1
|
Luo L, Zheng W, Li J, Chen T, Xue W, Lin T, Liu M, Yan Z, Yang J, Li J, Pu J, Wu Y, Hu K, Li S, Huang W. 3D-Printed Titanium Trabecular Scaffolds with Sustained Release of Hypoxia-Induced Exosomes for Dual-Mimetic Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500599. [PMID: 40349160 DOI: 10.1002/advs.202500599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/23/2025] [Indexed: 05/14/2025]
Abstract
Current Ti-6Al-4V bone implants lack trabecular structure and pro‑angiogenic cues, both essential for regeneration. Herein, a dual biomimetic strategy is devised that integrates a 3D-printed biomimetic trabecular porous Ti-6Al-4V scaffold (BTPS) with exosome-loaded PEGDA/GelMA hydrogel microspheres (PGHExo) designed for sustained release. BTPS is designed using Voronoi algorithms and imaging data, and replicates the geometry and mechanical properties of natural bone. Hypoxia-induced human umbilical vein endothelial cell (HUVEC) derived exosomes (HExo) are encapsulated in PGHExo microspheres via microfluidic technology, enabling controlled release of HExo, and anchored onto BTPS using polydopamine (pDA) modification (BTPS&pDA@PGHExo). BTPS exhibited an elastic modulus of ≈3.2 GPa and a permeability of 11.52 × 10-8 mm2, mimicking natural bone. In vitro assays demonstrated that BTPS&pDA@PGHExo significantly enhanced osteogenesis and angiogenesis. mRNA-Seq analysis suggested that BTPS&pDA@PGHExo regulates osteogenic and angiogenic gene expression through the activation of pathways including MAPK, mTOR, HIF-1, and VEGF. In vivo, BTPS&pDA@PGHExo improved bone volume, density, and neovascularization in a rabbit model. This dual biomimetic strategy offers a promising clinical solution, addressing the limitations of conventional Ti-6Al-4V scaffolds and providing an innovative approach for personalized bone defect repair.
Collapse
Affiliation(s)
- Lincong Luo
- Yue Bei People's Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Weihan Zheng
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, 510630, China
| | - Jiaying Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Tingting Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Wanting Xue
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Tao Lin
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Mingrui Liu
- School of Basic Medicine, Dali University, Dali, Yunnan, 671003, China
| | - Zi Yan
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, 510630, China
| | - Jiaxin Yang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jiamin Li
- School of Basic Medical Sciences, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Jiahao Pu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Yaobin Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Konghe Hu
- Yue Bei People's Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shiyu Li
- Department of Microbiology and Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Wenhua Huang
- Yue Bei People's Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
2
|
Kang J, Meng S, Liu C, Wang H, Zhang T, Qi C, Li M. Polydopamine-assisted dual metal ion modification of titanium: Enhancing osseointegration and antibacterial performance. Colloids Surf B Biointerfaces 2025; 253:114717. [PMID: 40300282 DOI: 10.1016/j.colsurfb.2025.114717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/12/2025] [Accepted: 04/15/2025] [Indexed: 05/01/2025]
Abstract
Titanium (Ti) implants are widely used for tooth replacement due to their exceptional mechanical properties and high biocompatibility. However, their inherently inert surface limits osteogenic potential and makes them prone to bacterial colonization, increasing the risk of biofilm formation and implant-related infections. To address these limitations, surface modification of Ti is essential. This study aimed to enhance the surface properties of Ti by coating it with polydopamine (PDA) and further doping it with copper and calcium ions. TPDA was prepared and subsequently used to fabricate TPDA@Cu and TPDA@CuCa samples. Material characterization confirmed that TPDA@CuCa exhibited excellent surface wettability and biocompatibility, with Cu2 + and Ca2+ being continuously and stably released in liquid environments. Additionally, TPDA@CuCa significantly improved protein adsorption, facilitating favorable cellular interactions. In vitro experiments demonstrated that TPDA@CuCa exhibited strong antimicrobial activity against Escherichia coli and Staphylococcus aureus, enhanced osteoblast adhesion, mineralization, and upregulated osteogenic gene expression. This bifunctional surface modification strategy offers a promising approach to enhancing both the osteogenic and antibacterial properties of Ti implants.
Collapse
Affiliation(s)
- Jingyang Kang
- Department of Stomatology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, China.
| | - Sikun Meng
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine Suita, Yamadaoka 2-2, Osaka 565-0871, Japan
| | - Chenhui Liu
- Key Laboratory for Liquid Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, 17923 Jingshi Road, Jinan, Shandong 250061, China
| | - Huachun Wang
- Department of Stomatology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, China
| | - Tianzhen Zhang
- Department of Stomatology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, China
| | - Cheng Qi
- Department of Stomatology, Shandong Provincial Third Hospital, Shandong University, 11 Wuyingshan Middle Road, Jinan, Shandong 250031, China
| | - Mei Li
- Department of Stomatology, Shandong Provincial Third Hospital, Shandong University, 11 Wuyingshan Middle Road, Jinan, Shandong 250031, China
| |
Collapse
|
3
|
Wang X, Yuan Z, Cai G, Lu Y, Zhou S, Shang P, Li C, Wang Z, Liu Z, Shafiq M, El-Newehy M, Abdulhameed MM, Lu X, Xu Y, Mo X. Flexible Short Silica Fibers and Tricalcium Phosphate Synergistically Promote Bone Fracture Healing in Composite Cryogel Scaffolds. Adv Healthc Mater 2025; 14:e2404329. [PMID: 40012446 DOI: 10.1002/adhm.202404329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/03/2025] [Indexed: 02/28/2025]
Abstract
Bone tissue engineering is a critical area of research focused on enhancing the regeneration of bone tissue, particularly in cases of complex defects. Despite inherent self-healing capabilities of bone, irregularly-shaped defects pose significant challenges for complete regeneration, thereby necessitating innovative therapeutic strategies. This study addresses these challenges by exploring the development of advanced tissue regeneration scaffolds. Here, tricalcium phosphate (TCP) is integrated with short silica (SiO2) fibers to develop 3D cryogel scaffolds, designated as SSFx@TCP. These cryogel scaffolds exhibit low density (<2 mg cm- 3), high water absorption (>3500%), and favorable sustained release properties, enabling effective cellular interactions. Notably, the SSFx@TCP cryogels support cell attachment, proliferation, and differentiation, while also regulate gene expression associated with angiogenesis and osteogenesis. Furthermore, in vivo assays demonstrated that these scaffolds can effectively promote de novo bone production in a rat calvarial defect model 8 weeks post-operatively, thereby indicating their potential to mimic the natural extracellular matrix. The successful integration of bioactive components in these cryogels may be beneficial for improved clinical outcomes in bone regeneration therapies and ultimately enhancing patient care in reconstructive surgery.
Collapse
Affiliation(s)
- Xinyi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zhengchao Yuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Guangfang Cai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yifan Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Shasha Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Panpan Shang
- Institute of Biomaterials and Biomedicine, School of Food and Pharmacy, Shanghai Zhongqiao Vocational and Technical University, Shanghai, 201514, P. R. China
| | - Cheng Li
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University, No.183, Xinqiao Street, Shapingba District, Chongqing, 400037, P. R. China
| | - Zewen Wang
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University, No.183, Xinqiao Street, Shapingba District, Chongqing, 400037, P. R. China
| | - Zhenchao Liu
- Basic Medical College of Army Medical University, No.30, Gaotanyan Street, Shapingba District, Chongqing, 400037, P. R. China
| | - Muhammad Shafiq
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Meera Moydeen Abdulhameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Xiao Lu
- Shanghai Orthopedic Biomaterial Technology Innovation Center, Shanghai Bio-lu Biomaterials Co., Ltd., Shanghai, P. R. China
| | - Yuan Xu
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University, No.183, Xinqiao Street, Shapingba District, Chongqing, 400037, P. R. China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
- Institute of Biomaterials and Biomedicine, School of Food and Pharmacy, Shanghai Zhongqiao Vocational and Technical University, Shanghai, 201514, P. R. China
| |
Collapse
|
4
|
Li X, Zhao YC, Yin D, Cai Y, Xiao D, Zhao MC, Wen C, Atrens A. Microwave-Sintered Nano-SiC Reinforced 8SiC/Ti-3Cu Composite: Fabrication, Wear Resistance, Antibacterial Function, and Biocompatibility. Adv Healthc Mater 2025; 14:e2403626. [PMID: 39757472 DOI: 10.1002/adhm.202403626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/21/2024] [Indexed: 01/07/2025]
Abstract
The significance of biomedical applications of Ti alloys is best emphasized by their widespread utilization as implantable materials, such as internal supports and bone replacements. Ti alloys are sensitive to fretting wear, which leads to the early failure of Ti implants. Improved wear resistance of such implants is essential to ensure a prolonged implant life. Based on the structure-function-integrated concept, this work unprecedentedly designs and fabricates an antibacterial 8SiC/Ti-3Cu composite with improved wear resistance using microwave sintering from pure Ti, Cu, and nano-SiC powders. For comparison, SiC-free Ti-3Cu composite is manufactured under the same conditions using microwave sintering. The addition of 8 vol.% SiC to Ti-3Cu significantly reduces the porosity and pore size of composites. The 8SiC/Ti-3Cu shows a Vickers hardness of 353 HV, compressive strength of 803 MPa, elastic modulus of 28.7 GPa, and a significantly increased wear resistance (wear rate decreased by 70% compared to Ti-3Cu). In addition, 8SiC/Ti-3Cu exhibits excellent electrochemical corrosion resistance, biocompatibility in relation to MC3T3-E1 cells, and a bacteriostatic rate over 99% against E. coli. The combination of the wear-resistant nano-reinforced SiC and antibacterial Ti2Cu in the 8SiC/Ti-3Cu composite renders it a highly promising implant material.
Collapse
Affiliation(s)
- Xin Li
- School of Materials Science and Engineering, Central South University, Changsha, 410083, China
| | - Ying-Chao Zhao
- School of Materials Science and Engineering, Central South University, Changsha, 410083, China
| | - Dengfeng Yin
- School of Materials Science and Engineering, Central South University, Changsha, 410083, China
| | - Ying Cai
- Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Desheng Xiao
- Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ming-Chun Zhao
- School of Materials Science and Engineering, Central South University, Changsha, 410083, China
| | - Cuie Wen
- Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, 3001, Australia
| | - Andrej Atrens
- School of Mechanical and Mining Engineering, University of Queensland, Brisbane, QLD4072, Australia
| |
Collapse
|
5
|
Hsu Y, He Y, Zhao X, Wang F, Yang F, Zheng Y, Zhou Y, Xia D, Liu Y. Photothermal Coating on Zinc Alloy for Controlled Biodegradation and Improved Osseointegration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409051. [PMID: 39807526 PMCID: PMC11884568 DOI: 10.1002/advs.202409051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/12/2024] [Indexed: 01/16/2025]
Abstract
Zinc (Zn) and its alloys are promising biomaterials for orthopedic applications due to their degradability and mechanical properties. Zn2+ plays a crucial role in bone formation, but excessive early release may cause cytotoxicity and inhibit osseointegration. To solve this, we developed a near-infrared (NIR) light-controlled polycaprolactone/copper-sulfur (PCL/CuS) coating that slows degradation and enhances osseointegration of Zn alloys. The zinc-lithium (Zn-Li) substrate is encapsulated with PCL, reducing Zn2+ release and maintaing biocompatibility. Controlled Zn2+ release and mild photothermal therapy via CuS nanoparticles promoted osteogenesis. In vitro studies demonstrated enhanced cell proliferation and osteogenic differentiation. In vivo Micro-Computed Tomography (Micro-CT), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), and immunohistochemical analyses confirmed improved osseointegration. Mechanistic studies using RNA sequencing and Western blotting revealed that the coating promotes osteogenesis by activating the Wnt/β-catenin and inhibiting NF-κB pathways. This NIR light-controlled PCL/CuS coating successfully regulates Zn alloy degradation, enhances osseointegration via controlled Zn2+ release and mild photothermal therapy effct, presenting a promising avenue for orthopedic biomaterials.
Collapse
Affiliation(s)
- Yuchien Hsu
- Department of ProsthodonticsPeking University School and Hospital of StomatologyNo.22, Zhongguancun South Avenue, Haidian DistrictBeijing100081China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental MaterialsPeking University School and Hospital of StomatologyNo.22, Zhongguancun South Avenue, Haidian DistrictBeijing100081China
| | - Yunjiao He
- Department of ProsthodonticsPeking University School and Hospital of StomatologyNo.22, Zhongguancun South Avenue, Haidian DistrictBeijing100081China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental MaterialsPeking University School and Hospital of StomatologyNo.22, Zhongguancun South Avenue, Haidian DistrictBeijing100081China
| | - Xiao Zhao
- Department of ProsthodonticsPeking University School and Hospital of StomatologyNo.22, Zhongguancun South Avenue, Haidian DistrictBeijing100081China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental MaterialsPeking University School and Hospital of StomatologyNo.22, Zhongguancun South Avenue, Haidian DistrictBeijing100081China
| | - Feilong Wang
- Department of ProsthodonticsPeking University School and Hospital of StomatologyNo.22, Zhongguancun South Avenue, Haidian DistrictBeijing100081China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental MaterialsPeking University School and Hospital of StomatologyNo.22, Zhongguancun South Avenue, Haidian DistrictBeijing100081China
| | - Fan Yang
- Department of ProsthodonticsPeking University School and Hospital of StomatologyNo.22, Zhongguancun South Avenue, Haidian DistrictBeijing100081China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental MaterialsPeking University School and Hospital of StomatologyNo.22, Zhongguancun South Avenue, Haidian DistrictBeijing100081China
| | - Yufeng Zheng
- School of Materials Science and EngineeringPeking UniversityNo.5 Yi‐He‐Yuan Road, HaiDian DistrictBeijing100871China
| | - Yongsheng Zhou
- Department of ProsthodonticsPeking University School and Hospital of StomatologyNo.22, Zhongguancun South Avenue, Haidian DistrictBeijing100081China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental MaterialsPeking University School and Hospital of StomatologyNo.22, Zhongguancun South Avenue, Haidian DistrictBeijing100081China
| | - Dandan Xia
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental MaterialsPeking University School and Hospital of StomatologyNo.22, Zhongguancun South Avenue, Haidian DistrictBeijing100081China
- Department of Dental MaterialsPeking University School and Hospital of StomatologyNo.22, Zhongguancun South Avenue, Haidian DistrictBeijing100081China
| | - Yunsong Liu
- Department of ProsthodonticsPeking University School and Hospital of StomatologyNo.22, Zhongguancun South Avenue, Haidian DistrictBeijing100081China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental MaterialsPeking University School and Hospital of StomatologyNo.22, Zhongguancun South Avenue, Haidian DistrictBeijing100081China
| |
Collapse
|
6
|
Shen Y, Li G, Wang J, Qi J, Cui W, Deng L. Facile synthesis of in situ bismuth-doped calcium phosphate nanocomposite integrated injectable biopolymer hydrogel slurry for bone regeneration. J Colloid Interface Sci 2025; 679:760-771. [PMID: 39393153 DOI: 10.1016/j.jcis.2024.09.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/13/2024]
Abstract
The bionics of natural bone structures plays an essential role in the selection of materials for bone tissue engineering. Although the content of trace metallic elements in bone is low, they have significant effects on the process of bone growth and metabolism. Up to now, the applications of "green" heavy metals in bone regeneration are limited. Herein, in this study, we present a straightforward one-pot strategy for the synthesis of in situ bismuth-doped amorphous calcium phosphate nanocomposites (RBCP), effectively integrating the beneficial properties of each component. The characterization of these products can be readily optimized by adjusting reaction parameters. Our in vitro studies show that under coordination of each component, the RBCP biomaterial demonstrates distinguished biocompatibility and significantly accelerates vascular pattern formation within just 4 h by stimulating the expression of angiogenesis-related genes in human umbilical vein endothelial cells (HUVECs). In vivo experiments indicate that the incorporation of bismuth effectively enhances bone regeneration and osseointegration in a rat femur defect model. In conclusion, the as-prepared RBCP biomaterials hold promising prospects for treating segmental bone defects, owing to the facile, cost-effective, and eco-friendly preparation process, along with their remarkable capabilities.
Collapse
Affiliation(s)
- Yueqin Shen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Gen Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Jin Qi
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China.
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China.
| |
Collapse
|
7
|
Guo Z, Liu H, Wang W, Hu Z, Li X, Chen H, Wang K, Li Z, Yuan C, Ge X. Recent Advances in Antibacterial Strategies Based on TiO 2 Biomimetic Micro/Nano-Structured Surfaces Fabricated Using the Hydrothermal Method. Biomimetics (Basel) 2024; 9:656. [PMID: 39590228 PMCID: PMC11591971 DOI: 10.3390/biomimetics9110656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Ti and its alloys, widely utilized in orthopedic and dental implants, inherently lack antibacterial properties, posing significant infection risks, especially in the context of growing antibiotic resistance. This review critically evaluates non-antibiotic antibacterial strategies, with a particular focus on surface modifications and micro/nano-structured surfaces. Micro/nano-structured surfaces, inspired by natural topographies, utilize physical mechanisms to eradicate bacteria. Despite their potential, the antibacterial efficacy of these surfaces remains insufficient for clinical application. Titanium dioxide (TiO2), known for its excellent photocatalytic antibacterial activity and biocompatibility, is emerging as an ideal candidate for enhancing micro/nano-structured surfaces. By combining the photocatalytic antibacterial effects of TiO2 with the mechanical bactericidal properties of micro/nano-structured surfaces, superior antibacterial performance can be achieved. The hydrothermal method is frequently employed to fabricate TiO2 micro/nano-structured surfaces, and this area of research continues to thrive, particularly in the development of antibacterial strategies. With demonstrated efficacy, combined antibacterial strategies based on TiO2 micro/nano-structured surfaces have become a prominent focus in current research. Consequently, the integration of physical stimulation and chemical release mechanisms may represent the future direction for TiO2 micro/nano-structured surfaces. This review aims to advance the study of TiO2 micro/nano-structured surfaces in antibacterial applications and to inspire more effective non-antibiotic antibacterial solutions.
Collapse
Affiliation(s)
- Zilin Guo
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Hanpeng Liu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wuzhi Wang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Zijun Hu
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Xiaofang Li
- College of Foreign Languages, Taiyuan University of Technology, Taiyuan 030024, China
| | - Hao Chen
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Zhaoyang Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Caideng Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiang Ge
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| |
Collapse
|
8
|
Zhou T, Zhou Z, Wang Y. Photothermal Antibacterial and Osteoinductive Polypyrrole@Cu Implants for Biological Tissue Replacement. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3882. [PMID: 39124546 PMCID: PMC11313605 DOI: 10.3390/ma17153882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
The treatment of bone defects caused by disease or accidents through the use of implants presents significant clinical challenges. After clinical implantation, these materials attract and accumulate bacteria and hinder the integration of the implant with bone tissue due to the lack of osteoinductive properties, both of which can cause postoperative infection and even lead to the eventual failure of the operation. This work successfully prepared a novel biomaterial coating with multiple antibacterial mechanisms for potent and durable and osteoinductive biological tissue replacement by pulsed PED (electrochemical deposition). By effectively regulating PPy (polypyrrole), the uniform composite coating achieved sound physiological stability. Furthermore, the photothermal analysis showcased exceptional potent photothermal antibacterial activity. The antibacterial assessments revealed a bacterial eradication rate of 100% for the PPy@Cu/PD composite coating following a 24 h incubation. Upon the introduction of NIR (near-infrared) irradiation, the combined effects of multiple antibacterial mechanisms led to bacterial reduction rates of 99% for E. coli and 98% for S. aureus after a 6 h incubation. Additionally, the successful promotion of osteoblast proliferation was confirmed through the application of the osteoinductive drug PD (pamidronate disodium) on the composite coating's surface. Therefore, the antimicrobial Ti-based coatings with osteoinductive properties and potent and durable antibacterial properties could serve as ideal bone implants.
Collapse
Affiliation(s)
- Tianyou Zhou
- College of Control Engineering, Xinjiang Institute of Engineering, 1350 Aidinghu Road, Urumqi 830023, China;
| | - Zeyan Zhou
- College of Materials Science and Engineering, Hunan University, 2 South Lushan Road, Changsha 410082, China;
| | - Yingbo Wang
- College of Chemical Engineering, Xinjiang Normal University, 102 Xinyi Road, Urumqi 830054, China
| |
Collapse
|
9
|
Zhou R, Liu Y, Li M, Cao J, Cheng J, Wei D, Li B, Wang Y, Jia D, Jiang B, Valiev RZ, Zhou Y. Electrical Responsive Coating with a Multilayered TiO 2-SnO 2-RuO 2 Heterostructure on Ti for Controlling Antibacterial Ability and Improving Osseointegration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39064-39078. [PMID: 39028896 DOI: 10.1021/acsami.4c07114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The bacterial infection and poor osseointegration of Ti implants could significantly compromise their applications in bone repair and replacement. Based on the carrier separation ability of the heterojunction and the redox reaction of pseudocapacitive metal oxides, we report an electrically responsive TiO2-SnO2-RuO2 coating with a multilayered heterostructure on a Ti implant. Owing to the band gap structure of the TiO2-SnO2-RuO2 coating, electron carriers are easily enriched at the coating surface, enabling a response to the endogenous electrical stimulation of the bone. With the formation of SnO2-RuO2 pseudocapacitance on the modified surface, the postcharging mode can significantly change the surface chemical state of the coating due to the redox reaction, enhancing the antibacterial ability and osteogenesis-related gene expression of the human bone marrow mesenchymal stem cells. Owing to the attraction for Ca2+, only the negatively postcharged SnO2@RuO2 can promote apatite deposition. The in vivo experiment reveals that the S-SnO2@RuO2-NP could effectively kill the bacteria colonized on the surface and promote osseointegration with the synostosis bonding interface. Thus, negatively charging the electrically responsive coating of TiO2-SnO2-RuO2 is a good strategy to endow modified Ti implants with excellent antibacterial ability and osseointegration.
Collapse
Affiliation(s)
- Rui Zhou
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yifei Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Ming Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, PR China
| | - Jianyun Cao
- Key Laboratory of LCR Materials and Devices of Yunnan Province, School of Materials and Energy, Yunnan University, Kunming 650500, PR China
| | - Jiahui Cheng
- The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an 710004, PR China
| | - Daqing Wei
- Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| | - Baoqiang Li
- Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, PR China
- Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Yaming Wang
- Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| | - Dechang Jia
- Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| | - Bailing Jiang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Ruslan Z Valiev
- Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Institute of Physics of Advanced Materials, Ufa University of Science and Technology, Ufa 450076, Russia
| | - Yu Zhou
- Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| |
Collapse
|
10
|
Wang W, Liu H, Guo Z, Hu Z, Wang K, Leng Y, Yuan C, Li Z, Ge X. Various Antibacterial Strategies Utilizing Titanium Dioxide Nanotubes Prepared via Electrochemical Anodization Biofabrication Method. Biomimetics (Basel) 2024; 9:408. [PMID: 39056849 PMCID: PMC11274689 DOI: 10.3390/biomimetics9070408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Currently, titanium and its alloys have emerged as the predominant metallic biomaterials for orthopedic implants. Nonetheless, the relatively high post-operative infection rate (2-5%) exacerbates patient discomfort and imposes significant economic costs on society. Hence, urgent measures are needed to enhance the antibacterial properties of titanium and titanium alloy implants. The titanium dioxide nanotube array (TNTA) is gaining increasing attention due to its topographical and photocatalytic antibacterial properties. Moreover, the pores within TNTA serve as excellent carriers for chemical ion doping and drug loading. The fabrication of TNTA on the surface of titanium and its alloys can be achieved through various methods. Studies have demonstrated that the electrochemical anodization method offers numerous significant advantages, such as simplicity, cost-effectiveness, and controllability. This review presents the development process of the electrochemical anodization method and its applications in synthesizing TNTA. Additionally, this article systematically discusses topographical, chemical, drug delivery, and combined antibacterial strategies. It is widely acknowledged that implants should possess a range of favorable biological characteristics. Clearly, addressing multiple needs with a single antibacterial strategy is challenging. Hence, this review proposes systematic research into combined antibacterial strategies to further mitigate post-operative infection risks and enhance implant success rates in the future.
Collapse
Affiliation(s)
- Wuzhi Wang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Hanpeng Liu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zilin Guo
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Zijun Hu
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yujia Leng
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Caideng Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhaoyang Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiang Ge
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| |
Collapse
|
11
|
Wang F, Peng W, Huo D, Zhang J, Deng S, Huang L, Tan S. Cu 2-xS homojunction coatings empower titanium implants with near-infrared-triggered antibacterial and antifouling properties. J Mater Chem B 2024; 12:5917-5929. [PMID: 38804511 DOI: 10.1039/d4tb00235k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
For decades, implant-associated infections (IAIs) caused by pathogenic bacteria have been associated with high failure and mortality rates in implantation surgeries, posing a serious threat to global public health. Therefore, developing a functionalized biomaterial coating with anti-fouling and anti-bacterial functions is crucial for alleviating implant infections. Herein, a near-infrared-responsive anti-bacterial and anti-adhesive coating (Ti-PEG-Cu2-xS) constructed on the surface of titanium (Ti) implants is reported. This coating is composed of nano-Cu2-xS with anti-bacterial activity and super-hydrophilic polyethylene glycol (PEG). Under near-infrared irradiation, the nano-catalyst Cu2-xS on the surface of Ti-PEG-Cu2-xS induces bacterial death by catalyzing the production of singlet oxygen (1O2). The Ti-PEG-Cu2-xS coating can effectively prevent bacterial adhesion and biofilm formation. This coating combines the antibacterial mechanisms of "active attack" and "passive defense", which can kill bacteria and inhibit biofilm formation. The results of in vitro and in vivo experiments have shown that Ti-PEG-Cu2-xS exhibits excellent anti-bacterial properties under near-infrared irradiation and can effectively prevent implant-related infections caused by Escherichia coli (E. coli) ATCC 8739 and Staphylococcus aureus (S. aureus). The antibacterial efficiency of Ti-PEG-Cu2-xS coatings against E. coli was 99.96% ± 0.058% and that of S. aureus was 99.66% ± 0.26%, respectively. In addition, the Ti-PEG-Cu2-xS coating has good blood compatibility and excellent bactericidal ability. Therefore, this multifunctional coating combines a non-adhesive surface strategy and a near-infrared phototherapy sterilization method, effectively blocking the initial attachment and proliferation of bacteria on implants via photothermal/photodynamic effects and providing a promising method for preventing bacterium-induced IAIs.
Collapse
Affiliation(s)
- Fengqian Wang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.
| | - Weicong Peng
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.
| | - Dongliang Huo
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.
| | - Jingxian Zhang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.
| | - Suiping Deng
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.
| | - Langhuan Huang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.
- Guangdong Jianpai New Materials Co., Ltd, Foshan 528500, P. R. China
| | - Shaozao Tan
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.
- Guangdong Jianpai New Materials Co., Ltd, Foshan 528500, P. R. China
| |
Collapse
|
12
|
Wu Y, Wang Y, Chen F, Wang B. Loading rutin on surfaces by the layer-by-layer assembly technique to improve the oxidation resistance and osteogenesis of titanium implants in osteoporotic rats. Biomed Mater 2024; 19:045011. [PMID: 38740037 DOI: 10.1088/1748-605x/ad4aa8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
The purpose of this study was to construct a rutin-controlled release system on the surface of Ti substrates and investigate its effects on osteogenesis and osseointegration on the surface of implants. The base layer, polyethylenimine (PEI), was immobilised on a titanium substrate. Then, hyaluronic acid (HA)/chitosan (CS)-rutin (RT) multilayer films were assembled on the PEI using layer-by-layer (LBL) assembly technology. We used scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and contact angle measurements to examine all Ti samples. The drug release test of rutin was also carried out to detect the slow-release performance. The osteogenic abilities of the samples were evaluated by experiments on an osteoporosis rat model and MC3T3-E1 cells. The results (SEM, FTIR and contact angle measurements) all confirmed that the PEI substrate layer and HA/CS-RT multilayer film were effectively immobilised on titanium. The drug release test revealed that a rutin controlled release mechanism had been successfully established. Furthermore, thein vitrodata revealed that osteoblasts on the coated titanium matrix had greater adhesion, proliferation, and differentiation capacity than the osteoblasts on the pure titanium surface. When MC3T3-E1 cells were exposed to H2O2-induced oxidative stressin vitro, cell-based tests revealed great tolerance and increased osteogenic potential on HA/CS-RT substrates. We also found that the HA/CS-RT coating significantly increased the new bone mass around the implant. The LBL-deposited HA/CS-RT multilayer coating on the titanium base surface established an excellent rutin-controlled release system, which significantly improved osseointegration and promoted osteogenesis under oxidative stress conditions, suggesting a new implant therapy strategy for patients with osteoporosis.
Collapse
Affiliation(s)
- Yinsheng Wu
- Department of Orthopedics, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, No. 75, JinXiu Road, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Yong Wang
- Department of Orthopedics, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, No. 75, JinXiu Road, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Fengyan Chen
- Department of Orthopedics, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, No. 75, JinXiu Road, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Bingzhang Wang
- Department of Orthopedics, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, No. 75, JinXiu Road, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| |
Collapse
|
13
|
Li Z, Shao Y, Yang Y, Zan J. Zeolitic imidazolate framework-8: a versatile nanoplatform for tissue regeneration. Front Bioeng Biotechnol 2024; 12:1386534. [PMID: 38655386 PMCID: PMC11035894 DOI: 10.3389/fbioe.2024.1386534] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 04/26/2024] Open
Abstract
Extensive research on zeolitic imidazolate framework (ZIF-8) and its derivatives has highlighted their unique properties in nanomedicine. ZIF-8 exhibits advantages such as pH-responsive dissolution, easy surface functionalization, and efficient drug loading, making it an ideal nanosystem for intelligent drug delivery and phototherapy. These characteristics have sparked significant interest in its potential applications in tissue regeneration, particularly in bone, skin, and nerve regeneration. This review provides a comprehensive assessment of ZIF-8's feasibility in tissue engineering, encompassing material synthesis, performance testing, and the development of multifunctional nanosystems. Furthermore, the latest advancements in the field, as well as potential limitations and future prospects, are discussed. Overall, this review emphasizes the latest developments in ZIF-8 in tissue engineering and highlights the potential of its multifunctional nanoplatforms for effective complex tissue repair.
Collapse
Affiliation(s)
- Zhixin Li
- Department of Rehabilitation, Ganzhou People’s Hospital, Ganzhou, China
| | - Yinjin Shao
- Department of Rehabilitation, Ganzhou People’s Hospital, Ganzhou, China
| | - Youwen Yang
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang, China
| | - Jun Zan
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang, China
| |
Collapse
|
14
|
Xia Y, Zhang Z, Zhou K, Lin Z, Shu R, Xu Y, Zeng Z, Chang J, Xie Y. Cuprorivaite/hardystonite/alginate composite hydrogel with thermionic effect for the treatment of peri-implant lesion. Regen Biomater 2024; 11:rbae028. [PMID: 38605852 PMCID: PMC11007117 DOI: 10.1093/rb/rbae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
Peri-implant lesion is a grave condition afflicting numerous indi-viduals with dental implants. It results from persistent periodontal bacteria accumulation causing inflammation around the implant site, which can primarily lead to implant loosening and ultimately the implant loss. Early-stage peri-implant lesions exhibit symptoms akin to gum disease, including swelling, redness and bleeding of the gums surrounding the implant. These signs indicate infection and inflammation of the peri-implant tissues, which may result in bone loss and implant failure. To address this problem, a thermionic strategy was applied by designing a cuprorivaite-hardystonite bioceramic/alginate composite hydrogel with photothermal and Cu/Zn/Si multiple ions releasing property. This innovative approach creates a thermionic effect by the release of bioactive ions (Cu2+ and Zn2+ and SiO 3 2 - ) from the composite hydrogel and the mild heat environment though the photothermal effect of the composite hydrogel induced by near-infrared light irradiation. The most distinctive advantage of this thermionic effect is to substantially eliminate periodontal pathogenic bacteria and inhibit inflammation, while simultaneously enhance peri-implant osseointegration. This unique attribute renders the use of this composite hydrogel highly effective in significantly improving the survival rate of implants after intervention in peri-implant lesions, which is a clinical challenge in periodontics. This study reveals application potential of a new biomaterial-based approach for peri-implant lesion, as it not only eliminates the infection and inflammation, but also enhances the osteointegration of the dental implant, which provides theoretical insights and practical guidance to prevent and manage early-stage peri-implant lesion using bioactive functional materials.
Collapse
Affiliation(s)
- Yiru Xia
- Department of Periodontology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhaowenbin Zhang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Kecong Zhou
- Department of Periodontology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhikai Lin
- Department of Periodontology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Rong Shu
- Department of Periodontology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuze Xu
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Zhen Zeng
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Jiang Chang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yufeng Xie
- Department of Periodontology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Periodontology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Kheirmand-Parizi M, Doll-Nikutta K, Gaikwad A, Denis H, Stiesch M. Effectiveness of strontium/silver-based titanium surface coatings in improving antibacterial and osteogenic implant characteristics: a systematic review of in-vitro studies. Front Bioeng Biotechnol 2024; 12:1346426. [PMID: 38486866 PMCID: PMC10937591 DOI: 10.3389/fbioe.2024.1346426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/16/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction: Due to the high incidence of implant failures, dual functionalization of titanium surfaces with antibacterial and osteogenic agents, like silver (Ag) and strontium (Sr), has gained significant attention in recent years. However, so far, the combined antibacterial and osteoinductive effectiveness of Ag/Sr-based titanium surface coatings has only been analyzed in individual studies. Methods: This systematic review aims to evaluate the existing scientific literature regarding the PICOS question "Does dual incorporation of strontium/silver enhances the osteogenic and anti-bacterial characteristics of Ti surfaces in vitro?". As a result of a web-based search adhering to the PRISMA Guidelines using three electronic databases (PubMed, Scopus, and Web of Science) until March 31, 2023, a total of 69 publications were identified as potentially relevant and 17 of which were considered appropriate for inclusion into this review. Results and Discussion: In all included publications, the use of Sr/Ag combination showed enhanced osteogenic and antibacterial effects, either alone or in combination with other agents. Moreover, the combination of Sr and Ag shows potential to synergistically enhance these effects. Nevertheless, further studies need to validate these findings under clinically more relevant conditions and evaluate the mechanism of antimicrobial and osteogenic activity of Sr/Ag combination.
Collapse
Affiliation(s)
- Marjan Kheirmand-Parizi
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Katharina Doll-Nikutta
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Amit Gaikwad
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Hannah Denis
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
16
|
Durdu S, Sivlin D, Ozcan K, Kalkan S, Keles O, Usta M. Surface characterization and antibacterial efficiency of well-ordered TiO 2 nanotube surfaces fabricated on titanium foams. Sci Rep 2024; 14:618. [PMID: 38182771 PMCID: PMC10770057 DOI: 10.1038/s41598-024-51339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/03/2024] [Indexed: 01/07/2024] Open
Abstract
Titanium (Ti)-based implants are not compatible enough due to their bio-inert character, insufficient antibacterial capabilities and stress-shielding problem for dental and orthopaedic implant applications. Thus, this work focused to fabricate, analyze and improve antibacterial properties titanium dioxide (TiO2) nanotube array surfaces on Ti foam by anodic oxidation (AO) process. The well-ordered nanotube arrays with approximately 75 nm were successfully fabricated at 40 V for 1 h on Ti foams. Ti and O were observed as major elements on AO-coated Ti foam surfaces. In addition, the existence of TiO2 structure was proved on AO-coated foam Ti surfaces. For potential dental and orthopedic implant application, in vitro antibacterial properties were investigated versus Staphylococcus aureus and Escherichia coli. For both bacteria, antibacterial properties of TiO2 nanotube surface were greater than bare Ti foam. The bacterial inhibition versus Staphylococcus aureus and Escherichia coli of TiO2 nanotube surfaces are improved as 53.3% and 69.4% compared to bare Ti foam.
Collapse
Affiliation(s)
- Salih Durdu
- Department of Industrial Engineering, Engineering Faculty, Giresun University, 28200, Giresun, Turkey.
| | - Dila Sivlin
- Department of Materials and Metallurgical Engineering, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Kadriye Ozcan
- Department of Genetics and Bioengineering, Giresun University, 28200, Giresun, Turkey
| | - Selin Kalkan
- Department of Bioprocess Engineering, Giresun University, 28200, Giresun, Turkey
| | - Ozgul Keles
- Department of Materials and Metallurgical Engineering, Istanbul Technical University, 34469, Istanbul, Turkey.
| | - Metin Usta
- Department of Materials Science and Engineering, Gebze Technical University, 41400, Gebze/Kocaeli, Turkey.
- Aluminum Research Center (GTU-AAUM), Gebze Technical University, 41400, Gebze, Turkey.
| |
Collapse
|
17
|
Tang Y, Wang K, Wu B, Yao K, Feng S, Zhou X, Xiang L. Photoelectrons Sequentially Regulate Antibacterial Activity and Osseointegration of Titanium Implants. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307756. [PMID: 37974525 DOI: 10.1002/adma.202307756] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Titanium implants are widely used ; however, implantation occasionally fails due to infections during the surgery or poor osseointegration after the surgery. To solve the problem, an intelligent functional surface on titanium implant that can sequentially eradicate bacteria biofilm at the initial period and promote osseointegration at the late period of post-surgery time is designed. Such surfaces can be excited by near infrared light (NIR), with rare earth nanoparticles to upconvert the NIR light to visible range and adsorb by Au nanoparticles, supported by titanium oxide porous film on titanium implants. Under NIR irradiation, the implant converts the energy of phonon to hot electrons and lattice vibrations, while the former flows directly to the contact substance or partially reacts with the surrounding to generate reactive oxygen species, and the latter leads to the local temperature increase. The biofilm or microbes on the implant surface can be eradicated by NIR treatment in vitro and in vivo. Additionally, the surface exhibits superior biocompatibility for cell survival, adhesion, proliferation, and osteogenic differentiation, which provides the foundation for osseointegration. In vivo implantation experiments demonstrate osseointegration is also promoted. This work thus demonstrates NIR-generated electrons can sequentially eradicate biofilms and regulate the osteogenic process, providing new solutions to fabricate efficient implant surfaces.
Collapse
Affiliation(s)
- Yufei Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kai Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Bingfeng Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Keyi Yao
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Shuqi Feng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xuemei Zhou
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
18
|
Zuo S, Peng Q, Luo T, Wang Y, Peng Z. Microwave-assisted synthesis of composites based on titanium and hydroxyapatite for dental implantation. Biomater Sci 2023; 12:92-107. [PMID: 37965798 DOI: 10.1039/d3bm01151h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Titanium (Ti) and its alloys are widely used in clinical practice. As they are not bioactive, hydroxyapatite (HA) is commonly used to modify them. This study offered a review of microwave-assisted synthesis of composites based on Ti and HA for dental implantation by exploring their interaction mechanisms with microwave and features of two main techniques, namely microwave coating and sintering, along with current challenges and potential solutions in the field. It was shown that microwave coating enables rapid deposition of HA, but suffers from problems such as uneven coating thickness, poor integrity and unstable composition of the products. They can be solved by creating interlayers, combining the spin coating technique, etc. Unlike microwave coating, microwave sintering can effectively modify the mechanical properties of the composites, despite the shortcomings of excessive elastic moduli and potential HA decomposition. These issues are expected to be addressed by adding alloying elements and employing appropriate materials as space holders and ion-doped HA for sintering.
Collapse
Affiliation(s)
- Shangyong Zuo
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Qian Peng
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China.
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
| | - Ting Luo
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China.
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
| | - Yuehong Wang
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China.
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
| | - Zhiwei Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
19
|
Tian X, Zhang P, Xu J. Incorporating zinc ion into titanium surface promotes osteogenesis and osteointegration in implantation early phase. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:55. [PMID: 37917203 PMCID: PMC10622348 DOI: 10.1007/s10856-023-06751-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 08/27/2023] [Indexed: 11/04/2023]
Abstract
The objective of this study is to further investigate the feasibility of Zinc-Titanium implant as a potential implantable material in oral application in aspects of osteoblast biocompatibility, osteogenesis and osseointegration ability. First, we used plasma immersion ion implantation and deposition (PIIID) technology to introduce Zinc ion into pure Titanium surface, then we used X-ray photoelectron spectroscopy to analyze the chemical composition of modified surface layer; next, we used in vitro studies including immunological fluorescence assay and western blotting to determine responses between MG-63 osteoblast-like cell and implant. In vivo studies adopted pig model to check the feasibility of Zn-Ti implant. Results showed that in vitro and in vivo were consistent, showing that Zn ion was successfully introduced into Ti surface by PIIID technique. The chemical and physical change on modified plant resulted in the more active expressions of mRNA and protein of Type I collagen in MG-63 cells compared with non-treated implant, and the better integration ability of bones with modified implant. We confirmed the Zn-Ti implant owns the ability in promoting osteogenesis and osteointegration in early phase of implantation and is a qualified candidate in dentistry. The overview of our study can be depicted as follows.
Collapse
Affiliation(s)
- Xutengyue Tian
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Peng Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Juan Xu
- Department of Stomatology, Sijing Hospital of Songjiang District, Shanghai, China.
| |
Collapse
|
20
|
Li X, Xu M, Geng Z, Xu X, Han X, Chen L, Ji P, Liu Y. Novel pH-Responsive CaO 2@ZIF-67-HA-ADH Coating That Efficiently Enhances the Antimicrobial, Osteogenic, and Angiogenic Properties of Titanium Implants. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42965-42980. [PMID: 37656022 DOI: 10.1021/acsami.3c08233] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Titanium-based implants often lead to premature implant failure due to the lack of antimicrobial, osteogenic, and angiogenic properties. To this end, a new strategy was developed to fabricate CaO2@ZIF-67-HA-ADH coating on titanium surfaces by combining calcium peroxide (CaO2) nanoparticles, zeolite imidazolate framework-67 (ZIF-67), and the chemical coupling hyaluronic acid-adipic acid dihydrazide (HA-ADH). We characterized CaO2@ZIF-67-HA-ADH with scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma-atomic emission spectrometry (ICP-AES). The results demonstrated that CaO2@ZIF-67-HA-ADH was pH-sensitive and decomposed rapidly under acidic conditions, and it released inclusions slowly under neutral conditions. Antibacterial experiments showed that the CaO2@ZIF-67-HA-ADH coating had excellent antibacterial properties and effectively killed methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (PAO-1). Cell experiments revealed that the CaO2@ZIF-67-HA-ADH coating promoted pro-osteoblast adhesion, proliferation, and differentiation and also promoted the migration and angiogenesis of human umbilical vein endothelial cells (HUVECs), exhibiting excellent osteogenic and angiogenic properties. In in vivo animal implantation experiments, the CaO2@ZIF-67-HA-ADH coating exhibited strong antimicrobial activity early after implantation and excellent osseointegration later after implantation. In conclusion, the pH-responsive CaO2@ZIF-67-HA-ADH coating conferred excellent antibacterial, osteogenic, and angiogenic properties to titanium implants, which effectively enhanced osseointegration of the implants and prevented bacterial infection; the coating shows promise for use in the treatment of bone defects.
Collapse
Affiliation(s)
- Xinlin Li
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Mengfei Xu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Zhaoli Geng
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Xinyi Xu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Xu Han
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Lin Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Ping Ji
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Yi Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| |
Collapse
|
21
|
Han J, Ma Q, An Y, Wu F, Zhao Y, Wu G, Wang J. The current status of stimuli-responsive nanotechnologies on orthopedic titanium implant surfaces. J Nanobiotechnology 2023; 21:277. [PMID: 37596638 PMCID: PMC10439657 DOI: 10.1186/s12951-023-02017-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/21/2023] [Indexed: 08/20/2023] Open
Abstract
With the continuous innovation and breakthrough of nanomedical technology, stimuli-responsive nanotechnology has been gradually applied to the surface modification of titanium implants to achieve brilliant antibacterial activity and promoted osteogenesis. Regarding to the different physiological and pathological microenvironment around implants before and after surgery, these surface nanomodifications are designed to respond to different stimuli and environmental changes in a timely, efficient, and specific way/manner. Here, we focus on the materials related to stimuli-responsive nanotechnology on titanium implant surface modification, including metals and their compounds, polymer materials and other materials. In addition, the mechanism of different response types is introduced according to different activation stimuli, including magnetic, electrical, photic, radio frequency and ultrasonic stimuli, pH and enzymatic stimuli (the internal stimuli). Meanwhile, the associated functions, potential applications and developing prospect were discussion.
Collapse
Affiliation(s)
- Jingyuan Han
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Qianli Ma
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Geitmyrsveien, Oslo, 710455 Norway
| | - Yanxin An
- Department of General Surgery, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Fan Wu
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Yuqing Zhao
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Gaoyi Wu
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Jing Wang
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| |
Collapse
|
22
|
Chen Z, Chu Z, Jiang Y, Xu L, Qian H, Wang Y, Wang W. Recent advances on nanomaterials for antibacterial treatment of oral diseases. Mater Today Bio 2023; 20:100635. [PMID: 37143614 PMCID: PMC10153485 DOI: 10.1016/j.mtbio.2023.100635] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023] Open
Abstract
An imbalance of bacteria in oral environment can lead to a variety of oral diseases, such as periodontal disease, dental caries, and peri-implant inflammation. In the long term, in view of the increasing bacterial resistance, finding suitable alternatives to traditional antibacterial methods is an important research today. With the development of nanotechnology, antibacterial agents based on nanomaterials have attracted much attention in dental field due to their low cost, stable structures, excellent antibacterial properties and broad antibacterial spectrum. Multifunctional nanomaterials can break through the limitations of single therapy and have the functions of remineralization and osteogenesis on the basis of antibacterial, which has made significant progress in the long-term prevention and treatment of oral diseases. In this review, we have summarized the applications of metal and their oxides, organic and composite nanomaterials in oral field in recent five years. These nanomaterials can not only inactivate oral bacteria, but also achieve more efficient treatment and prevention of oral diseases by improving the properties of the materials themselves, enhancing the precision of targeted delivery of drugs and imparting richer functions. Finally, future challenges and untapped potential are elaborated to demonstrate the future prospects of antibacterial nanomaterials in oral field.
Collapse
Affiliation(s)
- Zetong Chen
- School of Stomatology, Anhui Medical University, Hefei, Anhui, 230032, China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230012, China
| | - Zhaoyou Chu
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230012, China
| | - Yechun Jiang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230012, China
| | - Lingling Xu
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230012, China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230012, China
- Corresponding author. School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui, China.
| | - Yuanyin Wang
- School of Stomatology, Anhui Medical University, Hefei, Anhui, 230032, China
- Corresponding author. School of Stomatology, Anhui Medical University, Hefei, Anhui, China.
| | - Wanni Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230012, China
- Corresponding author. School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
23
|
Bian Y, Hu T, Lv Z, Xu Y, Wang Y, Wang H, Zhu W, Feng B, Liang R, Tan C, Weng X. Bone tissue engineering for treating osteonecrosis of the femoral head. EXPLORATION (BEIJING, CHINA) 2023; 3:20210105. [PMID: 37324030 PMCID: PMC10190954 DOI: 10.1002/exp.20210105] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/12/2022] [Indexed: 06/16/2023]
Abstract
Osteonecrosis of the femoral head (ONFH) is a devastating and complicated disease with an unclear etiology. Femoral head-preserving surgeries have been devoted to delaying and hindering the collapse of the femoral head since their introduction in the last century. However, the isolated femoral head-preserving surgeries cannot prevent the natural progression of ONFH, and the combination of autogenous or allogeneic bone grafting often leads to many undesired complications. To tackle this dilemma, bone tissue engineering has been widely developed to compensate for the deficiencies of these surgeries. During the last decades, great progress has been made in ingenious bone tissue engineering for ONFH treatment. Herein, we comprehensively summarize the state-of-the-art progress made in bone tissue engineering for ONFH treatment. The definition, classification, etiology, diagnosis, and current treatments of ONFH are first described. Then, the recent progress in the development of various bone-repairing biomaterials, including bioceramics, natural polymers, synthetic polymers, and metals, for treating ONFH is presented. Thereafter, regenerative therapies for ONFH treatment are also discussed. Finally, we give some personal insights on the current challenges of these therapeutic strategies in the clinic and the future development of bone tissue engineering for ONFH treatment.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Tingting Hu
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Zehui Lv
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Yiming Xu
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Yingjie Wang
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Han Wang
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Wei Zhu
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Bin Feng
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Chaoliang Tan
- Department of ChemistryCity University of Hong KongKowloonHong Kong SARChina
| | - Xisheng Weng
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
24
|
Ma M, Zhao M, Deng H, Liu Z, Wang L, Ge L. Facile and versatile strategy for fabrication of highly bacteriostatic and biocompatible SLA-Ti surfaces with the regulation of Mg/Cu coimplantation ratio for dental implant applications. Colloids Surf B Biointerfaces 2023; 223:113180. [PMID: 36731269 DOI: 10.1016/j.colsurfb.2023.113180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/15/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Abstract
The low bactericidal activity and poor osteogenic activity of Ti limit the use of this metal in dental implants by increasing the risk of their periimplantitis-induced failure. To address this problem, we herein surface-modify biomedical Ti through the plasma immersion coimplantation of Mg and Cu ions and examine the physicochemical properties and bio-/hemocompatibility of the resulting materials as well as their activity against periimplantitis-causing bacteria, namely Streptococcus mutans and Porphyromonas gingivalis. The reactive oxygen species release (ROS) was assessed via the 2'7'-dichlorodihydrofluorescein diacetate (DCFH-DA) assay. The best-performing sample Mg/Cu(8/10)-Ti promotes cell proliferation and initial cell adhesion while exhibiting high hydrophilicity, outstanding activity against the aforementioned pathogens, and good bio-/hemocompatibility. Additionally, higher levels of cellular ROS generation in S. mutans and P. gingivalis could provide insight into the antibacterial mechanisms involved in Mg/Cu(8/10)-Ti. Thus, Mg/Cu coimplantation is concluded to endow the Ti surface with high bacteriostatic activity and biocompatibility, paving the way to the widespread use of Ti-based dental implants.
Collapse
Affiliation(s)
- Ming Ma
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China
| | - Mengli Zhao
- College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
| | - Haiyan Deng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China
| | - Zuoda Liu
- College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
| | - Liping Wang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China.
| | - Linhu Ge
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China.
| |
Collapse
|
25
|
Zhang T, Qin X, Gao Y, Kong D, Jiang Y, Cui X, Guo M, Chen J, Chang F, Zhang M, Li J, Yin P. Functional chitosan gel coating enhances antimicrobial properties and osteogenesis of titanium alloy under persistent chronic inflammation. Front Bioeng Biotechnol 2023; 11:1118487. [PMID: 36873358 PMCID: PMC9976779 DOI: 10.3389/fbioe.2023.1118487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Titanium is widely used as surgical bone implants due to its excellent mechanical properties, corrosion resistance, and good biocompatibility. However, due to chronic inflammation and bacterial infections caused by titanium implants, they are still at risk of failure in interfacial integration of bone implants, severely limiting their broad clinical application. In this work, chitosan gels crosslinked with glutaraldehyde were prepared and successfully loaded with silver nanoparticles (nAg) and catalase nanocapsules (n (CAT)) to achieve functionalized coating on the surface of titanium alloy steel plates. Under chronic inflammatory conditions, n (CAT) significantly reduced the expression of macrophage tumor necrosis factor (TNF-α), increased the expression of osteoblast alkaline phosphatase (ALP) and osteopontin (OPN), and enhanced osteogenesis. At the same time, nAg inhibited the growth of S. aureus and E. coli. This work provides a general approach to functional coating of titanium alloy implants and other scaffolding materials.
Collapse
Affiliation(s)
- Ti Zhang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Xiaoyan Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yuan Gao
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Dan Kong
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuheng Jiang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China.,Department of Orthopedics, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Xiang Cui
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Miantong Guo
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Junyu Chen
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Feifan Chang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Ming Zhang
- International Hospital, Peking University, Beijing, China
| | - Jia Li
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Pengbin Yin
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| |
Collapse
|
26
|
Hu Y, Duan J, Yang X, Zhang C, Fu W. Wettability and biological responses of titanium surface's biomimetic hexagonal microstructure. J Biomater Appl 2023; 37:1112-1123. [PMID: 36154504 DOI: 10.1177/08853282221121883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this research, an experiment was conducted on how the surface wettability and biocompatibility of staplers' titanium nails impact the healing of gastrointestinal tissue. Firstly, the bionic hexagonal structure was prepared on the surface of Ti metal by laser processing technology, and the laser textured titanium samples were observed by scanning electron microscope. Then, the liquid-solid contact angle-measuring instrument was used to characterize the wettability of titanium samples. Finally, cells were cultured on the surface of different titanium samples, CCK8 assay and qRT-PCR were carried out to investigate cell adhesion and collagen secretion on the surface of different samples. The results showed that the bionic hexagonal surface increased the surface roughness, reduced the liquid-solid contact angle, and promoted the adhesion and collagen secretion of fibroblasts. The increased wettability provided a better growth environment for cell growth. Microtexture is an important factor affecting the behavior of cells and its size parameters regulate cell gene expression, which is worthy of further study.
Collapse
Affiliation(s)
- Yahui Hu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education,66346Tianjin University of Technology, Tianjin, China
| | - Junyu Duan
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education,66346Tianjin University of Technology, Tianjin, China
| | - Xiaoyang Yang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education,66346Tianjin University of Technology, Tianjin, China
| | - Chunqiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education,66346Tianjin University of Technology, Tianjin, China
| | - Weihua Fu
- Department of General Surgery, 12610Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
27
|
Nikolova MP, Apostolova MD. Advances in Multifunctional Bioactive Coatings for Metallic Bone Implants. MATERIALS (BASEL, SWITZERLAND) 2022; 16:183. [PMID: 36614523 PMCID: PMC9821663 DOI: 10.3390/ma16010183] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
To fix the bone in orthopedics, it is almost always necessary to use implants. Metals provide the needed physical and mechanical properties for load-bearing applications. Although widely used as biomedical materials for the replacement of hard tissue, metallic implants still confront challenges, among which the foremost is their low biocompatibility. Some of them also suffer from excessive wear, low corrosion resistance, infections and shielding stress. To address these issues, various coatings have been applied to enhance their in vitro and in vivo performance. When merged with the beneficial properties of various bio-ceramic or polymer coatings remarkable bioactive, osteogenic, antibacterial, or biodegradable composite implants can be created. In this review, bioactive and high-performance coatings for metallic bone implants are systematically reviewed and their biocompatibility is discussed. Updates in coating materials and formulations for metallic implants, as well as their production routes, have been provided. The ways of improving the bioactive coating performance by incorporating bioactive moieties such as growth factors, osteogenic factors, immunomodulatory factors, antibiotics, or other drugs that are locally released in a controlled manner have also been addressed.
Collapse
Affiliation(s)
- Maria P. Nikolova
- Department of Material Science and Technology, University of Ruse “A. Kanchev”, 8 Studentska Str., 7017 Ruse, Bulgaria
| | - Margarita D. Apostolova
- Medical and Biological Research Lab., “Roumen Tsanev” Institute of Molecular Biology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
28
|
Enhanced Bactericidal Effect of Calcinated Mg-Fe Layered Double Hydroxide Films Driven by the Fenton Reaction. Int J Mol Sci 2022; 24:ijms24010272. [PMID: 36613712 PMCID: PMC9820372 DOI: 10.3390/ijms24010272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Osteogenic and antibacterial abilities are the permanent pursuit of titanium (Ti)-based orthopedic implants. However, it is difficult to strike the right balance between these two properties. It has been proved that an appropriate alkaline microenvironment formed by Ti modified by magnesium-aluminum layered double hydroxides (Mg-Al LDHs) could achieve the selective killing of bacteria and promote osteogenesis. However, the existence of Al induces biosafety concerns. In this study, iron (Fe), an essential trace element in the human body, was used to substitute Al, and a calcinated Mg-Fe LDH film was constructed on Ti. The results showed that a proper local alkaline environment created by the constructed film could enhance the antibacterial and osteogenic properties of the material. In addition, the introduction of Fe promoted the Fenton reaction and could produce reactive oxygen species in the infection environment, which might further strengthen the in vivo bactericidal effect.
Collapse
|
29
|
Akshaya S, Rowlo PK, Dukle A, Nathanael AJ. Antibacterial Coatings for Titanium Implants: Recent Trends and Future Perspectives. Antibiotics (Basel) 2022; 11:antibiotics11121719. [PMID: 36551376 PMCID: PMC9774638 DOI: 10.3390/antibiotics11121719] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Titanium and its alloys are widely used as implant materials for biomedical devices owing to their high mechanical strength, biocompatibility, and corrosion resistance. However, there is a significant rise in implant-associated infections (IAIs) leading to revision surgeries, which are more complicated than the original replacement surgery. To reduce the risk of infections, numerous antibacterial agents, e.g., bioactive compounds, metal ions, nanoparticles, antimicrobial peptides, polymers, etc., have been incorporated on the surface of the titanium implant. Various coating methods and surface modification techniques, e.g., micro-arc oxidation (MAO), layer-by-layer (LbL) assembly, plasma electrolytic oxidation (PEO), anodization, magnetron sputtering, and spin coating, are exploited in the race to create a biocompatible, antibacterial titanium implant surface that can simultaneously promote tissue integration around the implant. The nature and surface morphology of implant coatings play an important role in bacterial inhibition and drug delivery. Surface modification of titanium implants with nanostructured materials, such as titanium nanotubes, enhances bone regeneration. Antimicrobial peptides loaded with antibiotics help to achieve sustained drug release and reduce the risk of antibiotic resistance. Additive manufacturing of patient-specific porous titanium implants will have a clear future direction in the development of antimicrobial titanium implants. In this review, a brief overview of the different types of coatings that are used to prevent implant-associated infections and the applications of 3D printing in the development of antibacterial titanium implants is presented.
Collapse
Affiliation(s)
- S. Akshaya
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
- School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India
| | - Praveen Kumar Rowlo
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
- School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Amey Dukle
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
- School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore 632014, India
| | - A. Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
- Correspondence:
| |
Collapse
|
30
|
Liu Z, Yi Y, Wang S, Dou H, Fan Y, Tian L, Zhao J, Ren L. Bio-Inspired Self-Adaptive Nanocomposite Array: From Non-antibiotic Antibacterial Actions to Cell Proliferation. ACS NANO 2022; 16:16549-16562. [PMID: 36218160 DOI: 10.1021/acsnano.2c05980] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pathogenic bacterial infection and poor native tissue integration are two major issues encountered by biomaterial implants and devices, which are extremely hard to overcome within a single surface, especially for those without involvement of antibiotics. Herein, a self-adaptive surface that can transform from non-antibiotic antibacterial actions to promotion of cell proliferation is developed by in situ assembly of bacteriostatic 3,3'-diaminodipropylamine (DADP)-doped zeolitic imidazolate framework-8 (ZIF-8) on bio-inspired nanopillars. Initially, the nanocomposite surface shows impressive antibacterial effects, even under severe bacterial infection, due to the combination of mechano-bactericidal activity from a nanopillar structure and bacteriostatic activity contributed by pH-responsive release of DADP. After the complete degradation of the ZIF-8 layer, the refurbished nanopillars not only can still physically rupture bacterial membrane but also facilitate mammalian cell proliferation, due to the obvious difference in cell size. More strikingly, the nanocomposite surface totally avoids the usage of antibiotics, eradicating the potential risk of antimicrobial resistance, and the surface exhibited excellent histocompatibility and lower inflammatory response properties as revealed by in vivo tests. This type of self-adaptive surface may provide a promising alternative for addressing the intractable implant-associated requirements, where antibiotic-free antibacterial activity and native tissue integration are both highly needed.
Collapse
Affiliation(s)
- Ziting Liu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Yaozhen Yi
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Shujin Wang
- College of Chemistry, Jilin University, Changchun 130022, China
| | - Haixu Dou
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Yong Fan
- College of Chemistry, Jilin University, Changchun 130022, China
| | - Limei Tian
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| |
Collapse
|
31
|
Antibacterial and Osteogenic Properties of Ag Nanoparticles and Ag/TiO2 Nanostructures Prepared by Atomic Layer Deposition. J Funct Biomater 2022; 13:jfb13020062. [PMID: 35645270 PMCID: PMC9149969 DOI: 10.3390/jfb13020062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/18/2022] Open
Abstract
The combination of titania nanofilms and silver nanoparticles (NPs) is a very promising material, with antibacterial and osseointegration-induced properties for titanium implant coatings. In this work, we successfully prepared TiO2 nanolayer/Ag NP structures on titanium disks using atomic layer deposition (ALD). The samples were studied by scanning electron microscopy (SEM), X-ray diffraction, X-ray photoelectron spectroscopy (XPS), contact angle measurements, and SEM-EDS. Antibacterial activity was tested against Staphylococcus aureus. The in vitro cytological response of MG-63 osteosarcoma and human fetal mesenchymal stem cells (FetMSCs) was examined using SEM study of their morphology, MTT test of viability and differentiation using alkaline phosphatase and osteopontin with and without medium-induced differentiation in the osteogenic direction. The samples with TiO2 nanolayers, Ag NPs, and a TiO2/Ag combination showed high antibacterial activity, differentiation in the osteogenic direction, and non-cytotoxicity. The medium for differentiation significantly improved osteogenic differentiation, but the ALD coatings also stimulated differentiation in the absence of the medium. The TiO2/Ag samples showed the best antibacterial ability and differentiation in the osteogenic direction, indicating the success of the combining of TiO2 and Ag to produce a multifunctional biocompatible and bactericidal material.
Collapse
|
32
|
Gan N, Qin W, Zhang C, Jiao T. One-step in situ deposition of phytic acid-metal coordination complexes for combined Porphyromonas gingivalis infection prevention and osteogenic induction. J Mater Chem B 2022; 10:4293-4305. [PMID: 35535980 DOI: 10.1039/d2tb00446a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Postoperative infection and poor osteogenesis will cause the failure of dental implant surgery. Thus, the antibacterial and osteogenic activities are the core requirements for the surface modification of dental implants. Inspired by the strong chelating ability of naturally occurring phytic acid (PA), an in situ deposition method on the surface of titanium implants was developed based on the metal-phosphate coordination networks. Biologically relevant metal cations (i.e. ferric ions and divalent copper ions) were selected as metal constituents for the construction of organic-inorganic coordination network films. The stability of PA-metal coordination bonds is rationally explained by the chemical nature of transition metal elements. This PA-metal coordination complex coating exhibited an excellent antibacterial activity against Porphyromonas gingivalis, reducing the bacterial implant colonization by > 3.92 log10. The abundant phosphate groups greatly increased the surface hydrophilicity, promoted the early adhesion of proteins, improved the proliferation of bone marrow mesenchymal stem cells, and finally achieved an enhanced osteogenic activity. In addition, the phosphate groups of PA also facilitated the deposition of hydroxyapatite by providing reaction sites to chelate with calcium ions. These findings evaluate the anti-bacterial and osteogenic potentials of PA-metal coordination complexes, and clarify the feasibility for surface modification of dental implants.
Collapse
Affiliation(s)
- Ning Gan
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and, Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Wei Qin
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and, Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Chunlei Zhang
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Ting Jiao
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and, Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
33
|
Wu Y, Zhou H, Zeng Y, Xie H, Ma D, Wang Z, Liang H. Recent Advances in Copper-Doped Titanium Implants. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2342. [PMID: 35407675 PMCID: PMC8999642 DOI: 10.3390/ma15072342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023]
Abstract
Titanium (Ti) and its alloys have been extensively used as implant materials in clinical practice due to their high corrosion resistance, light weight and excellent biocompatibility. However, the insufficient intrinsic osteogenic capacity of Ti and its alloys impedes bone repair and regeneration, and implant-related infection or inflammation remains the leading cause of implant failure. Bacterial infections or inflammatory diseases constitute severe threats to human health. The physicochemical properties of the material are critical to the success of clinical procedures, and the doping of Cu into Ti implants has been confirmed to be capable of enhancing the bone repair/regeneration, angiogenesis and antibacterial capability. This review outlines the recent advances in the design and preparation of Cu-doped Ti and Ti alloy implants, with a special focus on various methods, including plasma immersion implantation, magnetron sputtering, galvanic deposition, microarc oxidation and sol-gel synthesis. More importantly, the antibacterial and mechanical properties as well as the corrosion resistance and biocompatibility of Cu-doped Ti implants from different methods are systematically reviewed, and their prospects and limitations are also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhoucheng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (Y.W.); (H.Z.); (Y.Z.); (H.X.); (D.M.)
| | - Hanfeng Liang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (Y.W.); (H.Z.); (Y.Z.); (H.X.); (D.M.)
| |
Collapse
|
34
|
Sheng X, Wang A, Wang Z, Liu H, Wang J, Li C. Advanced Surface Modification for 3D-Printed Titanium Alloy Implant Interface Functionalization. Front Bioeng Biotechnol 2022; 10:850110. [PMID: 35299643 PMCID: PMC8921557 DOI: 10.3389/fbioe.2022.850110] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/28/2022] [Indexed: 12/20/2022] Open
Abstract
With the development of three-dimensional (3D) printed technology, 3D printed alloy implants, especially titanium alloy, play a critical role in biomedical fields such as orthopedics and dentistry. However, untreated titanium alloy implants always possess a bioinert surface that prevents the interface osseointegration, which is necessary to perform surface modification to enhance its biological functions. In this article, we discuss the principles and processes of chemical, physical, and biological surface modification technologies on 3D printed titanium alloy implants in detail. Furthermore, the challenges on antibacterial, osteogenesis, and mechanical properties of 3D-printed titanium alloy implants by surface modification are summarized. Future research studies, including the combination of multiple modification technologies or the coordination of the structure and composition of the composite coating are also present. This review provides leading-edge functionalization strategies of the 3D printed titanium alloy implants.
Collapse
Affiliation(s)
- Xiao Sheng
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Ao Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Chen Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| |
Collapse
|
35
|
Zuo K, Wang L, Wang Z, Yin Y, Du C, Liu B, Sun L, Li X, Xiao G, Lu Y. Zinc-Doping Induces Evolution of Biocompatible Strontium-Calcium-Phosphate Conversion Coating on Titanium to Improve Antibacterial Property. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7690-7705. [PMID: 35114085 DOI: 10.1021/acsami.1c23631] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Implant-associated infections (IAI) remains a common and devastating complication in orthopedic surgery. To reduce the incidence of IAI, implants with intrinsic antibacterial activity have been proposed. The surface functionalization and structure optimization of metallic implants can be achieved by surface modification using the phosphate chemical conversion (PCC) technique. Zinc (Zn) has strong antibacterial behavior toward a broad-spectrum of bacteria. Herein, Zn was incorporated into strontium-calcium-phosphate (SrCaP) coatings on titanium (Ti) via PCC method, and the influence of its doping amount on the phase, microstructure, antibacterial activity, and biocompatibility of the composite coating was researched. The results indicated that traces of Zn doping produced grain refinement of SrCaP coating with no significant effect on its phase and surface properties, while a higher Zn content induced its phase and microstructure transformed into zinc-strontium-phosphate (SrZn2(PO4)2). SrCaP-Zn1 and SrCaP-Zn4 represented trace and high content Zn-doped coatings, respectively, which exhibited a similar bacterial attachment for a short time but showed inhibition of biofilm formation after continuous incubation up to 24 h. The killing rates of SrCaP-Zn1 coating for Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) reached 61.25% and 55.38%, respectively. While that data increased to 83.01% and 71.28% on SrCaP-Zn4 coating due to the more-releasing Zn2+. Furthermore, in vitro culture of MC3T3-E1 cells proved that the Zn-doped coatings also possessed excellent biocompatibility. This study provides a new perception for the phase and microstructural optimization of phosphate coatings on implant surfaces, as well as fabricating promising coatings with excellent biocompatibility and antimicrobial properties against IAI.
Collapse
Affiliation(s)
- Kangqing Zuo
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Lili Wang
- Department of Stomatology, The People's Hospital of Zhaoyuan City, Yantai 264500, China
| | - Zhanghan Wang
- Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Yixin Yin
- Oral Implantology Center, Ji Nan Stomatological Hospital, Jinan 250001, China
| | - Chunmiao Du
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Bing Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Lanying Sun
- Oral Implantology Center, Ji Nan Stomatological Hospital, Jinan 250001, China
| | - Xiaoyan Li
- Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Guiyong Xiao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Yupeng Lu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| |
Collapse
|
36
|
Lu X, Wu Z, Xu K, Wang X, Wang S, Qiu H, Li X, Chen J. Multifunctional Coatings of Titanium Implants Toward Promoting Osseointegration and Preventing Infection: Recent Developments. Front Bioeng Biotechnol 2021; 9:783816. [PMID: 34950645 PMCID: PMC8691702 DOI: 10.3389/fbioe.2021.783816] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/25/2021] [Indexed: 01/27/2023] Open
Abstract
Titanium and its alloys are dominant material for orthopedic/dental implants due to their stable chemical properties and good biocompatibility. However, aseptic loosening and peri-implant infection remain problems that may lead to implant removal eventually. The ideal orthopedic implant should possess both osteogenic and antibacterial properties and do proper assistance to in situ inflammatory cells for anti-microbe and tissue repair. Recent advances in surface modification have provided various strategies to procure the harmonious relationship between implant and its microenvironment. In this review, we provide an overview of the latest strategies to endow titanium implants with bio-function and anti-infection properties. We state the methods they use to preparing these efficient surfaces and offer further insight into the interaction between these devices and the local biological environment. Finally, we discuss the unmet needs and current challenges in the development of ideal materials for bone implantation.
Collapse
Affiliation(s)
- Xiaoxuan Lu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Zichen Wu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Kehui Xu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Xiaowei Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Shuang Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Hua Qiu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Xiangyang Li
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Jialong Chen
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| |
Collapse
|
37
|
Li H, Lin G, Wang P, Huang J, Wen C. Nutrient alloying elements in biodegradable metals: a review. J Mater Chem B 2021; 9:9806-9825. [PMID: 34842888 DOI: 10.1039/d1tb01962g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As a new generation of biomedical metallic materials, biodegradable metals have become a hot research topic in recent years because they can completely degrade in the human body, thus preventing secondary surgery, and reducing the pain and economic burden for patients. Clinical applications require biodegradable metals with adequate mechanical properties, corrosion resistance, and biocompatibility. Alloying is an important method to create biodegradable metals with required and comprehensive performances. Since nutrient elements already have important effects on various physiological functions of the human body, the alloying of nutrient elements with biodegradable metals has attracted much attention. The present review summarizes and discusses the effects of nutrient alloying elements on the mechanical properties, biodegradation behavior, and biocompatibility of biodegradable metals. Moreover, future research directions of biodegradable metals with nutrient alloying elements are suggested.
Collapse
Affiliation(s)
- Huafang Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China. .,State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, China
| | - Guicai Lin
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Pengyu Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Jinyan Huang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
38
|
Wang Z, Wang X, Wang Y, Zhu Y, Liu X, Zhou Q. NanoZnO-modified titanium implants for enhanced anti-bacterial activity, osteogenesis and corrosion resistance. J Nanobiotechnology 2021; 19:353. [PMID: 34717648 PMCID: PMC8557588 DOI: 10.1186/s12951-021-01099-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/20/2021] [Indexed: 02/08/2023] Open
Abstract
Titanium (Ti) implants are widely used in dentistry and orthopedics owing to their excellent corrosion resistance, biocompatibility, and mechanical properties, which have gained increasing attention from the viewpoints of fundamental research and practical applications. Also, numerous studies have been carried out to fine-tune the micro/nanostructures of Ti and/or incorporate chemical elements to improve overall implant performance. Zinc oxide nanoparticles (nano-ZnO) are well-known for their good antibacterial properties and low cytotoxicity along with their ability to synergize with a variety of substances, which have received increasingly widespread attention as biomodification materials for implants. In this review, we summarize recent research progress on nano-ZnO modified Ti-implants. Their preparation methods of nano-ZnO modified Ti-implants are introduced, followed by a further presentation of the antibacterial, osteogenic, and anti-corrosion properties of these implants. Finally, challenges and future opportunities for nano-ZnO modified Ti-implants are proposed.
Collapse
Affiliation(s)
- Zheng Wang
- Institute for Translational Medicine, Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Xiaojing Wang
- School of Stomatology, Qingdao University, Qingdao, 266003, China
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yingruo Wang
- Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yanli Zhu
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Xinqiang Liu
- Institute for Translational Medicine, Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China.
- School of Stomatology, Qingdao University, Qingdao, 266003, China.
| | - Qihui Zhou
- Institute for Translational Medicine, Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China.
- School of Stomatology, Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
39
|
Kim S, Chen JB, Clifford A. Tuning the Biointerface: Low-Temperature Surface Modification Strategies for Orthopedic Implants to Enhance Osteogenic and Antimicrobial Activity. ACS APPLIED BIO MATERIALS 2021; 4:6619-6629. [PMID: 35006965 DOI: 10.1021/acsabm.1c00651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As both the average life expectancy and incidence of bone tissue reconstruction increases, development of load-bearing implantable materials that simultaneously enhance osseointegration while preventing postoperative infection is crucial. To address this need, significant research efforts have been dedicated to developing surface modification strategies for metallic load-bearing implants and scaffolds. Despite the abundance of strategies reported, many address only one factor, for example, surface chemistry or topography. Furthermore, the incorporation of surface features to increase osteocompatibility can increase the probability of infection, by encouraging the formation of bacterial biofilms. To truly advance this field, research efforts must focus on developing multifunctional coatings that concurrently address these complex and competing requirements. In addition, particular emphasis should be placed on utilizing surface modification processes that are versatile, low cost, and scalable, for ease of translation to mass manufacturing and clinical use. The aim of this short Review is to highlight recent advances in scalable and multifunctional surface modification techniques that obtain a programmed response at the bone tissue/implant interface. Low-temperature approaches based on macromolecule immobilization, electrochemical techniques, and solution processes are discussed. Although the strategies discussed in this Review have not yet been approved for clinical use, they show great promise toward developing the next generation of ultra-long-lasting biomaterials for joint and bone tissue repair.
Collapse
Affiliation(s)
- Saeromi Kim
- Department of Materials Engineering, Faculty of Applied Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jenise B Chen
- Department of Chemistry, Faculty of Arts & Science, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Amanda Clifford
- Department of Materials Engineering, Faculty of Applied Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
40
|
Wang B, Wu Z, Wang S, Wang S, Niu Q, Wu Y, Jia F, Bian A, Xie L, Qiao H, Chang X, Lin H, Zhang H, Huang Y. Mg/Cu-doped TiO 2 nanotube array: A novel dual-function system with self-antibacterial activity and excellent cell compatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112322. [PMID: 34474873 DOI: 10.1016/j.msec.2021.112322] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/28/2021] [Accepted: 07/12/2021] [Indexed: 01/29/2023]
Abstract
Many studies were conducted to change the surface morphology and chemical composition of Ti implants for the improvement of antibacterial ability and osseointegration between medical Ti and surrounding bone tissue. In this study, we successfully prepared a novel dual-function coating on pure Ti surface, i.e. Cu and Mg-co-doped TiO2 nanotube (TN) coating, by combining anodisation and hydrothermal treatment (HT), which could act as a delivery platform for the sustained release of Cu and Mg ions. Results showed that the amounts of Cu and Mg were about 5.43 wt%-6.55 wt% and 0.69 wt%-0.73 wt%, respectively. In addition, the surface morphology of Cu and Mg-co-doped TN (CuMTN) coatings transformed into nanoneedles after HT for 1 h. Compared with TN, CuMTN had no change in roughness and remarkable improved hydrophilicity. Antibacterial tests revealed that CuMTN had an antibacterial rate of more than 93% against Escherichia coli and Staphylococcus aureus, thereby showing excellent antibacterial properties. In addition, CuMTN could induce the formation of apatite well after being immersed in simulated body fluid, showing good biological activity. Preosteoblasts (MC3T3-E1) cultured on CuMTN-coated Ti demonstrated better proliferation and osteogenic differentiation than pristine and as-anodised specimens. To the best of our best knowledge, this study had successfully attempted to combine anodisation and HT, introduce Cu/Mg elements and functionalise Ti-based implant surfaces with enhanced hydrophilicity, osteogenesis and antimicrobial properties that can meet clinical needs for the first time.
Collapse
Affiliation(s)
- Bingbing Wang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Zongze Wu
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Shuo Wang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Saisai Wang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Qimeng Niu
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Yuwei Wu
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Fenghuan Jia
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Anqi Bian
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Lei Xie
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Haixia Qiao
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Xiaotong Chang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - He Lin
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Hui Zhang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China.
| | - Yong Huang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China.
| |
Collapse
|
41
|
Wang Z, Mei L, Liu X, Zhou Q. Hierarchically hybrid biocoatings on Ti implants for enhanced antibacterial activity and osteogenesis. Colloids Surf B Biointerfaces 2021; 204:111802. [PMID: 33964526 DOI: 10.1016/j.colsurfb.2021.111802] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022]
Abstract
Titanium (Ti) is widely applied as bone-anchoring implants in dental and orthopedic applications owing to its superior mechanical characteristics, high corrosion resistance, and excellent biocompatibility. Nevertheless, Ti-based implants with the deficiencies of insufficient osteoinduction and associated infections can result in implant failure, which significantly limits its applications in some cases. In this work, hierarchically hybrid biocoatings on Ti implants are developed by gradual incorporation of polydopamine (PDA), ZnO nanoparticles (nZnO), and chitosan (CS)/nanocrystal hydroxyapatite (nHA) via oxidative self-polymerization, nanoparticle deposition, solvent casting and evaporation methods for enhancing their antibacterial activity and osteogenesis. The modification of PDA on porous reticular Ti substrates greatly reduces the surface roughness, wettability, protein adsorption, and provides high adhesion to the deposited nZnO. Further, incorporating nZnO on PDA-coated Ti surfaces affects the surface structure and wettability, significantly inhibits the growth of both Staphylococcus aureus and Escherichia coli. Moreover, the CS/nHA-doped coating on the nZnO-modified Ti surfaces remarkably improves cytocompatibility and enhances the osteogenic differentiation of MC3T3-E1 cells by upregulating the protein expression of alkaline phosphatase. This work offers a promising alternative for developing Ti implants with long-lifetime bioactivity to achieve strong antibacterial ability and enhanced bone formation for potential dental/orthopedic applications.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Li Mei
- School of Stomatology, Qingdao University, Qingdao, 266003, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Xinqiang Liu
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, 266003, China.
| | - Qihui Zhou
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, 266003, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
42
|
Ma P, Yu Y, Yie KHR, Fang K, Zhou Z, Pan X, Deng Z, Shen X, Liu J. Effects of titanium with different micro/nano structures on the ability of osteoblasts to resist oxidative stress. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111969. [PMID: 33812597 DOI: 10.1016/j.msec.2021.111969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/23/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022]
Abstract
Excessive accumulation of oxidative intermediates in the elderly significantly aggravates bone degradation and hinders the osseointegration of topological titanium (Ti) implants. Thus, it is of great significance to evaluate the antioxidant and osteoinduction capabilities of various nano, micro or micro/nano-composite structures under oxidative stress (OS) microenvironment. In this study, we discovered that 110 nm titania nanotubes (TNTs) enhanced the adsorption of fibronectin (FN) proteins onto smooth and rough titanium surfaces to varying degrees. Compared with Ti and 30 nm TNTs (T30) groups, cells on 110 nm TNTs (T110), microstructure/30 nm TNTs (M30) and microstructure/110 nm TNTs (M110) had smaller area, lower reactive oxygen species (ROS), and better proliferation/osteogenic differentiation abilities under OS condition, but there was no significant difference among the three groups. In addition, combined with our previous study, we suggested that T110, M30 and M110 resistance to OS was also strongly associated with the high expression of FN-receptor integrin α5 or β1. All the findings indicated that the micro/nano-composed structures (M30 & M110) had similar anti-oxidation and osteogenesis abilities to T110, which provided guidance for the application of different titanium implants with different topologies in the elderly.
Collapse
Affiliation(s)
- Pingping Ma
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yonglin Yu
- Department of Pathology, Affiliated Hospital of Zunyi Medical College, Zunyi, 563003, China
| | - Kendrick Hii Ru Yie
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Kai Fang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zixin Zhou
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoyi Pan
- Ruian People's Hospital, Ruian, 325200, China
| | - Zhennan Deng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Xinkun Shen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|