1
|
Yu T, Ding Q, Wang N, Zhang S, Cheng Z, Zhao C, Li Q, Ding C, Liu W. Cranial repair-promoting effect of oxidised sodium alginate/amino gelatine injectable hydrogel loaded with deer antler blood peptides. Int J Biol Macromol 2025; 305:141116. [PMID: 39956235 DOI: 10.1016/j.ijbiomac.2025.141116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/28/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
This study aimed to enhance the treatment of bone defects and increase peptide bioavailability. To achieve this, antioxidant-active peptides (DBPs) were extracted from deer antler blood and incorporated into an oxidised sodium alginate/amino gelatine injectable hydrogel (OSA/N-Gel). This bioscaffold was created through the Schiff base reaction, resulting in the development of an injectable hydrogel comprising OSA, amino gelatine, and deer antler blood peptides (OSA/N-Gel/DBP). OSA/N-Gel/DBP is characterised by a loose and porous structure that enhances nutrient flow and confers good degradability, enabling the gradual release of DBP to meet the long-lasting treatment requirements for bone repair. In vitro, 5-Ethynyl-2'-deoxyuridine (EDU), alkaline phosphatase (ALP), and Alizarin Red S (ARS) staining showed the pro-proliferative and pro-mineralising abilities of OSA/N-Gel and OSA/N-Gel/DBP on osteoblasts (MC3T3). OSA/N-Gel/DBP effectively promoted the expression of osteogenesis-related genes, such as ALP and vascular endothelial growth factor (CD31), and deposition of collagen (COL-1), and activated the wingless-related integration site (Wnt) signalling pathway, thereby promoting bone regeneration. The effect of OSA/N-Gel/DBP was significantly superior to that of the OSA/N-Gel group, indicating that DBP has good osteogenic properties. We successfully repaired bone defects and broadened the application of antler blood, thereby providing a novel approach to treating bone defects.
Collapse
Affiliation(s)
- Taojing Yu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ning Wang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zhiqiang Cheng
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin Agricultural University, Changchun 130118, China; College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Chunli Zhao
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Qingjie Li
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China.
| |
Collapse
|
2
|
Chen Y, Cao Y, Cui P, Lu S. Mussel-Inspired Hydrogel Applied to Wound Healing: A Review and Future Prospects. Biomimetics (Basel) 2025; 10:206. [PMID: 40277605 PMCID: PMC12025024 DOI: 10.3390/biomimetics10040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
The application background of mussel-inspired materials is based on the unique underwater adhesive ability of marine mussels, which has inspired researchers to develop bionic materials with strong adhesion, self-healing ability, biocompatibility, and environmental friendliness. Specifically, 3, 4-dihydroxyphenylalanine (DOPA) in mussel byssus is able to form non-covalent forces on a variety of surfaces, which are critical for the mussel's underwater adhesion and enable the mussel-inspired material to dissipate energy and repair itself under external forces. Mussel-inspired hydrogels are ideal medical adhesive materials due to their unique physical and chemical properties, such as excellent tissue adhesion, hemostasis and bacteriostasis, biosafety, and plasticity. This paper reviewed chitosan, cellulose, hyaluronic acid, gelatin, alginate, and other biomedical materials and discussed the advanced functions of mussel-inspired hydrogels as wound dressings, including antibacterial, anti-inflammatory, and antioxidant properties, adhesion and hemostasis, material transport, self-healing, stimulating response, and so on. At the same time, the technical challenges and limitations of the biomimetic mussel hydrogel in biomedical applications were further discussed, and its potential solutions and future research developments in the field of biomedicine were highlighted.
Collapse
Affiliation(s)
| | | | | | - Shenzhou Lu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (Y.C.); (Y.C.); (P.C.)
| |
Collapse
|
3
|
Duan C, Jiang H, Zhang S, Wang Y, Liu P, Xu B, Tian W, Han B. Construction of strontium-loaded injectable lubricating hydrogel and its role in promoting repair of cartilage defects. Biomater Sci 2025; 13:1449-1463. [PMID: 39585193 DOI: 10.1039/d4bm01260g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Injuries such as articular cartilage defects are prevalent factors in the development and progression of joint diseases. The discontinuity of the articular surface due to cartilage defects significantly accelerates the onset of arthritis. Cartilage tissue-engineered scaffolds are essential for restoring the continuity of the articular surface. This study presents a dual-network hydrogel, GelMA-FT/Sr2+, which demonstrates excellent lubrication properties and accelerates the healing of cartilage defects. The hydrogel is composed of a methacrylated gelatin (GelMA) network, an N-fluorenylmethoxycarbonyl-L-tryptophan (FT) network, and strontium ions (Sr2+). The results indicate that the hydrogel exhibits lubricating properties, and the incorporation of Sr2+ extends the degradation time of the hydrogel. Additionally, the hydrogel shows biocompatibility and enhances chondrogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) into cartilage. In vivo studies further confirm the hydrogel's efficacy in promoting the repair of cartilage defects in a rat model of cartilage injury. In conclusion, the GelMA-FT/Sr2+ hydrogel is a promising scaffold for cartilage tissue engineering, notable for its excellent lubrication properties, ability to recruit stem cells, and effectiveness in facilitating cartilage defect repair.
Collapse
Affiliation(s)
- Congcong Duan
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.
- Jilin Provincial key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Hongyue Jiang
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun 130012, China.
| | - Shichen Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.
- Jilin Provincial key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Yixing Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.
- Jilin Provincial key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Peng Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.
- Jilin Provincial key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun 130012, China.
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun 130012, China.
| | - Bing Han
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.
- Jilin Provincial key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| |
Collapse
|
4
|
Zhao F, Jia Z, Zhang L, Liu G, Li J, Zhao J, Xie Y, Chen L, Jiang H, He W, Wang A, Peng J, Zheng Y. A MnO 2 nanosheets doping double crosslinked hydrogel for cartilage defect repair through alleviating inflammation and guiding chondrogenic differentiation. Biomaterials 2025; 314:122875. [PMID: 39454507 DOI: 10.1016/j.biomaterials.2024.122875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/29/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024]
Abstract
The inflammatory microenvironment and inferior chondrogenesis are major symptoms after cartilage defect. Although various modifications strategies associated with hydrogels exhibit remarkable capacity of pro-cartilage regeneration, the adverse effect by prolonging inflammation is still formidable to hamper potential biomedical applications of different hydrogel implants. Herein, inspired by the repair microenvironment of articular cartilage defects, an injectable, immunomodulatory, and chondrogenic L-MNS-CMDA hydrogel is prepared through grafting vinyl and catechol groups to chitosan macromolecules using amide reaction, then further loading MnO2 nanosheets (MNS). The double crosslinking of photopolymerization and catechol oxidative polymerization endows L-MNS-CMDA hydrogel with preferable mechanical property, affording a suitable mechanical support for cartilage defect repair. Additionally, the robust tissue adhesion capability stemming from catechol groups guarantees the long-term retention of the hydrogel in the defect site. Meanwhile, L-MNS-CMDA hydrogel decomposes exogenous and intracellular H2O2 into O2 and H2O, to effectively alleviate cellular oxidative stress caused by long-term hypoxia. Under the synergies of catechol groups and MNS, L-MNS-CMDA hydrogel not only inhibits macrophages polarizing into M1 phenotype, but encourages them turn into M2 phenotype, thereby, reconstructing an immunization friendly microenvironment to ultimately enhance cartilage regeneration. Predictably, the hydrogel markedly induces rat bone marrow mesenchymal stem cells differentiating into chondrocytes by expressing abundant glycosaminoglycan and type II collagen. A cartilage defect model of rat knee joint indicates that L-MNS-CMDA hydrogel visually regulate the early inflammatory response of post-implantation, and facilitate cartilage regeneration and recovery of joint function after 12 weeks of post-implantation. All in all, this multifunctional L-MNS-CMDA hydrogel exhibits superior immunomodulatory and chondrogenic properties, holding immense clinical potential in the treatment of cartilage defects.
Collapse
Affiliation(s)
- Feilong Zhao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhibo Jia
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma &War Injuries, PLA Institute of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
| | - Liyang Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Guodong Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Junfei Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianming Zhao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yajie Xie
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lu Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongyu Jiang
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma &War Injuries, PLA Institute of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wei He
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Aiyuan Wang
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma &War Injuries, PLA Institute of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiang Peng
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma &War Injuries, PLA Institute of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yudong Zheng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
5
|
Wang X, Zhang X, Gong C, Yang J, Chen J, Guo W. Functionalized GelMA/CMCS Composite Hydrogel Incorporating Magnesium Phosphate Cement for Bone Regeneration. Biomedicines 2025; 13:257. [PMID: 40002671 PMCID: PMC11852312 DOI: 10.3390/biomedicines13020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Bone regeneration remains a challenging issue in tissue engineering. The use of hydrogels as scaffolds for bone tissue repair has gained attention due to their biocompatibility and ability to mimic the extracellular matrix. This study aims to develop a functionalized GelMA/CMCS composite hydrogel incorporating magnesium phosphate cement (MPC) for enhanced bone regeneration. Methods: These composites were developed by incorporating potassium magnesium phosphate hexahydrate (KMgPO4·6H2O, MPC) powders into methacrylated gelatin/carboxymethyl chitosan (GelMA-C) hydrogels. The material's mechanical properties, antibacterial performance, and cytocompatibility were evaluated. In vitro experiments involved cell viability and osteogenic differentiation assays using rBMSCs as well as angiogenic potential assays using HUVECs. The hydrogel was also assessed for its potential in promoting bone repair in a rat (Sprague-Dawley) model of bone defect. Results: The developed GelMA-CM composite demonstrated improved mechanical properties, biocompatibility, and osteogenic potential compared to individual GelMA or CMCS hydrogels. Incorporation of MPC facilitated the sustained release of ions which promoted osteogenic differentiation of pre-osteoblasts. In vivo results indicated accelerated bone healing in the rat bone defect model. Conclusions: The functionalized GelMA-CM composite could be a viable candidate for clinical applications in bone regeneration therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China; (X.W.); (X.Z.); (C.G.); (J.Y.); (J.C.)
| |
Collapse
|
6
|
Shah SA, Sohail M, Nakielski P, Rinoldi C, Zargarian SS, Kosik-Kozioł A, Ziai Y, Haghighat Bayan MA, Zakrzewska A, Rybak D, Bartolewska M, Pierini F. Integrating Micro- and Nanostructured Platforms and Biological Drugs to Enhance Biomaterial-Based Bone Regeneration Strategies. Biomacromolecules 2025; 26:140-162. [PMID: 39621708 PMCID: PMC11733931 DOI: 10.1021/acs.biomac.4c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 01/14/2025]
Abstract
Bone defects resulting from congenital anomalies and trauma pose significant clinical challenges for orthopedics surgeries, where bone tissue engineering (BTE) aims to address these challenges by repairing defects that fail to heal spontaneously. Despite numerous advances, BTE still faces several challenges, i.e., difficulties in detecting and tracking implanted cells, high costs, and regulatory approval hurdles. Biomaterials promise to revolutionize bone grafting procedures, heralding a new era of regenerative medicine and advancing patient outcomes worldwide. Specifically, novel bioactive biomaterials have been developed that promote cell adhesion, proliferation, and differentiation and have osteoconductive and osteoinductive characteristics, stimulating tissue regeneration and repair, particularly in complex skeletal defects caused by trauma, degeneration, and neoplasia. A wide array of biological therapeutics for bone regeneration have emerged, drawing from the diverse spectrum of gene therapy, immune cell interactions, and RNA molecules. This review will provide insights into the current state and potential of future strategies for bone regeneration.
Collapse
Affiliation(s)
- Syed Ahmed Shah
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
- Faculty
of Pharmacy, The Superior University, Lahore 54000, Punjab, Pakistan
| | - Muhammad Sohail
- Faculty
of Pharmacy, Cyprus International University, Nicosia 99258, North Cyprus
| | - Paweł Nakielski
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Chiara Rinoldi
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Seyed Shahrooz Zargarian
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Alicja Kosik-Kozioł
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Yasamin Ziai
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Mohammad Ali Haghighat Bayan
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Anna Zakrzewska
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Daniel Rybak
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Magdalena Bartolewska
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Filippo Pierini
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
7
|
Wang Z, Xu J, Zhu J, Fang H, Lei W, Qu X, Cheng YY, Li X, Guan Y, Wang H, Song K. Osteochondral Tissue Engineering: Scaffold Materials, Fabrication Techniques and Applications. Biotechnol J 2025; 20:e202400699. [PMID: 39865414 DOI: 10.1002/biot.202400699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/28/2025]
Abstract
Osteochondral damage, caused by trauma, tumors, or degenerative diseases, presents a major challenge due to the limited self-repair capacity of the tissue. Traditional treatments often result in significant trauma and unpredictable outcomes. Recent advances in bone/cartilage tissue engineering, particularly in scaffold materials and fabrication technologies, offer promising solutions for osteochondral regeneration. This review highlights the selection and design of scaffolds using natural and synthetic materials such as collagen, chitosan (Cs), and polylactic acid (PLA), alongside inorganic components like bioactive glass and nano-hydroxyapatite (nHAp). Key fabrication techniques-freeze-drying, electrospinning, and 3D printing-have improved scaffold porosity and mechanical properties. Special focus is placed on the design of multiphasic scaffolds that mimic natural tissue structures, promoting cell adhesion and differentiation and supporting the regeneration of cartilage and subchondral bone. In addition, the current obstacles and future directions for regenerating damaged osteochondral tissues will be discussed.
Collapse
Affiliation(s)
- Zhenyu Wang
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Jie Xu
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Jingjing Zhu
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Huan Fang
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Wanyu Lei
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Xinrui Qu
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Broadway, Australia
| | - Xiangqin Li
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Yanchun Guan
- Department of Rheumatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hongfei Wang
- Department of Orthopedics, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kedong Song
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
8
|
Lin X, Zhang Y, Li J, Oliver BG, Wang B, Li H, Yong KT, Li JJ. Biomimetic multizonal scaffolds for the reconstruction of zonal articular cartilage in chondral and osteochondral defects. Bioact Mater 2025; 43:510-549. [PMID: 40115881 PMCID: PMC11923379 DOI: 10.1016/j.bioactmat.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 03/23/2025] Open
Abstract
Chondral and osteochondral injuries are frequently encountered in clinical practice. However, articular cartilage has limited self-healing capacity due to its sophisticated zonal structure and avascular nature, introducing significant challenges to the restoration of chondral and osteochondral tissues after injury. Improperly repaired articular cartilage can lead to irreversible joint damage and increase the risk of osteoarthritis progression. Cartilage tissue engineering using stratified scaffolds with multizonal design to match the zonal structure of articular cartilage may help to meet the complex regeneration requirements of chondral and osteochondral tissues, and address the drawbacks experienced with single-phase scaffolds. Navigating the heterogeneity in matrix organisation and cellular composition across cartilage zones is a central consideration in multizonal scaffold design. With emphasis on recent advances in scaffold design and fabrication strategies, this review captures emerging approaches on biomimetic multizonal scaffolds for the reconstruction of zonal articular cartilage, including strategies on replicating native tissue structure through variations in fibre orientation, porous structure, and cell types. Exciting progress in this dynamic field has highlighted the tremendous potential of multizonal scaffolding strategies for regenerative medicine in the recreation of functional tissues.
Collapse
Affiliation(s)
- Xiaoqi Lin
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Ye Zhang
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, 2007, Australia
| | - Jiarong Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, 2007, Australia
- Woolcock Institute of Medical Research, Macquarie University, Macquarie Park, NSW, 2113, Australia
| | - Bin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Haiyan Li
- Chemical and Environmental Engineering Department, School of Engineering, STEM College, RMIT University, Melbourne, VIC, 3000, Australia
| | - Ken-Tye Yong
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
- Woolcock Institute of Medical Research, Macquarie University, Macquarie Park, NSW, 2113, Australia
| |
Collapse
|
9
|
Fang L, Lin X, Xu R, Liu L, Zhang Y, Tian F, Li JJ, Xue J. Advances in the Development of Gradient Scaffolds Made of Nano-Micromaterials for Musculoskeletal Tissue Regeneration. NANO-MICRO LETTERS 2024; 17:75. [PMID: 39601962 PMCID: PMC11602939 DOI: 10.1007/s40820-024-01581-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
The intricate hierarchical structure of musculoskeletal tissues, including bone and interface tissues, necessitates the use of complex scaffold designs and material structures to serve as tissue-engineered substitutes. This has led to growing interest in the development of gradient bone scaffolds with hierarchical structures mimicking the extracellular matrix of native tissues to achieve improved therapeutic outcomes. Building on the anatomical characteristics of bone and interfacial tissues, this review provides a summary of current strategies used to design and fabricate biomimetic gradient scaffolds for repairing musculoskeletal tissues, specifically focusing on methods used to construct compositional and structural gradients within the scaffolds. The latest applications of gradient scaffolds for the regeneration of bone, osteochondral, and tendon-to-bone interfaces are presented. Furthermore, the current progress of testing gradient scaffolds in physiologically relevant animal models of skeletal repair is discussed, as well as the challenges and prospects of moving these scaffolds into clinical application for treating musculoskeletal injuries.
Collapse
Affiliation(s)
- Lei Fang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiaoqi Lin
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Ruian Xu
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Lu Liu
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yu Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Feng Tian
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Jiajia Xue
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
10
|
Wang X, Zeng J, Gan D, Ling K, He M, Li J, Lu Y. Recent Strategies and Advances in Hydrogel-Based Delivery Platforms for Bone Regeneration. NANO-MICRO LETTERS 2024; 17:73. [PMID: 39601916 PMCID: PMC11602938 DOI: 10.1007/s40820-024-01557-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/01/2024] [Indexed: 11/29/2024]
Abstract
Bioactive molecules have shown great promise for effectively regulating various bone formation processes, rendering them attractive therapeutics for bone regeneration. However, the widespread application of bioactive molecules is limited by their low accumulation and short half-lives in vivo. Hydrogels have emerged as ideal carriers to address these challenges, offering the potential to prolong retention times at lesion sites, extend half-lives in vivo and mitigate side effects, avoid burst release, and promote adsorption under physiological conditions. This review systematically summarizes the recent advances in the development of bioactive molecule-loaded hydrogels for bone regeneration, encompassing applications in cranial defect repair, femoral defect repair, periodontal bone regeneration, and bone regeneration with underlying diseases. Additionally, this review discusses the current strategies aimed at improving the release profiles of bioactive molecules through stimuli-responsive delivery, carrier-assisted delivery, and sequential delivery. Finally, this review elucidates the existing challenges and future directions of hydrogel encapsulated bioactive molecules in the field of bone regeneration.
Collapse
Affiliation(s)
- Xiao Wang
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Jia Zeng
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Donglin Gan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Kun Ling
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Mingfang He
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Yongping Lu
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China.
| |
Collapse
|
11
|
Cui M, Sun Y, Zhang X, Yang P, Jiang W. Osteochondral tissue engineering in translational practice: histological assessments and scoring systems. Front Bioeng Biotechnol 2024; 12:1434323. [PMID: 39157444 PMCID: PMC11327087 DOI: 10.3389/fbioe.2024.1434323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
Osteochondral lesions are common pathological alterations in synovial joints. Different techniques have been designed to achieve osteochondral repair, and tissue-engineered osteochondral grafts have shown the most promise. Histological assessments and related scoring systems are crucial for evaluating the quality of regenerated tissue, and the interpretation and comparison of various repair techniques require the establishment of a reliable and widely accepted histological method. To date, there is still no consensus on the type of histological assessment and scoring system that should be used for osteochondral repair. In this review, we summarize common osteochondral staining methods, discuss the criteria regarding high-quality histological images, and assess the current histological scoring systems for osteochondral regeneration. Safranin O/Fast green is the most widely used staining method for the cartilage layer, whereas Gomori and Van Gieson staining detect new bone formation. We suggest including the graft-host interface and more sections together with the basic histological information for images. An ideal scoring system should analyze both the cartilage and bone regions, especially for the subchondral bone plate. Furthermore, histological assessments should be performed over a longer period of time to minimize discrepancies caused by defect size and animal species.
Collapse
Affiliation(s)
- Mengying Cui
- The Second Hospital of Jilin University, Jilin, China
| | - Yang Sun
- Orthopedic Medical Center, The Second Hospital of Jilin University, Jilin, China
| | | | - Pengju Yang
- Orthopedic Medical Center, The Second Hospital of Jilin University, Jilin, China
| | - Weibo Jiang
- Orthopedic Medical Center, The Second Hospital of Jilin University, Jilin, China
| |
Collapse
|
12
|
Liu J, Song J, Zeng L, Hu B. An Overview on the Adhesion Mechanisms of Typical Aquatic Organisms and the Applications of Biomimetic Adhesives in Aquatic Environments. Int J Mol Sci 2024; 25:7994. [PMID: 39063236 PMCID: PMC11277488 DOI: 10.3390/ijms25147994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Water molecules pose a significant obstacle to conventional adhesive materials. Nevertheless, some marine organisms can secrete bioadhesives with remarkable adhesion properties. For instance, mussels resist sea waves using byssal threads, sandcastle worms secrete sandcastle glue to construct shelters, and barnacles adhere to various surfaces using their barnacle cement. This work initially elucidates the process of underwater adhesion and the microstructure of bioadhesives in these three exemplary marine organisms. The formation of bioadhesive microstructures is intimately related to the aquatic environment. Subsequently, the adhesion mechanisms employed by mussel byssal threads, sandcastle glue, and barnacle cement are demonstrated at the molecular level. The comprehension of adhesion mechanisms has promoted various biomimetic adhesive systems: DOPA-based biomimetic adhesives inspired by the chemical composition of mussel byssal proteins; polyelectrolyte hydrogels enlightened by sandcastle glue and phase transitions; and novel biomimetic adhesives derived from the multiple interactions and nanofiber-like structures within barnacle cement. Underwater biomimetic adhesion continues to encounter multifaceted challenges despite notable advancements. Hence, this work examines the current challenges confronting underwater biomimetic adhesion in the last part, which provides novel perspectives and directions for future research.
Collapse
Affiliation(s)
| | - Junyi Song
- College of Science, National University of Defense Technology, Changsha 410073, China
| | | | - Biru Hu
- College of Science, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
13
|
Lv Y, Wang Y, Zhang X. Construction of Mineralization Nanostructures in Polymers for Mechanical Enhancement and Functionalization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309313. [PMID: 38164816 DOI: 10.1002/smll.202309313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Mineralization capable of growing inorganic nanostructures efficiently, orderly, and spontaneously shows great potential for application in the construction of high-performance organic-inorganic composites. As a thermodynamically spontaneous solid-phase crystallization reaction involving dual organic and inorganic components, mineralization allows for the self-assembly of sophisticated and exclusive nanostructures within a polymer matrix. It results in a diversity of functions such as enhanced strength, toughness, electrical conductivity, selective permeability, and biocompatibility. While there are previous reviews discussing the progress of mineralization reactions, many of them overlook the significant benefits of interfacial regulation and functionalization that come from the incorporation of mineralized structures into polymers. Focusing on different means of assembly of mineralized nanostructures in polymer, the work analyzes their design principles and implementation strategies. Then, their different advantages and disadvantages are analyzed by combining nanostructures with organic substrates as well as involving the basis of different functionalizations. It is anticipated to provide insights and guidance for the future development of mineralized polymer composites and their application designs.
Collapse
Affiliation(s)
- Yuesong Lv
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Yuyan Wang
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstr. 10, D-78457, Konstanz, Germany
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
14
|
An H, Zhang M, Gu Z, Jiao X, Ma Y, Huang Z, Wen Y, Dong Y, Zhang P. Advances in Polysaccharides for Cartilage Tissue Engineering Repair: A Review. Biomacromolecules 2024; 25:2243-2260. [PMID: 38523444 DOI: 10.1021/acs.biomac.3c01424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Cartilage repair has been a significant challenge in orthopedics that has not yet been fully resolved. Due to the absence of blood vessels and the almost cell-free nature of mature cartilage tissue, the limited ability to repair cartilage has resulted in significant socioeconomic pressures. Polysaccharide materials have recently been widely used for cartilage tissue repair due to their excellent cell loading, biocompatibility, and chemical modifiability. They also provide a suitable microenvironment for cartilage repair and regeneration. In this Review, we summarize the techniques used clinically for cartilage repair, focusing on polysaccharides, polysaccharides for cartilage repair, and the differences between these and other materials. In addition, we summarize the techniques of tissue engineering strategies for cartilage repair and provide an outlook on developing next-generation cartilage repair and regeneration materials from polysaccharides. This Review will provide theoretical guidance for developing polysaccharide-based cartilage repair and regeneration materials with clinical applications for cartilage tissue repair and regeneration.
Collapse
Affiliation(s)
- Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Meng Zhang
- Department of Orthopaedics and Trauma Peking University People's Hospital, Beijing 100044, China
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiangyu Jiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yinglei Ma
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhe Huang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | | | - Peixun Zhang
- Department of Orthopaedics and Trauma Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
15
|
Kong Y, Ma S, Zhou F. Bioinspired Interfacial Friction Control: From Chemistry to Structures to Mechanics. Biomimetics (Basel) 2024; 9:200. [PMID: 38667211 PMCID: PMC11048105 DOI: 10.3390/biomimetics9040200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Organisms in nature have evolved a variety of surfaces with different tribological properties to adapt to the environment. By studying, understanding, and summarizing the friction and lubrication regulation phenomena of typical surfaces in nature, researchers have proposed various biomimetic friction regulation theories and methods to guide the development of new lubrication materials and lubrication systems. The design strategies for biomimetic friction/lubrication materials and systems mainly include the chemistry, surface structure, and mechanics. With the deepening understanding of the mechanism of biomimetic lubrication and the increasing application requirements, the design strategy of multi-strategy coupling has gradually become the center of attention for researchers. This paper focuses on the interfacial chemistry, surface structure, and surface mechanics of a single regulatory strategy and multi-strategy coupling approach. Based on the common biological friction regulation mechanism in nature, this paper reviews the research progress on biomimetic friction/lubrication materials in recent years, discusses and analyzes the single and coupled design strategies as well as their advantages and disadvantages, and describes the design concepts, working mechanisms, application prospects, and current problems of such materials. Finally, the development direction of biomimetic friction lubrication materials is prospected.
Collapse
Affiliation(s)
- Yunsong Kong
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Y.K.); (F.Z.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Y.K.); (F.Z.)
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Y.K.); (F.Z.)
| |
Collapse
|
16
|
Papaioannou A, Vasilaki E, Loukelis K, Papadogianni D, Chatzinikolaidou M, Vamvakaki M. Bioactive and biomimetic 3D scaffolds for bone tissue engineering using graphitic carbon nitride as a sustainable visible light photoinitiator. BIOMATERIALS ADVANCES 2024; 157:213737. [PMID: 38211506 DOI: 10.1016/j.bioadv.2023.213737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/03/2023] [Accepted: 12/16/2023] [Indexed: 01/13/2024]
Abstract
Graphitic carbon nitride (g-C3N4) is explored as a novel sustainable visible light photoinitiator for the preparation of biomimetic 3D hydrogel scaffolds comprising gelatin methacrylamide (GelMA) and dopamine methacrylamide for use in tissue engineering. The initiator efficiency was assessed by comparing the swelling behavior and the stability of photopolymerized hydrogels prepared with GelMA of different degrees of functionalization and different comonomer compositions. Bioactive composite hydrogels with a 50 wt% nanohydroxyapatite (nHAp) content, to closely mimic the actual bone composition, were successfully obtained by the introduction of nHAp in the prepolymer solutions followed by photopolymerization. The composite hydrogels demonstrated enhanced mechanical properties and excellent stability in PBS verifying the preparation of robust 3D scaffolds for use in cancellous or pre-calcified bone tissue engineering applications. The in vitro cell response of the composite scaffolds exhibited high cell viability and enhanced differentiation of pre-osteoblasts to mature osteoblasts, demonstrating their osteogenic potential. This work establishes, for the first time, the excellent properties of g-C3N4 as a sustainable, visible light initiator, fully satisfying the principles of green chemistry, for the preparation of robust and biologically relevant hydrogels, and proposes a new approach to overcome the main challenges of conventional photoinitiators in cell scaffold fabrication, such as photobleaching, high cost and non-scalable synthesis employing toxic organic precursors and solvents.
Collapse
Affiliation(s)
- Anna Papaioannou
- School of Medicine, University of Crete, 700 13 Heraklion, Greece
| | - Evangelia Vasilaki
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Greece; Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 700 13 Heraklion, Crete, Greece.
| | - Konstantinos Loukelis
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Greece
| | - Danai Papadogianni
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Greece
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Greece; Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 700 13 Heraklion, Crete, Greece
| | - Maria Vamvakaki
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Greece; Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 700 13 Heraklion, Crete, Greece.
| |
Collapse
|
17
|
Wang W, Li H, Song P, Guo Y, Luo D, Li H, Ma L. Photo-crosslinked integrated triphasic scaffolds with gradient composition and strength for osteochondral regeneration. J Mater Chem B 2024; 12:1271-1284. [PMID: 38186375 DOI: 10.1039/d3tb02031b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Owing to the avascular and aneural nature of cartilage tissue and the complex, multilayered structure of osteochondral units, the repair of osteochondral defects poses significant challenges. Traditional monophasic scaffolds have difficulty meeting the repair requirements of both cartilage and bone tissues, whereas multiphasic scaffolds face the issue of interfacial integration. In this study, a triphasic methylpropenylated gelatin (GELMA) hydrogel scaffold was employed to repair osteochondral defects, in which three layers of hydrogel were covalently bonded through a sequential curing process. The upper layer of the scaffold was covalently bonded with chondroitin sulfate, promoting chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). The middle and lower layers of the hydrogel introduced a gradient content of hydroxyapatite, forming a scaffold with gradient mechanical strength and effectively enhancing its angiogenic and osteogenic induction capabilities. Finally, the triphasic integrated scaffold cartilage and bone repair performance was evaluated using a rabbit knee joint defect model. The results demonstrated that the scaffold facilitated accelerated regeneration of osteochondral defects, thus providing a novel strategy for the treatment of osteochondral defects.
Collapse
Affiliation(s)
- Wenzhao Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, Shandong University, Jinan, China
- Orthopedic Research Institute, Department of Orthopedic, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Li
- Department of Operating Room, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ping Song
- Orthopedic Research Institute, Department of Orthopedic, West China Hospital, Sichuan University, Chengdu, China
| | - Yanbo Guo
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Luo
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hao Li
- Orthopedic Research Institute, Department of Orthopedic, West China Hospital, Sichuan University, Chengdu, China
- Department of Joint Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Liang Ma
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
- Post-doctoral Station of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
18
|
Souza-Silva LC, Martignago CCS, Motta HG, Bonifacio M, Regina Avanzi I, Assis L, Ribeiro DA, Parisi JR, Rennó AC. A Review of Cartilage Defect Treatments Using Chitosan Hydrogels in Experimental Animal Models. Curr Pharm Biotechnol 2024; 25:1058-1072. [PMID: 37916637 DOI: 10.2174/0113892010245946230919062908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 11/03/2023]
Abstract
INTRODUCTION Chitosan (CS) is a polycationic polysaccharide comprising glucosamine and N-acetylglucosamine and constitutes a potential material for use in cartilage tissue engineering. Moreover, CS hydrogels are able to promote the expression of cartilage matrix components and reduce inflammatory and catabolic mediator production by chondrocytes. Although all the positive outcomes, no review has analyzed the effects of CS hydrogels on cartilage repair in animal models. METHODS This study aimed to review the literature to examine the effects of CS hydrogels on cartilage repair in experimental animal models. The search was done by the descriptors of the Medical Subject Headings (MeSH) defined below: "Chitosan," "hydrogel," "cartilage repair," and "in vivo." A total of 420 articles were retrieved from the databases Pubmed, Scopus, Embase, Lilacs, and Web of Science. After the eligibility analyses, this review reported 9 different papers from the beginning of 2002 through the middle of 2022. RESULTS It was found that cartilage repair was improved with the treatment of CS hydrogel, especially the one enriched with cells. In addition, CS hydrogel produced an upregulation of genes and proteins that act in the cartilage repair process, improving the biomechanical properties of gait.. CONCLUSION In conclusion, CS hydrogels were able to stimulate tissue ingrowth and accelerate the process of cartilage repair in animal studies.
Collapse
Affiliation(s)
- Lais Caroline Souza-Silva
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Santos, SP, 11015020, Brazil
| | | | - Homero Garcia Motta
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Santos, SP, 11015020, Brazil
| | - Mirian Bonifacio
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Santos, SP, 11015020, Brazil
| | - Ingrid Regina Avanzi
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Santos, SP, 11015020, Brazil
| | - Lívia Assis
- Scientific and Technological Institute, Brazil University, São Paulo, 08230-030, Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Santos, SP, 11015020, Brazil
| | - Julia Risso Parisi
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Santos, SP, 11015020, Brazil
- Metropolitan University of Santos (UNIMES), General Francisco Glicério Avenue, 8, Santos, SP, 11045-002, Brazil
| | - Ana Claudia Rennó
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Santos, SP, 11015020, Brazil
| |
Collapse
|
19
|
Zhu Y, Chen J, Liu H, Zhang W. Photo-cross-linked Hydrogels for Cartilage and Osteochondral Repair. ACS Biomater Sci Eng 2023; 9:6567-6585. [PMID: 37956022 DOI: 10.1021/acsbiomaterials.3c01132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Photo-cross-linked hydrogels, which respond to light and induce structural or morphological transitions, form a microenvironment that mimics the extracellular matrix of native tissue. In the last decades, photo-cross-linked hydrogels have been widely used in cartilage and osteochondral tissue engineering due to their good biocompatibility, ease of fabrication, rapid in situ gel-forming ability, and tunable mechanical and degradable properties. In this review, we systemically summarize the different types and physicochemical properties of photo-cross-linked hydrogels (including the materials and photoinitiators) and explore the biological properties modulated through the incorporation of additives, including cells, biomolecules, genes, and nanomaterials, into photo-cross-linked hydrogels. Subsequently, we compile the applications of photo-cross-linked hydrogels with a specific focus on cartilage and osteochondral repair. Finally, current limitations and future perspectives of photo-cross-linked hydrogels are also discussed.
Collapse
Affiliation(s)
- Yue Zhu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| | - Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| |
Collapse
|
20
|
Chen Y, Zhang Y, Chen X, Huang J, Zhou B, Zhang T, Yin W, Fang C, Yin Z, Pan H, Li X, Shen W, Chen X. Biomimetic Intrafibrillar Mineralization of Native Tendon for Soft-Hard Interface Integration by Infiltration of Amorphous Calcium Phosphate Precursors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304216. [PMID: 37870172 PMCID: PMC10700236 DOI: 10.1002/advs.202304216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/21/2023] [Indexed: 10/24/2023]
Abstract
Soft and hard tissues possess distinct biological properties. Integrating the soft-hard interface is difficult due to the inherent non-osteogenesis of soft tissue, especially of anterior cruciate ligament and rotator cuff reconstruction. This property makes it difficult for tendons to be mineralized and integrated with bone in vivo. To overcome this challenge, a biomimetic mineralization strategy is employed to engineer mineralized tendons. The strategy involved infiltrating amorphous calcium phosphate precursors into collagen fibrils, resulting in hydroxyapatite deposition along the c-axis. The mineralized tendon presented characteristics similar to bone tissue and induced osteogenic differentiation of mesenchymal stem cells. Additionally, the interface between the newly formed bone and tendon is serrated, suggesting a superb integration between the two tissues. This strategy allows for biomineralization of tendon collagen and replicating the hallmarks of the bone matrix and extracellular niche, including nanostructure and inherent osteoinductive properties, ultimately facilitating the integration of soft and hard tissues.
Collapse
Affiliation(s)
- Yangwu Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058P. R. China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang ProvinceZhejiang UniversityHangzhou310058P. R. China
- China Orthopedic Regenerative Medicine Group (CORMed)Hangzhou310000P. R. China
- Department of Sports MedicineZhejiang University School of MedicineHangzhou310000P. R. China
| | - Yuxiang Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058P. R. China
- Department of Plastic SurgerySir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou310000P. R. China
- China Orthopedic Regenerative Medicine Group (CORMed)Hangzhou310000P. R. China
| | - Xiaoyi Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058P. R. China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang ProvinceZhejiang UniversityHangzhou310058P. R. China
| | - Jiayun Huang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058P. R. China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang ProvinceZhejiang UniversityHangzhou310058P. R. China
- China Orthopedic Regenerative Medicine Group (CORMed)Hangzhou310000P. R. China
- Department of Sports MedicineZhejiang University School of MedicineHangzhou310000P. R. China
| | - Bo Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058P. R. China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang ProvinceZhejiang UniversityHangzhou310058P. R. China
| | - Tao Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058P. R. China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang ProvinceZhejiang UniversityHangzhou310058P. R. China
- China Orthopedic Regenerative Medicine Group (CORMed)Hangzhou310000P. R. China
- Department of Sports MedicineZhejiang University School of MedicineHangzhou310000P. R. China
| | - Wei Yin
- Core FacilitiesZhejiang University School of MedicineHangzhou310000P. R. China
| | - Cailian Fang
- Rehabilitation DepartmentLishui People's HospitalLishui323000P. R. China
| | - Zi Yin
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang ProvinceZhejiang UniversityHangzhou310058P. R. China
- China Orthopedic Regenerative Medicine Group (CORMed)Hangzhou310000P. R. China
- Department of Sports MedicineZhejiang University School of MedicineHangzhou310000P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicineand Department of Orthopedic Surgery of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058P. R. China
| | - Haihua Pan
- Qiushi Academy for Advanced StudiesZhejiang UniversityHangzhou310058P. R. China
| | - Xiongfeng Li
- Huzhou HospitalZhejiang University School of MedicineHuzhou313000P. R. China
| | - Weiliang Shen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058P. R. China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang ProvinceZhejiang UniversityHangzhou310058P. R. China
- China Orthopedic Regenerative Medicine Group (CORMed)Hangzhou310000P. R. China
- Department of Sports MedicineZhejiang University School of MedicineHangzhou310000P. R. China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058P. R. China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang ProvinceZhejiang UniversityHangzhou310058P. R. China
- China Orthopedic Regenerative Medicine Group (CORMed)Hangzhou310000P. R. China
- Department of Sports MedicineZhejiang University School of MedicineHangzhou310000P. R. China
| |
Collapse
|
21
|
Li W, Hu J, Chen C, Li X, Zhang H, Xin Y, Tian Q, Wang S. Emerging advances in hydrogel-based therapeutic strategies for tissue regeneration. Regen Ther 2023; 24:459-471. [PMID: 37772128 PMCID: PMC10523184 DOI: 10.1016/j.reth.2023.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/14/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023] Open
Abstract
Significant developments in cell therapy and biomaterial science have broadened the therapeutic landscape of tissue regeneration. Tissue damage is a complex biological process in which different types of cells play a specific role in repairing damaged tissues and growth factors strictly regulate the activity of these cells. Hydrogels have become promising biomaterials for tissue regeneration if appropriate materials are selected and the hydrogel properties are well-regulated. Importantly, they can be used as carriers for living cells and growth factors due to the high water-holding capacity, high permeability, and good biocompatibility of hydrogels. Cell-loaded hydrogels can play an essential role in treating damaged tissues and open new avenues for cell therapy. There is ample evidence substantiating the ability of hydrogels to facilitate the delivery of cells (stem cell, macrophage, chondrocyte, and osteoblast) and growth factors (bone morphogenetic protein, transforming growth factor, vascular endothelial growth factor and fibroblast growth factor). This paper reviewed the latest advances in hydrogels loaded with cells or growth factors to promote the reconstruction of tissues. Furthermore, we discussed the shortcomings of the application of hydrogels in tissue engineering to promote their further development.
Collapse
Affiliation(s)
- Wenqi Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jing Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Cheng Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xinyue Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Honghua Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yanru Xin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Qingchang Tian
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shuling Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
22
|
Ma H, Qiao X, Han L. Advances of Mussel-Inspired Nanocomposite Hydrogels in Biomedical Applications. Biomimetics (Basel) 2023; 8:biomimetics8010128. [PMID: 36975358 PMCID: PMC10046294 DOI: 10.3390/biomimetics8010128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 03/29/2023] Open
Abstract
Hydrogels, with 3D hydrophilic polymer networks and excellent biocompatibilities, have emerged as promising biomaterial candidates to mimic the structure and properties of biological tissues. The incorporation of nanomaterials into a hydrogel matrix can tailor the functions of the nanocomposite hydrogels to meet the requirements for different biomedical applications. However, most nanomaterials show poor dispersion in water, which limits their integration into the hydrophilic hydrogel network. Mussel-inspired chemistry provides a mild and biocompatible approach in material surface engineering due to the high reactivity and universal adhesive property of catechol groups. In order to attract more attention to mussel-inspired nanocomposite hydrogels, and to promote the research work on mussel-inspired nanocomposite hydrogels, we have reviewed the recent advances in the preparation of mussel-inspired nanocomposite hydrogels using a variety of nanomaterials with different forms (nanoparticles, nanorods, nanofibers, nanosheets). We give an overview of each nanomaterial modified or hybridized by catechol or polyphenol groups based on mussel-inspired chemistry, and the performances of the nanocomposite hydrogel after the nanomaterial's incorporation. We also highlight the use of each nanocomposite hydrogel for various biomedical applications, including drug delivery, bioelectronics, wearable/implantable biosensors, tumor therapy, and tissue repair. Finally, the challenges and future research direction in designing mussel-inspired nanocomposite hydrogels are discussed.
Collapse
Affiliation(s)
- Haohua Ma
- Laboratory for Marine Drugs and Bioproducts, School of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266005, China
| | - Xin Qiao
- Laboratory for Marine Drugs and Bioproducts, School of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266005, China
| | - Lu Han
- Laboratory for Marine Drugs and Bioproducts, School of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266005, China
| |
Collapse
|
23
|
Eggshell membrane-incorporated cell friendly tough hydrogels with ultra-adhesive property. Colloids Surf B Biointerfaces 2023; 223:113156. [PMID: 36682295 DOI: 10.1016/j.colsurfb.2023.113156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
Adhesive and tough hydrogels have received increased attention for their potential biomedical applications. However, traditional hydrogels have limited utility in tissue engineering because they tend to exhibit low biocompatibility, low adhesiveness, and poor mechanical properties. Herein, the use of the eggshell membrane (ESM) for developing tough, cell-friendly, and ultra-adhesive hydrogels is described. The ESM enhances the performance of the hydrogel network in three ways. First, its covalent cross-linking with the polyacrylamide and alginate chains strengthens the hydrogel network. Second, it provides functional groups, such as amine and carboxyl moieties, which are well known for enhancing the surface adhesion of biomaterials, thereby increasing the adhesiveness of the hydrogel. Third, it is a bioactive agent and improves cell adhesion and proliferation on the constructed scaffold. In conclusion, this study proposes the unique design of ESM-incorporated hydrogels with high toughness, cell-friendly, and ultra-adhesive properties for various biomedical engineering applications.
Collapse
|
24
|
Liu Z, Nan H, Chiou YS, Zhan Z, Lobie PE, Hu C. Selective Formation of Osteogenic and Vasculogenic Tissues for Cartilage Regeneration. Adv Healthc Mater 2023; 12:e2202008. [PMID: 36353894 DOI: 10.1002/adhm.202202008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/02/2022] [Indexed: 11/11/2022]
Abstract
Tissue-engineered periosteum substitutes (TEPSs) incorporating hierarchical architecture with osteoprogenitor and vascular niches are drawing much attention as a promising tool to support functional cells in defined zones and nourish the cortical bone. Current TEPSs usually lack technologies to closely observe cell performance, especially at the cell contact interface between distinct compartments containing defined biological configurations and functions. Here, an electrodeposition strategy is reported, which enables the selective formation of TEPSs with osteoprogenitor and vascular niches in a multiphasic scaffold in combination with different human cell types for cartilage regeneration in an in vivo osteochondral defect model. Human umbilical vein endothelial cells (HUVECs), dermal fibroblasts (HDFs), and bone marrow mesenchymal stem cells (hMSCs) are used to mirror both the vascular and osteogenic niches, respectively. It is observed that the intrinsic viscoelastic nature of the porous solid matrix is essential to successfully induce angiogenesis. Coculture of hMSCs with functional cells (HUVECs/HDFs) in TEPSs also effectively promoted periosteal regeneration, including osteogenic and angiogenic processes. The osteoarthritis cartilage histopathology assessment and histologic/histochemical grading system data indicate that the TEPSs containing hMSCs/HUVECs/HDFs exhibit superior potential for cartilage regeneration.
Collapse
Affiliation(s)
- Zeyang Liu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haochen Nan
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yi Shiou Chiou
- Master Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhen Zhan
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Peter E Lobie
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Chengzhi Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
25
|
Mohsenifard S, Mashayekhan S, Safari H. A hybrid cartilage extracellular matrix-based hydrogel/poly (ε-caprolactone) scaffold incorporated with Kartogenin for cartilage tissue engineering. J Biomater Appl 2023; 37:1243-1258. [PMID: 36217954 DOI: 10.1177/08853282221132987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite extensive studies, hydrogels are unable to meet the mechanical and biological requirements for successful outcomes in cartilage tissue engineering. In the present study, beta cyclodextrin (β-CD)-modified alginate/cartilage extracellular matrix (ECM)-based interpenetrating polymer network (IPN) hydrogel was developed for sustained release of Kartogenin (KGN). Furthermore, the hydrogel was incorporated within a 3D-printed poly (ε-caprolactone) (PCL)/starch microfiber network in order to reinforce the construct for cartilage tissue engineering. All the synthesized compounds were characterized by H1-NMR spectroscopy. The hydrogel/microfiber composite with a microfiber strand size and strand spacing of 300 μm and 2 mm, respectively showed a compressive modulus of 17.2 MPa, resembling the properties of the native cartilage tissue. Considering water uptake capacity, degradation rate, mechanical property, cell cytotoxicity and glycosaminoglycan secretions, β-CD-modified hydrogel reinforced with printed PCL/starch microfibers with controlled release of KGN may be considered as a promising candidate for using in articular cartilage defects.
Collapse
Affiliation(s)
- Sadaf Mohsenifard
- Chemical and Petroleum Engineering Department, 68260Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- Chemical and Petroleum Engineering Department, 68260Sharif University of Technology, Tehran, Iran
| | - Hanieh Safari
- Chemical and Petroleum Engineering Department, 68260Sharif University of Technology, Tehran, Iran
| |
Collapse
|
26
|
Niu X, Li N, Du Z, Li X. Integrated gradient tissue-engineered osteochondral scaffolds: Challenges, current efforts and future perspectives. Bioact Mater 2023; 20:574-597. [PMID: 35846846 PMCID: PMC9254262 DOI: 10.1016/j.bioactmat.2022.06.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/30/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
The osteochondral defect repair has been most extensively studied due to the rising demand for new therapies to diseases such as osteoarthritis. Tissue engineering has been proposed as a promising strategy to meet the demand of simultaneous regeneration of both cartilage and subchondral bone by constructing integrated gradient tissue-engineered osteochondral scaffold (IGTEOS). This review brought forward the main challenges of establishing a satisfactory IGTEOS from the perspectives of the complexity of physiology and microenvironment of osteochondral tissue, and the limitations of obtaining the desired and required scaffold. Then, we comprehensively discussed and summarized the current tissue-engineered efforts to resolve the above challenges, including architecture strategies, fabrication techniques and in vitro/in vivo evaluation methods of the IGTEOS. Especially, we highlighted the advantages and limitations of various fabrication techniques of IGTEOS, and common cases of IGTEOS application. Finally, based on the above challenges and current research progress, we analyzed in details the future perspectives of tissue-engineered osteochondral construct, so as to achieve the perfect reconstruction of the cartilaginous and osseous layers of osteochondral tissue simultaneously. This comprehensive and instructive review could provide deep insights into our current understanding of IGTEOS.
Collapse
Affiliation(s)
- Xiaolian Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Ning Li
- Department of Orthopedics, The Fourth Central Hospital of Baoding City, Baoding, 072350, China
| | - Zhipo Du
- Department of Orthopedics, The Fourth Central Hospital of Baoding City, Baoding, 072350, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
27
|
Wu Y, Li X, Sun Y, Tan X, Wang C, Wang Z, Ye L. Multiscale design of stiffening and ROS scavenging hydrogels for the augmentation of mandibular bone regeneration. Bioact Mater 2023; 20:111-125. [PMID: 35663335 PMCID: PMC9133584 DOI: 10.1016/j.bioactmat.2022.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/19/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
Although biomimetic hydrogels play an essential role in guiding bone remodeling, reconstructing large bone defects is still a significant challenge since bioinspired gels often lack osteoconductive capacity, robust mechanical properties and suitable antioxidant ability for bone regeneration. To address these challenges, we first engineered molecular design of hydrogels (gelatin/polyethylene glycol diacrylate/2-(dimethylamino)ethyl methacrylate, GPEGD), where their mechanical properties were significantly enhanced via introducing trace amounts of additives (0.5 wt%). The novel hybrid hydrogels show high compressive strength (>700 kPa), stiff modulus (>170 kPa) and strong ROS-scavenging ability. Furthermore, to endow the GPEGD hydrogels excellent osteoinductions, novel biocompatible, antioxidant and BMP-2 loaded polydopamine/heparin nanoparticles (BPDAH) were developed for functionalization of the GPEGD gels (BPDAH-GPEGD). In vitro results indicate that the antioxidant BPDAH-GPEGD is able to deplete elevated ROS levels to protect cells viability against ROS damage. More importantly, the BPDAH-GPEGD hydrogels have good biocompatibility and promote the osteo differentiation of preosteoblasts and bone regenerations. At 4 and 8 weeks after implantation of the hydrogels in a mandibular bone defect, Micro-computed tomography and histology results show greater bone volume and enhancements in the quality and rate of bone regeneration in the BPDAH-GPEGD hydrogels. Thus, the multiscale design of stiffening and ROS scavenging hydrogels could serve as a promising material for bone regeneration applications. Trace additives of DMAEMA markedly enhanced the mechanical performances of the gelatin-based hydrogels through molecular induced multiple crosslinking structures. Molecular design strategy combined with bioactive nanocomposites have a synergistically effects on promoting ROS scavenging ability and osteoactivity of the biomimetic hydrogels.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenming Wang
- Corresponding author. West China School of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, China.
| | - Ling Ye
- Corresponding author. West China School of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, China.
| |
Collapse
|
28
|
Yu Y, Lv B, Wu J, Chen W. Mussel-Based Biomimetic Strategies in Musculoskeletal Disorder Treatment: From Synthesis Principles to Diverse Applications. Int J Nanomedicine 2023; 18:455-472. [PMID: 36718191 PMCID: PMC9884062 DOI: 10.2147/ijn.s386635] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/03/2022] [Indexed: 01/26/2023] Open
Abstract
Musculoskeletal disorders are the second leading cause of disability worldwide, posing a huge global burden to the public sanitation system. Currently, tissue engineering-based approaches act as effective strategies, which are, however, challenging in limited application scenarios. Mussel-based biomimetic materials, exhibit numerous unique properties such as intense adhesion, biocompatibility, moisture resistance, and injectability, to name only a few, and have attracted extensive research interest. In particular, featuring state-of-the-art properties, mussel-inspired biomaterials have been widely explored in innumerable musculoskeletal disorder treatments including osteochondral defects, osteosarcoma, osteoarthritis, ligament rupture, and osteoporosis. Nevertheless, a comprehensive and timely discussion of their applications in musculoskeletal disorders is insufficient. In this review, we emphasize on (1) the main categories and characteristics of mussel foot proteins and their fundamental mechanisms for the spectacular adhesion in mussels; (2) the diverse synthetic methods and modification of various polymers; and (3) the emerging applications of mussel-biomimetic materials, the future perspectives, and challenges, especially in the area of musculoskeletal disorder. We envision that this review will provide a unique and insightful perspective to improve the development of a new generation of mussel biomimetic strategies.
Collapse
Affiliation(s)
- Yajie Yu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China,Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China,Hubei Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Bin Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Juntao Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Wei Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China,Hubei Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China,Correspondence: Wei Chen, Email
| |
Collapse
|
29
|
Zheng G, Xue C, Cao F, Hu M, Li M, Xie H, Yu W, Zhao D. Effect of the uronic acid composition of alginate in alginate/collagen hybrid hydrogel on chondrocyte behavior. Front Bioeng Biotechnol 2023; 11:1118975. [PMID: 36959903 PMCID: PMC10027720 DOI: 10.3389/fbioe.2023.1118975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction: Developing a culture system that can effectively maintain chondrocyte phenotype and functionalization is a promising strategy for cartilage repair. Methods: An alginate/collagen (ALG/COL) hybrid hydrogel using different guluronate/mannuronate acid ratio (G/M ratio) of alginates (a G/M ratio of 64/36 and a G/M ratio of 34/66) with collagen was developed. The effects of G/M ratios on the properties of hydrogels and their effects on the chondrocytes behaviors were evaluated. Results: The results showed that the mechanical stiffness of the hydrogel was significantly affected by the G/M ratios of alginate. Chondrocytes cultured on Mid-G/M hydrogels exhibited better viability and phenotype preservation. Moreover, RT-qPCR analysis showed that the expression of cartilage-specific genes, including SOX9, COL2, and aggrecan was increased while the expression of RAC and ROCK1 was decreased in chondrocytes cultured on Mid-G/M hydrogels. Conclusion: These findings demonstrated that Mid-G/M hydrogels provided suitable matrix conditions for cultivating chondrocytes and may be useful in cartilage tissue engineering. More importantly, the results indicated the importance of taking alginate G/M ratios into account when designing alginate-based composite materials for cartilage tissue engineering.
Collapse
Affiliation(s)
- Guoshuang Zheng
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Chundong Xue
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Fang Cao
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Minghui Hu
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Maoyuan Li
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Hui Xie
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Weiting Yu
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
- *Correspondence: Dewei Zhao, ; Weiting Yu,
| | - Dewei Zhao
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- *Correspondence: Dewei Zhao, ; Weiting Yu,
| |
Collapse
|
30
|
Guo X, Xi L, Yu M, Fan Z, Wang W, Ju A, Liang Z, Zhou G, Ren W. Regeneration of articular cartilage defects: Therapeutic strategies and perspectives. J Tissue Eng 2023; 14:20417314231164765. [PMID: 37025158 PMCID: PMC10071204 DOI: 10.1177/20417314231164765] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
Articular cartilage (AC), a bone-to-bone protective device made of up to 80% water and populated by only one cell type (i.e. chondrocyte), has limited capacity for regeneration and self-repair after being damaged because of its low cell density, alymphatic and avascular nature. Resulting repair of cartilage defects, such as osteoarthritis (OA), is highly challenging in clinical treatment. Fortunately, the development of tissue engineering provides a promising method for growing cells in cartilage regeneration and repair by using hydrogels or the porous scaffolds. In this paper, we review the therapeutic strategies for AC defects, including current treatment methods, engineering/regenerative strategies, recent advances in biomaterials, and present emphasize on the perspectives of gene regulation and therapy of noncoding RNAs (ncRNAs), such as circular RNA (circRNA) and microRNA (miRNA).
Collapse
Affiliation(s)
- Xueqiang Guo
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Lingling Xi
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Mengyuan Yu
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Zhenlin Fan
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Weiyun Wang
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Andong Ju
- Abdominal Surgical Oncology, Xinxiang
Central Hospital, Institute of the Fourth Affiliated Hospital of Xinxiang Medical
University, Xinxiang, China
| | - Zhuo Liang
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Guangdong Zhou
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
- Department of Plastic and
Reconstructive Surgery, Shanghai Key Lab of Tissue Engineering, Shanghai 9th
People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
- Guangdong Zhou, Department of Plastic and
Reconstructive Surgery, Shanghai Key Lab of Tissue Engineering, Shanghai 9th
People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639
Shanghai Manufacturing Bureau Road, Shanghai 200011, China.
| | - Wenjie Ren
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
- Wenjie Ren, Institute of Regenerative
Medicine and Orthopedics, Institutes of Health Central Plain, Xinxiang Medical
University, 601 Jinsui Avenue, Hongqi District, Xinxiang 453003, Henan, China.
| |
Collapse
|
31
|
Zhou Y, Yang Y, Liu R, Zhou Q, Lu H, Zhang W. Research Progress of Polydopamine Hydrogel in the Prevention and Treatment of Oral Diseases. Int J Nanomedicine 2023; 18:2623-2645. [PMID: 37213351 PMCID: PMC10199686 DOI: 10.2147/ijn.s407044] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/12/2023] [Indexed: 05/23/2023] Open
Abstract
Oral diseases represent one of the most prevalent diseases globally and are associated with serious health and economic burdens, greatly altering the quality of life of affected individuals. Various biomaterials play important roles in the treatment of oral diseases. To some extent, the development of biomaterials has promoted progress in clinically available oral medicines. Hydrogels have unique tunable advantages that make them useful in the next generation of regenerative strategies and have been widely applied in both oral soft and hard tissues repair. However, most hydrogels lack self-adhesive properties, which may result in low repair efficacy. Polydopamine (PDA), the primary adhesive component, has attracted increasing attention in recent years. PDA-modified hydrogels exhibit reliable and suitable adherence to tissues and easily integrate into tissues to promote repair efficiency. This paper reviews the latest research progress on PDA hydrogels and elaborates on the mechanism of the reaction between PDA functional groups and hydrogels, and summarizes the biological properties and the applications of PDA hydrogels in the prevention and treatment of the field of oral diseases. It is also proposed that in future research we should simulate the complex microenvironment of the oral cavity as much as possible, coordinate and plan various biological events rationally, and realize the translation from scientific research to clinical practice.
Collapse
Affiliation(s)
- Yuqi Zhou
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yuanmeng Yang
- Department of Preventive Dentistry, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Rongpu Liu
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Qin Zhou
- Department of Oral Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Haixia Lu
- Department of Preventive Dentistry, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Haixia Lu, Department of Preventive Dentistry, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China, Email
| | - Wenjie Zhang
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Correspondence: Wenjie Zhang, Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China, Email
| |
Collapse
|
32
|
Li S, Zhao X, Wang Q, Yu F, Li W, Bai Y, Shen X, Du X, He D, Yuan J. Mechanoresponsive Drug Loading System with Tunable Host-Guest Interactions for Ocular Disease Treatment. ACS Biomater Sci Eng 2022; 8:4850-4862. [PMID: 36214483 DOI: 10.1021/acsbiomaterials.2c00931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conventional administration of eye drops often requires high dosages and/or repetitive treatments to achieve therapeutic efficacy. This is inefficient and may result in side effects or even toxicity. Although many delivery systems of ophthalmic drugs have been reported, most of them work in a fixed format in which both the type and dose of the loaded drugs cannot be changed upon demand. To overcome this limitation, a hybrid double network hydrogel system composed of methacryloyl gelatin, pluronic F127 diacrylate, and β-cyclodextrin-modified oxidized dextran was developed. The hydrogels presented good mechanical strength and biocompatibility. In vitro assessments demonstrated that the hydrogels loaded with commonly used ophthalmic drugs could sustain the drug release for more than 21 days. This hydrogel system exhibited features of mechanoresponsive drug loading, and the capacity of drug loading could be significantly enhanced by macroscopically mechanical compression. Further in vivo evaluation of the drug delivery capacity showed that a dexamethasone-loaded hydrogel as a fornix insert effectively suppressed upregulation of proangiogenic factors and suture-induced corneal neovascularization in rats. This novel hydrogel system represents a promising drug delivery platform, which could potentially improve the treatments of ocular surface and other diseases.
Collapse
Affiliation(s)
- Saiqun Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Xuan Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Qian Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Fei Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Weihua Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Ying Bai
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xuanren Shen
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinyue Du
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Dalian He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| |
Collapse
|
33
|
Preparation and Properties of Double-Crosslinked Hydroxyapatite Composite Hydrogels. Int J Mol Sci 2022; 23:ijms23179962. [PMID: 36077353 PMCID: PMC9456312 DOI: 10.3390/ijms23179962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 12/19/2022] Open
Abstract
Natural polymer hydrogels have good mechanical properties and biocompatibility. This study designed hydroxyapatite-enhanced photo-oxidized double-crosslinked hydrogels. Hyaluronic acid (HA) and gelatin (Gel) were modified with methacrylate anhydride. The catechin group was further introduced into the HA chain inspired by the adhesion chemistry of marine mussels. Hence, the double-crosslinked hydrogel (HG) was formed by the photo-crosslinking of double bonds and the oxidative-crosslinking of catechins. Moreover, hydroxyapatite was introduced into HG to form hydroxyapatite-enhanced hydrogels (HGH). The results indicate that, with an increase in crosslinking network density, the stiffness of hydrogels became higher; these hydrogels have more of a compact pore structure, their anti-degradation property is improved, and swelling property is reduced. The introduction of hydroxyapatite greatly improved the mechanical properties of hydrogels, but there is no change in the stability and crosslinking network structure of hydrogels. These inorganic phase-enhanced hydrogels were expected to be applied to tissue engineering scaffolds.
Collapse
|
34
|
Progress in Osteochondral Regeneration with Engineering Strategies. Ann Biomed Eng 2022; 50:1232-1242. [PMID: 35994165 DOI: 10.1007/s10439-022-03060-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/11/2022] [Indexed: 11/01/2022]
Abstract
Osteoarthritis, the main cause of disability worldwide, involves not only cartilage injury but also subchondral bone injury, which brings challenges to clinical repair. Tissue engineering strategies provide a promising solution to this degenerative disease. Articular cartilage connects to subchondral bone through the osteochondral interfacial tissue, which has a complex anatomical architecture, distinct cell distribution and unique biomechanical properties. Forming a continuous and stable osteochondral interface between cartilage tissue and subchondral bone is challenging. Thus, successful osteochondral regeneration with engineering strategies requires intricately coordinated interplay between cells, materials, biological factors, and physical/chemical factors. This review provides an overview of the anatomical composition, microstructure, and biomechanical properties of the osteochondral interface. Additionally, the latest research on the progress related to osteochondral regeneration is reviewed, especially discussing the fabrication of biomimetic scaffolds and the regulation of biological factors for osteochondral defects.
Collapse
|
35
|
Double-network composites based on inorganic fillers reinforced dextran-based hydrogel with high strength. Carbohydr Polym 2022; 296:119900. [DOI: 10.1016/j.carbpol.2022.119900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/01/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022]
|
36
|
Han F, Wang T, Liu G, Liu H, Xie X, Wei Z, Li J, Jiang C, He Y, Xu F. Materials with Tunable Optical Properties for Wearable Epidermal Sensing in Health Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109055. [PMID: 35258117 DOI: 10.1002/adma.202109055] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Advances in wearable epidermal sensors have revolutionized the way that physiological signals are captured and measured for health monitoring. One major challenge is to convert physiological signals to easily readable signals in a convenient way. One possibility for wearable epidermal sensors is based on visible readouts. There are a range of materials whose optical properties can be tuned by parameters such as temperature, pH, light, and electric fields. Herein, this review covers and highlights a set of materials with tunable optical properties and their integration into wearable epidermal sensors for health monitoring. Specifically, the recent progress, fabrication, and applications of these materials for wearable epidermal sensors are summarized and discussed. Finally, the challenges and perspectives for the next generation wearable devices are proposed.
Collapse
Affiliation(s)
- Fei Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tiansong Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xueyong Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jing Li
- Department of Burns and Plastic Surgery, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, P. R. China
| | - Cheng Jiang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK
| | - Yuan He
- The Second Affiliated Hospital, Xi'an Medical University, Xi'an, 710038, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
37
|
Long S, Xie C, Lu X. Natural polymer‐based adhesive hydrogel for biomedical applications. BIOSURFACE AND BIOTRIBOLOGY 2022. [DOI: 10.1049/bsb2.12036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Siyu Long
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
- Yibin Research Institute Southwest Jiaotong University Yibin China
| | - Chaoming Xie
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
- Yibin Research Institute Southwest Jiaotong University Yibin China
| | - Xiong Lu
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
- Yibin Research Institute Southwest Jiaotong University Yibin China
| |
Collapse
|
38
|
Xu W, Wang T, Wang Y, Wu X, Chen Y, Song D, Ci Z, Cao Y, Hua Y, Zhou G, Liu Y. An Injectable Platform of Engineered Cartilage Gel and Gelatin Methacrylate to Promote Cartilage Regeneration. Front Bioeng Biotechnol 2022; 10:884036. [PMID: 35528206 PMCID: PMC9074996 DOI: 10.3389/fbioe.2022.884036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/30/2022] [Indexed: 12/04/2022] Open
Abstract
Cell–hydrogel constructs are frequently used as injectable platforms for irregular cartilage regeneration. However, cell–hydrogel constructs have obvious disadvantages, such as long culture times, high probability of infection, and poor cartilage formation capacity, significantly limiting their clinical translation. In this study, we aimed to develop a novel injectable platform comprising engineered cartilage gel (ECG) and gelatin methacrylate (GelMA) to improve cartilage regeneration. We first prepared an ECG by cutting the in vitro engineered cartilage sheet into pieces. The chondrocytes and ECG were evenly encapsulated into GelMA to form Cell-GelMA and ECG-GelMA constructs. The ECG-GelMA construct exhibited preferred gel characteristics and superior biocompatibility compared with the Cell-GelMA construct counterpart. After subcutaneous implantation in nude mice and goat, both gross views and histological evaluations showed that the ECG-GelMA construct achieved more homogenous, stable, and mature cartilage regeneration than the Cell-GelMA construct. Immunological evaluations showed that ECG-GelMA had a mitigatory immunologic reaction than the Cell-GelMA construct. Overall, the results suggest that the ECG-GelMA is a promising injectable platform for cartilage regeneration that may advance clinical translation.
Collapse
Affiliation(s)
- Wei Xu
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
- National Tissue Engineering Center of China, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
- National Tissue Engineering Center of China, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yahui Wang
- National Tissue Engineering Center of China, Shanghai, China
| | - Xiaodi Wu
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
- National Tissue Engineering Center of China, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Chen
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Daiying Song
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
- National Tissue Engineering Center of China, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Ci
- Shanghai Resthetic Bio CO., LTD, Shanghai, China
| | - Yilin Cao
- National Tissue Engineering Center of China, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Hua
- National Tissue Engineering Center of China, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yujie Hua, ; Guangdong Zhou, Yu Liu,
| | - Guangdong Zhou
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
- National Tissue Engineering Center of China, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yujie Hua, ; Guangdong Zhou, Yu Liu,
| | - Yu Liu
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
- National Tissue Engineering Center of China, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Resthetic Bio CO., LTD, Shanghai, China
- *Correspondence: Yujie Hua, ; Guangdong Zhou, Yu Liu,
| |
Collapse
|
39
|
Repair of osteochondral defects mediated by double-layer scaffolds with natural osteochondral-biomimetic microenvironment and interface. Mater Today Bio 2022; 14:100234. [PMID: 35308043 PMCID: PMC8924418 DOI: 10.1016/j.mtbio.2022.100234] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022]
Abstract
Tissue engineering provides a new approach for the treatment of osteochondral defects. However, the lack of an ideal double-layer scaffold with osteochondral-biomimetic microenvironment and interface similar to native articular tissue greatly limits clinical translation. Our current study developed a double-layer acellular osteochondral matrix (AOM) scaffold with natural osteochondral-biomimetic microenvironment and interface by integrating ultraviolet (UV) laser and decellularization techniques. The laser parameters were optimized to achieve a proper pore depth close to the osteochondral interface, which guaranteed complete decellularization, sufficient space for cell loading, and relative independence of the chondrogenic and osteogenic microenvironments. Gelatin-methacryloyl (GelMA) hydrogel was further used as the cell carrier to significantly enhance the efficiency and homogeneity of cell loading in the AOM scaffold with large pore structure. Additionally, in vitro results demonstrated that the components of the AOM scaffold could efficiently regulate the chondrogenic/osteogenic differentiations of bone marrow stromal cells (BMSCs) by activating the chondrogenic/osteogenic related pathways. Importantly, the AOM scaffolds combined with BMSC-laden GelMA hydrogel successfully realized tissue-specific repair of the osteochondral defects in a knee joint model of rabbit. The current study developed a novel double-layer osteochondral biomimetic scaffold and feasible strategy, providing strong support for the tissue-specific repair of osteochondral defects and its future clinical translation.
Collapse
|
40
|
Gan D, Jiang Y, Hu Y, Wang X, Wang Q, Wang K, Xie C, Han L, Lu X. Mussel-inspired extracellular matrix-mimicking hydrogel scaffold with high cell affinity and immunomodulation ability for growth factor-free cartilage regeneration. J Orthop Translat 2022; 33:120-131. [PMID: 35330942 PMCID: PMC8914478 DOI: 10.1016/j.jot.2022.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 01/08/2023] Open
Abstract
Background Injury to articular cartilage cause certain degree of disability due to poor self-repair ability of cartilage tissue. To promote cartilage regeneration, it is essential to develop a scaffold that properly mimics the native cartilage extracellular matrix (ECM) in the aspect of compositions and functions. Methods A mussel-inspired strategy was developed to construct an ECM-mimicking hydrogel scaffold by incorporating polydopamine-modified hyaluronic acid (PDA/HA) complex into a dual-crosslinked collagen (Col) matrix for growth factor-free cartilage regeneration. The adhesion, proliferation, and chondrogenic differentiation of cells on the scaffold were examined. A well-established full-thickness cartilage defect model of the knee in rabbits was used to evaluated the efficacy and functionality of the engineered Col/PDA/HA hydrogel scaffold. Results The PDA/HA complex incorporated-hydrogel scaffold with catechol moieties exhibited better cell affinity than bare negatively-charged HA incorporated hydrogel scaffold. In addition, the PDA/HA complex endowed the scaffold with immunomodulation ability, which suppressed the expression of inflammatory cytokines and effectively activated the polarization of macrophages toward M2 phenotypes. The in vivo results revealed that the mussel-inspired Col/PDA/HA hydrogel scaffold showed strong cartilage inducing ability to promote cartilage regeneration. Conclusions The PDA/HA complex-incorporated hydrogel scaffold overcame the cell repellency of negatively-charged polysaccharide-based scaffolds, which facilitated the adhesion and clustering of cells on the scaffold, and therefore enhanced cell-HA interactions for efficient chondrogenic differentiation. Moreover, the hydrogel scaffold modulated immune microenvironment, and created a regenerative microenvironment to enhance cartilage regeneration. The translational potential of this article This study gives insight into the mussel-inspired approach to construct the tissue-inducing hydrogel scaffold in a growth-factor-free manner, which show great advantage in the clinical treatment. The hydrogel scaffold composed of collagen and hyaluronic acid as the major component, providing cartilage ECM-mimicking environment, is promising for cartilage defect repair.
Collapse
|
41
|
Davari N, Bakhtiary N, Khajehmohammadi M, Sarkari S, Tolabi H, Ghorbani F, Ghalandari B. Protein-Based Hydrogels: Promising Materials for Tissue Engineering. Polymers (Basel) 2022; 14:986. [PMID: 35267809 PMCID: PMC8914701 DOI: 10.3390/polym14050986] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
The successful design of a hydrogel for tissue engineering requires a profound understanding of its constituents' structural and molecular properties, as well as the proper selection of components. If the engineered processes are in line with the procedures that natural materials undergo to achieve the best network structure necessary for the formation of the hydrogel with desired properties, the failure rate of tissue engineering projects will be significantly reduced. In this review, we examine the behavior of proteins as an essential and effective component of hydrogels, and describe the factors that can enhance the protein-based hydrogels' structure. Furthermore, we outline the fabrication route of protein-based hydrogels from protein microstructure and the selection of appropriate materials according to recent research to growth factors, crucial members of the protein family, and their delivery approaches. Finally, the unmet needs and current challenges in developing the ideal biomaterials for protein-based hydrogels are discussed, and emerging strategies in this area are highlighted.
Collapse
Affiliation(s)
- Niyousha Davari
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran;
| | - Negar Bakhtiary
- Burn Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran;
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran 14115114, Iran
| | - Mehran Khajehmohammadi
- Department of Mechanical Engineering, Faculty of Engineering, Yazd University, Yazd 8174848351, Iran;
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
| | - Soulmaz Sarkari
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran;
| | - Hamidreza Tolabi
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran 158754413, Iran;
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 158754413, Iran
| | - Farnaz Ghorbani
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
42
|
Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater 2022; 8:267-295. [PMID: 34541401 PMCID: PMC8424393 DOI: 10.1016/j.bioactmat.2021.06.027] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Polymeric hydrogels are fascinating platforms as 3D scaffolds for tissue repair and delivery systems of therapeutic molecules and cells. Among others, methacrylated gelatin (GelMA) has become a representative hydrogel formulation, finding various biomedical applications. Recent efforts on GelMA-based hydrogels have been devoted to combining them with bioactive and functional nanomaterials, aiming to provide enhanced physicochemical and biological properties to GelMA. The benefits of this approach are multiple: i) reinforcing mechanical properties, ii) modulating viscoelastic property to allow 3D printability of bio-inks, iii) rendering electrical/magnetic property to produce electro-/magneto-active hydrogels for the repair of specific tissues (e.g., muscle, nerve), iv) providing stimuli-responsiveness to actively deliver therapeutic molecules, and v) endowing therapeutic capacity in tissue repair process (e.g., antioxidant effects). The nanomaterial-combined GelMA systems have shown significantly enhanced and extraordinary behaviors in various tissues (bone, skin, cardiac, and nerve) that are rarely observable with GelMA. Here we systematically review these recent efforts in nanomaterials-combined GelMA hydrogels that are considered as next-generation multifunctional platforms for tissue therapeutics. The approaches used in GelMA can also apply to other existing polymeric hydrogel systems.
Collapse
Affiliation(s)
- Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K. Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Kapil D. Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, WC1X8LD, UK
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
43
|
Zhao X, Li S, Du X, Li W, Wang Q, He D, Yuan J. Natural polymer-derived photocurable bioadhesive hydrogels for sutureless keratoplasty. Bioact Mater 2022; 8:196-209. [PMID: 34541396 PMCID: PMC8424423 DOI: 10.1016/j.bioactmat.2021.07.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/08/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
Keratoplasty is the gold standard treatment for visual impairment caused by corneal damage. The use of suturing as the bonding method is the source of many complications following keratoplasty. Currently available corneal adhesives do not have both adequate adhesive strength and acceptable biocompatibility. Herein, we developed a photocurable bioadhesive hydrogel which was composed of gelatin methacryloyl and oxidized dextran for sutureless keratoplasty. The bioadhesive hydrogel exhibited high light transmittance, resistance to enzymatic degradation and excellent biocompatibility. It also had higher adhesive strength than commercial adhesives (fibrin glue). In a rabbit model of lamellar keratoplasty, donor corneal grafts could be closely bonded to the recipient corneal bed and remained attached for 56 days by using of this in situ photopolymerized bioadhesive hydrogel. The operated cornea maintained transparent and noninflamed. Sutureless keratoplasty using bioadhesive hydrogel allowed rapid graft re-epithelialization, typically within 7 days. In vivo confocal microscopic and histological evaluation of the operated cornea did not show any apparent abnormalities in terms of corneal cells and ultrastructure. Thus, this bioadhesive hydrogel is exhibited to be an appealing alternative to sutures for keratoplasty and other corneal surgeries.
Collapse
Affiliation(s)
| | | | - Xinyue Du
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Weihua Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Qian Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Dalian He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| |
Collapse
|
44
|
Chen Y, Wang Y, Luo SC, Zheng X, Kankala RK, Wang SB, Chen AZ. Advances in Engineered Three-Dimensional (3D) Body Articulation Unit Models. Drug Des Devel Ther 2022; 16:213-235. [PMID: 35087267 PMCID: PMC8789231 DOI: 10.2147/dddt.s344036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022] Open
Abstract
Indeed, the body articulation units, commonly referred to as body joints, play significant roles in the musculoskeletal system, enabling body flexibility. Nevertheless, these articulation units suffer from several pathological conditions, such as osteoarthritis (OA), rheumatoid arthritis (RA), ankylosing spondylitis, gout, and psoriatic arthritis. There exist several treatment modalities based on the utilization of anti-inflammatory and analgesic drugs, which can reduce or control the pathophysiological symptoms. Despite the success, these treatment modalities suffer from major shortcomings of enormous cost and poor recovery, limiting their applicability and requiring promising strategies. To address these limitations, several engineering strategies have been emerged as promising solutions in fabricating the body articulation as unit models towards local articulation repair for tissue regeneration and high-throughput screening for drug development. In this article, we present challenges related to the selection of biomaterials (natural and synthetic sources), construction of 3D articulation models (scaffold-free, scaffold-based, and organ-on-a-chip), architectural designs (microfluidics, bioprinting, electrospinning, and biomineralization), and the type of culture conditions (growth factors and active peptides). Then, we emphasize the applicability of these articulation units for emerging biomedical applications of drug screening and tissue repair/regeneration. In conclusion, we put forward the challenges and difficulties for the further clinical application of the in vitro 3D articulation unit models in terms of the long-term high activity of the models.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People’s Republic of China
| | - Ying Wang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523059, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510080, Guangdong, People’s Republic of China
| | - Sheng-Chang Luo
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People’s Republic of China
| | - Xiang Zheng
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People’s Republic of China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People’s Republic of China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People’s Republic of China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People’s Republic of China
| |
Collapse
|
45
|
Wei W, Dai H. Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges. Bioact Mater 2021; 6:4830-4855. [PMID: 34136726 PMCID: PMC8175243 DOI: 10.1016/j.bioactmat.2021.05.011] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/20/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
In spite of the considerable achievements in the field of regenerative medicine in the past several decades, osteochondral defect regeneration remains a challenging issue among diseases in the musculoskeletal system because of the spatial complexity of osteochondral units in composition, structure and functions. In order to repair the hierarchical tissue involving different layers of articular cartilage, cartilage-bone interface and subchondral bone, traditional clinical treatments including palliative and reparative methods have showed certain improvement in pain relief and defect filling. It is the development of tissue engineering that has provided more promising results in regenerating neo-tissues with comparable compositional, structural and functional characteristics to the native osteochondral tissues. Here in this review, some basic knowledge of the osteochondral units including the anatomical structure and composition, the defect classification and clinical treatments will be first introduced. Then we will highlight the recent progress in osteochondral tissue engineering from perspectives of scaffold design, cell encapsulation and signaling factor incorporation including bioreactor application. Clinical products for osteochondral defect repair will be analyzed and summarized later. Moreover, we will discuss the current obstacles and future directions to regenerate the damaged osteochondral tissues.
Collapse
Affiliation(s)
- Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, China
| |
Collapse
|
46
|
Kaliaraj GS, Siva T, Ramadoss A. Surface functionalized bioceramics coated on metallic implants for biomedical and anticorrosion performance - a review. J Mater Chem B 2021; 9:9433-9460. [PMID: 34755756 DOI: 10.1039/d1tb01301g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In modern days, the usage of trauma fixation devices has significantly increased due to sports injury, age-related issues, accidents, and revision surgery purposes. Numerous materials such as stainless steel, titanium, Co-Cr alloy, polymers, and ceramics have been used to replace the missing or defective parts of the human body. After implantation, body fluids (Na+, K+, and Cl-), protein, and blood cells interact with the surface of metallic implants, which favours the release of ions from the metallic surface to surrounding body tissues, leading to a hypersensitive reaction. Body pH, temperature, and interaction of immune cells also cause metal ion leaching and lose host cell interaction and effective mineralization for better durability. Moreover, microbial invasion is another important crisis, which produces extracellular compounds onto the biomaterial surface through which it escapes from the antimicrobial agents. To enhance the performance of materials by improving mechanical, corrosion resistance, antimicrobial, and biocompatibility properties, surface modification is a prerequisite method in which chemical vapour deposition (CVD), physical vapour deposition (PVD), sol-gel method, and electrochemical deposition are generally involved. The properties of bioceramics such as chemical inertness, bioactivity, biocompatibility, and corrosion protection make them most suitable for the surface functionalization of metallic implants. To the best of our knowledge, very limited literature is available to discuss the interaction of body proteins, pH, and temperature onto bioceramic coatings. Hence, the present review focuses on the corrosion behaviour of different ceramic composite coating materials with different conditions. This review initially briefs the properties and surface chemistry of metal implants and the need for surface modifications by different deposition techniques. Further, mechanical, cytotoxicity, antimicrobial property, and electrochemical behaviour of ceramics and metal nitride coatings are discussed. Finally, future perspectives of coatings are outlined for biomedical applications.
Collapse
Affiliation(s)
- Gobi Saravanan Kaliaraj
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, India.
| | - T Siva
- School for Advanced Research in Petrochemicals, Laboratory for Advanced Research in Polymeric Materials, Central Institute of Petrochemicals Engineering & Technology, Bhubaneswar 751024, India.
| | - Ananthakumar Ramadoss
- School for Advanced Research in Petrochemicals, Laboratory for Advanced Research in Polymeric Materials, Central Institute of Petrochemicals Engineering & Technology, Bhubaneswar 751024, India.
| |
Collapse
|
47
|
Chairside administrated antibacterial hydrogels containing berberine as dental temporary stopping for alveolar ridge preservation. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Chen Z, Xiao H, Zhang H, Xin Q, Zhang H, Liu H, Wu M, Zuo L, Luo J, Guo Q, Ding C, Tan H, Li J. Heterogenous hydrogel mimicking the osteochondral ECM applied to tissue regeneration. J Mater Chem B 2021; 9:8646-8658. [PMID: 34595487 DOI: 10.1039/d1tb00518a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Inspired by the intricate extracellular matrix (ECM) of natural cartilage and subchondral bone, a heterogenous bilayer hydrogel scaffold is fabricated. Gelatin methacrylate (GelMA) and acryloyl glucosamine (AGA) serve as the main components in the upper layer, mimicking the chondral ECM. Meanwhile, vinylphosphonic acid (VPA) as a non-collagen protein analogue is incorporated into the bottom layer to induce the in situ biomineralization of calcium phosphate. The two heterogenous layers are effectively sutured together by the inter-diffusion between the upper and bottom layer hydrogels, together with chelation between the calcium ions and alginate added to separate layers. The interfacial bonding between the two different layers was thoroughly investigated via rheological measurements. The incorporation of AGA promotes chondrocytes to produce collagen type II and glycosaminoglycans and upregulates the expression of chondrogenesis-related genes. In addition, the minerals induced by VPA facilitate the osteogenesis of bone marrow mesenchymal stem cells (BMSCs). In vivo evaluation confirms the biocompatibility of the scaffold with minor inflammation and confirms the best repair ability of the bilayer hydrogel. This cell-free, cost-effective and efficient hydrogel shows great potential for osteochondral repair and inspires the design of other tissue-engineering scaffolds.
Collapse
Affiliation(s)
- Zhuoxin Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Hong Xiao
- Department of Pain Management, West China Hospital, Sichuan University, No. 37, GuoXue Xiang, Chengdu 610041, China
| | - Hongbo Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Qiangwei Xin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Haochen Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Haixin Liu
- Department of Orthopedics, People's Hospital of Deyang City, No. 173, Taishan North Road, Deyang 618000, China
| | - Mingzhen Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Liangrui Zuo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China. .,CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Beijing 100190, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China. .,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Med-X Center for Materials, Sichuan University, 610041, China
| |
Collapse
|
49
|
Zhang Q, Xu H, Wu C, Shang Y, Wu Q, Wei Q, Zhang Q, Sun Y, Wang Q. Tissue Fluid Triggered Enzyme Polymerization for Ultrafast Gelation and Cartilage Repair. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qi Zhang
- School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai China
- Collage of Chemistry and Chemical Engineering Liaocheng University 1 Hunan Road Shandong China
| | - Huaxing Xu
- Department of endodontics, Shanghai Stomatological Hospital Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases Fudan University 356 Beijing Road Shanghai China
| | - Chu Wu
- School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai China
| | - Yinghui Shang
- School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai China
| | - Qing Wu
- School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai China
| | - Qingcong Wei
- School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai China
| | - Qi Zhang
- School & Hospital of Stomatology Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration 399 Yanchang Road Shanghai China
| | - Yao Sun
- School & Hospital of Stomatology Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration 399 Yanchang Road Shanghai China
| | - Qigang Wang
- School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai China
| |
Collapse
|
50
|
Zhang Q, Xu H, Wu C, Shang Y, Wu Q, Wei Q, Zhang Q, Sun Y, Wang Q. Tissue Fluid Triggered Enzyme Polymerization for Ultrafast Gelation and Cartilage Repair. Angew Chem Int Ed Engl 2021; 60:19982-19987. [PMID: 34173310 DOI: 10.1002/anie.202107789] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 01/16/2023]
Abstract
The in situ gelation of injectable precursors is desirable in the field of tissue regeneration, especially in the context of irregular defect filling. The current driving forces for fast gelation include the phase-transition of thermally sensitive copolymers, click chemical reactions with tissue components, and metal coordination effect. However, the rapid formation of tough hydrogels remains a challenge. Inspired by aerobic metabolism, we herein propose a tissue-fluid-triggered cascade enzymatic polymerization process catalyzed by glucose oxidase and ferrous glycinate for the ultrafast gelation of acryloylated chondroitin sulfates and acrylamides. The highly efficient production of carbon radicals and macromolecules contribute to rapid polymerization for soft tissue augmentation in bone defects. The copolymer hydrogel demonstrated the regeneration-promoting capacity of cartilage. As the first example of using artificial enzyme complexes for in situ polymerization, this work offers a biomimetic approach to the design of strength-adjustable hydrogels for bio-implanting and bio-printing applications.
Collapse
Affiliation(s)
- Qi Zhang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China.,Collage of Chemistry and Chemical Engineering, Liaocheng University, 1 Hunan Road, Shandong, China
| | - Huaxing Xu
- Department of endodontics, Shanghai Stomatological Hospital, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, 356 Beijing Road, Shanghai, China
| | - Chu Wu
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| | - Yinghui Shang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| | - Qing Wu
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| | - Qingcong Wei
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| | - Qi Zhang
- School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Yanchang Road, Shanghai, China
| | - Yao Sun
- School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Yanchang Road, Shanghai, China
| | - Qigang Wang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| |
Collapse
|