1
|
Wu M, Liu Z, Gao Y. Design and Fabrication of Microelectrodes for Dielectrophoresis and Electroosmosis in Microsystems for Bio-Applications. MICROMACHINES 2025; 16:190. [PMID: 40047690 PMCID: PMC11857776 DOI: 10.3390/mi16020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 03/09/2025]
Abstract
Microfluidic technology has emerged as a multidisciplinary field, integrating fluid dynamics, electronics, materials science, etc., enabling precise manipulation of small volumes of fluids and particles for various bio-applications. Among the forms of energy integrated into microfluidic systems, electric fields are particularly advantageous for achieving precise control at the microscale. This review focuses on the design and fabrication of microelectrodes that drive electrokinetic phenomena, dielectrophoresis (DEP) and electroosmotic flow (EOF), key techniques for particle and fluid manipulation in microfluidic devices. DEP relies on non-uniform electric fields to manipulate particles based on their dielectric properties, while EOF utilizes uniform electric fields to generate consistent fluid flow across microchannels. Advances in microelectrode fabrication, including photolithography, soft lithography, and emerging non-cleanroom techniques, are discussed. Additionally, the review explores innovative approaches such as rapid prototyping, contactless electrodes, and three-dimensional structures, along with material considerations like conductive polymers and carbon composites. The review discusses the role of microelectrodes in enhancing device functionality, scalability, and reliability. The paper also identifies challenges, including the need for improved fabrication reproducibility and multifunctional integration. Finally, potential future research directions are proposed to further optimize DEP- and EOF-based microsystems for advanced biomedical and diagnostic applications.
Collapse
Affiliation(s)
- Mengren Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Zijian Liu
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL 60607, USA;
| | - Yuan Gao
- Department of Mechanical Engineering, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
2
|
Mirbakht SS, Golparvar A, Umar M, Kuzubasoglu BA, Irani FS, Yapici MK. Highly Self-Adhesive and Biodegradable Silk Bioelectronics for All-In-One Imperceptible Long-Term Electrophysiological Biosignals Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405988. [PMID: 39792793 PMCID: PMC11848544 DOI: 10.1002/advs.202405988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/01/2024] [Indexed: 01/12/2025]
Abstract
Skin-like bioelectronics offer a transformative technological frontier, catering to continuous and real-time yet highly imperceptible and socially discreet digital healthcare. The key technological breakthrough enabling these innovations stems from advancements in novel material synthesis, with unparalleled possibilities such as conformability, miniature footprint, and elasticity. However, existing solutions still lack desirable properties like self-adhesivity, breathability, biodegradability, transparency, and fail to offer a streamlined and scalable fabrication process. By addressing these challenges, inkjet-patterned protein-based skin-like silk bioelectronics (Silk-BioE) are presented, that integrate all the desirable material features that have been individually present in existing devices but never combined into a single embodiment. The all-in-one solution possesses excellent self-adhesiveness (300 N m-1) without synthetic adhesives, high breathability (1263 g h-1 m-2) as well as swift biodegradability in soil within a mere 2 days. In addition, with an elastic modulus of ≈5 kPa and a stretchability surpassing 600%, the soft electronics seamlessly replicate the mechanics of epidermis and form a conformal skin/electrode interface even on hairy regions of the body under severe perspiration. Therefore, coupled with a flexible readout circuitry, Silk-BioE can non-invasively monitor biosignals (i.e., ECG, EEG, EOG) in real-time for up to 12 h with benchmarking results against Ag/AgCl electrodes.
Collapse
Affiliation(s)
- Seyed Sajjad Mirbakht
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
- Sabanci University Micro/Nano Devices and Systems Lab (SU‐MEMS)Sabanci UniversityIstanbul34956Türkiye
| | - Ata Golparvar
- Sabanci University Micro/Nano Devices and Systems Lab (SU‐MEMS)Sabanci UniversityIstanbul34956Türkiye
- ICLabÉcole Polytechnique Fédérale de Lausanne (EPFL)Neuchâtel2002Switzerland
| | - Muhammad Umar
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
- Sabanci University Micro/Nano Devices and Systems Lab (SU‐MEMS)Sabanci UniversityIstanbul34956Türkiye
- Sabanci University SUNUM Nanotechnology Research CenterIstanbul34956Türkiye
| | - Burcu Arman Kuzubasoglu
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
- Sabanci University Micro/Nano Devices and Systems Lab (SU‐MEMS)Sabanci UniversityIstanbul34956Türkiye
- Sabanci University SUNUM Nanotechnology Research CenterIstanbul34956Türkiye
| | - Farid Sayar Irani
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
- Sabanci University Micro/Nano Devices and Systems Lab (SU‐MEMS)Sabanci UniversityIstanbul34956Türkiye
- Sabanci University SUNUM Nanotechnology Research CenterIstanbul34956Türkiye
| | - Murat Kaya Yapici
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
- Sabanci University Micro/Nano Devices and Systems Lab (SU‐MEMS)Sabanci UniversityIstanbul34956Türkiye
- Sabanci University SUNUM Nanotechnology Research CenterIstanbul34956Türkiye
- Department of Electrical EngineeringUniversity of WashingtonSeattleWA98195USA
| |
Collapse
|
3
|
Kumar G, Duggal B, Singh JP, Shrivastava Y. Efficacy of Various Dry Electrode-Based ECG Sensors: A Review. J Biomed Mater Res A 2025; 113:e37845. [PMID: 39726375 DOI: 10.1002/jbm.a.37845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
Long-term electrocardiogram (ECG) monitoring is crucial for detecting and diagnosing cardiovascular diseases (CVDs). Monitoring cardiac health and activities using efficient, noninvasive, and cost-effective techniques such as ECG can be vital for the early detection of different CVDs. Wet electrode-based traditional ECG techniques come with unavoidable limitations of the altered quality of ECG signals caused by gel volatilization and unwanted noise followed by dermatitis. The limitation related to the wet electrodes for long-term ECG monitoring in static and dynamic postures reminds us of the urgency of a suitable substitute. Dry electrodes promise long-term ECG monitoring with the potential for significant noise reduction. This review discusses traditional and alternative techniques to record ECG in terms of meeting the efficient detection of CVDs by conducting a detailed analysis of different types of dry electrodes along with materials (substrate, support, matrix, and conductive part) used for fabrication, followed by the number of human subjects they have been used for validation. The degradation of these electrodes has also been discussed briefly. This review finds a need for more validation on a sufficient number of subjects and the issue of cost and noise hindering the commercialization of these dry electrodes.
Collapse
Affiliation(s)
- Ghanshyam Kumar
- Department of Cardiology, All India Institute of Medical Sciences Rishikesh, Rishikesh, India
| | - Bhanu Duggal
- Department of Cardiology, All India Institute of Medical Sciences Rishikesh, Rishikesh, India
| | - J P Singh
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
| | - Yash Shrivastava
- Department of Pediatrics, All India Institute of Medical Sciences Rishikesh, Rishikesh, India
| |
Collapse
|
4
|
Lan T, Tian H, Chen X, Li X, Wang C, Wang D, Li S, Liu G, Zhu X, Shao J. Treefrog-Inspired Flexible Electrode with High Permeability, Stable Adhesion, and Robust Durability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404761. [PMID: 38796773 DOI: 10.1002/adma.202404761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Long-term continuous monitoring (LTCM) of physiological electrical signals is an effective means for detecting several cardiovascular diseases. However, the integrated challenges of stable adhesion, low impedance, and robust durability under different skin conditions significantly hinder the application of flexible electrodes in LTCM. This paper proposes a structured electrode inspired by the treefrog web, comprising dispersed pillars at the bottom and asymmetric cone holes at the top. Attachment structures with a dispersed pillar improve the contact stability (adhesion increases 2.79/13.16 times in dry/wet conditions compared to an electrode without structure). Improved permeable duct structure provides high permeability (12 times compared to cotton). Due to high adhesion and permeability, the electrode's durability is 40 times larger than commercial Ag/AgCl electrodes. The treefrog web-like electrode has great advantages in permeability, adhesion, and durability, resulting in prospects for application in physiological electrical signal detection and a new design idea for LTCM wearable dry electrodes.
Collapse
Affiliation(s)
- Tianxiang Lan
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Hongmiao Tian
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiaoliang Chen
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, 99 YanXiang Road, West 5th building, Xi'an, Shaanxi, 710054, China
| | - Xiangming Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, 99 YanXiang Road, West 5th building, Xi'an, Shaanxi, 710054, China
| | - Chunhui Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Duorui Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Sheng Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Gangqiang Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xinkai Zhu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jinyou Shao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, 99 YanXiang Road, West 5th building, Xi'an, Shaanxi, 710054, China
| |
Collapse
|
5
|
Rizq C, D'Amico A, Truel A, Faybishenko J, Lee MS, Kim JH, Cauwenberghs G, de Sa VR. Development and Characterization of Zinc Dry Electrodes for Wearable Electrophysiology. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039461 DOI: 10.1109/embc53108.2024.10782529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Zinc dry electrodes were fabricated and investigated for wearable electrophysiology recording. Results from electrochemical impedance spectroscopy and electromyography functionality testing show that zinc electrodes are suitable for use in electrophysiology. Two electrode configurations were tested: a standard disc and a custom tripolar concentric ring configuration. However, no functional benefit was observed with the tripolar concentric ring electrodes as compared to the disc electrodes.
Collapse
|
6
|
Wu Y, Zhang XF, Bai Y, Yu M, Yao J. Cellulose-reinforced highly stretchable and adhesive eutectogels as efficient sensors. Int J Biol Macromol 2024; 265:131115. [PMID: 38522691 DOI: 10.1016/j.ijbiomac.2024.131115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
A cellulose-reinforced eutectogel was constructed by deep eutectic solvent (DES) and cotton linter cellulose. Cellulose was dispersed in the ternary DES consisting of acrylic acid, choline chloride and AlCl3·6H2O. The photoinitiator was then introduced into the system to in situ polymerize acrylic acid monomer to form transparent and ionic conductive eutectogels while keeping all the DES. The crosslinks formed by Al3+ induced ionic bonds and reversible links formed by hydrogen bonds give the eutectogels high stretchability (3200 ± 200 % tensile strain), self-adhesive (52.1 kPa to glass), self-healing and good mechanical strength (670 kPa). The eutectogels were assembled into sensors and epidermal patch electrodes that demonstrated high quality human motion sensing and physiological signal detection (electrocardiogram and electromyography). This work provides a facile way to design flexible electronics for sensing.
Collapse
Affiliation(s)
- Yufang Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiong-Fei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yunhua Bai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mengjiao Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
7
|
Schmoigl-Tonis M, Schranz C, Müller-Putz GR. Methods for motion artifact reduction in online brain-computer interface experiments: a systematic review. Front Hum Neurosci 2023; 17:1251690. [PMID: 37920561 PMCID: PMC10619676 DOI: 10.3389/fnhum.2023.1251690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023] Open
Abstract
Brain-computer interfaces (BCIs) have emerged as a promising technology for enhancing communication between the human brain and external devices. Electroencephalography (EEG) is particularly promising in this regard because it has high temporal resolution and can be easily worn on the head in everyday life. However, motion artifacts caused by muscle activity, fasciculation, cable swings, or magnetic induction pose significant challenges in real-world BCI applications. In this paper, we present a systematic review of methods for motion artifact reduction in online BCI experiments. Using the PRISMA filter method, we conducted a comprehensive literature search on PubMed, focusing on open access publications from 1966 to 2022. We evaluated 2,333 publications based on predefined filtering rules to identify existing methods and pipelines for motion artifact reduction in EEG data. We present a lookup table of all papers that passed the defined filters, all used methods, and pipelines and compare their overall performance and suitability for online BCI experiments. We summarize suitable methods, algorithms, and concepts for motion artifact reduction in online BCI applications, highlight potential research gaps, and discuss existing community consensus. This review aims to provide a comprehensive overview of the current state of the field and guide researchers in selecting appropriate methods for motion artifact reduction in online BCI experiments.
Collapse
Affiliation(s)
- Mathias Schmoigl-Tonis
- Laboratory of Collaborative Robotics, Department of Human Motion Analytics, Salzburg Research GmbH, Salzburg, Austria
- Institute of Neural Engineering, Laboratory of Brain-Computer Interfaces, Graz University of Technology, Graz, Austria
| | - Christoph Schranz
- Laboratory of Collaborative Robotics, Department of Human Motion Analytics, Salzburg Research GmbH, Salzburg, Austria
| | - Gernot R. Müller-Putz
- Institute of Neural Engineering, Laboratory of Brain-Computer Interfaces, Graz University of Technology, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
8
|
Niu Y, Tian G, Liang C, Wang T, Ma X, Gong G, Qi D. Thermal-Sinterable EGaIn Nanoparticle Inks for Highly Deformable Bioelectrode Arrays. Adv Healthc Mater 2022; 12:e2202531. [PMID: 36562213 DOI: 10.1002/adhm.202202531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Liquid metal (especially eutectic gallium indium, EGaIn) nanoparticle inks overcome the poor wettability of high surface tension EGaIn to elastomer substrates and show great potential in soft electronics. Normally, a sintering strategy is required to break the oxide shells of the EGaIn nanoparticles (EGaIn NPs) to achieve conductive paths. Herein, for the first time, thermal-sinterable EGaIn NP inks are prepared by introducing thermal expansion microspheres (TEMs) into EGaIn NP solution. Through the mechanical pressure induced by the expansion of the heated TEMs, the printed EGaIn NPs can be sintered into electrically conductive paths to achieve highly stretchable bioelectrode arrays, which exhibit giant electromechanical performance (up to 680% strain), good cyclic stability (over 2 × 104 cycles), and stable conductivity after high-speed rotation (6000 rpm). Simultaneously, the recording sites are hermetically sealed by ionic elastomer layers, ensuring the complete leakage-free property of EGaIn and reducing the electrochemical impedance of the electrodes (891.16 Ω at 1 kHz). The bioelectrode is successfully applied to monitor dynamic electromyographic signals. The sintering strategy overcomes the disadvantages of the traditional sintering strategies, such as leakage of EGaIn, reformation of large EGaIn droplets, and low throughput, which promotes the application of EGaIn in soft electronics.
Collapse
Affiliation(s)
- Yan Niu
- College of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Gongwei Tian
- National and Local Joint Engineering Laboratory for Synthesis, Transformation, and Separation of Extreme Environmental Nutrients; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Cuiyuan Liang
- National and Local Joint Engineering Laboratory for Synthesis, Transformation, and Separation of Extreme Environmental Nutrients; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Tianchi Wang
- College of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Xu Ma
- College of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Guifen Gong
- College of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Dianpeng Qi
- National and Local Joint Engineering Laboratory for Synthesis, Transformation, and Separation of Extreme Environmental Nutrients; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
9
|
Cheng Y, Zhou Y, Wang R, Chan KH, Liu Y, Ding T, Wang XQ, Li T, Ho GW. An Elastic and Damage-Tolerant Dry Epidermal Patch with Robust Skin Adhesion for Bioelectronic Interfacing. ACS NANO 2022; 16:18608-18620. [PMID: 36318185 DOI: 10.1021/acsnano.2c07097] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
On-skin patches that record biopotential and biomechanical signals are essential for wearable healthcare monitoring, clinical treatment, and human-machine interaction. To acquire wearing comfort and high-quality signals, patches with tissue-like softness, elastic recovery, damage tolerance, and robust bioelectronic interface are highly desired yet challenging to achieve. Here, we report a dry epidermal patch made from a supramolecular polymer (SESA) and an in situ transferred carbon nanotubes' percolation network. The polymer possesses a hybrid structure of copolymerized permanent scaffold permeated by multiple dynamic interactions, which imparts a desired mechanical response transition from elastic recoil to energy dissipation with increased elongation. Such SESA-based patches are soft (Young's modulus ∼0.1 MPa) and elastic within physiologically relevant strain levels (97% elastic recovery at 50% tensile strain), intrinsically mechanical-electrical damage-resilient (∼90% restoration from damage after 5 min), and interference-immune in dynamic signal acquisition (stretch, underwater, sweat). We demonstrate its versatile physiological sensing applications, including electrocardiogram recording under various disturbances, machine-learning-enabled hand-gesture recognition through electromyogram measurement, subtle radial artery pulse, and drastic knee kinematics sensing. This epidermal patch offers a promising noninvasive, long-duration, and ambulant bioelectronic interfacing with anti-interference robustness.
Collapse
Affiliation(s)
- Yin Cheng
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China
| | - Yi Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Ranran Wang
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China
| | - Kwok Hoe Chan
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Yan Liu
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China
| | - Tianpeng Ding
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Xiao-Qiao Wang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Tongtao Li
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| |
Collapse
|
10
|
Wu SE, Phongphaew N, Zhai Y, Yao L, Hsu HH, Shiller A, Azoulay JD, Ng TN. Multiplexed printed sensors for in situ monitoring in bivalve aquaculture. NANOSCALE 2022; 14:16110-16119. [PMID: 36281764 DOI: 10.1039/d2nr04382c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Non-intrusive sensors that can be attached to marine species offer opportunities to study the impacts of environmental changes on their behaviors and well-being. This work presents a thin, flexible sensor tag to monitor the effects of dissolved oxygen and salinity on bivalve gape movement. The measurement range studied was 0.5-6 ppm for the dissolved oxygen sensor and 4-40 g kg-1 for the salinity sensor. The curvature strain sensor based on electrodeposited semiconducting fibers enabled measurements of an oyster's gape down to sub-mm displacement. The multiplexed sensors were fabricated by low-cost techniques, offering an economical and convenient platform for aquaculture studies.
Collapse
Affiliation(s)
- Shuo-En Wu
- Materials Science Engineering Program, University of California San Diego, La Jolla, CA 92093, USA.
| | - Napasorn Phongphaew
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Yichen Zhai
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Lulu Yao
- Materials Science Engineering Program, University of California San Diego, La Jolla, CA 92093, USA.
| | - Hsun-Hao Hsu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Alan Shiller
- Division of Marine Science, University of Southern Mississippi, Stennis Space Center, MS 39529, USA
| | - Jason D Azoulay
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Tse Nga Ng
- Materials Science Engineering Program, University of California San Diego, La Jolla, CA 92093, USA.
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Yao S, Zhou W, Hinson R, Dong P, Wu S, Ives J, Hu X, Huang H, Zhu Y. Ultrasoft Porous 3D Conductive Dry Electrodes for Electrophysiological Sensing and Myoelectric Control. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2101637. [PMID: 36276406 PMCID: PMC9581336 DOI: 10.1002/admt.202101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 05/12/2023]
Abstract
Biopotential electrodes have found broad applications in health monitoring, human-machine interactions, and rehabilitation. Here, we report the fabrication and applications of ultrasoft breathable dry electrodes that can address several challenges for their long-term wearable applications - skin compatibility, wearability, and long-term stability. The proposed electrodes rely on porous and conductive silver nanowire based nanocomposites as the robust mechanical and electrical interface. The highly conductive and conformable structure eliminates the necessity of conductive gel while establishing a sufficiently low electrode-skin impedance for high-fidelity electrophysiological sensing. The introduction of gas-permeable structures via a simple and scalable method based on sacrificial templates improves breathability and skin compatibility for applications requiring long-term skin contact. Such conformable and breathable dry electrodes allow for efficient and unobtrusive monitoring of heart, muscle, and brain activities. In addition, based on the muscle activities captured by the electrodes and a musculoskeletal model, electromyogram-based neural-machine interfaces were realized, illustrating the great potential for prosthesis control, neurorehabilitation, and virtual reality.
Collapse
Affiliation(s)
- Shanshan Yao
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Weixin Zhou
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Robert Hinson
- Joint Department of Biomedical Engineering at University of North Carolina-Chapel Hill and NC State University, Chapel Hill/Raleigh, North Carolina 27599/27695, USA
| | - Penghao Dong
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Shuang Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Jasmine Ives
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Xiaogang Hu
- Joint Department of Biomedical Engineering at University of North Carolina-Chapel Hill and NC State University, Chapel Hill/Raleigh, North Carolina 27599/27695, USA
| | - He Huang
- Joint Department of Biomedical Engineering at University of North Carolina-Chapel Hill and NC State University, Chapel Hill/Raleigh, North Carolina 27599/27695, USA
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
12
|
Multimodal assessment of spasticity using a point-of-care instrumented glove to separate neural and biomechanical contributions. iScience 2022; 25:105286. [PMID: 36281456 PMCID: PMC9587007 DOI: 10.1016/j.isci.2022.105286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/07/2022] [Accepted: 10/04/2022] [Indexed: 11/22/2022] Open
Abstract
Accurate assessment of spasticity is crucial for physicians to select the most suitable treatment for patients. However, the current clinical practice standard is limited by imprecise assessment scales relying on perception. Here, we equipped the clinician with a portable, multimodal sensor glove to shift bedside evaluations from subjective perception to objective measurements. The measurements were correlated with biomechanical properties of muscles and revealed dynamic characteristics of spasticity, including catch symptoms and velocity-dependent resistance. Using the biomechanical data, a radar metric was developed for ranking severity in spastic knees and elbows. The continuous monitoring results during anesthesia induction enable the separation of neural and structural contributions to spasticity in 21 patients. This work delineated effects of reflex excitations from structural abnormalities, to classify underlying causes of spasticity that will inform treatment decisions for evidence-based patient care. Tool to shift from subjective scales to objective metrics in spasticity evaluation Develop a multifaceted metric to rank severity based on biomechanical properties Delineate effects of hyper-reflexes and structural abnormalities in spastic muscles
Collapse
|
13
|
Li BM, Reese BL, Ingram K, Huddleston ME, Jenkins M, Zaets A, Reuter M, Grogg MW, Nelson MT, Zhou Y, Ju B, Sennik B, Farrell ZJ, Jur JS, Tabor CE. Textile-Integrated Liquid Metal Electrodes for Electrophysiological Monitoring. Adv Healthc Mater 2022; 11:e2200745. [PMID: 35734914 DOI: 10.1002/adhm.202200745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/12/2022] [Indexed: 01/27/2023]
Abstract
Next generation textile-based wearable sensing systems will require flexibility and strength to maintain capabilities over a wide range of deformations. However, current material sets used for textile-based skin contacting electrodes lack these key properties, which hinder applications such as electrophysiological sensing. In this work, a facile spray coating approach to integrate liquid metal nanoparticle systems into textile form factors for conformal, flexible, and robust electrodes is presented. The liquid metal system employs functionalized liquid metal nanoparticles that provide a simple "peel-off to activate" means of imparting conductivity. The spray coating approach combined with the functionalized liquid metal system enables the creation of long-term reusable textile-integrated liquid metal electrodes (TILEs). Although the TILEs are dry electrodes by nature, they show equal skin-electrode impedances and sensing capabilities with improved wearability compared to commercial wet electrodes. Biocompatibility of TILEs in an in vivo skin environment is demonstrated, while providing improved sensing performance compared to previously reported textile-based dry electrodes. The "spray on dry-behave like wet" characteristics of TILEs opens opportunities for textile-based wearable health monitoring, haptics, and augmented/virtual reality applications that require the use of flexible and conformable dry electrodes.
Collapse
Affiliation(s)
- Braden M Li
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA.,Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA.,Air Force Life Cycle Management Center, Human Systems Division, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Brandon L Reese
- Department of Physics, Miami University, Oxford, OH, 45056, USA.,UES Inc, Dayton, OH, 45432, USA
| | - Katherine Ingram
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Mary E Huddleston
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Meghan Jenkins
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Allison Zaets
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Matthew Reuter
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Matthew W Grogg
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - M Tyler Nelson
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Ying Zhou
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Beomjun Ju
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Busra Sennik
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Zachary J Farrell
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA.,UES Inc, Dayton, OH, 45432, USA
| | - Jesse S Jur
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Christopher E Tabor
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| |
Collapse
|
14
|
Zhou X, Rajeev A, Subramanian A, Li Y, Rossetti N, Natale G, Lodygensky GA, Cicoira F. Self-healing, stretchable, and highly adhesive hydrogels for epidermal patch electrodes. Acta Biomater 2022; 139:296-306. [PMID: 34365040 DOI: 10.1016/j.actbio.2021.07.069] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 01/04/2023]
Abstract
Flexible, self-healing and adhesive conductive materials with Young's modulus matching biological tissues are highly desired for applications in bioelectronics. Here, we report self-healing, stretchable, highly adhesive and conductive hydrogels obtained by mixing polyvinyl alcohol, sodium tetraborate and a screen printing paste containing the conducting polymer Poly (3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) and diol additives. The as prepared hydrogels exhibited modelling ability, high adhesion on pig skin (1.96 N/cm2), high plastic stretchability (>10000%), a moderate conductivity, a low compressive modulus (0.3-3.7 KPa), a good strain sensitivity (gauge factor = 3.88 at 500% strain), and remarkable self-healing properties. Epidermal patch electrodes prepared using one of our hydrogels demonstrated high-quality recording of electrocardiography (ECG) and electromyography (EMG) signal. Because of their straightforward fabrication, outstanding mechanical properties and possibility to combine the electrode components in a single material, hydrogels based on PVA, borax and PEDOT:PSS are highly promising for applications in bioelectronics and wearable electronics. STATEMENT OF SIGNIFICANCE: Soft materials with electrical conductivity are investigated for healthcare applications, such as electrodes to measure vital signs that can easily adapt to the shape and the movements of human skin. Conductive hydrogels (i.e. gels containing water) are ideal materials for this purpose due softness and flexibility. In this this work, we report hydrogels obtained mixing an electrically conductive polymer, a water-soluble biocompatible polymer and a salt. These materials show high adhesion on skin, electrical conductivity and ability to self-repair after a mechanical damage. These hydrogels were successfully used to fabricate electrode to measure cardiac and muscular electrical signals.
Collapse
|
15
|
Makeyev O, Ye-Lin Y, Prats-Boluda G, Garcia-Casado J. Finite element method modeling to confirm the results of comprehensive optimization of the tripolar concentric ring electrode based on its finite dimensions model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:7244-7247. [PMID: 34892770 DOI: 10.1109/embc46164.2021.9629784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Concentric ring electrodes are noninvasive and wearable sensors for electrophysiological measurement capable of estimating the surface Laplacian (second spatial derivative of surface potential) at each electrode. Significant progress has been made toward optimization of inter-ring distances (distances between the recording surfaces of the electrode), maximizing the accuracy of the surface Laplacian estimate based on the negligible dimensions model of the electrode. However, novel finite dimensions model offers comprehensive optimization including all of the electrode parameters simultaneously by including the radius of the central disc and the widths of the concentric rings into the model. Recently, such comprehensive optimization problem has been solved analytically for the tripolar electrode configuration. This study, for the first time, introduces a finite dimensions model based finite element method model (as opposed to the negligible dimensions model based one used in the past) to confirm the analytic results. Specifically, finite element method modeling results confirmed that previously proposed linearly increasing inter-ring distances and constant inter-ring distances configurations of tripolar concentric ring electrodes correspond to an almost two-fold and more than three-fold increases in relative and normalized maximum errors of Laplacian estimation when directly compared to the optimal tripolar concentric ring electrode configuration of the same size.Clinical Relevance- This study assesses and confirms the electrode configuration that maximizes the accuracy of the estimated Laplacian recorded via concentric ring electrodes. Therefore, it is potentially useful for designing future concentric ring electrodes for diagnostic purposes such as localization of epileptic foci.
Collapse
|
16
|
Makeyev O, Ye-Lin Y, Prats-Boluda G, Garcia-Casado J. Comprehensive Optimization of the Tripolar Concentric Ring Electrode Based on Its Finite Dimensions Model and Confirmed by Finite Element Method Modeling. SENSORS 2021; 21:s21175881. [PMID: 34502772 PMCID: PMC8434583 DOI: 10.3390/s21175881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/13/2021] [Accepted: 08/28/2021] [Indexed: 11/16/2022]
Abstract
The optimization performed in this study is based on the finite dimensions model of the concentric ring electrode as opposed to the negligible dimensions model used in the past. This makes the optimization problem comprehensive, as all of the electrode parameters including, for the first time, the radius of the central disc and individual widths of concentric rings, are optimized simultaneously. The optimization criterion used is maximizing the accuracy of the surface Laplacian estimation, as the ability to estimate the Laplacian at each electrode constitutes primary biomedical significance of concentric ring electrodes. For tripolar concentric ring electrodes, the optimal configuration was compared to previously proposed linearly increasing inter-ring distances and constant inter-ring distances configurations of the same size and based on the same finite dimensions model. The obtained analytic results suggest that previously proposed configurations correspond to almost two-fold and more than three-fold increases in the Laplacian estimation error compared with the optimal configuration proposed in this study, respectively. These analytic results are confirmed using finite element method modeling, which was adapted to the finite dimensions model of the concentric ring electrode for the first time. Moreover, the finite element method modeling results suggest that optimal electrode configuration may also offer improved sensitivity and spatial resolution.
Collapse
Affiliation(s)
- Oleksandr Makeyev
- School of STEM, Diné College, Tsaile, AZ 86556, USA
- Correspondence: ; Tel.: +1-928-724-6960
| | - Yiyao Ye-Lin
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain; (Y.Y.-L.); (G.P.-B.); (J.G.-C.)
| | - Gema Prats-Boluda
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain; (Y.Y.-L.); (G.P.-B.); (J.G.-C.)
| | - Javier Garcia-Casado
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain; (Y.Y.-L.); (G.P.-B.); (J.G.-C.)
| |
Collapse
|
17
|
Zhai Y, Wang Z, Kwon KS, Cai S, Lipomi DJ, Ng TN. Printing Multi-Material Organic Haptic Actuators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002541. [PMID: 33135205 DOI: 10.1002/adma.202002541] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Haptic actuators generate touch sensations and provide realism and depth in human-machine interactions. A new generation of soft haptic interfaces is desired to produce the distributed signals over large areas that are required to mimic natural touch interactions. One promising approach is to combine the advantages of organic actuator materials and additive printing technologies. This powerful combination can lead to devices that are ergonomic, readily customizable, and economical for researchers to explore potential benefits and create new haptic applications. Here, an overview of emerging organic actuator materials and digital printing technologies for fabricating haptic actuators is provided. In particular, the focus is on the challenges and potential solutions associated with integration of multi-material actuators, with an eye toward improving the fidelity and robustness of the printing process. Then the progress in achieving compact, lightweight haptic actuators by using an open-source extrusion printer to integrate different polymers and composites in freeform designs is reported. Two haptic interfaces-a tactile surface and a kinesthetic glove-are demonstrated to show that printing with organic materials is a versatile approach for rapid prototyping of various types of haptic devices.
Collapse
Affiliation(s)
- Yichen Zhai
- Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Zhijian Wang
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Kye-Si Kwon
- Department of Mechanical Engineering, Soonchunhyang University, Asan City, Chungnam, 31538, South Korea
| | - Shengqiang Cai
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Darren J Lipomi
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Tse Nga Ng
- Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| |
Collapse
|
18
|
Won Y, Lee JJ, Shin J, Lee M, Kim S, Gandla S. Biocompatible, Transparent, and High-Areal-Coverage Kirigami PEDOT:PSS Electrodes for Electrooculography-Derived Human-Machine Interactions. ACS Sens 2021; 6:967-975. [PMID: 33470797 DOI: 10.1021/acssensors.0c02154] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Electronic skin sensors prepared from biocompatible and biodegradable polymeric materials significantly benefit the research and scientific community, as they can reduce the amount of effort required for e-waste management by deteriorating or dissolving into the environment without pollution. Herein, we report the use of polylactic acid (PLA)-a promising plant-based bioplastic-and highly transparent, conductive, biocompatible, and flexible poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) materials to fabricate kirigami-based stretchable on-skin electrophysiological sensors via a low-cost and rapid laser cutting technique. The sensor stack with PEDOT:PSS and PLA layers exhibited high transparency (>85%) in the wavelength range of 400-700 nm and stay attached conformally to the skin for several hours without adverse effects. The Y-shaped kirigami motifs inspired by the microcracked gold film endowed the sensor with attributes such as high areal coverage (∼85%), breathability (∼40 g m-2 h-1), and multidirectional stretchability. The sensor has been successfully applied to monitor electrophysiological signals and demonstrated with an eye movement-supported communication interface for controlling home electronic appliances.
Collapse
Affiliation(s)
- Yoochan Won
- Multifunctional Nano Bio Electronics Lab, Department of Advanced Materials and Science Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Jung Joon Lee
- Multifunctional Nano Bio Electronics Lab, Department of Advanced Materials and Science Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Jonghwan Shin
- Multifunctional Nano Bio Electronics Lab, Department of Advanced Materials and Science Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Minwoo Lee
- Multifunctional Nano Bio Electronics Lab, Department of Advanced Materials and Science Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Sunkook Kim
- Multifunctional Nano Bio Electronics Lab, Department of Advanced Materials and Science Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Srinivas Gandla
- Multifunctional Nano Bio Electronics Lab, Department of Advanced Materials and Science Engineering, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
19
|
Zhang L, Kumar KS, He H, Cai CJ, He X, Gao H, Yue S, Li C, Seet RCS, Ren H, Ouyang J. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat Commun 2020; 11:4683. [PMID: 32943621 PMCID: PMC7499260 DOI: 10.1038/s41467-020-18503-8] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/18/2020] [Indexed: 12/05/2022] Open
Abstract
Wearable dry electrodes are needed for long-term biopotential recordings but are limited by their imperfect compliance with the skin, especially during body movements and sweat secretions, resulting in high interfacial impedance and motion artifacts. Herein, we report an intrinsically conductive polymer dry electrode with excellent self-adhesiveness, stretchability, and conductivity. It shows much lower skin-contact impedance and noise in static and dynamic measurement than the current dry electrodes and standard gel electrodes, enabling to acquire high-quality electrocardiogram (ECG), electromyogram (EMG) and electroencephalogram (EEG) signals in various conditions such as dry and wet skin and during body movement. Hence, this dry electrode can be used for long-term healthcare monitoring in complex daily conditions. We further investigated the capabilities of this electrode in a clinical setting and realized its ability to detect the arrhythmia features of atrial fibrillation accurately, and quantify muscle activity during deep tendon reflex testing and contraction against resistance. Reported wearable dry electrodes have limited long-term use due to their imperfect skin compliance and high motion artifacts. Here, the authors report an intrinsically conductive, stretchable polymer dry electrode with excellent self-adhesiveness for long-term high-quality biopotential detection.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Materials Science & Engineering, National University of Singapore, Faculty of gineering, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Kirthika Senthil Kumar
- Department of Biomedical Engineering, National University of Singapore, Faculty of Engineering, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Hao He
- Department of Materials Science & Engineering, National University of Singapore, Faculty of gineering, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Catherine Jiayi Cai
- Department of Biomedical Engineering, National University of Singapore, Faculty of Engineering, 4 Engineering Drive 3, Singapore, 117583, Singapore.,Singapore Institute of Manufacturing Technology, A*STAR Singapore, Fusionopolis Two, 4 Fusionopolis Way, Singapore, 138635, Singapore
| | - Xu He
- Department of Materials Science & Engineering, National University of Singapore, Faculty of gineering, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Huxin Gao
- Department of Biomedical Engineering, National University of Singapore, Faculty of Engineering, 4 Engineering Drive 3, Singapore, 117583, Singapore.,National University of Singapore (Suzhou) Research Institute (NUSRI), Suzhou, China
| | - Shizhong Yue
- Department of Materials Science & Engineering, National University of Singapore, Faculty of gineering, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Changsheng Li
- Department of Biomedical Engineering, National University of Singapore, Faculty of Engineering, 4 Engineering Drive 3, Singapore, 117583, Singapore.,National University of Singapore (Suzhou) Research Institute (NUSRI), Suzhou, China.,Beijing Advanced Innovation Center for Intelligent Robots and Systems & School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Raymond Chee-Seong Seet
- Division of Neurology, Department of Medicine, National University Health System, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hongliang Ren
- Department of Biomedical Engineering, National University of Singapore, Faculty of Engineering, 4 Engineering Drive 3, Singapore, 117583, Singapore. .,National University of Singapore (Suzhou) Research Institute (NUSRI), Suzhou, China. .,The Chinese University of Hong Kong (CUHK) Robotics Institute, Shatin, Hong Kong.
| | - Jianyong Ouyang
- Department of Materials Science & Engineering, National University of Singapore, Faculty of gineering, 7 Engineering Drive 1, Singapore, 117574, Singapore.
| |
Collapse
|
20
|
Garcia-Casado J, Prats-Boluda G, Ye-Lin Y, Restrepo-Agudelo S, Perez-Giraldo E, Orozco-Duque A. Evaluation of Swallowing Related Muscle Activity by Means of Concentric Ring Electrodes. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20185267. [PMID: 32942616 PMCID: PMC7570555 DOI: 10.3390/s20185267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Surface electromyography (sEMG) can be helpful for evaluating swallowing related muscle activity. Conventional recordings with disc electrodes suffer from significant crosstalk from adjacent muscles and electrode-to-muscle fiber orientation problems, while concentric ring electrodes (CREs) offer enhanced spatial selectivity and axial isotropy. The aim of this work was to evaluate CRE performance in sEMG recordings of the swallowing muscles. Bipolar recordings were taken from 21 healthy young volunteers when swallowing saliva, water and yogurt, first with a conventional disc and then with a CRE. The signals were characterized by the root-mean-square amplitude, signal-to-noise ratio, myopulse, zero-crossings, median frequency, bandwidth and bilateral muscle cross-correlations. The results showed that CREs have advantages in the sEMG analysis of swallowing muscles, including enhanced spatial selectivity and the associated reduction in crosstalk, the ability to pick up a wider range of EMG frequency components and easier electrode placement thanks to its radial symmetry. However, technical changes are recommended in the future to ensure that the lower CRE signal amplitude does not significantly affect its quality. CREs show great potential for improving the clinical monitoring and evaluation of swallowing muscle activity. Future work on pathological subjects will assess the possible advantages of CREs in dysphagia monitoring and diagnosis.
Collapse
Affiliation(s)
- Javier Garcia-Casado
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain; (G.P.-B.); (Y.Y.-L.)
| | - Gema Prats-Boluda
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain; (G.P.-B.); (Y.Y.-L.)
| | - Yiyao Ye-Lin
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain; (G.P.-B.); (Y.Y.-L.)
| | - Sebastián Restrepo-Agudelo
- Grupo de Investigación e Innovación Biomédica, Instituto Tecnológico Metropolitano, Medellín 050012, Colombia; (S.R.-A.); (E.P.-G.); (A.O.-D.)
| | - Estefanía Perez-Giraldo
- Grupo de Investigación e Innovación Biomédica, Instituto Tecnológico Metropolitano, Medellín 050012, Colombia; (S.R.-A.); (E.P.-G.); (A.O.-D.)
| | - Andrés Orozco-Duque
- Grupo de Investigación e Innovación Biomédica, Instituto Tecnológico Metropolitano, Medellín 050012, Colombia; (S.R.-A.); (E.P.-G.); (A.O.-D.)
| |
Collapse
|
21
|
Estrada-Petrocelli L, Torres A, Sarlabous L, Rafols-de-Urquia M, Ye-Lin Y, Prats-Boluda G, Jane R, Garcia-Casado J. Evaluation of Respiratory Muscle Activity by Means of Concentric Ring Electrodes. IEEE Trans Biomed Eng 2020; 68:1005-1014. [PMID: 32746073 DOI: 10.1109/tbme.2020.3012385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Surface electromyography (sEMG) can be used for the evaluation of respiratory muscle activity. Recording sEMG involves the use of surface electrodes in a bipolar configuration. However, electrocardiographic (ECG) interference and electrode orientation represent considerable drawbacks to bipolar acquisition. As an alternative, concentric ring electrodes (CREs) can be used for sEMG acquisition and offer great potential for the evaluation of respiratory muscle activity due to their enhanced spatial resolution and simple placement protocol, which does not depend on muscle fiber orientation. The aim of this work was to analyze the performance of CREs during respiratory sEMG acquisitions. Respiratory muscle sEMG was applied to the diaphragm and sternocleidomastoid muscles using a bipolar and a CRE configuration. Thirty-two subjects underwent four inspiratory load spontaneous breathing tests which was repeated after interchanging the electrode positions. We calculated parameters such as (1) spectral power and (2) median frequency during inspiration, and power ratios of inspiratory sEMG without ECG in relation to (3) basal sEMG without ECG (Rins/noise), (4) basal sEMG with ECG (Rins/cardio) and (5) expiratory sEMG without ECG (Rins/exp). Spectral power, Rins/noise and Rins/cardio increased with the inspiratory load. Significantly higher values (p < 0.05) of Rins/cardio and significantly higher median frequencies were obtained for CREs. Rins/noise and Rins/exp were higher for the bipolar configuration only in diaphragm sEMG recordings, whereas no significant differences were found in the sternocleidomastoid recordings. Our results suggest that the evaluation of respiratory muscle activity by means of sEMG can benefit from the remarkably reduced influence of cardiac activity, the enhanced detection of the shift in frequency content and the axial isotropy of CREs which facilitates its placement.
Collapse
|
22
|
Evaluation of Bipolar, Tripolar, and Quadripolar Laplacian Estimates of Electrocardiogram via Concentric Ring Electrodes. SENSORS 2019; 19:s19173780. [PMID: 31480426 PMCID: PMC6749387 DOI: 10.3390/s19173780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/22/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022]
Abstract
Surface Laplacian estimates via concentric ring electrodes (CREs) have proven to enhance spatial resolution compared to conventional disc electrodes, which is of great importance for P-wave analysis. In this study, Laplacian estimates for traditional bipolar configuration (BC), two tripolar configurations with linearly decreasing and increasing inter-ring distances (TCLDIRD and TCLIIRD, respectively), and quadripolar configuration (QC) were obtained from cardiac recordings with pentapolar CREs placed at CMV1 and CMV2 positions. Normalized P-wave amplitude (NAP) was computed to assess the contrast to study atrial activity. Signals were of good quality (20-30 dB). Atrial activity was more emphasized at CMV1 (NAP ≃ 0.19-0.24) compared to CMV2 (NAP ≃ 0.08-0.10). Enhanced spatial resolution of TCLIIRD and QC resulted in higher NAP values than BC and TCLDIRD. Comparison with simultaneous standard 12-lead ECG proved that Laplacian estimates at CMV1 outperformed all the limb and chest standard leads in the contrast to study P-waves. Clinical recordings with CRE at this position could allow more detailed observation of atrial activity and facilitate the diagnosis of associated pathologies. Furthermore, such recordings would not require additional electrodes on limbs and could be performed wirelessly, so it should also be suitable for ambulatory monitoring, for example, using cardiac Holter monitors.
Collapse
|
23
|
Wang K, Parekh U, Ting JK, Yamamoto NAD, Zhu J, Costantini T, Arias AC, Eliceiri BP, Ng TN. A Platform to Study the Effects of Electrical Stimulation on Immune Cell Activation During Wound Healing. ACTA ACUST UNITED AC 2019; 3:e1900106. [DOI: 10.1002/adbi.201900106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/30/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Kaiping Wang
- Department of Electrical and Computer Engineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Udit Parekh
- Department of Electrical and Computer Engineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Jonathan K. Ting
- Department of Electrical Engineering and Computer Sciences University of California Berkeley 253 Cory Hall, Berkeley CA 94720 USA
| | - Natasha A. D. Yamamoto
- Department of Electrical Engineering and Computer Sciences University of California Berkeley 253 Cory Hall, Berkeley CA 94720 USA
| | - Juan Zhu
- Department of Electrical Engineering and Computer Sciences University of California Berkeley 253 Cory Hall, Berkeley CA 94720 USA
| | - Todd Costantini
- Department of Surgery University of California San Diego USA
| | - Ana Claudia Arias
- Department of Electrical Engineering and Computer Sciences University of California Berkeley 253 Cory Hall, Berkeley CA 94720 USA
| | | | - Tse Nga Ng
- Department of Electrical and Computer Engineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| |
Collapse
|
24
|
Inzelberg L, Hanein Y. Electrophysiology Meets Printed Electronics: The Beginning of a Beautiful Friendship. Front Neurosci 2019; 12:992. [PMID: 30662393 PMCID: PMC6328473 DOI: 10.3389/fnins.2018.00992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/10/2018] [Indexed: 11/23/2022] Open
Abstract
Electroencephalography (EEG) and surface electromyography (sEMG) are notoriously cumbersome technologies. A typical setup may involve bulky electrodes, dangling wires, and a large amplifier unit. Adapting these technologies to numerous applications has been accordingly fairly limited. Thanks to the availability of printed electronics, it is now possible to effectively simplify these techniques. Elegant electrode arrays with unprecedented performances can be readily produced, eliminating the need to handle multiple electrodes and wires. Specifically, in this Perspective paper, we focus on the advantages of electrodes printed on soft films as manifested in signal transmission at the electrode-skin interface, electrode-skin stability, and user convenience during electrode placement while achieving prolonged use. Customizing electrode array designs and implementing blind source separation methods can also improve recording resolution, reduce variability between individuals and minimize signal cross-talk between nearby electrodes. Finally, we outline several important applications in the field of neuroscience and how each can benefit from the convergence of electrophysiology and printed electronics.
Collapse
Affiliation(s)
- Lilah Inzelberg
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yael Hanein
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
25
|
Wu Z, Zhai Y, Kim H, Azoulay JD, Ng TN. Emerging Design and Characterization Guidelines for Polymer-Based Infrared Photodetectors. Acc Chem Res 2018; 51:3144-3153. [PMID: 30520307 DOI: 10.1021/acs.accounts.8b00446] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Infrared photodetectors are essential to many applications, including surveillance, communications, process monitoring, and biological imaging. The short-wave infrared (SWIR) spectral region (λ = 1-3 μm) is particularly powerful for health monitoring and medical diagnostics because biological tissues show low absorbance and minimal SWIR autofluorescence, enabling greater penetration depth and improved resolution in comparison with visible light. However, current SWIR photodetection technologies are largely based on epitaxially grown inorganic semiconductors, which are costly, require complex processing, and impose cooling requirements incompatible with wearable electronics. Solution-processable semiconductors are being developed for infrared detectors to enable low-cost direct deposition and facilitate monolithic integration and resolution not achievable using current technologies. In particular, organic semiconductors offer numerous advantages, including large-area and conformal coverage, temperature insensitivity, and biocompatibility, for enabling ubiquitous SWIR optoelectronics. This Account introduces recent efforts to advance the spectral response of organic photodetectors into the SWIR. High-performance visible to near-infrared (NIR) organic photodetectors have been demonstrated by leveraging the wealth of knowledge from organic solar cell research in the past decade. On the other hand, organic semiconductors that absorb in the SWIR are just emerging, and only a few organic materials have been reported that exhibit photocurrent past 1 μm. In this Account, we survey novel SWIR molecules and polymers and discuss the main bottlenecks associated with charge recombination and trapping, which are more challenging to address in narrow-band-gap photodetectors in comparison with devices operating in the visible to NIR. As we call attention to discrepancies in the literature regarding performance metrics, we share our perspective on potential pitfalls that may lead to overestimated values, with particular attention to the detectivity (signal-to-noise ratio) and temporal characteristics, in order to ensure a fair comparison of device performance. As progress is made toward overcoming challenges associated with losses due to recombination and increasing noise at progressively narrower band gaps, the performance of organic SWIR photodetectors is steadily rising, with detectivity exceeding 1011 Jones, comparable to that of commercial germanium photodiodes. Organic SWIR photodetectors can be incorporated into wearable physiological monitors and SWIR spectroscopic imagers that enable compositional analysis. A wide range of potential applications include food and water quality monitoring, medical and biological studies, industrial process inspection, and environmental surveillance. There are exciting opportunities for low-cost organic SWIR technologies to be as widely deployable and affordable as today's ubiquitous cell phone cameras operating in the visible, which will serve as an empowering tool for users to discover information in the SWIR and inspire new use cases and applications.
Collapse
Affiliation(s)
- Zhenghui Wu
- Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0407, United States
| | - Yichen Zhai
- Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0407, United States
| | - Hyonwoong Kim
- Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0407, United States
| | - Jason D. Azoulay
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, Mississippi 39406, United States
| | - Tse Nga Ng
- Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0407, United States
| |
Collapse
|
26
|
Makeyev O. Solving the general inter-ring distances optimization problem for concentric ring electrodes to improve Laplacian estimation. Biomed Eng Online 2018; 17:117. [PMID: 30165898 PMCID: PMC6117945 DOI: 10.1186/s12938-018-0549-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/23/2018] [Indexed: 12/28/2022] Open
Abstract
Background Superiority of noninvasive tripolar concentric ring electrodes over conventional disc electrodes in accuracy of surface Laplacian estimation has been demonstrated in a range of electrophysiological measurement applications. Recently, a general approach to Laplacian estimation for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method has been proposed and used to introduce novel multipolar and variable inter-ring distances electrode configurations. While only linearly increasing and linearly decreasing inter-ring distances have been considered previously, this paper defines and solves the general inter-ring distances optimization problem for the (4n + 1)-point method. Results General inter-ring distances optimization problem is solved for tripolar (n = 2) and quadripolar (n = 3) concentric ring electrode configurations through minimizing the truncation error of Laplacian estimation. For tripolar configuration with middle ring radius αr and outer ring radius r the optimal range of values for α was determined to be 0 < α ≤ 0.22 while for quadripolar configuration with an additional middle ring with radius βr the optimal range of values for α and β was determined by inequalities 0 < α < β < 1 and αβ ≤ 0.21. Finite element method modeling and full factorial analysis of variance were used to confirm statistical significance of Laplacian estimation accuracy improvement due to optimization of inter-ring distances (p < 0.0001). Conclusions Obtained results suggest the potential of using optimization of inter-ring distances to improve the accuracy of surface Laplacian estimation via concentric ring electrodes. Identical approach can be applied to solving corresponding inter-ring distances optimization problems for electrode configurations with higher numbers of concentric rings. Solutions of the proposed inter-ring distances optimization problem define the class of the optimized inter-ring distances electrode designs. These designs may result in improved noninvasive sensors for measurement systems that use concentric ring electrodes to acquire electrical signals such as from the brain, intestines, heart or uterus for diagnostic purposes.
Collapse
Affiliation(s)
- Oleksandr Makeyev
- Department of Mathematics, Diné College, 1 Circle Dr, Tsaile, AZ, 86556, USA.
| |
Collapse
|
27
|
Textile Concentric Ring Electrodes for ECG Recording Based on Screen-Printing Technology. SENSORS 2018; 18:s18010300. [PMID: 29361722 PMCID: PMC5796388 DOI: 10.3390/s18010300] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 11/17/2022]
Abstract
Among many of the electrode designs used in electrocardiography (ECG), concentric ring electrodes (CREs) are one of the most promising due to their enhanced spatial resolution. Their development has undergone a great push due to their use in recent years; however, they are not yet widely used in clinical practice. CRE implementation in textiles will lead to a low cost, flexible, comfortable, and robust electrode capable of detecting high spatial resolution ECG signals. A textile CRE set has been designed and developed using screen-printing technology. This is a mature technology in the textile industry and, therefore, does not require heavy investments. Inks employed as conductive elements have been silver and a conducting polymer (poly (3,4-ethylenedioxythiophene) polystyrene sulfonate; PEDOT:PSS). Conducting polymers have biocompatibility advantages, they can be used with flexible substrates, and they are available for several printing technologies. CREs implemented with both inks have been compared by analyzing their electric features and their performance in detecting ECG signals. The results reveal that silver CREs present a higher average thickness and slightly lower skin-electrode impedance than PEDOT:PSS CREs. As for ECG recordings with subjects at rest, both CREs allowed the uptake of bipolar concentric ECG signals (BC-ECG) with signal-to-noise ratios similar to that of conventional ECG recordings. Regarding the saturation and alterations of ECGs captured with textile CREs caused by intentional subject movements, silver CREs presented a more stable response (fewer saturations and alterations) than those of PEDOT:PSS. Moreover, BC-ECG signals provided higher spatial resolution compared to conventional ECG. This improved spatial resolution was manifested in the identification of P1 and P2 waves of atrial activity in most of the BC-ECG signals. It can be concluded that textile silver CREs are more suitable than those of PEDOT:PSS for obtaining BC-ECG records. These developed textile electrodes bring the use of CREs closer to the clinical environment.
Collapse
|