial Infections among COVID-19 Patients: a Review. EMERGENT MATERIALS 2021; 4:279-292. [PMID: 33649739 PMCID: PMC7903935 DOI: 10.1007/s42247-021-00188-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/09/2021] [Indexed: 05/02/2023]
Abstract
The COVID-19 pandemic is a motivation for material scientists to search for functional materials with valuable properties to alleviate the risks associated with the coronavirus. The formulation of functional materials requires synergistic understanding on the properties of materials and mechanisms of virus transmission and disease progression, including secondary bacterial infections that are prevalent in COVID-19 patients. A viable candidate in the struggle against the pandemic is antimicrobial polymer, due to their favorable properties of flexibility, lightweight, and ease of synthesis. Polymers are the base material for personal protective equipment (PPE), such as gloves, face mask, face shield, and coverall suit for frontliners. Conducting polymers (CPs) are polymers with electrical properties due to the addition of dopant in the polymer structure. The conductivity of polymers augments their antiviral and antibacterial properties. This review discusses the types of CPs and how their properties could be exploited to ward off bacterial infections in hospital settings, specifically in cases involving COVID-19 patients. This review also covers common CPs fabrication techniques. The key components to produce CPs at several possibilities to fit the current needs in fighting secondary bacterial infections are also discussed.
Collapse
Affiliation(s)
- Mohd Muzamir Mahat
- Textile Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Malaysia
| | - Awis Sukarni Mohmad Sabere
- Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang Malaysia
| | - Juzaili Azizi
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Nur Asyura Nor Amdan
- Bacteriology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Setia Alam, 40170 Shah Alam, Selangor Malaysia
| |
Collapse
|
13
|
Manoharadas S, Altaf M, Alrefaei AF, Devasia RM, Badjah Hadj AYM, Abuhasil MSA. Concerted dispersion of Staphylococcus aureus biofilm by bacteriophage and 'green synthesized' silver nanoparticles. RSC Adv 2021; 11:1420-1429. [PMID: 35424119 PMCID: PMC8693614 DOI: 10.1039/d0ra09725j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Staphylococcal biofilms predominantly cause persistent nosocomial infections. The widespread antibiotic resistance followed by its ability to form biofilm in biological and inert surfaces often contributes to major complications in patients and veterinary animals. Strategic importance of bacteriophage therapy against critical staphylococcal infections had been predicted ever since the advent of antibiotic resistant staphylococcal strains. The significance of metal nanoparticles in quenching biofilm associated bacteria was previously reported. In this study, we demonstrate a concerted action of ‘green synthesized’ silver nanoparticles and bacteriophages in removing pre-formed Staphylococcus aureus biofilms from an inert glass surface in a time dependent manner. Our results demonstrate, for the first time, the rapid co-operative dispersion of the bacterial biofilm. In addition, the synergistic activity of the nanoparticles and bacteriophages causes the loss of viability of the biofilm entrapped bacterial cells thus preventing establishment of a new infection and subsequent colonization. This work further opens up a platform for the combinational therapeutic approach with a variety of nanoparticles and bacteriophages against mono or poly bacterial biofilm in environmental, industrial or clinical settings. Formation of biofilm by Staphylococcus aureus ‘Rumba’ on untreated glass surface and a concerted disruption of the biofilm by silver nanoparticle and phage ϕ44AHJD.![]()
Collapse
Affiliation(s)
- Salim Manoharadas
- King Saud University, Department of Botany and Microbiology, Central Laboratory RM 55A College of Science Building 5, P.O. Box. 2454 Riyadh 11451 Saudi Arabia +966-14699665 +966-114689170
| | - Mohammad Altaf
- King Saud University, Department of Botany and Microbiology, Central Laboratory RM 55A College of Science Building 5, P.O. Box. 2454 Riyadh 11451 Saudi Arabia +966-14699665 +966-114689170.,King Saud University, Department of Chemistry, College of Science P.O. Box. 2454 Riyadh 11451 Saudi Arabia
| | - Abdulwahed Fahad Alrefaei
- King Saud University, Department of Zoology, College of Science P.O. Box. 2454 Riyadh 11451 Saudi Arabia
| | | | - Ahmed Yacine M Badjah Hadj
- King Saud University, Department of Chemistry, College of Science P.O. Box. 2454 Riyadh 11451 Saudi Arabia
| | - Mohammed Saeed Ali Abuhasil
- King Saud University, Department of Food Science and Nutrition, College of Agriculture and Food Science P.O. Box. 2454 Riyadh 11451 Saudi Arabia
| |
Collapse
|
14
|
Niño-Martínez N, Salas Orozco MF, Martínez-Castañón GA, Torres Méndez F, Ruiz F. Molecular Mechanisms of Bacterial Resistance to Metal and Metal Oxide Nanoparticles. Int J Mol Sci 2019; 20:E2808. [PMID: 31181755 PMCID: PMC6600416 DOI: 10.3390/ijms20112808] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
The increase in bacterial resistance to one or several antibiotics has become a global health problem. Recently, nanomaterials have become a tool against multidrug-resistant bacteria. The metal and metal oxide nanoparticles are one of the most studied nanomaterials against multidrug-resistant bacteria. Several in vitro studies report that metal nanoparticles have antimicrobial properties against a broad spectrum of bacterial species. However, until recently, the bacterial resistance mechanisms to the bactericidal action of the nanoparticles had not been investigated. Some of the recently reported resistance mechanisms include electrostatic repulsion, ion efflux pumps, expression of extracellular matrices, and the adaptation of biofilms and mutations. The objective of this review is to summarize the recent findings regarding the mechanisms used by bacteria to counteract the antimicrobial effects of nanoparticles.
Collapse
Affiliation(s)
- Nereyda Niño-Martínez
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí Cp 78210, Mexico.
| | - Marco Felipe Salas Orozco
- Facultad de Estomatología, Universidad Autónoma de San Luis Potosí, San Luis Potosí Cp 78210, Mexico.
| | | | - Fernando Torres Méndez
- Facultad de Estomatología, Universidad Autónoma de San Luis Potosí, San Luis Potosí Cp 78210, Mexico.
| | - Facundo Ruiz
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí Cp 78210, Mexico.
| |
Collapse
|
15
|
Cochis A, Azzimonti B, Chiesa R, Rimondini L, Gasik M. Metallurgical Gallium Additions to Titanium Alloys Demonstrate a Strong Time-Increasing Antibacterial Activity without any Cellular Toxicity. ACS Biomater Sci Eng 2019; 5:2815-2820. [PMID: 33405586 DOI: 10.1021/acsbiomaterials.9b00147] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Orthopedic metallic devices are often related with devasting complications due to acute prosthetic joint infections. Gallium (Ga) antibacterial activity has been demonstrated by the evidence that Ga in solution ionizes in a Ga3+ trivalent form that replace Fe3+ thus arresting metabolism. However, it is not clear whether such effect is restricted only to Ga3+ release laps. Accordingly, here we investigated Ga addition into titanium alloys using metallurgical methods, thus realizing intermetallides of a very high stability that contain Ga in the range of 1, 2, 20, and 23% wt. ICP-OES analysis confirmed that Ga ions were not released from the specimens regardless of the Ga amount. These alloys ensured long-lasting Ga effect toward multidrug resistant Staphylococcus aureus, whose metabolic activity was reduced of >80% in comparison with controls. Finally, specimens cytocompatibility was confirmed by direct and indirect contact evaluations with mature osteoblasts and preosteoblasts progenitor cells.
Collapse
Affiliation(s)
- Andrea Cochis
- Department of Health Sciences, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy.,Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali INSTM, Via Giusti 9, 50121 Firenze, Italy.,Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Center for Translational Research on Autoimmune and Allergic Diseases - CAAD, C.so Trieste 15/A, 28100 Novara, Italy
| | - Barbara Azzimonti
- Department of Health Sciences, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy.,Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali INSTM, Via Giusti 9, 50121 Firenze, Italy.,Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Center for Translational Research on Autoimmune and Allergic Diseases - CAAD, C.so Trieste 15/A, 28100 Novara, Italy
| | - Roberto Chiesa
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali INSTM, Via Giusti 9, 50121 Firenze, Italy.,Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| | - Lia Rimondini
- Department of Health Sciences, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy.,Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali INSTM, Via Giusti 9, 50121 Firenze, Italy.,Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Center for Translational Research on Autoimmune and Allergic Diseases - CAAD, C.so Trieste 15/A, 28100 Novara, Italy
| | - Michael Gasik
- School of Chemical Engineering, Aalto University Foundation, P.O. Box 16100, 00076 AALTO, Finland
| |
Collapse
|
16
|
da Silva FAG, Alcaraz-Espinoza JJ, da Costa MM, de Oliveira HP. Low intensity electric field inactivation of Gram-positive and Gram-negative bacteria via metal-free polymeric composite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:827-837. [PMID: 30889757 DOI: 10.1016/j.msec.2019.02.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/01/2019] [Accepted: 02/10/2019] [Indexed: 12/30/2022]
Abstract
The adhesion of pathogenic bacteria in medical implants and surfaces is a health-related problem that requires strong inhibition against bacterial growth and attachment. In this work, we have explored the enhancement in the antibacterial activity of metal free-based composites under external electric field. It affects the oxidation degree of polypyrrole-based electrodes and consequently the antibacterial activity of the material. A conductive layer of carbon nanotubes (graphite) was deposited on porous substrate of polyurethane (sandpaper) and covered by polypyrrole, providing highly conductive electrodes characterized by intrinsic antibacterial activity and reinforced by electro-enhanced effect due to the external electric field. The bacterial inhibition of composites was monitored from counting of viable cells at different voltage/time of treatment and determination of biofilm inhibition on electrodes and reactors. The external voltage on electrodes reduces the threshold time for complete bacterial inactivation of PPy-based composites to values in order of 30 min for Staphylococcus aureus and 60 min for Escherichia coli.
Collapse
Affiliation(s)
- Fernando A G da Silva
- Institute of Materials Science, Federal University of Sao Francisco Valley, 48920-310 Juazeiro, BA, Brazil
| | | | - Mateus M da Costa
- Institute of Materials Science, Federal University of Sao Francisco Valley, 48920-310 Juazeiro, BA, Brazil
| | - Helinando P de Oliveira
- Institute of Materials Science, Federal University of Sao Francisco Valley, 48920-310 Juazeiro, BA, Brazil.
| |
Collapse
|
17
|
Rosenberg M, Ilić K, Juganson K, Ivask A, Ahonen M, Vinković Vrček I, Kahru A. Potential ecotoxicological effects of antimicrobial surface coatings: a literature survey backed up by analysis of market reports. PeerJ 2019; 7:e6315. [PMID: 30775167 PMCID: PMC6375256 DOI: 10.7717/peerj.6315] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/19/2018] [Indexed: 01/05/2023] Open
Abstract
This review was initiated by the COST action CA15114 AMICI "Anti-Microbial Coating Innovations to prevent infectious diseases," where one important aspect is to analyze ecotoxicological impacts of antimicrobial coatings (AMCs) to ensure their sustainable use. Scopus database was used to collect scientific literature on the types and uses of AMCs, while market reports were used to collect data on production volumes. Special attention was paid on data obtained for the release of the most prevalent ingredients of AMCs into the aqueous phase that was used as the proxy for their possible ecotoxicological effects. Based on the critical analysis of 2,720 papers, it can be concluded that silver-based AMCs are by far the most studied and used coatings followed by those based on titanium, copper, zinc, chitosan and quaternary ammonium compounds. The literature analysis pointed to biomedicine, followed by marine industry, construction industry (paints), food industry and textiles as the main fields of application of AMCs. The published data on ecotoxicological effects of AMCs was scarce, and also only a small number of the papers provided information on release of antimicrobial ingredients from AMCs. The available release data allowed to conclude that silver, copper and zinc are often released in substantial amounts (up to 100%) from the coatings to the aqueous environment. Chitosan and titanium were mostly not used as active released ingredients in AMCs, but rather as carriers for other release-based antimicrobial ingredients (e.g., conventional antibiotics). While minimizing the prevalence of healthcare-associated infections appeared to be the most prosperous field of AMCs application, the release of environmentally hazardous ingredients of AMCs into hospital wastewaters and thus, also the environmental risks associated with AMCs, comprise currently only a fraction of the release and risks of traditional disinfectants. However, being proactive, while the use of antimicrobial/antifouling coatings could currently pose ecotoxicological effects mainly in marine applications, the broad use of AMCs in other applications like medicine, food packaging and textiles should be postponed until reaching evidences on the (i) profound efficiency of these materials in controlling the spread of pathogenic microbes and (ii) safety of AMCs for the human and ecosystems.
Collapse
Affiliation(s)
- Merilin Rosenberg
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Krunoslav Ilić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Katre Juganson
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Angela Ivask
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Merja Ahonen
- Faculty of Technology, Satakunta University of Applied Sciences, Rauma, Finland
| | | | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| |
Collapse
|
18
|
Antimicrobial Silver Nanoparticles: Future of Nanomaterials. NANOTECHNOLOGY IN THE LIFE SCIENCES 2019. [DOI: 10.1007/978-3-030-16534-5_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Zhu Z, Wang Z, Li S, Yuan X. Antimicrobial strategies for urinary catheters. J Biomed Mater Res A 2018; 107:445-467. [PMID: 30468560 DOI: 10.1002/jbm.a.36561] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/03/2018] [Accepted: 10/04/2018] [Indexed: 01/12/2023]
Abstract
Over 75% of hospital-acquired or nosocomial urinary tract infections are initiated by urinary catheters, which are used during the treatment of 16% of hospitalized patients. Taking the United States as an example, the costs of catheter-associated urinary tract infections (CAUTI) are in excess of $451 million dollars/year. The biofilm formation by pathogenic microbes that protects pathogens from host immune defense and antimicrobial agents is the leading cause for CAUTI. Thus, tremendous efforts have been devoted to antimicrobial coating for urinary catheters in the past few decades, and it has been demonstrated to be one of the most direct and efficient strategies to reduce infections. In this article, we briefly summarize the current methods for preparation of antimicrobial coatings based on different stages in the biofilm formation, highlight recent progress in the urinary catheter coating material design and selection, discuss approaches to improving their long-term antimicrobial efficacy, biocompatibility, multidrug resistance and recurrent infections, and finally outline future requirements and prospects in antimicrobial coating material design. The scope of the works surveyed is confined to antimicrobial urinary catheters. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 445-467, 2019.
Collapse
Affiliation(s)
- Zhiling Zhu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Ziping Wang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Weifang, Shandong 262700, China
| | - Siheng Li
- Department of Chemistry, University of Houston, Houston, Texas 77204, USA
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| |
Collapse
|
20
|
Bjarnsholt T, Buhlin K, Dufrêne YF, Gomelsky M, Moroni A, Ramstedt M, Rumbaugh KP, Schulte T, Sun L, Åkerlund B, Römling U. Biofilm formation - what we can learn from recent developments. J Intern Med 2018; 284:332-345. [PMID: 29856510 PMCID: PMC6927207 DOI: 10.1111/joim.12782] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although biofilms have been observed early in the history of microbial research, their impact has only recently been fully recognized. Biofilm infections, which contribute to up to 80% of human microbial infections, are associated with common human disorders, such as diabetes mellitus and poor dental hygiene, but also with medical implants. The associated chronic infections such as wound infections, dental caries and periodontitis significantly enhance morbidity, affect quality of life and can aid development of follow-up diseases such as cancer. Biofilm infections remain challenging to treat and antibiotic monotherapy is often insufficient, although some rediscovered traditional compounds have shown surprising efficiency. Innovative anti-biofilm strategies include application of anti-biofilm small molecules, intrinsic or external stimulation of production of reactive molecules, utilization of materials with antimicrobial properties and dispersion of biofilms by digestion of the extracellular matrix, also in combination with physical biofilm breakdown. Although basic principles of biofilm formation have been deciphered, the molecular understanding of the formation and structural organization of various types of biofilms has just begun to emerge. Basic studies of biofilm physiology have also resulted in an unexpected discovery of cyclic dinucleotide second messengers that are involved in interkingdom crosstalk via specific mammalian receptors. These findings even open up new venues for exploring novel anti-biofilm strategies.
Collapse
Affiliation(s)
- T Bjarnsholt
- Department of Immunology and Microbiology, Costerton Biofilm Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - K Buhlin
- Department of Dental Medicine, Division of Oral Facial Diagnostics and Surgery, Karolinska Institutet, Huddinge, Sweden
| | - Y F Dufrêne
- Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - M Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - A Moroni
- Department of Biology and CNR-Istituto di Biofisica, Università degli Studi di Milano, Milano, Italy
| | - M Ramstedt
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - K P Rumbaugh
- Departments of Surgery & Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - T Schulte
- Department of Medicine Solna, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - L Sun
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - B Åkerlund
- Department of Medicine Huddinge, Unit of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - U Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Cao P, He X, Xiao J, Yuan C, Bai X. Peptide-modified stainless steel with resistance capacity of Staphylococcus aureus
biofilm formation. SURF INTERFACE ANAL 2018. [DOI: 10.1002/sia.6531] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pan Cao
- Reliability Engineering Institute, National Engineering Research Center for Water Transport Safety; Wuhan University of Technology; Wuhan 430063 China
- Key Laboratory of Marine Power Engineering & Technology, Ministry of Transport; Wuhan University of Technology; Wuhan 430063 China
- College of Mechanical Engineering; Yangzhou University; Yangzhou 255127 China
| | - Xiaoyan He
- Reliability Engineering Institute, National Engineering Research Center for Water Transport Safety; Wuhan University of Technology; Wuhan 430063 China
- Key Laboratory of Marine Power Engineering & Technology, Ministry of Transport; Wuhan University of Technology; Wuhan 430063 China
| | - Jinfei Xiao
- Reliability Engineering Institute, National Engineering Research Center for Water Transport Safety; Wuhan University of Technology; Wuhan 430063 China
- Key Laboratory of Marine Power Engineering & Technology, Ministry of Transport; Wuhan University of Technology; Wuhan 430063 China
| | - Chengqing Yuan
- Reliability Engineering Institute, National Engineering Research Center for Water Transport Safety; Wuhan University of Technology; Wuhan 430063 China
- Key Laboratory of Marine Power Engineering & Technology, Ministry of Transport; Wuhan University of Technology; Wuhan 430063 China
| | - Xiuqin Bai
- Reliability Engineering Institute, National Engineering Research Center for Water Transport Safety; Wuhan University of Technology; Wuhan 430063 China
- Key Laboratory of Marine Power Engineering & Technology, Ministry of Transport; Wuhan University of Technology; Wuhan 430063 China
| |
Collapse
|
22
|
Wei F, Zhao X, Li C, Han X. A novel strategy for water disinfection with a AgNPs/gelatin sponge filter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:19480-19487. [PMID: 29730757 DOI: 10.1007/s11356-018-2157-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Disinfection of bacteria in water with sustainable and energy-efficient methods is still a great challenge. Herein, a novel gelatin sponge with embedded AgNPs is fabricated via freeze-drying using gelatin as the reducing agent to synthesize AgNPs in situ. UV-vis spectroscopy, HRTEM, XRD, and XPS characterization prove the formation of AgNPs with an average size of 8.55 ± 0.35 nm. TEM and SEM images confirm the even distribution of AgNPs throughout the AgNPs/gelatin sponges. The composite sponge has a low bulk density of 20 ± 3.5 mg/cm3 and a pore size of 6.2 ± 1.5 μm. The AgNPs/gelatin sponges exhibit excellent antibacterial performance to E. coli in water, probably by destroying their cell membranes. The porous AgNPs/gelatin composite sponges are promising filter materials for water disinfection. The removal rate of AgNPs/gelatin composite sponges on E. coli reached almost 100%. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Feng Wei
- State Key Laboratory of Urban Water Resources and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Xiaole Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Chao Li
- State Key Laboratory of Urban Water Resources and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resources and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China.
| |
Collapse
|
23
|
Lakshminarayanan R, Ye E, Young DJ, Li Z, Loh XJ. Recent Advances in the Development of Antimicrobial Nanoparticles for Combating Resistant Pathogens. Adv Healthc Mater 2018; 7:e1701400. [PMID: 29717819 PMCID: PMC7161883 DOI: 10.1002/adhm.201701400] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/31/2018] [Indexed: 12/26/2022]
Abstract
The rapid growth of harmful pathogens and their multidrug-resistance poses a severe challenge for health professionals and for the development of new healthcare products. Various strategies are exploited for the development of effective antimicrobial agents, and nanoparticles are a particularly promising class of materials in this respect. This review summarizes recent advances in antimicrobial metallic, polymeric, and lipid-based nanoparticles such as liposomes, solid lipid nanoparticles, and nanostructured lipid carriers. The latter materials in particular are engineered for antimicrobial agent delivery and act by encapsulation, receptor-based binding, and disruption of microbial adherence to cellular substrates. Potential strategies for the design of multifunctional antimicrobial nanocarriers, combining material chemistry and biological interface science, are also discussed.
Collapse
Affiliation(s)
| | - Enyi Ye
- Institute of Materials Research and EngineeringA * STAR (Agency for ScienceTechnology and Research)2 Fusionopolis Way, Innovis, No. 08‐03Singapore138634Singapore
| | - David James Young
- Institute of Materials Research and EngineeringA * STAR (Agency for ScienceTechnology and Research)2 Fusionopolis Way, Innovis, No. 08‐03Singapore138634Singapore
- Faculty of Science, Health, Education and EngineeringUniversity of the Sunshine CoastMaroochydore DCQueensland4558Australia
| | - Zibiao Li
- Institute of Materials Research and EngineeringA * STAR (Agency for ScienceTechnology and Research)2 Fusionopolis Way, Innovis, No. 08‐03Singapore138634Singapore
| | - Xian Jun Loh
- Singapore Eye Research Institute11 Third Hospital AvenueSingapore168751Singapore
- Institute of Materials Research and EngineeringA * STAR (Agency for ScienceTechnology and Research)2 Fusionopolis Way, Innovis, No. 08‐03Singapore138634Singapore
- Department of Materials Science and EngineeringNational University of Singapore9 Engineering Drive 1Singapore117576Singapore
| |
Collapse
|