1
|
Tian M, Keshavarz M, Demircali AA, Han B, Yang G. Localized Microrobotic Delivery of Enzyme-Responsive Hydrogel-Immobilized Therapeutics to Suppress Triple-Negative Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408813. [PMID: 39692188 PMCID: PMC12051738 DOI: 10.1002/smll.202408813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/09/2024] [Indexed: 12/19/2024]
Abstract
Triple-negative breast cancer (TNBC), characterized by its aggressive metastatic propensity and lack of effective targeted therapeutic options, poses a major challenge in oncological management. A proof-of-concept neoadjuvant strategy aimed at inhibiting TNBC tumor growth and mitigating metastasis through a localized delivery of chemotherapeutics is reported in this paper. This approach addresses the limitations in payload capacity and stimuli responsiveness commonly associated with microrobotics in oncology. A hydrogel-based system is developed for the immobilization of chemotherapeutic agents, subsequently encapsulated within magnetically responsive microrobots. This design leverages external magnetic fields to facilitate the precise navigation and localization of the therapeutic agents directly to the tumor site. The efficacy of this approach is demonstrated in an animal model, in which a significant 14-fold reduction in tumor size and suppression of metastasis to critical organs such as the liver and lungs are observed. Crucially, the drug release mechanism is engineered to be responsive to the tumor microenvironment and is regulated by the overexpression of the enzymatic activity of matrix metalloproteinases (MMP2 and MMP9) in TNBC tumors, triggering the degradation of the hydrogel matrix, leading to controlled release of the immobilized therapeutic drug. This ensures that the therapeutic action is localized, reducing systemic toxicity and enhancing treatment efficacy. These findings suggest that this neoadjuvant approach holds promise for broader applications in other cancer types.
Collapse
Affiliation(s)
- Mingzhen Tian
- Institute of Medical Robotics, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Meysam Keshavarz
- The Hamlyn Centre, Institute of Global Health InnovationImperial College LondonLondonSouth KensingtonSW7 2AZUK
| | - Ali Anil Demircali
- Department of Metabolism, Digestion, and Reproduction, Faculty of MedicineImperial College LondonLondonSW7 2AZUK
| | - Bing Han
- Institute of Medical Robotics, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Guang‐Zhong Yang
- Institute of Medical Robotics, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
2
|
Dzikonski D, Zamboni R, Bandyopadhyay A, Paul D, Wedlich-Söldner R, Denz C, Imbrock J. Lab-on-a-chip device for microfluidic trapping and TIRF imaging of single cells. Biomed Microdevices 2025; 27:12. [PMID: 40085359 PMCID: PMC11909039 DOI: 10.1007/s10544-025-00739-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2025] [Indexed: 03/16/2025]
Abstract
Total internal reflection fluorescence (TIRF) microscopy is a powerful imaging technique that visualizes the outer surface of specimens in close proximity to a substrate, yielding crucial insights in cell membrane compositions. TIRF plays a key role in single-cell studies but typically requires chemical fixation to ensure direct contact between the cell membrane and substrate, which can compromise cell viability and promote clustering. In this study, we present a microfluidic device with structures designed to trap single yeast cells and fix them in direct contact with the substrate surface to enable TIRF measurements on the cell membrane. The traps are fabricated using two-photon polymerization, allowing high-resolution printing of intricate structures that encapsulate cells in all three dimensions while maintaining exposure to the flow within the device. Our adaptable trap design allows us to reduce residual movement of trapped cells to a minimum while maintaining high trapping efficiencies. We identify the optimal structure configuration to trap single yeast cells and demonstrate that trapping efficiency can be tuned by modifying cell concentration and injection methods. Additionally, by replicating the cell trap design with soft hydrogel materials, we demonstrate the potential of our approach for further single-cell studies. The authors have no relevant financial or non-financial interests to disclose and no competing interests to declare.
Collapse
Affiliation(s)
- Dustin Dzikonski
- Institute of Applied Physics, University of Münster, Corrensstr. 2, 48149, Münster, Germany.
| | - Riccardo Zamboni
- Institute of Applied Physics, University of Münster, Corrensstr. 2, 48149, Münster, Germany
| | - Aniket Bandyopadhyay
- Institute of Cell Dynamics and Imaging, University of Münster, Von Esmarch Str. 56, 48149, Münster, Germany
| | - Deepthi Paul
- Institute of Applied Physics, University of Münster, Corrensstr. 2, 48149, Münster, Germany
| | - Roland Wedlich-Söldner
- Institute of Cell Dynamics and Imaging, University of Münster, Von Esmarch Str. 56, 48149, Münster, Germany
| | - Cornelia Denz
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116, Braunschweig, Germany
| | - Jörg Imbrock
- Institute of Applied Physics, University of Münster, Corrensstr. 2, 48149, Münster, Germany
| |
Collapse
|
3
|
Cota Quintero JL, Ramos-Payán R, Romero-Quintana JG, Ayala-Ham A, Bermúdez M, Aguilar-Medina EM. Hydrogel-Based Scaffolds: Advancing Bone Regeneration Through Tissue Engineering. Gels 2025; 11:175. [PMID: 40136878 PMCID: PMC11942283 DOI: 10.3390/gels11030175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Bone tissue engineering has emerged as a promising approach to addressing the limitations of traditional bone grafts for repairing bone defects. This regenerative medicine strategy leverages biomaterials, growth factors, and cells to create a favorable environment for bone regeneration, mimicking the body's natural healing process. Among the various biomaterials explored, hydrogels (HGs), a class of three-dimensional, hydrophilic polymer networks, have gained significant attention as scaffolds for bone tissue engineering. Thus, this review aimed to investigate the potential of natural and synthetic HGs, and the molecules used for its functionalization, for enhanced bone tissue engineering applications. HGs offer several advantages such as scaffolds, including biocompatibility, biodegradability, tunable mechanical properties, and the ability to encapsulate and deliver bioactive molecules. These properties make them ideal candidates for supporting cell attachment, proliferation, and differentiation, ultimately guiding the formation of new bone tissue. The design and optimization of HG-based scaffolds involve adapting their composition, structure, and mechanical properties to meet the specific requirements of bone regeneration. Current research focuses on incorporating bioactive molecules, such as growth factors and cytokines, into HG scaffolds to further enhance their osteoinductive and osteoconductive properties. Additionally, strategies to improve the mechanical strength and degradation kinetics of HGs are being explored to ensure long-term stability and support for new bone formation. The development of advanced HG-based scaffolds holds great potential for revolutionizing bone tissue engineering and providing effective treatment options for patients with bone defects.
Collapse
Affiliation(s)
- Juan Luis Cota Quintero
- Faculty of Biology, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80010, Sinaloa, Mexico;
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80010, Sinaloa, Mexico; (R.R.-P.); (J.G.R.-Q.)
| | - José Geovanni Romero-Quintana
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80010, Sinaloa, Mexico; (R.R.-P.); (J.G.R.-Q.)
| | - Alfredo Ayala-Ham
- Faculty of Odontology, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80010, Sinaloa, Mexico;
| | - Mercedes Bermúdez
- Faculty of Odontology, Autonomous University of Chihuahua, Circuito Universitario Campus I, Chihuahua 31000, Chihuahua, Mexico;
| | - Elsa Maribel Aguilar-Medina
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80010, Sinaloa, Mexico; (R.R.-P.); (J.G.R.-Q.)
| |
Collapse
|
4
|
Savelyev AG, Sochilina AV, Babayeva G, Nikolaeva ME, Kuziaeva VI, Prostyakova AI, Sergeev IS, Gorin DA, Khaydukov EV, Generalova AN, Akasov RA. Photocrosslinking of hyaluronic acid-based hydrogels through biotissue barriers. Biomater Sci 2025; 13:980-992. [PMID: 39801275 DOI: 10.1039/d4bm01174k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
Photocrosslinkable hydrogels based on hyaluronic acid are promising biomaterials high in demand in tissue engineering. Typically, hydrogels are photocured under the action of UV or blue light strongly absorbed by biotissues, which limits prototyping under living organism conditions. To overcome this limitation, we propose the derivatives of well-known photosensitizers, namely chlorin p6, chlorin e6 and phthalocyanine, as those for radical polymerization in the transparency window of biotissues. Taking into account the efficiency of radical generation and dark and light cell toxicity, we evaluated water miscible pyridine phthalocyanine as a promising initiator for the intravital hydrogel photoprinting of hyaluronic acid glycidyl methacrylate (HAGM) under irradiation near 670 nm. Coinitiators (dithiothreitol or 2-mercaptoethanol) reduce the irradiation dose required for HAGM crosslinking from ∼405 J cm-2 to 80 J cm-2. Patterning by direct laser writing using a scanning 675 nm laser beam was performed to demonstrate the formation of complex shape structures. Young's moduli typical of soft tissue (∼270-460 kPa) were achieved for crosslinked hydrogels. The viability of human keratinocytes HaCaT cells within the photocrosslinking process was shown. To demonstrate scaffolding across the biotissue barrier, the subcutaneously injected photocomposition was crosslinked in BALB/c mice. The safety of the irradiation dose of 660-675 nm light (100 mW cm-2, 15 min) and the non-toxicity of the hydrogel components were confirmed by histomorphologic analysis. The intravitally photocrosslinked scaffolds maintained their shape and size for at least one month, accompanied by slow biodegradation. We conclude that the proposed technology provides a lucrative opportunity for minimally invasive scaffold formation through biotissue barriers.
Collapse
Affiliation(s)
- Alexander G Savelyev
- National Research Centre "Kurchatov Institute", 123182, Akademika Kurchatova Sq. 1, Moscow, Russia.
| | - Anastasia V Sochilina
- National Research Centre "Kurchatov Institute", 123182, Akademika Kurchatova Sq. 1, Moscow, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Miklukho-Maklaya str. 16/10, Moscow, Russia
- Moscow Pedagogical State University, 119435, Malaya Pirogovskaya str. 1, Moscow, Russia
| | - Gulalek Babayeva
- N.N. Blokhin National Medical Research Center of Oncology, 115478, Kashirskoe Shosse 24, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, RUDN University, 117198, Miklukho-Maklaya str. 8, Moscow, Russia
| | - Mariya E Nikolaeva
- Moscow Pedagogical State University, 119435, Malaya Pirogovskaya str. 1, Moscow, Russia
| | - Valeriia I Kuziaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Miklukho-Maklaya str. 16/10, Moscow, Russia
| | - Anna I Prostyakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Miklukho-Maklaya str. 16/10, Moscow, Russia
| | - Igor S Sergeev
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 121205, Bol'shoy Bul'var 30 build. 1, Moscow, Russia
| | - Dmitry A Gorin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 121205, Bol'shoy Bul'var 30 build. 1, Moscow, Russia
| | - Evgeny V Khaydukov
- National Research Centre "Kurchatov Institute", 123182, Akademika Kurchatova Sq. 1, Moscow, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Miklukho-Maklaya str. 16/10, Moscow, Russia
- Moscow Pedagogical State University, 119435, Malaya Pirogovskaya str. 1, Moscow, Russia
- Mendeleev University of Chemical Technology of Russia, 125047, Miusskaya Sq. 9, Moscow, Russia
| | - Alla N Generalova
- National Research Centre "Kurchatov Institute", 123182, Akademika Kurchatova Sq. 1, Moscow, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Miklukho-Maklaya str. 16/10, Moscow, Russia
| | - Roman A Akasov
- National Research Centre "Kurchatov Institute", 123182, Akademika Kurchatova Sq. 1, Moscow, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Miklukho-Maklaya str. 16/10, Moscow, Russia
- Moscow Pedagogical State University, 119435, Malaya Pirogovskaya str. 1, Moscow, Russia
| |
Collapse
|
5
|
Visan AI, Negut I. Environmental and Wastewater Treatment Applications of Stimulus-Responsive Hydrogels. Gels 2025; 11:72. [PMID: 39852043 PMCID: PMC11765053 DOI: 10.3390/gels11010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Stimulus-responsive hydrogels have emerged as versatile materials for environmental and wastewater treatment applications due to their ability to adapt to changing environmental conditions. This review highlights recent advances in the design, synthesis, and functionalization of such hydrogels, focusing on their environmental applications. Various synthesis techniques, including radical polymerization, grafting, and copolymerization, enable the development of hydrogels with tailored properties such as enhanced adsorption capacity, selectivity, and reusability. The incorporation of nanoparticles and bio-based polymers further improves their structural integrity and pollutant removal efficiency. Key mechanisms such as adsorption, ion exchange, and photodegradation are discussed, emphasizing their roles in removing heavy metals, dyes, and organic pollutants from wastewater. Additionally, this review presents the potential of hydrogels for oil-water separation, pathogen control, and future sustainability through integration into circular economy frameworks. The adaptability, cost-effectiveness, and eco-friendliness of these hydrogels make them promising candidates for large-scale environmental remediation.
Collapse
Affiliation(s)
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Măgurele, Romania;
| |
Collapse
|
6
|
Blankenship B, Pan D, Kyriakou E, Zyla G, Meier T, Arvin S, Seymour N, De La Torre N, Farsari M, Ji N, Grigoropoulos CP. Multiphoton and Harmonic Imaging of Microarchitected Materials. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3887-3896. [PMID: 39752387 PMCID: PMC11744503 DOI: 10.1021/acsami.4c16509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/24/2024] [Accepted: 12/24/2024] [Indexed: 01/18/2025]
Abstract
Microadditive manufacturing has revolutionized the production of complex, nano- to microscale components across various fields. This work investigates two-photon (2P) and three-photon (3P) fluorescence imaging, as well as third-harmonic generation (THG) microscopy, to examine periodic microarchitected lattice structures fabricated using multiphoton lithography (MPL). By immersing the structures in refractive index matching fluids, we demonstrate high-fidelity 3D reconstructions of both fluorescent structures using 2P and 3P microscopy as well as low-fluorescence structures using THG microscopy. These results show that multiphoton fluorescence (MPF) imaging offers reduced signal decay with respect to depth compared to single-photon techniques in the examined structures. We further demonstrate the ability to nondestructively identify intentional internal modifications of the structure that are not immediately visible with scanning electron microscope (SEM) images and compression-induced fractures, highlighting the potential of these techniques for quality control and defect detection in microadditively manufactured components.
Collapse
Affiliation(s)
- Brian
W. Blankenship
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Daisong Pan
- Department
of Physics, University of California, Berkeley, California 94720, United States
| | - Eudokia Kyriakou
- Institute
of Electronic Structure and Laser, Foundation
for Research and Technology, Hellas (FORTH-IESL), GR-70013 Heraklion, Crete Greece
- Department
of Materials Science and Technology, University
of Crete, Heraklion GR-70013, Greece
| | - Gordon Zyla
- Institute
of Electronic Structure and Laser, Foundation
for Research and Technology, Hellas (FORTH-IESL), GR-70013 Heraklion, Crete Greece
| | - Timon Meier
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Sophia Arvin
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Nathan Seymour
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Natalia De La Torre
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Maria Farsari
- Institute
of Electronic Structure and Laser, Foundation
for Research and Technology, Hellas (FORTH-IESL), GR-70013 Heraklion, Crete Greece
| | - Na Ji
- Department
of Physics, University of California, Berkeley, California 94720, United States
| | - Costas P. Grigoropoulos
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Wu N, Li J, Li X, Wang R, Zhang L, Liu Z, Jiao T. 3D printed biopolymer/black phosphorus nanoscaffolds for bone implants: A review. Int J Biol Macromol 2024; 279:135227. [PMID: 39218178 DOI: 10.1016/j.ijbiomac.2024.135227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Bone implantation is one of the recognized and effective means of treating bone defects, but osteoporosis and bone tumor-related bone abnormalities have a series of problems such as susceptibility to infection, difficulty in healing, and poor therapeutic effect, which poses a great challenge to clinical medicine. Three-dimensional things may be printed using 3D printing. Researchers can feed materials through the printer layer by layer to create the desired shape for a 3D structure. It is widely employed in the healing of bone defects, and it is an improved form of additive manufacturing technology with prospective future applications. This review's objective is to provide an overview of the findings reports pertaining to 3D printing biopolymers in recent years, provide an overview of biopolymer materials and their composites with black phosphorus for 3D printing bone implants, and the characterization methods of composite materials are also summarized. In addition, summarizes 3D printing methods based on ink printing and laser printing, pointing out their special features and advantages, and provide a combination strategy of photothermal therapy and bone regeneration materials for black phosphorus-based materials. Finally, the associations between bone implant materials and immune cells, the bio-environment, as well as the 3D printing bone implants prospects are outlined.
Collapse
Affiliation(s)
- Nannan Wu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Jinghong Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China.
| | - Xinyu Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Ran Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Lexin Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Zhiwei Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
8
|
Morozov YM, Gisbert Quilis N, Fossati S, De Laporte L, Gusenbauer C, Weber A, Toca-Herrera JL, Wiesner F, Jonas U, Dostalek J. Plasmon-Enhanced Multiphoton Polymer Crosslinking for Selective Modification of Plasmonic Hotspots. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:18641-18650. [PMID: 39502799 PMCID: PMC11533195 DOI: 10.1021/acs.jpcc.4c05936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024]
Abstract
A novel approach to selectively modify narrow subareas of metallic nanostructures adjacent to plasmonic hotspots, where strong electromagnetic field amplification occurs upon localized surface plasmon (LSP) excitation, is reported. In contrast to surface plasmon-triggered polymerization, it relies on plasmonically enhanced multiphoton crosslinking (MPC) of polymer chains carrying photoactive moieties. When they are contacted with metallic nanostructures and irradiated with a femtosecond near-infrared beam resonantly coupled with LSPs, the enhanced field intensity locally exceeds the threshold and initiates MPC only at plasmonic hotspots. This concept is demonstrated by using gold nanoparticle arrays coated with two specifically designed polymers. Local MPC of a poly(N,N-dimethylacrylamide)-based copolymer with an anthraquinone crosslinker is shown via atomic force microscopy. Additionally, MPC is tested with a thermoresponsive poly(N-isopropylacrylamide)-based terpolymer. The reversible thermally induced collapse and swelling of the MPC-formed hydrogel at specific nanoparticle locations are confirmed by polarization-resolved localized surface plasmon resonance (LSPR) spectroscopy. These hybrid metallic/hydrogel materials can be further postmodified, offering attractive characteristics for future spectroscopic/bioanalytical applications.
Collapse
Affiliation(s)
- Yevhenii M. Morozov
- Center
for Health & Bioresources, AIT-Austrian
Institute of Technology, Giefinggasse 4, 1210 Vienna, Austria
| | - Nestor Gisbert Quilis
- Biosensor
Technologies, AIT-Austrian Institute of
Technology, Konrad-Lorenz-Strasse
24, 3430 Tulln an
der Donau, Austria
| | - Stefan Fossati
- FZU-Institute
of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech
Republic
| | - Laura De Laporte
- DWI-Leibniz
Institute for Interactive Materials, Forckenbeckstrasse 50, D-52074 Aachen, Germany
- Institute
for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, D-52074 Aachen, Germany
- Institute
of Applied Medical Engineering, Department of Advanced Materials for
Biomedicine, RWTH Aachen University, Forckenbeckstraße 55, D-52074 Aachen, Germany
| | - Claudia Gusenbauer
- Institute
of Wood Technology and Renewable Materials, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln an der Donau, Austria
| | - Andreas Weber
- Institute
of Biophysics, University of Natural Resources
and Life Sciences, Vienna,
Muthgasse 11/II, 1190 Vienna, Austria
| | - Jose Luis Toca-Herrera
- Institute
of Biophysics, University of Natural Resources
and Life Sciences, Vienna,
Muthgasse 11/II, 1190 Vienna, Austria
| | - Fiona Wiesner
- Macromolecular
Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf Reichwein-Straße 2, 57074 Siegen, Germany
| | - Ulrich Jonas
- Macromolecular
Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf Reichwein-Straße 2, 57074 Siegen, Germany
| | - Jakub Dostalek
- FZU-Institute
of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech
Republic
- LiST-Life
Sciences Technology, Danube Private University, Viktor-Kaplan-Strasse 2, 2700 Wiener Neustadt, Austria
| |
Collapse
|
9
|
Schwegler N, Gebert T, Villiou M, Colombo F, Schamberger B, Selhuber-Unkel C, Thomas F, Blasco E. Multimaterial 3D Laser Printing of Cell-Adhesive and Cell-Repellent Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401344. [PMID: 38708807 DOI: 10.1002/smll.202401344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Indexed: 05/07/2024]
Abstract
Here, a straightforward method is reported for manufacturing 3D microstructured cell-adhesive and cell-repellent multimaterials using two-photon laser printing. Compared to existing strategies, this approach offers bottom-up molecular control, high customizability, and rapid and precise 3D fabrication. The printable cell-adhesive polyethylene glycol (PEG) based material includes an Arg-Gly-Asp (RGD) containing peptide synthesized through solid-phase peptide synthesis, allowing for precise control of the peptide design. Remarkably, minimal amounts of RGD peptide (< 0.1 wt%) suffice for imparting cell-adhesiveness, while maintaining identical mechanical properties in the 3D printed microstructures to those of the cell-repellent, PEG-based material. Fluorescent labeling of the RGD peptide facilitates visualization of its presence in cell-adhesive areas. To demonstrate the broad applicability of the system, the fabrication of cell-adhesive 2.5D and 3D structures is shown, fostering the adhesion of fibroblast cells within these architectures. Thus, this approach allows for the printing of high-resolution, true 3D structures suitable for diverse applications, including cellular studies in complex environments.
Collapse
Affiliation(s)
- Niklas Schwegler
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Tanisha Gebert
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Maria Villiou
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Federico Colombo
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Barbara Schamberger
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Christine Selhuber-Unkel
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Franziska Thomas
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Eva Blasco
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
10
|
Donato S, Nocentini S, Martella D, Kolagatla S, Wiersma DS, Parmeggiani C, Delaney C, Florea L. Liquid Crystalline Network Microstructures for Stimuli Responsive Labels with Multi-Level Encryption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306802. [PMID: 38063817 DOI: 10.1002/smll.202306802] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Indexed: 05/18/2024]
Abstract
Two-photon direct laser writing enables the fabrication of shape-changing microstructures that can be exploited in stimuli responsive micro-robotics and photonics. The use of Liquid Crystalline Networks (LCN) allows to realize 3D micrometric objects that can contract along a specific direction in response to stimuli, such as temperature or light. In this paper, the fabrication of free-standing LCN microstructures is demonstrated as graphical units of a smart tag for simple physical and optical encryption. Using an array of identical pixels, information can be hidden to the observer and revealed only upon application of a specific stimulus. The reading mechanism is based on the shape-change of each pixel under stimuli and their color that combine together in a two-level encryption label. Once the stimulus is removed, the pixels recover their original shape and the message remains completely hidden. Therefore, an opto-mechanical equivalent of an "invisible ink" is realized. This new concept paves the way for introducing enhanced functionalities in smart micro-systems within a single lithography step, spanning from storage devices with physical encryption to complex motion actuators.
Collapse
Affiliation(s)
- Simone Donato
- European Laboratory for Non Linear Spectroscopy (LENS), via N. Carrara 1, Sesto Fiorentino, 50019, Italy
- Department of Physics and Astronomy, University of Florence, via G. Sansone 1, Sesto Fiorentino, 50019, Italy
| | - Sara Nocentini
- European Laboratory for Non Linear Spectroscopy (LENS), via N. Carrara 1, Sesto Fiorentino, 50019, Italy
- Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, Torino, 10135, Italy
| | - Daniele Martella
- European Laboratory for Non Linear Spectroscopy (LENS), via N. Carrara 1, Sesto Fiorentino, 50019, Italy
- Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, Torino, 10135, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3-13, Sesto Fiorentino, 50019, Italy
| | - Srikanth Kolagatla
- School of Chemistry & AMBER, The SFI Research Centre for Advanced Materials and BioEngineering Research, Trinity College Dublin, Dublin, 2, Ireland
| | - Diederik S Wiersma
- European Laboratory for Non Linear Spectroscopy (LENS), via N. Carrara 1, Sesto Fiorentino, 50019, Italy
- Department of Physics and Astronomy, University of Florence, via G. Sansone 1, Sesto Fiorentino, 50019, Italy
- Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, Torino, 10135, Italy
| | - Camilla Parmeggiani
- European Laboratory for Non Linear Spectroscopy (LENS), via N. Carrara 1, Sesto Fiorentino, 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3-13, Sesto Fiorentino, 50019, Italy
| | - Colm Delaney
- School of Chemistry & AMBER, The SFI Research Centre for Advanced Materials and BioEngineering Research, Trinity College Dublin, Dublin, 2, Ireland
| | - Larisa Florea
- School of Chemistry & AMBER, The SFI Research Centre for Advanced Materials and BioEngineering Research, Trinity College Dublin, Dublin, 2, Ireland
| |
Collapse
|
11
|
Huang G, Zhao Y, Chen D, Wei L, Hu Z, Li J, Zhou X, Yang B, Chen Z. Applications, advancements, and challenges of 3D bioprinting in organ transplantation. Biomater Sci 2024; 12:1425-1448. [PMID: 38374788 DOI: 10.1039/d3bm01934a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
To date, organ transplantation remains an effective method for treating end-stage diseases of various organs. In recent years, despite the continuous development of organ transplantation technology, a variety of problems restricting its progress have emerged one after another, and the shortage of donors is at the top of the list. Bioprinting is a very useful tool that has huge application potential in many fields of life science and biotechnology, among which its use in medicine occupies a large area. With the development of bioprinting, advances in medicine have focused on printing cells and tissues for tissue regeneration and reconstruction of viable human organs, such as the heart, kidneys, and bones. In recent years, with the development of organ transplantation, three-dimensional (3D) bioprinting has played an increasingly important role in this field, giving rise to many unsolved problems, including a shortage of organ donors. This review respectively introduces the development of 3D bioprinting as well as its working principles and main applications in the medical field, especially in the applications, and advancements and challenges of 3D bioprinting in organ transplantation. With the continuous update and progress of printing technology and its deeper integration with the medical field, many obstacles will have new solutions, including tissue repair and regeneration, organ reconstruction, etc., especially in the field of organ transplantation. 3D printing technology will provide a better solution to the problem of donor shortage.
Collapse
Affiliation(s)
- Guobin Huang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Dong Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Zhiping Hu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Junbo Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Xi Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
12
|
Blankenship B, Meier T, Zhao N, Mavrikos S, Arvin S, De La Torre N, Hsu B, Seymour N, Grigoropoulos CP. Three-Dimensional Optical Imaging of Internal Deformations in Polymeric Microscale Mechanical Metamaterials. NANO LETTERS 2024; 24:2735-2742. [PMID: 38277644 PMCID: PMC10921468 DOI: 10.1021/acs.nanolett.3c04421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Recent advances in two-photon polymerization fabrication processes are paving the way to creating macroscopic metamaterials with microscale architectures, which exhibit mechanical properties superior to their bulk material counterparts. These metamaterials typically feature lightweight, complex patterns such as lattice or minimal surface structures. Conventional tools for investigating these microscale structures, such as scanning electron microscopy, cannot easily probe the internal features of these structures, which are critical for a comprehensive assessment of their mechanical behavior. In turn, we demonstrate an optical confocal microscopy-based approach that allows for high-resolution optical imaging of internal deformations and fracture processes in microscale metamaterials under mechanical load. We validate this technique by investigating an exemplary metamaterial lattice structure of 80 × 80 × 80 μm3 in size. This technique can be extended to other metamaterial systems and holds significant promise to enhance our understanding of their real-world performance under loading conditions.
Collapse
Affiliation(s)
- Brian
W. Blankenship
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Timon Meier
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Naichen Zhao
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Stefanos Mavrikos
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Sophia Arvin
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Natalia De La Torre
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Brian Hsu
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Nathan Seymour
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Costas P. Grigoropoulos
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Stüwe L, Geiger M, Röllgen F, Heinze T, Reuter M, Wessling M, Hecht S, Linkhorst J. Continuous Volumetric 3D Printing: Xolography in Flow. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306716. [PMID: 37565596 DOI: 10.1002/adma.202306716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/08/2023] [Indexed: 08/12/2023]
Abstract
Additive manufacturing techniques continue to improve in resolution, geometrical freedom, and production rates, expanding their application range in research and industry. Most established techniques, however, are based on layer-by-layer polymerization processes, leading to an inherent trade-off between resolution and printing speed. Volumetric 3D printing enables the polymerization of freely defined volumes allowing the fabrication of complex geometries at drastically increased production rates and high resolutions, marking the next chapter in light-based additive manufacturing. This work advances the volumetric 3D printing technique xolography to a continuous process. Dual-color photopolymerization is performed in a continuously flowing resin, inside a tailored flow cell. Supported by simulations, the flow profile in the printing area is flattened, and resin velocities at the flow cell walls are increased to minimize unwanted polymerization via laser sheet-induced curing. Various objects are printed continuously and true to shape with smooth surfaces. Parallel object printing paves the way for up-scaling the continuous production, currently reaching production rates up to 1.75 mm3 s-1 for the presented flow cell. Xolography in flow provides a new opportunity for scaling up volumetric 3D printing with the potential to resolve the trade-off between high production rates and high resolution in light-based additive manufacturing.
Collapse
Affiliation(s)
- Lucas Stüwe
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Matthias Geiger
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Franz Röllgen
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Thorben Heinze
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | | | - Matthias Wessling
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Stefan Hecht
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Street 2, 12489, Berlin, Germany
| | - John Linkhorst
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| |
Collapse
|
14
|
Jing X, Zhao P, Wang F, Han M, Lin J. Precise Focal Spot Positioning on an Opaque Substrate Based on the Diffraction Phenomenon in Laser Microfabrication. MICROMACHINES 2023; 14:2256. [PMID: 38138424 PMCID: PMC10745451 DOI: 10.3390/mi14122256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
The precise positioning of the laser focal spot on the substrate is an important issue for laser microfabrication. In this work, a diffraction pattern-based focal spot positioning method (DFSPM) is proposed to achieve the precise positioning of the laser focal spot on opaque substrates. A series of diffraction patterns of laser focus under-positioning, exact positioning and over-positioning were obtained to investigate the cross-section light distribution of the laser focal spot. According to the monotonic tendency of FWHM to exhibit light intensity at the focal spot cross-section away from the focal plane, the FWHM threshold of polynomial fitted curves was used to determine the exact positioning of laser focus. The ascending scanning method was used to obtain the diffraction patterns at various vertical positions and the FWHM threshold of light distribution at the exact position. The polynomial fitted curves verify the FWHM monotonic tendency of light intensity distribution at the focal spot cross-section along the optical axis. Precise positioning can be achieved with a 100 nm adjustment resolution. This work was expected to provide references for laser microfabrication on opaque materials.
Collapse
Affiliation(s)
- Xian Jing
- College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-Precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China
| | - Pengju Zhao
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-Precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China
| | - Fuzeng Wang
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-Precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China
| | - Mingkun Han
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-Precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China
| | - Jieqiong Lin
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-Precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
15
|
Azizi P, Drobek C, Budday S, Seitz H. Simulating the mechanical stimulation of cells on a porous hydrogel scaffold using an FSI model to predict cell differentiation. Front Bioeng Biotechnol 2023; 11:1249867. [PMID: 37799813 PMCID: PMC10549991 DOI: 10.3389/fbioe.2023.1249867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023] Open
Abstract
3D-structured hydrogel scaffolds are frequently used in tissue engineering applications as they can provide a supportive and biocompatible environment for the growth and regeneration of new tissue. Hydrogel scaffolds seeded with human mesenchymal stem cells (MSCs) can be mechanically stimulated in bioreactors to promote the formation of cartilage or bone tissue. Although in vitro and in vivo experiments are necessary to understand the biological response of cells and tissues to mechanical stimulation, in silico methods are cost-effective and powerful approaches that can support these experimental investigations. In this study, we simulated the fluid-structure interaction (FSI) to predict cell differentiation on the entire surface of a 3D-structured hydrogel scaffold seeded with cells due to dynamic compressive load stimulation. The computational FSI model made it possible to simultaneously investigate the influence of both mechanical deformation and flow of the culture medium on the cells on the scaffold surface during stimulation. The transient one-way FSI model thus opens up significantly more possibilities for predicting cell differentiation in mechanically stimulated scaffolds than previous static microscale computational approaches used in mechanobiology. In a first parameter study, the impact of the amplitude of a sinusoidal compression ranging from 1% to 10% on the phenotype of cells seeded on a porous hydrogel scaffold was analyzed. The simulation results show that the number of cells differentiating into bone tissue gradually decreases with increasing compression amplitude, while differentiation into cartilage cells initially multiplied with increasing compression amplitude in the range of 2% up to 7% and then decreased. Fibrous cell differentiation was predicted from a compression of 5% and increased moderately up to a compression of 10%. At high compression amplitudes of 9% and 10%, negligible areas on the scaffold surface experienced high stimuli where no cell differentiation could occur. In summary, this study shows that simulation of the FSI system is a versatile approach in computational mechanobiology that can be used to study the effects of, for example, different scaffold designs and stimulation parameters on cell differentiation in mechanically stimulated 3D-structured scaffolds.
Collapse
Affiliation(s)
- Pedram Azizi
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| | - Christoph Drobek
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| | - Silvia Budday
- Department of Mechanical Engineering, Institute of Applied Mechanics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Hermann Seitz
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| |
Collapse
|
16
|
Chen J, Zhou H, Fan Y, Gao G, Ying Y, Li J. 3D printing for bone repair: Coupling infection therapy and defect regeneration. CHEMICAL ENGINEERING JOURNAL 2023; 471:144537. [DOI: 10.1016/j.cej.2023.144537] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
|
17
|
Yarali E, Zadpoor AA, Staufer U, Accardo A, Mirzaali MJ. Auxeticity as a Mechanobiological Tool to Create Meta-Biomaterials. ACS APPLIED BIO MATERIALS 2023; 6:2562-2575. [PMID: 37319268 PMCID: PMC10354748 DOI: 10.1021/acsabm.3c00145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Mechanical and morphological design parameters, such as stiffness or porosity, play important roles in creating orthopedic implants and bone substitutes. However, we have only a limited understanding of how the microarchitecture of porous scaffolds contributes to bone regeneration. Meta-biomaterials are increasingly used to precisely engineer the internal geometry of porous scaffolds and independently tailor their mechanical properties (e.g., stiffness and Poisson's ratio). This is motivated by the rare or unprecedented properties of meta-biomaterials, such as negative Poisson's ratios (i.e., auxeticity). It is, however, not clear how these unusual properties can modulate the interactions of meta-biomaterials with living cells and whether they can facilitate bone tissue engineering under static and dynamic cell culture and mechanical loading conditions. Here, we review the recent studies investigating the effects of the Poisson's ratio on the performance of meta-biomaterials with an emphasis on the relevant mechanobiological aspects. We also highlight the state-of-the-art additive manufacturing techniques employed to create meta-biomaterials, particularly at the micrometer scale. Finally, we provide future perspectives, particularly for the design of the next generation of meta-biomaterials featuring dynamic properties (e.g., those made through 4D printing).
Collapse
Affiliation(s)
- Ebrahim Yarali
- Department
of Biomechanical Engineering, Faculty of Mechanical Maritime and Materials
Engineering, Delft University of Technology
(TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
- Department
of Precision and Microsystems Engineering, Faculty of Mechanical Maritime
and Materials Engineering, Delft University
of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Amir A. Zadpoor
- Department
of Biomechanical Engineering, Faculty of Mechanical Maritime and Materials
Engineering, Delft University of Technology
(TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Urs Staufer
- Department
of Precision and Microsystems Engineering, Faculty of Mechanical Maritime
and Materials Engineering, Delft University
of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Angelo Accardo
- Department
of Precision and Microsystems Engineering, Faculty of Mechanical Maritime
and Materials Engineering, Delft University
of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Mohammad J. Mirzaali
- Department
of Biomechanical Engineering, Faculty of Mechanical Maritime and Materials
Engineering, Delft University of Technology
(TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Bioengineering of functional cardiac tissue composed of primary cardiomyocytes has great potential for myocardial regeneration and in vitro tissue modeling. 3D bioprinting was developed to create cardiac tissue in hydrogels that can mimic the structural, physiological, and functional features of native myocardium. Through a detailed review of the 3D printing technologies and bioink materials used in the creation of a heart tissue, this article discusses the potential of engineered heart tissues in biomedical applications. RECENT FINDINGS In this review, we discussed the recent progress in 3D bioprinting strategies for cardiac tissue engineering, including bioink and 3D bioprinting methods as well as examples of engineered cardiac tissue such as in vitro cardiac models and vascular channels. 3D printing is a powerful tool for creating in vitro cardiac tissues that are structurally and functionally similar to real tissues. The use of human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) enables the generation of patient-specific tissues. These tissues have the potential to be used for regenerative therapies, disease modeling, and drug testing.
Collapse
Affiliation(s)
- Ting-Yu Lu
- Materials Science and Engineering Program, University of California, 9500 Gilman Dr. San Diego, 92093 La Jolla, CA USA
| | - Yi Xiang
- Department of NanoEngineering, University of California, 9500 Gilman Dr. San Diego, 92093 La Jolla, CA USA
| | - Min Tang
- Department of NanoEngineering, University of California, 9500 Gilman Dr. San Diego, 92093 La Jolla, CA USA
| | - Shaochen Chen
- Materials Science and Engineering Program, University of California, 9500 Gilman Dr. San Diego, 92093 La Jolla, CA USA
- Department of NanoEngineering, University of California, 9500 Gilman Dr. San Diego, 92093 La Jolla, CA USA
- Department of Bioengineering, University of California, 9500 Gilman Dr. San Diego, 92093 La Jolla, CA USA
| |
Collapse
|
19
|
Wong J, Wei S, Meir R, Sadaba N, Ballinger NA, Harmon EK, Gao X, Altin-Yavuzarslan G, Pozzo LD, Campos LM, Nelson A. Triplet Fusion Upconversion for Photocuring 3D-Printed Particle-Reinforced Composite Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207673. [PMID: 36594431 DOI: 10.1002/adma.202207673] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/17/2022] [Indexed: 06/17/2023]
Abstract
High energy photons (λ < 400 nm) are frequently used to initiate free radical polymerizations to form polymer networks, but are only effective for transparent objects. This phenomenon poses a major challenge to additive manufacturing of particle-reinforced composite networks since deep light penetration of short-wavelength photons limits the homogeneous modification of physicochemical and mechanical properties. Herein, the unconventional, yet versatile, multiexciton process of triplet-triplet annihilation upconversion (TTA-UC) is employed for curing opaque hydrogel composites created by direct-ink-write (DIW) 3D printing. TTA-UC converts low energy red light (λmax = 660 nm) for deep penetration into higher-energy blue light to initiate free radical polymerizations within opaque objects. As proof-of-principle, hydrogels containing up to 15 wt.% TiO2 filler particles and doped with TTA-UC chromophores are readily cured with red light, while composites without the chromophores and TiO2 loadings as little as 1-2 wt.% remain uncured. Importantly, this method has wide potential to modify the chemical and mechanical properties of complex DIW 3D-printed composite polymer networks.
Collapse
Affiliation(s)
- Jitkanya Wong
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Shixuan Wei
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Rinat Meir
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Naroa Sadaba
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, 20018, Spain
| | - Nathan A Ballinger
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Elizabeth K Harmon
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Xin Gao
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | | | - Lilo D Pozzo
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Alshakim Nelson
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
20
|
Dos Santos LMS, de Oliveira JM, da Silva ECO, Fonseca VML, Silva JP, Barreto E, Dantas NO, Silva ACA, Jesus-Silva AJ, Mendonça CR, Fonseca EJS. Mechanical and morphological responses of osteoblast-like cells to two-photon polymerized microgrooved surfaces. J Biomed Mater Res A 2023; 111:234-244. [PMID: 36239143 DOI: 10.1002/jbm.a.37454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 01/10/2023]
Abstract
Microgrooved surfaces are recognized as an important strategy of tissue engineering to promote the alignment of bone cells. In this work, we have investigated the mechanical and morphological aspects of osteoblasts cells after interaction with different micro-structured polymeric surfaces. Femtosecond laser writing technique was used for the construction of circular and parallel microgrooved patterns in biocompatible polymeric surfaces based on pentaerythritol triacrylate. Additionally, we have studied the influence of the biocompatible TiO2 nanocrystals (NCs) related to the cell behavior, when incorporated to the photoresin. The atomic force microscopy technique was used to investigate the biomechanical reaction of the human osteoblast-like MG-63 cells for the different microgroove. It was demonstrated that osteoblasts grown on circular microgrooved surfaces exhibited significantly larger Young's modulus compared to cells sown on flat films. Furthermore, we could observe that TiO2 NCs improved the circular microgrooves effects, resulting in more populated sites, 34% more elongated cells, and increasing the cell stiffness by almost 160%. These results can guide the design and construction of effective scaffold surfaces with circular microgrooves for tissue engineering and bone regeneration.
Collapse
Affiliation(s)
- Laura M S Dos Santos
- Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
| | | | - Elaine C O da Silva
- Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
| | - Vitor M L Fonseca
- Laboratory of Cell Biology, Institute of Biological Sciences and Health, Federal University of Alagoas (ICBS/UFAL), Maceió, Brazil
| | - Juliane P Silva
- Laboratory of Cell Biology, Institute of Biological Sciences and Health, Federal University of Alagoas (ICBS/UFAL), Maceió, Brazil
| | - Emiliano Barreto
- Laboratory of Cell Biology, Institute of Biological Sciences and Health, Federal University of Alagoas (ICBS/UFAL), Maceió, Brazil
| | | | - Anielle C A Silva
- Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
| | - Alcenísio J Jesus-Silva
- Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
| | - Cléber R Mendonça
- Institute of Physics of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Eduardo J S Fonseca
- Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
| |
Collapse
|
21
|
Hrynevich A, Li Y, Cedillo-Servin G, Malda J, Castilho M. (Bio)fabrication of microfluidic devices and organs-on-a-chip. 3D Print Med 2023. [DOI: 10.1016/b978-0-323-89831-7.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
22
|
Yang X, Song R, He L, Wu L, He X, Liu X, Tang H, Lu X, Ma Z, Tian P. Optimization mechanism and applications of ultrafast laser machining towards highly designable 3D micro/nano structuring. RSC Adv 2022; 12:35227-35241. [PMID: 36540223 PMCID: PMC9732930 DOI: 10.1039/d2ra05148f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/22/2022] [Indexed: 09/10/2024] Open
Abstract
Three-dimensional (3D) micro/nano structures are significant in many applications because of their novel multi-functions and potential in high integration. As is known, the traditional methods for the processing of 3D micro/nano structures exhibit disadvantages in mass production and machining precision. Alternatively, ultrafast laser machining, as a rapid and high-power-density processing method, exhibits advantages in 3D micro/nano structuring due to its characteristics of extremely high peak power and ultra-short pulse. With the development of ultrafast laser processing for fine and complex structures, it is attracting significant interest and showing great potential in the manufacture of 3D micro/nano structures. In this review, we introduce the optimization mechanism of ultrafast laser machining in detail, such as the optimization of the repetition rate and pulse energy of the laser. Furthermore, the specific applications of 3D micro/nano structures by laser processing in the optical, electrochemical and biomedical fields are elaborated, and a valuable summary and perspective of 3D micro/nano manufacturing in these fields are provided.
Collapse
Affiliation(s)
- Xiaomeng Yang
- School of Mechanical Engineering, Sichuan University Chengdu 610065 China
| | - Ruiqi Song
- School of Mechanical Engineering, Sichuan University Chengdu 610065 China
| | - Liang He
- School of Mechanical Engineering, Sichuan University Chengdu 610065 China
- Med+X Center for Manufacturing, West China Hospital, Sichuan University Chengdu 610041 China
| | - Leixin Wu
- School of Mechanical Engineering, Sichuan University Chengdu 610065 China
| | - Xin He
- School of Mechanical Engineering, Sichuan University Chengdu 610065 China
| | - Xiaoyu Liu
- School of Mechanical Engineering, Sichuan University Chengdu 610065 China
| | - Hui Tang
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 611731 China
| | - Xiaolong Lu
- School of Mechanical Engineering, Sichuan University Chengdu 610065 China
| | - Zeyu Ma
- School of Mechanical Engineering, Sichuan University Chengdu 610065 China
| | - Peng Tian
- School of Mechanical Engineering, Sichuan University Chengdu 610065 China
| |
Collapse
|
23
|
Olowe M, Parupelli SK, Desai S. A Review of 3D-Printing of Microneedles. Pharmaceutics 2022; 14:2693. [PMID: 36559187 PMCID: PMC9786808 DOI: 10.3390/pharmaceutics14122693] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Microneedles are micron-sized devices that are used for the transdermal administration of a wide range of active pharmaceutics substances with minimally invasive pain. In the past decade, various additive manufacturing technologies have been used for the fabrication of microneedles; however, they have limitations due to material compatibility and bioavailability and are time-consuming and expensive processes. Additive manufacturing (AM), which is popularly known as 3D-printing, is an innovative technology that builds three-dimensional solid objects (3D). This article provides a comprehensive review of the different 3D-printing technologies that have the potential to revolutionize the manufacturing of microneedles. The application of 3D-printed microneedles in various fields, such as drug delivery, vaccine delivery, cosmetics, therapy, tissue engineering, and diagnostics, are presented. This review also enumerates the challenges that are posed by the 3D-printing technologies, including the manufacturing cost, which limits its viability for large-scale production, the compatibility of the microneedle-based materials with human cells, and concerns around the efficient administration of large dosages of loaded microneedles. Furthermore, the optimization of microneedle design parameters and features for the best printing outcomes is of paramount interest. The Food and Drug Administration (FDA) regulatory guidelines relating to the safe use of microneedle devices are outlined. Finally, this review delineates the implementation of futuristic technologies, such as artificial intelligence algorithms, for 3D-printed microneedles and 4D-printing capabilities.
Collapse
Affiliation(s)
- Michael Olowe
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Santosh Kumar Parupelli
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Salil Desai
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| |
Collapse
|
24
|
Wang C, Vangelatos Z, Winston T, Sun S, Grigoropoulos CP, Ma Z. Remodeling of Architected Mesenchymal Microtissues Generated on Mechanical Metamaterials. 3D PRINTING AND ADDITIVE MANUFACTURING 2022; 9:483-489. [PMID: 36660751 PMCID: PMC9809979 DOI: 10.1089/3dp.2021.0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mechanical metamaterials constitute a nascent category of architected structures comprising arranged periodic components with tailored geometrical features. These materials are now being employed as advanced medical implants due to their extraordinary mechanical properties over traditional devices. Nevertheless, to achieve desired tissue integration and regeneration, it is critical to study how the microarchitecture affects interactions between metamaterial scaffolds and living biological tissues. Based on human induced pluripotent stem cell technology and multiphoton lithography, we report the establishment of an in vitro microtissue model to study the integration and remodeling of human mesenchymal tissues on metamaterial scaffolds with different unit geometries. Microtissues showed distinct tissue morphologies and cellular behaviors between architected octet-truss and bowtie structures. Under the active force generated from mesenchymal tissues, the octet-truss and bowtie metamaterial scaffolds demonstrated unique instability phenomena, significantly different from uniform loading using conventional mechanical testing.
Collapse
Affiliation(s)
- Chenyan Wang
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA
- BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, New York, USA
| | - Zacharias Vangelatos
- Department of Mechanical Engineering, University of California, Berkeley, California, USA
| | - Tackla Winston
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA
- BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, New York, USA
| | - Shiyang Sun
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA
- BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, New York, USA
| | | | - Zhen Ma
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA
- BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, New York, USA
| |
Collapse
|
25
|
Tian M, Ma ZC, Han Q, Suo Q, Zhang Z, Han B. Emerging applications of femtosecond laser fabrication in neurobiological research. Front Chem 2022; 10:1051061. [PMID: 36405321 PMCID: PMC9671932 DOI: 10.3389/fchem.2022.1051061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/24/2022] [Indexed: 10/06/2023] Open
Abstract
As a typical micro/nano processing technique, femtosecond laser fabrication provides the opportunity to achieve delicate microstructures. The outstanding advantages, including nanoscale feature size and 3D architecting, can bridge the gap between the complexity of the central nervous system in virto and in vivo. Up to now, various types of microstructures made by femtosecond laser are widely used in the field of neurobiological research. In this mini review, we present the recent advancement of femtosecond laser fabrication and its emerging applications in neurobiology. Typical structures are sorted out from nano, submicron to micron scale, including nanoparticles, micro/nano-actuators, and 3D scaffolds. Then, several functional units applied in neurobiological fields are summarized, such as central nervous system drug carriers, micro/nano robots and cell/tissue scaffolds. Finally, the current challenges and future perspective of integrated neurobiology research platform are discussed.
Collapse
Affiliation(s)
- Mingzhen Tian
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuo-Chen Ma
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- Department of Automation, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qingqing Han
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- Department of Automation, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Suo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Han
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Dickerson DA. Advancing Engineered Heart Muscle Tissue Complexity with Hydrogel Composites. Adv Biol (Weinh) 2022; 7:e2200067. [PMID: 35999488 DOI: 10.1002/adbi.202200067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/19/2022] [Indexed: 11/10/2022]
Abstract
A heart attack results in the permanent loss of heart muscle and can lead to heart disease, which kills more than 7 million people worldwide each year. To date, outside of heart transplantation, current clinical treatments cannot regenerate lost heart muscle or restore full function to the damaged heart. There is a critical need to create engineered heart tissues with structural complexity and functional capacity needed to replace damaged heart muscle. The inextricable link between structure and function suggests that hydrogel composites hold tremendous promise as a biomaterial-guided strategy to advance heart muscle tissue engineering. Such composites provide biophysical cues and functionality as a provisional extracellular matrix that hydrogels cannot on their own. This review describes the latest advances in the characterization of these biomaterial systems and using them for heart muscle tissue engineering. The review integrates results across the field to provide new insights on critical features within hydrogel composites and perspectives on the next steps to harnessing these promising biomaterials to faithfully reproduce the complex structure and function of native heart muscle.
Collapse
Affiliation(s)
- Darryl A. Dickerson
- Department of Mechanical and Materials Engineering Florida International University 10555 West Flagler St Miami FL 33174 USA
| |
Collapse
|
27
|
Wloka T, Gottschaldt M, Schubert US. From Light to Structure: Photo Initiators for Radical Two-Photon Polymerization. Chemistry 2022; 28:e202104191. [PMID: 35202499 PMCID: PMC9324900 DOI: 10.1002/chem.202104191] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Indexed: 11/06/2022]
Abstract
Two-photon polymerization (2PP) represents a powerful technique for the fabrication of precise three-dimensional structures on a micro- and nanometer scale for various applications. While many review articles are focusing on the used polymeric materials and their application in 2PP, in this review the class of two-photon photo initiators (2PI) used for radical polymerization is discussed in detail. Because the demand for highly efficient 2PI has increased in the last decades, different approaches in designing new efficient 2PIs occurred. This review summarizes the 2PIs known in literature and discusses their absorption behavior under one- and two-photon absorption (2PA) conditions, their two-photon cross sections (σTPA ) as well as their efficiency under 2PP conditions. Here, the photo initiators are grouped depending on their chromophore system (D-π-A-π-D, D-π-D, etc.). Their polymerization efficiencies are evaluated by fabrication windows (FW) depending on different laser intensities and writing speeds.
Collapse
Affiliation(s)
- Thomas Wloka
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller Universität JenaHumboldtstraße 1007743JenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller Universität JenaPhilosophenweg 707743JenaGermany
| | - Michael Gottschaldt
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller Universität JenaHumboldtstraße 1007743JenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller Universität JenaPhilosophenweg 707743JenaGermany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller Universität JenaHumboldtstraße 1007743JenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller Universität JenaPhilosophenweg 707743JenaGermany
| |
Collapse
|
28
|
Lunzer M, Beckwith JS, Chalupa-Gantner F, Rosspeintner A, Licari G, Steiger W, Hametner C, Liska R, Fröhlich J, Vauthey E, Ovsianikov A, Holzer B. Beyond the Threshold: A Study of Chalcogenophene-Based Two-Photon Initiators. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:3042-3052. [PMID: 35431440 PMCID: PMC9009090 DOI: 10.1021/acs.chemmater.1c04002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/07/2022] [Indexed: 06/14/2023]
Abstract
A series of nine soluble, symmetric chalcogenophenes bearing hexyl-substituted triphenylamines, indolocarbazoles, or phenylcarbazoles was designed and synthesized as potential two-photon absorption (2PA) initiators. A detailed photophysical analysis of these molecules revealed good 2PA properties of the series and, in particular, a strong influence of selenium on the 2PA cross sections, rendering these materials especially promising new 2PA photoinitiators. Structuring and threshold tests proved the efficiency and broad spectral versatility of two selenium-containing lead compounds as well as their applicability in an acrylate resin formulation. A comparison with commercial photoinitiators Irg369 and BAPO as well as sensitizer ITX showed that the newly designed selenium-based materials TPA-S and TPA-BBS outperform these traditional initiators by far both in terms of reactivity and dose. Moreover, by increasing the ultralow concentration of TPA-BBS, a further reduction of the polymerization threshold can be achieved, revealing the great potential of this series for application in two-photon polymerization (2PP) systems where only low laser power is available.
Collapse
Affiliation(s)
- Markus Lunzer
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
- Institute
of Materials Science and Technology, TU
Wien, Getreidemarkt 9/308, 1060 Vienna, Austria
- UpNano
GmbH, Modecenterstraße
22/D36, 1030 Vienna, Austria
| | - Joseph S. Beckwith
- Department
of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | | | - Arnulf Rosspeintner
- Department
of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Giuseppe Licari
- Department
of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Wolfgang Steiger
- Institute
of Materials Science and Technology, TU
Wien, Getreidemarkt 9/308, 1060 Vienna, Austria
| | - Christian Hametner
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Robert Liska
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Johannes Fröhlich
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Eric Vauthey
- Department
of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Aleksandr Ovsianikov
- Institute
of Materials Science and Technology, TU
Wien, Getreidemarkt 9/308, 1060 Vienna, Austria
| | - Brigitte Holzer
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| |
Collapse
|
29
|
Mckee S, Lutey A, Sciancalepore C, Poli F, Selleri S, Cucinotta A. Microfabrication of polymer microneedle arrays using two-photon polymerization. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY 2022; 229:112424. [DOI: 10.1016/j.jphotobiol.2022.112424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
|
30
|
Zeng X, Meng Z, He J, Mao M, Li X, Chen P, Fan J, Li D. Embedded bioprinting for designer 3D tissue constructs with complex structural organization. Acta Biomater 2022; 140:1-22. [PMID: 34875360 DOI: 10.1016/j.actbio.2021.11.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/12/2023]
Abstract
3D bioprinting has been developed as an effective and powerful technique for the fabrication of living tissue constructs in a well-controlled manner. However, most existing 3D bioprinting strategies face substantial challenges in replicating delicate and intricate tissue-specific structural organizations using mechanically weak biomaterials such as hydrogels. Embedded bioprinting is an emerging bioprinting strategy that can directly fabricate complex structures derived from soft biomaterials within a supporting matrix, which shows great promise in printing large vascularized tissues and organs. Here, we provide a state-of-the-art review on the development of embedded bioprinting including extrusion-based and light-based processes to manufacture complex tissue constructs with biomimetic architectures. The working principles, bioinks, and supporting matrices of embedded printing processes are introduced. The effect of key processing parameters on the printing resolution, shape fidelity, and biological functions of the printed tissue constructs are discussed. Recent innovations in the processes and applications of embedded bioprinting are highlighted, such as light-based volumetric bioprinting and printing of functional vascularized organ constructs. Challenges and future perspectives with regard to translating embedded bioprinting into an effective strategy for the fabrication of functional biological constructs with biomimetic structural organizations are finally discussed. STATEMENT OF SIGNIFICANCE: It is still challenging to replicate delicate and intricate tissue-specific structural organizations using mechanically-weak hydrogels for the fabrication of functional living tissue constructs. Embedded bioprinting is an emerging 3D printing strategy that enables to produce complex tissue structures directly inside a reservoir filled with supporting matrix, which largely widens the choice of bioprinting inks to ECM-like hydrogels. Here we aim to provide a comprehensive review on various embedded bioprinting techniques mainly including extrusion-based and light-based processes. Various bioinks, supporting matrices, key processing parameters as well as their effects on the structures and biological functions of resultant living tissue constructs are discussed. We expect that it can provide an important reference and generate new insights for the bioprinting of large vascularized tissues and organs with biological functions.
Collapse
|
31
|
Open chain pseudopeptides as hydrogelators with reversible and dynamic responsiveness to pH, temperature and sonication as vehicles for controlled drug delivery. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Zhiganshina ER, Arsenyev MV, Chubich DA, Kolymagin DA, Pisarenko AV, Burkatovsky DS, Baranov EV, Vitukhnovsky AG, Lobanov AN, Matital RP, Aleynik DY, Chesnokov SA. Tetramethacrylic benzylidene cyclopentanone dye for one- and two-photon photopolymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
33
|
Cho KW, Sunwoo SH, Hong YJ, Koo JH, Kim JH, Baik S, Hyeon T, Kim DH. Soft Bioelectronics Based on Nanomaterials. Chem Rev 2021; 122:5068-5143. [PMID: 34962131 DOI: 10.1021/acs.chemrev.1c00531] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent advances in nanostructured materials and unconventional device designs have transformed the bioelectronics from a rigid and bulky form into a soft and ultrathin form and brought enormous advantages to the bioelectronics. For example, mechanical deformability of the soft bioelectronics and thus its conformal contact onto soft curved organs such as brain, heart, and skin have allowed researchers to measure high-quality biosignals, deliver real-time feedback treatments, and lower long-term side-effects in vivo. Here, we review various materials, fabrication methods, and device strategies for flexible and stretchable electronics, especially focusing on soft biointegrated electronics using nanomaterials and their composites. First, we summarize top-down material processing and bottom-up synthesis methods of various nanomaterials. Next, we discuss state-of-the-art technologies for intrinsically stretchable nanocomposites composed of nanostructured materials incorporated in elastomers or hydrogels. We also briefly discuss unconventional device design strategies for soft bioelectronics. Then individual device components for soft bioelectronics, such as biosensing, data storage, display, therapeutic stimulation, and power supply devices, are introduced. Afterward, representative application examples of the soft bioelectronics are described. A brief summary with a discussion on remaining challenges concludes the review.
Collapse
Affiliation(s)
- Kyoung Won Cho
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongseok Joseph Hong
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ja Hoon Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Seungmin Baik
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
34
|
Vangelatos Z, Sheikh HM, Marcus PS, Grigoropoulos CP, Lopez VZ, Flamourakis G, Farsari M. Strength through defects: A novel Bayesian approach for the optimization of architected materials. SCIENCE ADVANCES 2021; 7:eabk2218. [PMID: 34623909 PMCID: PMC8500519 DOI: 10.1126/sciadv.abk2218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
We use a previously unexplored Bayesian optimization framework, “evolutionary Monte Carlo sampling,” to systematically design the arrangement of defects in an architected microlattice to maximize its strain energy density before undergoing catastrophic failure. Our algorithm searches a design space with billions of 4 × 4 × 5 3D lattices, yet it finds the global optimum with only 250 cost function evaluations. Our optimum has a normalized strain energy density 12,464 times greater than its commonly studied defect-free counterpart. Traditional optimization is inefficient for this microlattice because (i) the design space has discrete, qualitative parameter states as input variables, (ii) the cost function is computationally expensive, and (iii) the design space is large. Our proposed framework is useful for architected materials and for many optimization problems in science and elucidates how defects can enhance the mechanical performance of architected materials.
Collapse
Affiliation(s)
- Zacharias Vangelatos
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Laser Thermal Lab, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Haris Moazam Sheikh
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Computational Fluid Dynamics Laboratory, University of California, Berkeley, CA 94720, USA
| | - Philip S. Marcus
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Computational Fluid Dynamics Laboratory, University of California, Berkeley, CA 94720, USA
| | - Costas P. Grigoropoulos
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Laser Thermal Lab, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - George Flamourakis
- Institute of Electronic Structure and Laser (IESL), Foundation of Research and Technology–Hellas (FORTH), Heraklion 70013, Crete, Greece
| | - Maria Farsari
- Institute of Electronic Structure and Laser (IESL), Foundation of Research and Technology–Hellas (FORTH), Heraklion 70013, Crete, Greece
| |
Collapse
|
35
|
Lou L, Lopez KO, Nautiyal P, Agarwal A. Integrated Perspective of Scaffold Designing and Multiscale Mechanics in Cardiac Bioengineering. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Lihua Lou
- Department of Mechanical and Materials Engineering Florida International University Miami FL 33174 USA
| | - Kazue Orikasa Lopez
- Department of Mechanical and Materials Engineering Florida International University Miami FL 33174 USA
| | - Pranjal Nautiyal
- Mechanical Engineering and Applied Mechanics University of Pennsylvania Philadelphia PA 19104 USA
| | - Arvind Agarwal
- Plasma Forming Laboratory Advanced Materials Engineering Research Institute (AMERI) Mechanical and Materials Engineering College of Engineering and Computing Florida International University Miami FL 33174 USA
| |
Collapse
|
36
|
Micro-scaffolds as synthetic cell niches: recent advances and challenges. Curr Opin Biotechnol 2021; 73:290-299. [PMID: 34619481 DOI: 10.1016/j.copbio.2021.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 01/01/2023]
Abstract
Micro-fabrication and nano-fabrication provide useful approaches to address fundamental biological questions by mimicking the physiological microenvironment in which cells carry out their functions. In particular, 2D patterns and 3D scaffolds obtained via lithography, direct laser writing, and other techniques allow for shaping hydrogels, synthetic polymers and biologically derived materials to create structures for (single) cell culture. Applications of micro-scaffolds mimicking cell niches include stem cell self-renewal, differentiation, and lineage specification. This review moves from technological aspects of scaffold microfabrication for cell biological applications to a broad overview of advances in (stem) cell research: achievements for embryonic, induced pluripotent, mesenchymal, and neural stem cells are treated in detail, while a particular section is dedicated to micro-scaffolds used to study single cells in basic cell biology.
Collapse
|
37
|
Somers P, Liang Z, Johnson JE, Boudouris BW, Pan L, Xu X. Rapid, continuous projection multi-photon 3D printing enabled by spatiotemporal focusing of femtosecond pulses. LIGHT, SCIENCE & APPLICATIONS 2021; 10:199. [PMID: 34561417 PMCID: PMC8463698 DOI: 10.1038/s41377-021-00645-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 05/27/2023]
Abstract
There is demand for scaling up 3D printing throughput, especially for the multi-photon 3D printing process that provides sub-micrometer structuring capabilities required in diverse fields. In this work, high-speed projection multi-photon printing is combined with spatiotemporal focusing for fabrication of 3D structures in a rapid, layer-by-layer, and continuous manner. Spatiotemporal focusing confines printing to thin layers, thereby achieving print thicknesses on the micron and sub-micron scale. Through projection of dynamically varying patterns with no pause between patterns, a continuous fabrication process is established. A numerical model for computing spatiotemporal focusing and imaging is also presented which is verified by optical imaging and printing results. Complex 3D structures with smooth features are fabricated, with millimeter scale printing realized at a rate above 10-3 mm3 s-1. This method is further scalable, indicating its potential to make fabrications of 3D structures with micro/nanoscale features in a practical time scale a reality.
Collapse
Affiliation(s)
- Paul Somers
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Zihao Liang
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jason E Johnson
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Bryan W Boudouris
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Liang Pan
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Xianfan Xu
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
38
|
Safarzadeh Kozani P, Safarzadeh Kozani P, Hamidi M, Valentine Okoro O, Eskandani M, Jaymand M. Polysaccharide-based hydrogels: properties, advantages, challenges, and optimization methods for applications in regenerative medicine. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1962876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
- Student Research Committee, Medical Biotechnology Research Center, School of Nursing, Midwifery, and Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoud Hamidi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
- BioMatter-Biomass Transformation Lab. (BTL), École Polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Oseweuba Valentine Okoro
- BioMatter-Biomass Transformation Lab. (BTL), École Polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
39
|
Jayne RK, Karakan MÇ, Zhang K, Pierce N, Michas C, Bishop DJ, Chen CS, Ekinci KL, White AE. Direct laser writing for cardiac tissue engineering: a microfluidic heart on a chip with integrated transducers. LAB ON A CHIP 2021; 21:1724-1737. [PMID: 33949395 DOI: 10.1039/d0lc01078b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We have developed a microfluidic platform for engineering cardiac microtissues in highly-controlled microenvironments. The platform is fabricated using direct laser writing (DLW) lithography and soft lithography, and contains four separate devices. Each individual device houses a cardiac microtissue and is equipped with an integrated strain actuator and a force sensor. Application of external pressure waves to the platform results in controllable time-dependent forces on the microtissues. Conversely, oscillatory forces generated by the microtissues are transduced into measurable electrical outputs. We demonstrate the capabilities of this platform by studying the response of cardiac microtissues derived from human induced pluripotent stem cells (hiPSC) under prescribed mechanical loading and pacing. This platform will be used for fundamental studies and drug screening on cardiac microtissues.
Collapse
Affiliation(s)
- Rachael K Jayne
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA. and Photonics Center, Boston University, Boston, MA 02215, USA
| | - M Çağatay Karakan
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA. and Photonics Center, Boston University, Boston, MA 02215, USA
| | - Kehan Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA and Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Noelle Pierce
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Christos Michas
- Photonics Center, Boston University, Boston, MA 02215, USA and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - David J Bishop
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA. and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA and Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, USA and Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA and Department of Physics, Boston University, Boston, MA 02215, USA
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA and Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Kamil L Ekinci
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA. and Photonics Center, Boston University, Boston, MA 02215, USA and Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Alice E White
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA. and Photonics Center, Boston University, Boston, MA 02215, USA and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA and Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, USA and Department of Physics, Boston University, Boston, MA 02215, USA
| |
Collapse
|
40
|
Abstract
Hydrogels are polymeric networks highly swollen with water. Because of their versatility and properties mimicking biological tissues, they are very interesting for biomedical applications. In this aim, the control of porosity is of crucial importance since it governs the transport properties and influences the fate of cells cultured onto or into the hydrogels. Among the techniques allowing for the elaboration of hydrogels, photopolymerization or photo-cross-linking are probably the most powerful and versatile synthetic routes. This Review aims at giving an overview of the literature dealing with photopolymerized hydrogels for which the generation or characterization of porosity is studied. First, the materials (polymers and photoinitiating systems) used for synthesizing hydrogels are presented. The different ways for generating porosity in the photopolymerized hydrogels are explained, and the characterization techniques allowing adequate study of the porosity are presented. Finally, some applications in the field of controlled release and tissue engineering are reviewed.
Collapse
Affiliation(s)
- Erwan Nicol
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS Le Mans Université, Avenue Olivier Messiaen, 72085 Cedex 9 Le Mans, France
| |
Collapse
|
41
|
Song J, Michas C, Chen CS, White AE, Grinstaff MW. Controlled Cell Alignment Using Two-Photon Direct Laser Writing-Patterned Hydrogels in 2D and 3D. Macromol Biosci 2021; 21:e2100051. [PMID: 33738917 DOI: 10.1002/mabi.202100051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Indexed: 01/15/2023]
Abstract
Direct laser writing (DLW) via two-photon polymerization is an emerging highly precise technique for the fabrication of intricate cellular scaffolds. Despite recent progress in using two-photon-polymerized scaffolds to probe fundamental cell behaviors, new methods to direct and modulate microscale cell alignment and selective cell adhesion using two-photon-polymerized microstructures are of keen interest. Here, a DLW-fabricated 2D and 3D hydrogel microstructures, with alternating soft and stiff regions, for precisely controlled cell alignment are reported. The use of both cell-adhesive and cell-repellent hydrogels allows selective adhesion and alignment of human mesenchymal stem cells within the printed structure. Importantly, DLW patterning enables cell alignment on flat surfaces as well as irregular and curved 3D microstructures, which are otherwise challenging to pattern with cells.
Collapse
Affiliation(s)
- Jiaxi Song
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Christos Michas
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Alice E White
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.,Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.,Department of Chemistry, Boston University, Boston, MA, 02215, USA.,Department of Medicine, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
42
|
Su W, Yin J, Wang R, Shi M, Liu P, Qin Z, Xing R, Jiao T. Self-assembled natural biomacromolecular fluorescent hydrogels with tunable red edge effects. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125993] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Koroleva A, Deiwick A, El-Tamer A, Koch L, Shi Y, Estévez-Priego E, Ludl AA, Soriano J, Guseva D, Ponimaskin E, Chichkov B. In Vitro Development of Human iPSC-Derived Functional Neuronal Networks on Laser-Fabricated 3D Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7839-7853. [PMID: 33559469 DOI: 10.1021/acsami.0c16616] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Neural progenitor cells generated from human induced pluripotent stem cells (hiPSCs) are the forefront of ″brain-on-chip″ investigations. Viable and functional hiPSC-derived neuronal networks are shaping powerful in vitro models for evaluating the normal and abnormal formation of cortical circuits, understanding the underlying disease mechanisms, and investigating the response to drugs. They therefore represent a desirable instrument for both the scientific community and the pharmacological industry. However, culture conditions required for the full functional maturation of individual neurons and networks are still unidentified. It has been recognized that three-dimensional (3D) culture conditions can better emulate in vivo neuronal tissue development compared to 2D cultures and thus provide a more desirable in vitro approach. In this paper, we present the design and implementation of a 3D scaffold platform that supports and promotes intricate neuronal network development. 3D scaffolds were produced through direct laser writing by two-photon polymerization (2PP), a high-resolution 3D laser microstructuring technology, using the biocompatible and nondegradable photoreactive resin Dental LT Clear (DClear). Neurons developed and interconnected on a 3D environment shaped by vertically stacked scaffold layers. The developed networks could support different cell types. Starting at the day 50 of 3D culture, neuronal progenitor cells could develop into cortical projection neurons (CNPs) of all six layers, different types of inhibitory neurons, and glia. Additionally and in contrast to 2D conditions, 3D scaffolds supported the long-term culturing of neuronal networks over the course of 120 days. Network health and functionality were probed through calcium imaging, which revealed a strong spontaneous neuronal activity that combined individual and collective events. Taken together, our results highlight advanced microstructured 3D scaffolds as a reliable platform for the 3D in vitro modeling of neuronal functions.
Collapse
Affiliation(s)
- Anastasia Koroleva
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Laser Zentrum Hannover e.V., 30419 Hannover, Germany
| | - Andrea Deiwick
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
| | | | - Lothar Koch
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
| | - Yichen Shi
- Axol Bioscience Ltd., CB10 1XL Cambridge, UK
| | - Estefanía Estévez-Priego
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), 08028 Barcelona, Spain
| | - Adriaan-Alexander Ludl
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), 08028 Barcelona, Spain
- Computational Biology Unit, Department of Informatics, University of Bergen, 5020 Bergen, Norway
| | - Jordi Soriano
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), 08028 Barcelona, Spain
| | - Daria Guseva
- Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
- Department of Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Boris Chichkov
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
| |
Collapse
|
44
|
Kampasi K, Ladner I, Zhou J, Soto AC, Hernandez J, Patra S, Haque RU. POEMS (POLYMERIC OPTO-ELECTRO-MECHANICAL SYSTEMS) FOR ADVANCED NEURAL INTERFACES. MATERIALS LETTERS 2021; 285:129015. [PMID: 33716365 PMCID: PMC7946108 DOI: 10.1016/j.matlet.2020.129015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
There has been a growing interest in optical neural interfaces which is driven by the need for improvements in spatial precision, real-time monitoring, and reduced invasiveness. Here, we present unique microfabrication and packaging techniques to build implantable optoelectronics with high precision and spatial complexity. Material characterization of our hybrid polymers shows minimal in vitro degradation, greater flexibility, and lowest optical loss (4.04-4.4 dB/cm at 670 nm) among other polymers reported in prior studies. We use the developed methods to build Lawrence Livermore National Laboratory's (LLNL's) first ultra-compact, lightweight (0.38 g), scalable and minimally invasive thin-film optoelectronic neural implant that can be used for chronic studies of brain activities. The paper concludes by summarizing the progress to date and discussing future opportunities for flexible optoelectronic interfaces in next generation clinical applications.
Collapse
Affiliation(s)
- Komal Kampasi
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Kavli Institute of Fundamental Neuroscience, University of California–San Francisco, San Francisco, CA, USA
| | - Ian Ladner
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jenny Zhou
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Alicia Calónico Soto
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jose Hernandez
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Susant Patra
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Razi-ul Haque
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Kavli Institute of Fundamental Neuroscience, University of California–San Francisco, San Francisco, CA, USA
| |
Collapse
|
45
|
Functional 3D printing: Approaches and bioapplications. Biosens Bioelectron 2020; 175:112849. [PMID: 33250333 DOI: 10.1016/j.bios.2020.112849] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/28/2020] [Accepted: 11/22/2020] [Indexed: 12/17/2022]
Abstract
3D printing technology has become a mature manufacturing technique, widely used for its advantages over the traditional methods, such as the end-user customization and rapid prototyping, useful in different application fields, including the biomedical one. Indeed, it represents a helpful tool for the realization of biodevices (i.e. biosensors, microfluidic bioreactors, drug delivery systems and Lab-On-Chip). In this perspective, the development of 3D printable materials with intrinsic functionalities, through the so-called 4D printing, introduces novel opportunities for the fabrication of "smart" or stimuli-responsive devices. Indeed, functional 3D printable materials can modify their surfaces, structures, properties or even shape in response to specific stimuli (such as pressure, temperature or light radiation), adding to the printed object new interesting properties exploited after the fabrication process. In this context, by combining 3D printing technology with an accurate materials' design, functional 3D objects with built-in (bio)chemical functionalities, having biorecognition, biocatalytic and drug delivery capabilities are here reported.
Collapse
|
46
|
Three-dimensional cell models for extracellular vesicles production, isolation, and characterization. Methods Enzymol 2020; 645:209-230. [PMID: 33565973 DOI: 10.1016/bs.mie.2020.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) play a pivotal role in cancer progression. However, the majority of functional studies performed so far relies on data acquired in traditional 2D cultures. Because the spatial architecture of tissue is decisive for the cell fate, new cell models to study EV functions in the 3D environment must approximate in vitro models to the physiological conditions. Several models were developed during the last years, which may be suitable to serve as 3D models to study EVs; among them are hydrogels, solid scaffolds, bioreactors, and 3D CoSeedis™ inserts. We present in this chapter a protocol for a 3D cell model based on the 3D CoSeedis™ agarose inserts, allowing for a long-term culture of cells of different origins under serum-free conditions and easy EV recovery. Additionally, information on individual culture conditions in 3D CoSeedis™ for different cell lines, protocols for model evaluation, and quality controls are included. We hope that our suggestions and experience will be useful to carry out EV study under more physiological conditions and contribute to the EV research field's progress.
Collapse
|
47
|
Cabanach P, Pena-Francesch A, Sheehan D, Bozuyuk U, Yasa O, Borros S, Sitti M. Zwitterionic 3D-Printed Non-Immunogenic Stealth Microrobots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003013. [PMID: 32864804 PMCID: PMC7610461 DOI: 10.1002/adma.202003013] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/13/2020] [Indexed: 05/19/2023]
Abstract
Microrobots offer transformative solutions for non-invasive medical interventions due to their small size and untethered operation inside the human body. However, they must face the immune system as a natural protection mechanism against foreign threats. Here, non-immunogenic stealth zwitterionic microrobots that avoid recognition from immune cells are introduced. Fully zwitterionic photoresists are developed for two-photon polymerization 3D microprinting of hydrogel microrobots with ample functionalization: tunable mechanical properties, anti-biofouling and non-immunogenic properties, functionalization for magnetic actuation, encapsulation of biomolecules, and surface functionalization for drug delivery. Stealth microrobots avoid detection by macrophage cells of the innate immune system after exhaustive inspection (>90 hours), which has not been achieved in any microrobotic platform to date. These versatile zwitterionic materials eliminate a major roadblock in the development of biocompatible microrobots, and will serve as a toolbox of non-immunogenic materials for medical microrobot and other device technologies for bioengineering and biomedical applications.
Collapse
Affiliation(s)
- Pol Cabanach
- Physical Intelligence Department Max Planck Institute for Intelligent Systems Stuttgart 70569, Germany; Grup d‘Enginyeria de Materials Institut Químic de Sarrià Universitat Ramon Llull Barcelona 08017, Spain
| | - Abdon Pena-Francesch
- Physical Intelligence Department Max Planck Institute for Intelligent Systems Stuttgart 70569, Germany; Department of Materials Science and Engineering Robotics Institute University of Michigan Ann Arbor, MI 48109, USA
| | - Devin Sheehan
- Physical Intelligence Department Max Planck Institute for Intelligent Systems Stuttgart 70569, Germany
| | - Ugur Bozuyuk
- Physical Intelligence Department Max Planck Institute for Intelligent Systems Stuttgart 70569, Germany
| | - Oncay Yasa
- Physical Intelligence Department Max Planck Institute for Intelligent Systems Stuttgart 70569, Germany
| | - Salvador Borros
- Grup d‘Enginyeria de Materials Institut Químic de Sarrià Universitat Ramon Llull Barcelona 08017, Spain
| | - Metin Sitti
- Physical Intelligence Department Max Planck Institute for Intelligent Systems Stuttgart 70569, Germany; School of Medicine and School of Engineering Koç University Istanbul 34450, Turkey; Institute for Biomedical Engineering ETH Zurich Zurich 8092, Switzerland
| |
Collapse
|
48
|
Bahraminasab M. Challenges on optimization of 3D-printed bone scaffolds. Biomed Eng Online 2020; 19:69. [PMID: 32883300 PMCID: PMC7469110 DOI: 10.1186/s12938-020-00810-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/22/2020] [Indexed: 12/15/2022] Open
Abstract
Advances in biomaterials and the need for patient-specific bone scaffolds require modern manufacturing approaches in addition to a design strategy. Hybrid materials such as those with functionally graded properties are highly needed in tissue replacement and repair. However, their constituents, proportions, sizes, configurations and their connection to each other are a challenge to manufacturing. On the other hand, various bone defect sizes and sites require a cost-effective readily adaptive manufacturing technique to provide components (scaffolds) matching with the anatomical shape of the bone defect. Additive manufacturing or three-dimensional (3D) printing is capable of fabricating functional physical components with or without porosity by depositing the materials layer-by-layer using 3D computer models. Therefore, it facilitates the production of advanced bone scaffolds with the feasibility of making changes to the model. This review paper first discusses the development of a computer-aided-design (CAD) approach for the manufacture of bone scaffolds, from the anatomical data acquisition to the final model. It also provides information on the optimization of scaffold's internal architecture, advanced materials, and process parameters to achieve the best biomimetic performance. Furthermore, the review paper describes the advantages and limitations of 3D printing technologies applied to the production of bone tissue scaffolds.
Collapse
Affiliation(s)
- Marjan Bahraminasab
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
49
|
Raimondi MT, Donnaloja F, Barzaghini B, Bocconi A, Conci C, Parodi V, Jacchetti E, Carelli S. Bioengineering tools to speed up the discovery and preclinical testing of vaccines for SARS-CoV-2 and therapeutic agents for COVID-19. Theranostics 2020; 10:7034-7052. [PMID: 32641977 PMCID: PMC7330866 DOI: 10.7150/thno.47406] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
This review provides an update for the international research community on the cell modeling tools that could accelerate the understanding of SARS-CoV-2 infection mechanisms and could thus speed up the development of vaccines and therapeutic agents against COVID-19. Many bioengineering groups are actively developing frontier tools that are capable of providing realistic three-dimensional (3D) models for biological research, including cell culture scaffolds, microfluidic chambers for the culture of tissue equivalents and organoids, and implantable windows for intravital imaging. Here, we review the most innovative study models based on these bioengineering tools in the context of virology and vaccinology. To make it easier for scientists working on SARS-CoV-2 to identify and apply specific tools, we discuss how they could accelerate the discovery and preclinical development of antiviral drugs and vaccines, compared to conventional models.
Collapse
Affiliation(s)
- Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering G. Natta, Politecnico di Milano, Milano, Italy
| | - Francesca Donnaloja
- Department of Chemistry, Materials and Chemical Engineering G. Natta, Politecnico di Milano, Milano, Italy
| | - Bianca Barzaghini
- Department of Chemistry, Materials and Chemical Engineering G. Natta, Politecnico di Milano, Milano, Italy
| | - Alberto Bocconi
- Department of Chemistry, Materials and Chemical Engineering G. Natta, Politecnico di Milano, Milano, Italy
| | - Claudio Conci
- Department of Chemistry, Materials and Chemical Engineering G. Natta, Politecnico di Milano, Milano, Italy
| | - Valentina Parodi
- Department of Chemistry, Materials and Chemical Engineering G. Natta, Politecnico di Milano, Milano, Italy
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering G. Natta, Politecnico di Milano, Milano, Italy
| | - Stephana Carelli
- Pediatric Clinical Research Center “Fondazione Romeo ed Enrica Invernizzi”, Department of Biomedical and Clinical Sciences L. Sacco, University of Milano, Italy
| |
Collapse
|
50
|
Hunt M, Taverne M, Askey J, May A, Van Den Berg A, Ho YLD, Rarity J, Ladak S. Harnessing Multi-Photon Absorption to Produce Three-Dimensional Magnetic Structures at the Nanoscale. MATERIALS 2020; 13:ma13030761. [PMID: 32046068 PMCID: PMC7041506 DOI: 10.3390/ma13030761] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
Three-dimensional nanostructured magnetic materials have recently been the topic of intense interest since they provide access to a host of new physical phenomena. Examples include new spin textures that exhibit topological protection, magnetochiral effects and novel ultrafast magnetic phenomena such as the spin-Cherenkov effect. Two-photon lithography is a powerful methodology that is capable of realising 3D polymer nanostructures on the scale of 100 nm. Combining this with postprocessing and deposition methodologies allows 3D magnetic nanostructures of arbitrary geometry to be produced. In this article, the physics of two-photon lithography is first detailed, before reviewing the studies to date that have exploited this fabrication route. The article then moves on to consider how non-linear optical techniques and post-processing solutions can be used to realise structures with a feature size below 100 nm, before comparing two-photon lithography with other direct write methodologies and providing a discussion on future developments.
Collapse
Affiliation(s)
- Matthew Hunt
- School of Physics and Astronomy, Cardiff University, Cardiff CF10 3AT, UK; (M.H.); (J.A.); (A.M.); (A.V.D.B.)
| | - Mike Taverne
- Department of Electrical Engineering, University of Bristol, Bristol BS8 1TH, UK; (M.T.); (Y.-L.D.H.); (J.R.)
| | - Joseph Askey
- School of Physics and Astronomy, Cardiff University, Cardiff CF10 3AT, UK; (M.H.); (J.A.); (A.M.); (A.V.D.B.)
| | - Andrew May
- School of Physics and Astronomy, Cardiff University, Cardiff CF10 3AT, UK; (M.H.); (J.A.); (A.M.); (A.V.D.B.)
| | - Arjen Van Den Berg
- School of Physics and Astronomy, Cardiff University, Cardiff CF10 3AT, UK; (M.H.); (J.A.); (A.M.); (A.V.D.B.)
| | - Ying-Lung Daniel Ho
- Department of Electrical Engineering, University of Bristol, Bristol BS8 1TH, UK; (M.T.); (Y.-L.D.H.); (J.R.)
- Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle NE1 8ST, UK
| | - John Rarity
- Department of Electrical Engineering, University of Bristol, Bristol BS8 1TH, UK; (M.T.); (Y.-L.D.H.); (J.R.)
| | - Sam Ladak
- School of Physics and Astronomy, Cardiff University, Cardiff CF10 3AT, UK; (M.H.); (J.A.); (A.M.); (A.V.D.B.)
- Correspondence:
| |
Collapse
|