1
|
He L, He T, Yang Y, Chen XB. Material selection, preparation, driving and applications of light-driven micro/nano motors: a review. NANOSCALE 2025. [PMID: 40261240 DOI: 10.1039/d4nr05202a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
As an external energy stimulus, light possesses the advantageous qualities of being reversible, wireless and remotely maneuverable while driving the motion of micro and nano motors. Despite the extensive publication of articles on light-driven micro- and nano-motors (LDMNMs) over the past two decades, reviews that address LDMNMs in general, from material selection, design, preparation, driving to applications, remain scarce. Therefore, it is necessary to highlight the superiority of light as a stimulating energy source for driving MNMs, as well as to promote the continuous development of LDMNMs and give newcomers a more basic and comprehensive knowledge in this field. This present review focuses on advanced preparation methods for LDNMNs, and provides a comprehensive comparison of the advantages and limitations of various techniques. In addition, general design strategies for building asymmetric fields around LDMNMs are introduced, as well as a variety of photoactive materials, including photocatalytic, photothermal, and photoinduced isomerization materials. The existing propulsive mechanisms and kinematic behaviours of LDMNMs are described in detail, including photocatalytic oxidation, photothermal effects and photoinduced isomerization. The principles of the various drive mechanisms are also analysed in detail and their merits and shortcomings summarized. Finally, following a comprehensive review of the potential applications in biomedicine, environmental remediation and other fields, further perspectives on future developments are presented with a view to overcoming key challenges.
Collapse
Affiliation(s)
- Lingcong He
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| | - Tao He
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| | - Yonghui Yang
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| | - Xue-Bo Chen
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| |
Collapse
|
2
|
Guo Y, Xie B, Chen Y, Luo X, Xiao J, Zhang H, Hou M, Ma L, Chen X, Qin J. Asymmetric Laser Enabled High-Throughput Manufacturing of Multiform Magnetically Actuated Graphene-Based Robots for Various Water Depths. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23114-23122. [PMID: 40063833 DOI: 10.1021/acsami.5c01494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Achieving large-scale and facile manufacturing for diverse small-scale robots is critical in the field of small-scale robots. At present, conventional manufacturing methods have limitations in terms of efficiency, environmental friendliness, and operability. In particular, it is difficult to facilely process multiform small-scale robots through a single processing technology only. In this work, with the introduction of an asymmetric laser, multiforms of graphene, including powders, helical, and sheet, were successfully fabricated by simply adjusting laser processing parameters only. This allowed the development of multiform graphene-based robots capable of being actuated in various water depths, including underwater swarm, suspended helical, and floated sheet robots. Importantly, such robots can move smoothly in various trajectories under magnetic fields, including simple geometrical shapes and complicated words, demonstrating good maneuverability. Moreover, this manufacturing method enables the efficient production of multiform robots in different sizes, from 5 to 48 units, within 1 min. The proposed asymmetric laser technology is possible to provide a new means for manufacturing high-performance small-scale robots at high throughput.
Collapse
Affiliation(s)
- Yuanhui Guo
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Bin Xie
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Yun Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiangyuan Luo
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Jiawei Xiao
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Hao Zhang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Maoxiang Hou
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Li Ma
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Xin Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Jingwen Qin
- AECC Hunan Aviation Powerplant Research Institute, Zhuzhou, Hunan 412000, China
| |
Collapse
|
3
|
Shi X, Li Y, Suleiman K. Stochastic Dynamic Analysis of a Three-Tailed Helical Microrobot in Confined Spaces. MICROMACHINES 2025; 16:373. [PMID: 40283250 PMCID: PMC12029722 DOI: 10.3390/mi16040373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025]
Abstract
This study investigates the complex dynamic behavior of three-tailed helical microrobots operating in confined spaces. A stochastic dynamic model has been developed to analyze the effects of input angular velocity, current, fluid viscosity, and channel width on their motion trajectories, velocity, mean squared displacement (MSD), and wobbling rate. The results indicate that Gaussian white noise exerts a dispersive driving effect on the motion characteristics of the microrobots, leading to a 49% reduction in their velocity compared to deterministic conditions. Additionally, the time required for microrobots to traverse from the initial position to the bifurcation point decreases by 65% when the current is increased and by 39% when the fluid viscosity is reduced. These findings underscore the importance of optimizing control parameters to effectively mitigate noise impacts, enhancing the practical performance of the microrobots in real-world applications. This research offers solid theoretical support and guidance for the deployment of microrobots in complex environments.
Collapse
Affiliation(s)
- Xinpeng Shi
- School of Mathematics and Statistics, Northwestern Polytectnical University, Xi’an 710072, China; (X.S.); (Y.L.)
| | - Yongge Li
- School of Mathematics and Statistics, Northwestern Polytectnical University, Xi’an 710072, China; (X.S.); (Y.L.)
- Research and Development Institute of Northwestern Polytectnical University in Shenzhen, Shenzhen 518063, China
| | - Kheder Suleiman
- School of Mathematics and Statistics, Northwestern Polytectnical University, Xi’an 710072, China; (X.S.); (Y.L.)
| |
Collapse
|
4
|
Zhang L, Wang S, Hou Y. Magnetic Micro/nanorobots in Cancer Theranostics: From Designed Fabrication to Diverse Applications. ACS NANO 2025; 19:7444-7481. [PMID: 39970007 DOI: 10.1021/acsnano.4c10382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Cancer poses a substantial threat and a serious challenge to public human health, driving the promotion of sophisticated technologies for cancer therapy. While conventional chemotherapy has bottlenecks such as low delivery efficiency, strong toxic side effects, and tumor enrichment barriers, magnetic micro/nanorobots (MNRs) emerge as promising therapeutic candidates that provide alternative strategies for cancer therapy. MNR is a kind of human-made machine that is micro- or nanosized, is reasonably designed, and performs command tasks through self-actuated or externally controlled propulsion mechanisms, which can be potentially applied in cancer theranostics. Here, this review first introduces the components that constitute a typical magnetic MNR, including the body part, the driving part, the control part, the function part, and the sensing part. Subsequently, this review elucidates representative fabrication methods to construct magnetic MNRs from top-down approaches to bottom-up approaches, covering injection molding, self-rolling, melt electrospinning writing, deposition, biotemplate method, lithography, assembling, 3D printing, and chemical synthesis. Furthermore, this review focuses on multiple applications of magnetic MNRs facing cancer diagnosis and treatment, encompassing imaging, quantification, drug release, synergy with typical therapies, cell manipulation, and surgical assistance. Then, this review systematically elaborates on the biocompatibility and biosafety of magnetic MNRs. Finally, the challenges faced by magnetic MNRs are discussed alongside future research directions. This review is intended to provide scientific guidance that may improve the comprehension and cognition of cancer theranostics through the platform of magnetic MNRs, promoting and prospering the practical application development of magnetic MNRs.
Collapse
Affiliation(s)
- Lin Zhang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shuren Wang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, China
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
5
|
Fu B, Luo D, Li C, Feng Y, Liang W. Advances in micro-/nanorobots for cancer diagnosis and treatment: propulsion mechanisms, early detection, and cancer therapy. Front Chem 2025; 13:1537917. [PMID: 39981265 PMCID: PMC11839623 DOI: 10.3389/fchem.2025.1537917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
In recent years, medical micro-/nanorobots (MNRs) have emerged as a promising technology for diagnosing and treating malignant tumors. MNRs enable precise, targeted actions at the cellular level, addressing several limitations of conventional cancer diagnosis and treatment, such as insufficient early diagnosis, nonspecific drug delivery, and chemoresistance. This review provides an in-depth discussion of the propulsion mechanisms of MNRs, including chemical fuels, external fields (light, ultrasound, magnetism), biological propulsion, and hybrid methods, highlighting their respective advantages and limitations. Additionally, we discuss novel approaches for tumor diagnosis, precision surgery, and drug delivery, emphasizing their potential clinical applications. Despite significant advancements, challenges such as biocompatibility, propulsion efficiency, and clinical translation persist. This review examines the current state of MNR applications and outlines future directions for their development, with the aim of enhancing their diagnostic and therapeutic efficacy and facilitating their integration into clinical practice.
Collapse
Affiliation(s)
- Baiyang Fu
- Department of Breast Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dan Luo
- College of Automotive and Mechanical Engineering, Harbin Cambridge University, Harbin, China
| | - Chao Li
- Department of Rheumatology and Immunology, Daqing Oilfield General Hospital, Daqing, China
| | - Yiwen Feng
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China
| | - Wenlong Liang
- Department of Breast Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Liao Z, Liu T, Yao Z, Hu T, Ji X, Yao B. Harnessing stimuli-responsive biomaterials for advanced biomedical applications. EXPLORATION (BEIJING, CHINA) 2025; 5:20230133. [PMID: 40040822 PMCID: PMC11875454 DOI: 10.1002/exp.20230133] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/18/2024] [Indexed: 03/06/2025]
Abstract
Cell behavior is intricately intertwined with the in vivo microenvironment and endogenous pathways. The ability to guide cellular behavior toward specific goals can be achieved by external stimuli, notably electricity, light, ultrasound, and magnetism, simultaneously harnessed through biomaterial-mediated responses. These external triggers become focal points within the body due to interactions with biomaterials, facilitating a range of cellular pathways: electrical signal transmission, biochemical cues, drug release, cell loading, and modulation of mechanical stress. Stimulus-responsive biomaterials hold immense potential in biomedical research, establishing themselves as a pivotal focal point in interdisciplinary pursuits. This comprehensive review systematically elucidates prevalent physical stimuli and their corresponding biomaterial response mechanisms. Moreover, it delves deeply into the application of biomaterials within the domain of biomedicine. A balanced assessment of distinct physical stimulation techniques is provided, along with a discussion of their merits and limitations. The review aims to shed light on the future trajectory of physical stimulus-responsive biomaterials in disease treatment and outline their application prospects and potential for future development. This review is poised to spark novel concepts for advancing intelligent, stimulus-responsive biomaterials.
Collapse
Affiliation(s)
- Ziming Liao
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinP. R. China
| | - Tingting Liu
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolCambridgeMassachusettsUSA
- Research Center for Nano‐Biomaterials and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Biomedical EngineeringTaiyuan University of TechnologyTaiyuanShanxiP. R. China
- Department of Laboratory DiagnosisThe 971th HospitalQingdaoP. R. China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingP. R. China
| | - Zhimin Yao
- Sichuan Preschool Educators' CollegeMianyangP. R. China
| | - Tian Hu
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular Medicine, University of OxfordJohn Radcliffe HospitalOxfordUK
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinP. R. China
| | - Bin Yao
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinP. R. China
| |
Collapse
|
7
|
Kim C, Nan J, Nguyen KT, Park JO, Choi E, Kim J. Non-FFP-Based Magnetic Particle Imaging (NFMPI) with an Open-Type RF Coil System: A Feasibility Study. SENSORS (BASEL, SWITZERLAND) 2025; 25:665. [PMID: 39943301 PMCID: PMC11821019 DOI: 10.3390/s25030665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025]
Abstract
Active drug delivery systems for cancer therapy are gaining attention for their biocompatibility and enhanced efficacy compared to conventional chemotherapy and surgery. To improve precision in targeted drug delivery (TDD), actuating devices using external magnetic fields are employed. However, a key challenge is the inability to visually track magnetic drug carriers in blood vessels, complicating navigation to the target. Magnetic particle imaging (MPI) systems can localize magnetic carriers (MCs) but rely on bulky electromagnetic coils to generate a static magnetic field gradient, creating a field-free point (FFP) within the field of view (FOV). Also, additional coils are required to move the FFP across the FOV, limiting flexibility and increasing the system size. To address these issues, we propose a non-FFP-based, open-type RF coil system with a simplified structure composed of a Tx/Rx coil and a permanent magnet at the coil center, eliminating the need for an FFP. Furthermore, integrating a robotic arm for coil assembly enables easy adjustment of the FOV size and location. Finally, imaging tests with magnetic nanoparticles (MNPs) confirmed the system's ability to detect and localize a minimum mass of 0.3 mg (Fe) in 80 × 80 mm2.
Collapse
Affiliation(s)
- Chan Kim
- Korea Institute of Medical Microrobotics, Gwangju 61186, Republic of Korea; (C.K.); (K.T.N.); (J.-O.P.)
| | - Jiyun Nan
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Kim Tien Nguyen
- Korea Institute of Medical Microrobotics, Gwangju 61186, Republic of Korea; (C.K.); (K.T.N.); (J.-O.P.)
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, Gwangju 61186, Republic of Korea; (C.K.); (K.T.N.); (J.-O.P.)
| | - Eunpyo Choi
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Jayoung Kim
- Department of Biosystems Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
8
|
Chen Y, Zhang Q, Shen J, Liu Z, Cui X, Ma L, Zheng Y, Wang L, Ying T. Magnetically actuated cisplatin-loaded nanoparticle collectives enhance drug penetration for potentiated ovarian cancer chemotherapy. J Colloid Interface Sci 2025; 678:108-118. [PMID: 39182385 DOI: 10.1016/j.jcis.2024.08.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Chemotherapy is the main clinical treatment for ovarian cancer, but still faces challenges of low drug targeting efficiency and insufficient drug permeability. Drug-loaded nanoparticle collectives, which are actuated by magnetic field, could be targeted to a designated location and achieve targeted drug delivery. In this work, we report a strategy that utilizes magnetic mesoporous silica nanoparticles loaded with cis-diaminodichloroplatinum (Fe3O4@SiO2-CDDP) for targeted delivery of chemotherapeutic drugs and enhances penetration into deep tumors. The Fe3O4@SiO2-CDDP collectives actively moved to the target tumor site, and this movement was regulated by a magnetic actuation system. Under the action of a torque-force hybrid magnetic field (TFMF), Fe3O4@SiO2-CDDP could further penetrate into the interior of tumors and achieve pH-responsive drug release in the tumor environment. The feasibility of this strategy was verified in three-dimensional cell spheres in vitro and in a tumor-bearing mouse model in vivo. This magnetically actuated nanoparticle collectives enhanced drug penetration strategy provides a new paradigm for targeted drug delivery and potentiated tumor therapy.
Collapse
Affiliation(s)
- Ying Chen
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Qiang Zhang
- Department of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jian Shen
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zhiran Liu
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiaoyu Cui
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Li Ma
- Department of Obstetrics and Gynecology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Longchen Wang
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Tao Ying
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
9
|
Cheng Q, Lu X, Tai Y, Luo T, Yang R. Light-Driven Microrobots for Targeted Drug Delivery. ACS Biomater Sci Eng 2024; 10:5562-5594. [PMID: 39147594 DOI: 10.1021/acsbiomaterials.4c01191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
As a new micromanipulation tool with the advantages of small size, flexible movement and easy manipulation, light-driven microrobots have a wide range of prospects in biomedical fields such as drug targeting and cell manipulation. Recently, microrobots have been controlled in various ways, and light field has become a research hotspot by its advantages of noncontact manipulation, precise localization, fast response, and biocompatibility. It utilizes the force or deformation generated by the light field to precisely control the microrobot, and combines with the drug release technology to realize the targeted drug application. Therefore, this paper provides an overview of light-driven microrobots with drug targeting to provide new ideas for the manipulation of microrobots. Here, this paper briefly categorizes the driving mechanisms and materials of light-driven microrobots, which mainly include photothermal, photochemical, and biological. Then, typical designs of light-driven microrobots with different driving mechanisms and control strategies for multiple physical fields are summarized. Finally, the applications of microrobots in the fields of drug targeting and bioimaging are presented as well as the future prospects of light-driven microrobots in the biomedical field are demonstrated.
Collapse
Affiliation(s)
- Qilong Cheng
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Xingqi Lu
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Yunhao Tai
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Tingting Luo
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Runhuai Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
10
|
Ghosh S, Bhaskar R, Mishra R, Arockia Babu M, Abomughaid MM, Jha NK, Sinha JK. Neurological insights into brain-targeted cancer therapy and bioinspired microrobots. Drug Discov Today 2024; 29:104105. [PMID: 39029869 DOI: 10.1016/j.drudis.2024.104105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Cancer, a multifaceted and pernicious disease, continuously challenges medicine, requiring innovative treatments. Brain cancers pose unique and daunting challenges due to the intricacies of the central nervous system and the blood-brain barrier. In this era of precision medicine, the convergence of neurology, oncology, and cutting-edge technology has given birth to a promising avenue - targeted cancer therapy. Furthermore, bioinspired microrobots have emerged as an ingenious approach to drug delivery, enabling precision and control in cancer treatment. This Keynote review explores the intricate web of neurological insights into brain-targeted cancer therapy and the paradigm-shifting world of bioinspired microrobots. It serves as a critical and comprehensive overview of these evolving fields, aiming to underscore their integration and potential for revolutionary cancer treatments.
Collapse
Affiliation(s)
- Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea
| | - Richa Mishra
- Department of Computer Science and Engineering, Parul University, Vadodara, Gujrat 391760, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Niraj Kumar Jha
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | | |
Collapse
|
11
|
He T, Yang Y, Chen XB. Propulsion mechanisms of micro/nanorobots: a review. NANOSCALE 2024; 16:12696-12734. [PMID: 38940742 DOI: 10.1039/d4nr01776e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Micro/nanomotors (MNMs) are intelligent, efficient and promising micro/nanorobots (MNR) that can respond to external stimuli (e.g., chemical energy, temperature, light, pH, ultrasound, magnetic, biosignals, ions) and perform specific tasks. The MNR can adapt to different external stimuli and transform into various functional forms to match different application scenarios. So far, MNR have found extensive application in targeted therapy, drug delivery, tissue engineering, environmental remediation, and other fields. Despite the promise of MNR, there are few reviews that focus on them. To shed new light on the further development of the field, it is necessary to provide an overview of the current state of development of these MNR. Therefore, this paper reviews the research progress of MNR in terms of propulsion mechanisms, and points out the pros and cons of different stimulus types. Finally, this paper highlights the current challenges faced by MNR and proposes possible solutions to facilitate the practical application of MNR.
Collapse
Affiliation(s)
- Tao He
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| | - Yonghui Yang
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| | - Xue-Bo Chen
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| |
Collapse
|
12
|
Cao Y, Xu B, Li B, Fu H. Advanced Design of Soft Robots with Artificial Intelligence. NANO-MICRO LETTERS 2024; 16:214. [PMID: 38869734 PMCID: PMC11176285 DOI: 10.1007/s40820-024-01423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/22/2024] [Indexed: 06/14/2024]
Abstract
A comprehensive review focused on the whole systems of the soft robotics with artificial intelligence, which can feel, think, react and interact with humans, is presented. The design strategies concerning about various aspects of the soft robotics, like component materials, device structures, prepared technologies, integrated method, and potential applications, are summarized. A broad outlook on the future considerations for the soft robots is proposed. In recent years, breakthrough has been made in the field of artificial intelligence (AI), which has also revolutionized the industry of robotics. Soft robots featured with high-level safety, less weight, lower power consumption have always been one of the research hotspots. Recently, multifunctional sensors for perception of soft robotics have been rapidly developed, while more algorithms and models of machine learning with high accuracy have been optimized and proposed. Designs of soft robots with AI have also been advanced ranging from multimodal sensing, human–machine interaction to effective actuation in robotic systems. Nonetheless, comprehensive reviews concerning the new developments and strategies for the ingenious design of the soft robotic systems equipped with AI are rare. Here, the new development is systematically reviewed in the field of soft robots with AI. First, background and mechanisms of soft robotic systems are briefed, after which development focused on how to endow the soft robots with AI, including the aspects of feeling, thought and reaction, is illustrated. Next, applications of soft robots with AI are systematically summarized and discussed together with advanced strategies proposed for performance enhancement. Design thoughts for future intelligent soft robotics are pointed out. Finally, some perspectives are put forward.
Collapse
Affiliation(s)
- Ying Cao
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, People's Republic of China
| | - Bingang Xu
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, People's Republic of China.
| | - Bin Li
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Hong Fu
- Department of Mathematics and Information Technology, The Education University of Hong Kong, Hong Kong, 999077, People's Republic of China.
| |
Collapse
|
13
|
Gao Q, Lin T, Liu Z, Chen Z, Chen Z, Hu C, Shen T. Study on Structural Design and Motion Characteristics of Magnetic Helical Soft Microrobots with Drug-Carrying Function. MICROMACHINES 2024; 15:731. [PMID: 38930701 PMCID: PMC11205992 DOI: 10.3390/mi15060731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Magnetic soft microrobots have a wide range of applications in targeted drug therapy, cell manipulation, and other aspects. Currently, the research on magnetic soft microrobots is still in the exploratory stage, and most of the research focuses on a single helical structure, which has limited space to perform drug-carrying tasks efficiently and cannot satisfy specific medical goals in terms of propulsion speed. Therefore, balancing the motion speed and drug-carrying performance is a current challenge to overcome. In this paper, a magnetically controlled cone-helix soft microrobot structure with a drug-carrying function is proposed, its helical propulsion mechanism is deduced, a dynamical model is constructed, and the microrobot structure is prepared using femtosecond laser two-photon polymerization three-dimensional printing technology for magnetic drive control experiments. The results show that under the premise of ensuring sufficient drug-carrying space, the microrobot structure proposed in this paper can realize helical propulsion quickly and stably, and the speed of motion increases with increases in the frequency of the rotating magnetic field. The microrobot with a larger cavity diameter and a larger helical pitch exhibits faster rotary advancement speed, while the microrobot with a smaller helical height and a smaller helical cone angle outperforms other structures with the same feature sizes. The microrobot with a cone angle of 0.2 rad, a helical pitch of 100 µm, a helical height of 220 µm, and a cavity diameter of 80 µm achieves a maximum longitudinal motion speed of 390 µm/s.
Collapse
Affiliation(s)
- Qian Gao
- Luohe Institute of Technology, Henan University of Technology, No. 123, University Road, Yuanhui District, Luohe 462000, China;
| | - Tingting Lin
- Higher Education Mega Center, Guangzhou University, No. 230, West Waihuan Street, Guangzhou 510006, China; (T.L.); (Z.L.); (Z.C.); (Z.C.)
| | - Ziteng Liu
- Higher Education Mega Center, Guangzhou University, No. 230, West Waihuan Street, Guangzhou 510006, China; (T.L.); (Z.L.); (Z.C.); (Z.C.)
| | - Zebiao Chen
- Higher Education Mega Center, Guangzhou University, No. 230, West Waihuan Street, Guangzhou 510006, China; (T.L.); (Z.L.); (Z.C.); (Z.C.)
| | - Zidong Chen
- Higher Education Mega Center, Guangzhou University, No. 230, West Waihuan Street, Guangzhou 510006, China; (T.L.); (Z.L.); (Z.C.); (Z.C.)
| | - Cheng Hu
- Higher Education Mega Center, Guangzhou University, No. 230, West Waihuan Street, Guangzhou 510006, China; (T.L.); (Z.L.); (Z.C.); (Z.C.)
| | - Teng Shen
- Higher Education Mega Center, Guangzhou University, No. 230, West Waihuan Street, Guangzhou 510006, China; (T.L.); (Z.L.); (Z.C.); (Z.C.)
| |
Collapse
|
14
|
Chen Y, Guo Y, Xie B, Jin F, Ma L, Zhang H, Li Y, Chen X, Hou M, Gao J, Liu H, Lu YJ, Wong CP, Zhao N. Lightweight and drift-free magnetically actuated millirobots via asymmetric laser-induced graphene. Nat Commun 2024; 15:4334. [PMID: 38773174 PMCID: PMC11109242 DOI: 10.1038/s41467-024-48751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
Millirobots must have low cost, efficient locomotion, and the ability to track target trajectories precisely if they are to be widely deployed. With current materials and fabrication methods, achieving all of these features in one millirobot remains difficult. We develop a series of graphene-based helical millirobots by introducing asymmetric light pattern distortion to a laser-induced polymer-to-graphene conversion process; this distortion resulted in the spontaneous twisting and peeling off of graphene sheets from the polymer substrate. The lightweight nature of graphene in combine with the laser-induced porous microstructure provides a millirobot scaffold with a low density and high surface hydrophobicity. Magnetically driven nickel-coated graphene-based helical millirobots with rapid locomotion, excellent trajectory tracking, and precise drug delivery ability were fabricated from the scaffold. Importantly, such high-performance millirobots are fabricated at a speed of 77 scaffolds per second, demonstrating their potential in high-throughput and large-scale production. By using drug delivery for gastric cancer treatment as an example, we demonstrate the advantages of the graphene-based helical millirobots in terms of their long-distance locomotion and drug transport in a physiological environment. This study demonstrates the potential of the graphene-based helical millirobots to meet performance, versatility, scalability, and cost-effectiveness requirements simultaneously.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yuanhui Guo
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Bin Xie
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Fujun Jin
- Institute of Natural Medicine and Green Chemistry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Li Ma
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Hao Zhang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yihao Li
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xin Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Maoxiang Hou
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Jian Gao
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Huilong Liu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yu-Jing Lu
- Institute of Natural Medicine and Green Chemistry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Ching-Ping Wong
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ni Zhao
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
15
|
Lin J, Cong Q, Zhang D. Magnetic Microrobots for In Vivo Cargo Delivery: A Review. MICROMACHINES 2024; 15:664. [PMID: 38793237 PMCID: PMC11123378 DOI: 10.3390/mi15050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Magnetic microrobots, with their small size and agile maneuverability, are well-suited for navigating the intricate and confined spaces within the human body. In vivo cargo delivery within the context of microrobotics involves the use of microrobots to transport and administer drugs and cells directly to the targeted regions within a living organism. The principal aim is to enhance the precision, efficiency, and safety of therapeutic interventions. Despite their potential, there is a shortage of comprehensive reviews on the use of magnetic microrobots for in vivo cargo delivery from both research and engineering perspectives, particularly those published after 2019. This review addresses this gap by disentangling recent advancements in magnetic microrobots for in vivo cargo delivery. It summarizes their actuation platforms, structural designs, cargo loading and release methods, tracking methods, navigation algorithms, and degradation and retrieval methods. Finally, it highlights potential research directions. This review aims to provide a comprehensive summary of the current landscape of magnetic microrobot technologies for in vivo cargo delivery. It highlights their present implementation methods, capabilities, and prospective research directions. The review also examines significant innovations and inherent challenges in biomedical applications.
Collapse
Affiliation(s)
| | | | - Dandan Zhang
- Department of Bioengineering, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK; (J.L.); (Q.C.)
| |
Collapse
|
16
|
Wu B, Rivas DP, Das S. Upstream mobility and swarming of light activated micromotors. MATERIALS ADVANCES 2024; 5:1875-1879. [PMID: 38444934 PMCID: PMC10911229 DOI: 10.1039/d3ma00814b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/24/2023] [Indexed: 03/07/2024]
Abstract
Micromotors have been proposed for applications such as targeted drug delivery, thrombolysis, or sensing. However, single micrormotors are limited in the amount of payload they can deliver or force they can exert. Swarms of micromotors can overcome many of these challenges, however creating and controlling such swarms presents many challenges of its own. In particular, utilizing swarms in fluid flows is of significant importance for biomedical or lab-on-chip applications. Here, the upstream mobility and swarm formation of light driven micromotors in microchannel flows is demonstrated with maximum speeds around 0.1 mm s-1. Additionally, the light actuated microrobots operate in fairly low concentrations of hydrogen peroxide of approximately 1%. The micromotors form swarms at the boundary of the locally applied light pattern and the swarms can be moved by translating the light up or downstream.
Collapse
Affiliation(s)
- Bingzhi Wu
- Department of Mechanical Engineering, University of Delaware 210 South College Ave Newark DE 19716 USA
| | - David P Rivas
- Department of Mechanical Engineering, University of Delaware 210 South College Ave Newark DE 19716 USA
| | - Sambeeta Das
- Department of Mechanical Engineering, University of Delaware 210 South College Ave Newark DE 19716 USA
| |
Collapse
|
17
|
Zhou J, Li M, Li N, Zhou Y, Wang J, Jiao N. System integration of magnetic medical microrobots: from design to control. Front Robot AI 2023; 10:1330960. [PMID: 38169802 PMCID: PMC10758462 DOI: 10.3389/frobt.2023.1330960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Magnetic microrobots are ideal for medical applications owing to their deep tissue penetration, precise control, and flexible movement. After decades of development, various magnetic microrobots have been used to achieve medical functions such as targeted delivery, cell manipulation, and minimally invasive surgery. This review introduces the research status and latest progress in the design and control systems of magnetic medical microrobots from a system integration perspective and summarizes the advantages and limitations of the research to provide a reference for developers. Finally, the future development direction of magnetic medical microrobot design and control systems are discussed.
Collapse
Affiliation(s)
- Junjian Zhou
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengyue Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Na Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuting Zhou
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingyi Wang
- College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang, China
| | - Niandong Jiao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
18
|
He T, Yang Y, Chen XB. Preparation, Stimulus-Response Mechanisms and Applications of Micro/Nanorobots. MICROMACHINES 2023; 14:2253. [PMID: 38138422 PMCID: PMC10745970 DOI: 10.3390/mi14122253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Micro- and nanorobots are highly intelligent and efficient. They can perform various complex tasks as per the external stimuli. These robots can adapt to the required functional form, depending on the different stimuli, thus being able to meet the requirements of various application scenarios. So far, microrobots have been widely used in the fields of targeted therapy, drug delivery, tissue engineering, environmental remediation and so on. Although microbots are promising in some fields, few reviews have yet focused on them. It is therefore necessary to outline the current status of these microbots' development to provide some new insights into the further evolution of this field. This paper critically assesses the research progress of microbots with respect to their preparation methods, stimulus-response mechanisms and applications. It highlights the suitability of different preparation methods and stimulus types, while outlining the challenges experienced by microbots. Viable solutions are also proposed for the promotion of their practical use.
Collapse
Affiliation(s)
| | | | - Xue-Bo Chen
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (T.H.); (Y.Y.)
| |
Collapse
|
19
|
Li S, Wang Q, Duan X, Pei Z, He Z, Guo W, Han L. A glutathione-responsive PEGylated nanogel with doxorubicin-conjugation for cancer therapy. J Mater Chem B 2023; 11:11612-11619. [PMID: 38038224 DOI: 10.1039/d3tb01731a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The complexity, degradability, and stability of drug delivery systems are crucial factors for clinical application. Herein, a glutathione (GSH)-responsive polyethylene glycol (PEG)ylated nanogel conjugated with doxorubicin (Dox) was prepared based on a linker with disulfide bonds, PEG, and Dox using a one-pot method. FT-IR and UV-vis analyses confirmed that all raw materials were incorporated in the Dox-conjugated nanogel structure. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) results showed that the particle size of the Dox-conjugated nanogel was at the nanoscale and could be responsively disrupted in high GSH concentration. The in vitro accumulative Dox release rate from the nanogel reached 88% in PBS with 5 mg mL-1 GSH on day 4. Moreover, H22 cell viability and apoptosis experiments revealed that the nanogel effectively inhibited tumor cell growth. In vivo tracking and cell uptake experiments demonstrated that the nanogel accumulated and persisted in tumor tissues for 5 days and was distributed into cell nuclei at 6 h. Furthermore, H22-bearing mice experiments showed that the tumor size of the Dox-conjugated nanogel group was the smallest (287 mm3) compared to that of the free Dox (558 mm3) and 0.9% NaCl (2700 mm3) groups. Meanwhile, the body weight of mice as well as the H&E and TUNEL tissue section staining of organs and tumor tissues from the mice illustrated that the nanogel could significantly prevent side effects and induce tumor cell apoptosis. Taken together, compared with free Dox, the Dox-conjugated nanogel exhibited higher therapeutic efficacy and lower side effects in normal tissues, making it a potential novel nanomedicine for cancer.
Collapse
Affiliation(s)
- Shufen Li
- School of Pharmacy, Changzhi Medical College, Changzhi 046000, China.
- Department of Physiology, Changzhi Medical College, Changzhi, 046000, China.
| | - Qiang Wang
- School of Pharmacy, Changzhi Medical College, Changzhi 046000, China.
| | - Xiao Duan
- School of Pharmacy, Changzhi Medical College, Changzhi 046000, China.
- The Stem Cell and Tissue Engineering Research Center, Changzhi Medical College, Changzhi, 046000, China
| | - Zhen Pei
- Department of Physiology, Changzhi Medical College, Changzhi, 046000, China.
| | - Zhipeng He
- Department of Gastrointestinal Surgery, Heji Hospital Affiliated to Changzhi Medical College, Changzhi Medical College, Changzhi, 046000, China.
| | - Wei Guo
- Department of Gastrointestinal Surgery, Heji Hospital Affiliated to Changzhi Medical College, Changzhi Medical College, Changzhi, 046000, China.
| | - Lingna Han
- Department of Physiology, Changzhi Medical College, Changzhi, 046000, China.
| |
Collapse
|
20
|
Cai M, Wang Q, Qi Z, Jin D, Wu X, Xu T, Zhang L. Deep Reinforcement Learning Framework-Based Flow Rate Rejection Control of Soft Magnetic Miniature Robots. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:7699-7711. [PMID: 36070281 DOI: 10.1109/tcyb.2022.3199213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soft magnetic miniature robots (SMMRs) have potential biomedical applications due to their flexible size and mobility to access confined environments. However, navigating the robot to a goal site with precise control performance and high repeatability in unstructured environments, especially in flow rate conditions, still remains a challenge. In this study, drawing inspiration from the control requirements of drug delivery and release to the goal lesion site in the presence of dynamic biofluids, we propose a flow rate rejection control strategy based on a deep reinforcement learning (DRL) framework to actuate an SMMR to achieve goal-reaching and hovering in fluidic tubes. To this end, an SMMR is first fabricated, which can be operated by an external magnetic field to realize its desired functionalities. Subsequently, a simulator is constructed based on neural networks to map the relationship between the applied magnetic field and robot locomotion states. With minimal prior knowledge about the environment and dynamics, a gated recurrent unit (GRU)-based DRL algorithm is formulated by considering the designed history state-action and estimated flow rates. In addition, the randomization technique is applied during training to distill the general control policy for the physical SMMR. The results of numerical simulations and experiments are illustrated to demonstrate the robustness and efficacy of the presented control framework. Finally, in-depth analyses and discussions indicate the potentiality of DRL for soft magnetic robots in biomedical applications.
Collapse
|
21
|
Mao Y, Ren J, Yang L. Advances of nanomedicine in treatment of atherosclerosis and thrombosis. ENVIRONMENTAL RESEARCH 2023; 238:116637. [PMID: 37482129 DOI: 10.1016/j.envres.2023.116637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/17/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Atherosclerosis (AS) is a chronic inflammatory vascular disease. Myocardial ischemia originated from AS is the main cause of cardiovascular diseases, one of the major factors contributing to the global disease burden. AS is typically quiescent until occurrence of plaque rupture and thrombosis, leading to acute coronary syndrome and sudden death. Currently, clinical diagnostic techniques suffer from major pitfalls including lack of accuracy and specificity, which makes it rather difficult for drugs to directly target plaques to achieve therapeutic effect. Therefore, how to accurately diagnose and effectively intervene vulnerable AS plaques to achieve accurate delivery of drugs has become an urgent and evolving clinical problem. With the rapid development of nanomedicine and nanomaterials, nanotechnology has shown unique advantages in monitoring vulnerable plaques and thrombus and improving drug efficacy. Recent studies have shown that application of nanoparticle drug delivery system can booster the safety and effectiveness of drug therapy, and molecular imaging technology and nanomedicine also exhibit high clinical application potentials in disease diagnosis. Therefore, nanotechnology provides another promising avenue for diagnosis and treatment of AS and thrombosis, and has shown excellent performance in the development of targeted drug therapy and biomaterials. In this review, the research progress, challenges and prospects of nanotechnology in AS and thrombosis are discussed, expecting to provide new ideas for the prevention, diagnosis and treatment of AS and thrombosis.
Collapse
Affiliation(s)
- Yu Mao
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Lifang Yang
- Department of Anesthesiology, Xi'an Children Hospital, Xi'an, China.
| |
Collapse
|
22
|
Wrede P, Aghakhani A, Bozuyuk U, Yildiz E, Sitti M. Acoustic Trapping and Manipulation of Hollow Microparticles under Fluid Flow Using a Single-Lens Focused Ultrasound Transducer. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 37917969 PMCID: PMC10658455 DOI: 10.1021/acsami.3c11656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Microparticle manipulation and trapping play pivotal roles in biotechnology. To achieve effective manipulation within fluidic flow conditions and confined spaces, it is necessary to consider the physical properties of microparticles and the types of trapping forces applied. While acoustic waves have shown potential for manipulating microparticles, the existing setups involve complex actuation mechanisms and unstable microbubbles. Consequently, the need persists for an easily deployable acoustic actuation setup with stable microparticles. Here, we propose the use of hollow borosilicate microparticles possessing a rigid thin shell, which can be efficiently trapped and manipulated using a single-lens focused ultrasound (FUS) transducer under physiologically relevant flow conditions. These hollow microparticles offer stability and advantageous acoustic properties. They can be scaled up and mass-produced, making them suitable for systemic delivery. Our research demonstrates the successful trapping dynamics of FUS within circular tubings of varying diameters, validating the effectiveness of the method under realistic flow rates and ultrasound amplitudes. We also showcase the ability to remove hollow microparticles by steering the FUS transducer against the flow. Furthermore, we present potential biomedical applications, such as active cell tagging and navigation in bifurcated channels as well as ultrasound imaging in mouse cadaver liver tissue.
Collapse
Affiliation(s)
- Paul Wrede
- Physical
Intelligence Department, Max Planck Institute
for Intelligent Systems, 70569 Stuttgart, Germany
| | - Amirreza Aghakhani
- Physical
Intelligence Department, Max Planck Institute
for Intelligent Systems, 70569 Stuttgart, Germany
- Institute
of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569 Stuttgart, Germany
| | - Ugur Bozuyuk
- Physical
Intelligence Department, Max Planck Institute
for Intelligent Systems, 70569 Stuttgart, Germany
| | - Erdost Yildiz
- Physical
Intelligence Department, Max Planck Institute
for Intelligent Systems, 70569 Stuttgart, Germany
| | - Metin Sitti
- Physical
Intelligence Department, Max Planck Institute
for Intelligent Systems, 70569 Stuttgart, Germany
- Institute
for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
- School
of Medicine and School of Engineering, Koç
University, Istanbul, 34450, Turkey
| |
Collapse
|
23
|
Mallick S, Abouomar R, Rivas D, Sokolich M, Kirmizitas FC, Dutta A, Das S. Doxorubicin-Loaded Microrobots for Targeted Drug Delivery and Anticancer Therapy. Adv Healthc Mater 2023; 12:e2300939. [PMID: 37378647 PMCID: PMC10753031 DOI: 10.1002/adhm.202300939] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Micro-sized magnetic particles (also known as microrobots [MRs]) have recently been shown to have potential applications for numerous biomedical applications like drug delivery, microengineering, and single cell manipulation. Interdisciplinary studies have demonstrated the ability of these tiny particles to actuate under the action of a controlled magnetic field that not only drive MRs in a desired trajectory but also precisely deliver therapeutic payload to the target site. Additionally, optimal concentrations of therapeutic molecules can also be delivered to the desired site which is cost-effective and safe especially in scenarios where drug dose-related side effects are a concern. In this study, MRs are used to deliver anticancer drugs (doxorubicin) to cancer cells and subsequent cell death is evaluated in different cell lines (liver, prostate, and ovarian cancer cells). Cytocompatibility studies show that MRs are well-tolerated and internalized by cancer cells. Doxorubicin (DOX) is chemically conjugated with MRs (DOX-MRs) and magnetically steered toward cancer cells using the magnetic controller. Time-lapsed video shows that cells shrink and eventually die when MRs are internalized by cells. Taken together, this study confirms that microrobots are promising couriers for targeted delivery of therapeutic biomolecules for cancer therapy and other non-invasive procedures that require precise control.
Collapse
Affiliation(s)
- Sudipta Mallick
- Department of Mechanical Engineering, University of Delaware
| | | | - David Rivas
- Department of Mechanical Engineering, University of Delaware
| | - Max Sokolich
- Department of Mechanical Engineering, University of Delaware
| | - Fatma Ceren Kirmizitas
- Department of Mechanical Engineering, University of Delaware
- Department of Animal and Food Sciences, University of Delaware
| | - Aditya Dutta
- Department of Animal and Food Sciences, University of Delaware
| | - Sambeeta Das
- Department of Mechanical Engineering, University of Delaware
| |
Collapse
|
24
|
Liu CH, Liu MC, Jheng PR, Yu J, Fan YJ, Liang JW, Hsiao YC, Chiang CW, Bolouki N, Lee JW, Hsieh JH, Mansel BW, Chen YT, Nguyen HT, Chuang EY. Plasma-Derived Nanoclusters for Site-Specific Multimodality Photo/Magnetic Thrombus Theranostics. Adv Healthc Mater 2023; 12:e2301504. [PMID: 37421244 DOI: 10.1002/adhm.202301504] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Traditional thrombolytic therapeutics for vascular blockage are affected by their limited penetration into thrombi, associated off-target side effects, and low bioavailability, leading to insufficient thrombolytic efficacy. It is hypothesized that these limitations can be overcome by the precisely controlled and targeted delivery of thrombolytic therapeutics. A theranostic platform is developed that is biocompatible, fluorescent, magnetic, and well-characterized, with multiple targeting modes. This multimodal theranostic system can be remotely visualized and magnetically guided toward thrombi, noninvasively irradiated by near-infrared (NIR) phototherapies, and remotely activated by actuated magnets for additional mechanical therapy. Magnetic guidance can also improve the penetration of nanomedicines into thrombi. In a mouse model of thrombosis, the thrombosis residues are reduced by ≈80% and with no risk of side effects or of secondary embolization. This strategy not only enables the progression of thrombolysis but also accelerates the lysis rate, thereby facilitating its prospective use in time-critical thrombolytic treatment.
Collapse
Affiliation(s)
- Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City, 23561, Taiwan
| | - Ming-Che Liu
- Clinical Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Jui Fan
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jia-Wei Liang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yu-Cheng Hsiao
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chih-Wei Chiang
- Department of Orthopedics, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Nima Bolouki
- Department of Physical Electronics, Faculty of Science, Masaryk University, Brno, 60177, Czech Republic
| | - Jyh-Wei Lee
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Jang-Hsing Hsieh
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Bradley W Mansel
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu, 30076, Taiwan
| | - Yan-Ting Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Medical University, Wan Fang Hospital, Taipei, 11696, Taiwan
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| |
Collapse
|
25
|
Yang Y, Kirmizitas FC, Sokolich M, Valencia A, Rivas D, Karakan MÇ, White AE, Malikopoulos AA, Das S. Rolling Helical Microrobots for Cell Patterning. ... INTERNATIONAL CONFERENCE ON MANIPULATION AUTOMATION AND ROBOTICS AT SMALL SCALES (MARSS). INTERNATIONAL CONFERENCE ON MANIPULATION AUTOMATION AND ROBOTICS AT SMALL SCALES 2023; 2023:10.1109/marss58567.2023.10294113. [PMID: 38952455 PMCID: PMC11215787 DOI: 10.1109/marss58567.2023.10294113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Microrobots, untethered miniature devices capable of performing tasks at the microscale, have gained significant attention in the fields of robotics and biomedicine. These devices hold immense potential for various industrial and scientific applications, including targeted drug delivery and cell manipulation. In this study, we present a novel magnetic rolling helical microrobot specifically designed for bio-compatible cell patterning. Our microrobot incorporates both open-loop and closed-loop control mechanisms, providing flexible, precise, and rapid control for various applications. Through experiments, we demonstrate the microrobot's ability to manipulate cells by pushing them while rolling and arranging cells into desired patterns. This result is particularly significant as it has implications for diverse biological applications such as tissue engineering and organoid development. Moreover, we showcase the effectiveness of our microrobot in a closed-loop control system, where it successfully follows a predetermined path from an origin to a destination. The combination of cellular manipulation capabilities and trajectory-tracking performance underlines the versatility and potential of our magnetic rolling helical microrobot. The ability to control and navigate the microrobot with high precision opens up new possibilities for advanced biomedical applications. These findings contribute to the growing body of knowledge in microbotics and pave the way for further research and development in the field.
Collapse
Affiliation(s)
- Yanda Yang
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 USA
| | - Fatma Ceren Kirmizitas
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 USA
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716 USA
| | - Max Sokolich
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 USA
| | - Alejandra Valencia
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 USA
| | - David Rivas
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 USA
| | - M Çağatay Karakan
- Department of Biomedical Engineering, Boston University, Boston, MA 02215 USA
| | - Alice E White
- Department of Mechanical Engineering, and the departments of Biomedical Engineering and Materials Science and Engineering, Boston University, Boston, MA 02215 USA
| | | | - Sambeeta Das
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 USA
| |
Collapse
|
26
|
Zhu S, Cheng Y, Wang J, Liu G, Luo T, Li X, Yang S, Yang R. Biohybrid magnetic microrobots: An intriguing and promising platform in biomedicine. Acta Biomater 2023; 169:88-106. [PMID: 37572981 DOI: 10.1016/j.actbio.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Biohybrid magnetic microrobots (BMMs) have emerged as an exciting class of microrobots and have been considered as a promising platform in biomedicine. Many microorganisms and body's own cells show intriguing properties, such as morphological characteristics, biosafety, and taxis abilities (e.g., chemotaxis, aerotaxis), which have made them attractive for the fabrication of microrobots. For remote controllability and sustainable actuation, magnetic components are usually incorporated onto these biological entities, and other functionalized non-biological components (e.g., therapeutic agents) are also included for specific applications. This review highlights the latest developments in BMMs with a focus on their biomedical applications. It starts by introducing the fundamental understanding of the propulsion system at the microscale in a magnetically driven manner, followed by a summary of diverse BMMs based on different microorganisms and body's own cells along with their relevant applications. Finally, the review discusses how BMMs contribute to the advancements of microrobots, the current challenges of using BMMs in practical clinical settings, and the future perspectives of this exciting field. STATEMENT OF SIGNIFICANCE: Biohybrid magnetic microrobots (BMMs), composed of biological entities and functional parts, hold great potential and serve as a novel and promising platform for biomedical applications such as targeted drug delivery. This review comprehensively summarizes the recent advancements in BMMs for biomedical applications, mainly focused on the representative propulsion modalities in a magnetically propelled manner and diverse designs of BMMs based on different biological entities, including microorganisms and body's own cells. We hope this review can provide ideas for the future design, development, and innovation of micro/nanorobots in the field of biomedicine.
Collapse
Affiliation(s)
- Shilu Zhu
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Yifan Cheng
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Jian Wang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Guangli Liu
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Tingting Luo
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China.
| | - Xiaojian Li
- Department of Management, Hefei University of Technology, Hefei 230009, China.
| | - Shanlin Yang
- Key Laboratory of Process Optimization and Intelligent Decision-Making (Ministry of Education), Hefei University of Technology, Hefei 230009, China.
| | - Runhuai Yang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
27
|
Zhou Y, Ye M, Hu C, Qian H, Nelson BJ, Wang X. Stimuli-Responsive Functional Micro-/Nanorobots: A Review. ACS NANO 2023; 17:15254-15276. [PMID: 37534824 DOI: 10.1021/acsnano.3c01942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Stimuli-responsive functional micro-/nanorobots (srFM/Ns) are a class of intelligent, efficient, and promising microrobots that can react to external stimuli (such as temperature, light, ultrasound, pH, ion, and magnetic field) and perform designated tasks. Through adaptive transformation into the corresponding functional forms, they can perfectly match the demands depending on different applications, which manifest extremely important roles in targeted therapy, biological detection, tissue engineering, and other fields. Promising as srFM/Ns can be, few reviews have focused on them. It is therefore necessary to provide an overview of the current development of these intelligent srFM/Ns to provide clear inspiration for further development of this field. Hence, this review summarizes the current advances of stimuli-responsive functional microrobots regarding their response mechanism, the achieved functions, and their applications to highlight the pros and cons of different stimuli. Finally, we emphasize the existing challenges of srFM/Ns and propose possible strategies to help accelerate the study of this field and promote srFM/Ns toward actual applications.
Collapse
Affiliation(s)
- Yan Zhou
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518129, China
| | - Min Ye
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518129, China
| | - Chengzhi Hu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huihuan Qian
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518129, China
- Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Bradley J Nelson
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518129, China
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - Xiaopu Wang
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518129, China
| |
Collapse
|
28
|
Darmawan BA, Park JO, Go G, Choi E. Four-Dimensional-Printed Microrobots and Their Applications: A Review. MICROMACHINES 2023; 14:1607. [PMID: 37630143 PMCID: PMC10456732 DOI: 10.3390/mi14081607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023]
Abstract
Owing to their small size, microrobots have many potential applications. In addition, four-dimensional (4D) printing facilitates reversible shape transformation over time or upon the application of stimuli. By combining the concept of microrobots and 4D printing, it may be possible to realize more sophisticated next-generation microrobot designs that can be actuated by applying various stimuli, and also demonstrates profound implications for various applications, including drug delivery, cells delivery, soft robotics, object release and others. Herein, recent advances in 4D-printed microrobots are reviewed, including strategies for facilitating shape transformations, diverse types of external stimuli, and medical and nonmedical applications of microrobots. Finally, to conclude the paper, the challenges and the prospects of 4D-printed microrobots are highlighted.
Collapse
Affiliation(s)
- Bobby Aditya Darmawan
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Republic of Korea; (B.A.D.); (J.-O.P.)
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Republic of Korea; (B.A.D.); (J.-O.P.)
| | - Gwangjun Go
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Republic of Korea; (B.A.D.); (J.-O.P.)
- Department of Mechanical Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Eunpyo Choi
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Republic of Korea; (B.A.D.); (J.-O.P.)
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|
29
|
Li J, Yu J. Biodegradable Microrobots and Their Biomedical Applications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101590. [PMID: 37242005 DOI: 10.3390/nano13101590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
During recent years, microrobots have drawn extensive attention owing to their good controllability and great potential in biomedicine. Powered by external physical fields or chemical reactions, these untethered microdevices are promising candidates for in vivo complex tasks, such as targeted delivery, imaging and sensing, tissue engineering, hyperthermia, and assisted fertilization, among others. However, in clinical use, the biodegradability of microrobots is significant for avoiding toxic residue in the human body. The selection of biodegradable materials and the corresponding in vivo environment needed for degradation are increasingly receiving attention in this regard. This review aims at analyzing different types of biodegradable microrobots by critically discussing their advantages and limitations. The chemical degradation mechanisms behind biodegradable microrobots and their typical applications are also thoroughly investigated. Furthermore, we examine their feasibility and deal with the in vivo suitability of different biodegradable microrobots in terms of their degradation mechanisms; pathological environments; and corresponding biomedical applications, especially targeted delivery. Ultimately, we highlight the prevailing obstacles and perspective solutions, ranging from their manufacturing methods, control of movement, and degradation rate to insufficient and limited in vivo tests, that could be of benefit to forthcoming clinical applications.
Collapse
Affiliation(s)
- Jinxin Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen 518172, China
| |
Collapse
|
30
|
Abstract
Untethered robots in the size range of micro/nano-scale offer unprecedented access to hard-to-reach areas of the body. In these challenging environments, autonomous task completion capabilities of micro/nanorobots have been the subject of research in recent years. However, most of the studies have presented preliminary in vitro results that can significantly differ under in vivo settings. Here, we focus on the studies conducted with animal models to reveal the current status of micro/nanorobotic applications in real-world conditions. By a categorization based on target locations, we highlight the main strategies employed in organs and other body parts. We also discuss key challenges that require interest before the successful translation of micro/nanorobots to the clinic.
Collapse
Affiliation(s)
- Cagatay M Oral
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200, Brno, Czech Republic.
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200, Brno, Czech Republic.
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. Listopadu 2172/15, 70800, Ostrava, Czech Republic
| |
Collapse
|
31
|
Sun H, Liu J, Wang Q. Magnetic Actuation Systems and Magnetic Robots for Gastrointestinal Examination and Treatment. CHINESE JOURNAL OF ELECTRICAL ENGINEERING 2023; 9:3-28. [DOI: 10.23919/cjee.2023.000009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Hongbo Sun
- Institute of Electrical Engineering, Chinese Academy of Sciences,Beijing,China,100190
| | - Jianhua Liu
- Institute of Electrical Engineering, Chinese Academy of Sciences,Beijing,China,100190
| | - Qiuliang Wang
- Institute of Electrical Engineering, Chinese Academy of Sciences,Beijing,China,100190
| |
Collapse
|
32
|
Sun R, Song X, Zhou K, Zuo Y, Wang R, Rifaie-Graham O, Peeler DJ, Xie R, Leng Y, Geng H, Brachi G, Ma Y, Liu Y, Barron L, Stevens MM. Assembly of Fillable Microrobotic Systems by Microfluidic Loading with Dip Sealing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207791. [PMID: 36502366 PMCID: PMC7615483 DOI: 10.1002/adma.202207791] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Microrobots can provide spatiotemporally well-controlled cargo delivery that can improve therapeutic efficiency compared to conventional drug delivery strategies. Robust microfabrication methods to expand the variety of materials or cargoes that can be incorporated into microrobots can greatly broaden the scope of their functions. However, current surface coating or direct blending techniques used for cargo loading result in inefficient loading and poor cargo protection during transportation, which leads to cargo waste, degradation and non-specific release. Herein, a versatile platform to fabricate fillable microrobots using microfluidic loading and dip sealing (MLDS) is presented. MLDS enables the encapsulation of different types of cargoes within hollow microrobots and protection of cargo integrity. The technique is supported by high-resolution 3D printing with an integrated microfluidic loading system, which realizes a highly precise loading process and improves cargo loading capacity. A corresponding dip sealing strategy is developed to encase and protect the loaded cargo whilst maintaining the geometric and structural integrity of the loaded microrobots. This dip sealing technique is suitable for different materials, including thermal and light-responsive materials. The MLDS platform provides new opportunities for microrobotic systems in targeted drug delivery, environmental sensing, and chemically powered micromotor applications.
Collapse
Affiliation(s)
- Rujie Sun
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Xin Song
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Kun Zhou
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Yuyang Zuo
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Richard Wang
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | | | - David J. Peeler
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Ruoxiao Xie
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Yixuan Leng
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Hongya Geng
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Giulia Brachi
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Yun Ma
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Yutong Liu
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Lorna Barron
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
33
|
Deng X, Su Y, Xu M, Gong D, Cai J, Akhter M, Chen K, Li S, Pan J, Gao C, Li D, Zhang W, Xu W. Magnetic Micro/nanorobots for biological detection and targeted delivery. Biosens Bioelectron 2023; 222:114960. [PMID: 36463650 DOI: 10.1016/j.bios.2022.114960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/12/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Xue Deng
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuan Su
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health Institute of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Minghao Xu
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - De Gong
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Jun Cai
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Muhammad Akhter
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China
| | - Kehan Chen
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Shuting Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health Institute of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Jingwen Pan
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Chao Gao
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Daoliang Li
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China
| | - Wenqiang Zhang
- College of Engineering, China Agricultural University, Beijing, 100083, China.
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health Institute of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism Food Safety MOA, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
34
|
Multimodal collective swimming of magnetically articulated modular nanocomposite robots. Nat Commun 2022; 13:6750. [PMID: 36347849 PMCID: PMC9643480 DOI: 10.1038/s41467-022-34430-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Magnetically responsive composites can impart maneuverability to miniaturized robots. However, collective actuation of these composite robots has rarely been achieved, although conducting cooperative tasks is a promising strategy for accomplishing difficult missions with a single robot. Here, we report multimodal collective swimming of ternary-nanocomposite-based magnetic robots capable of on-demand switching between rectilinear translational swimming and rotational swimming. The nanocomposite robots comprise a stiff yet lightweight carbon nanotube yarn (CNTY) framework surrounded by a magnetic polymer composite, which mimics the hierarchical architecture of musculoskeletal systems, yielding magnetically articulated multiple robots with an agile above-water swimmability (~180 body lengths per second) and modularity. The multiple robots with multimodal swimming facilitate the generation and regulation of vortices, enabling novel vortex-induced transportation of thousands of floating microparticles and heavy semi-submerged cargos. The controllable collective actuation of these biomimetic nanocomposite robots can lead to versatile robotic functions, including microplastic removal, microfluidic vortex control, and transportation of pharmaceuticals.
Collapse
|
35
|
Yan B. Actuators for Implantable Devices: A Broad View. MICROMACHINES 2022; 13:1756. [PMID: 36296109 PMCID: PMC9610948 DOI: 10.3390/mi13101756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/12/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The choice of actuators dictates how an implantable biomedical device moves. Specifically, the concept of implantable robots consists of the three pillars: actuators, sensors, and powering. Robotic devices that require active motion are driven by a biocompatible actuator. Depending on the actuating mechanism, different types of actuators vary remarkably in strain/stress output, frequency, power consumption, and durability. Most reviews to date focus on specific type of actuating mechanism (electric, photonic, electrothermal, etc.) for biomedical applications. With a rapidly expanding library of novel actuators, however, the granular boundaries between subcategories turns the selection of actuators a laborious task, which can be particularly time-consuming to those unfamiliar with actuation. To offer a broad view, this study (1) showcases the recent advances in various types of actuating technologies that can be potentially implemented in vivo, (2) outlines technical advantages and the limitations of each type, and (3) provides use-specific suggestions on actuator choice for applications such as drug delivery, cardiovascular, and endoscopy implants.
Collapse
Affiliation(s)
- Bingxi Yan
- Department of Electrical and Computer Engineering, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
36
|
Song X, Sun R, Wang R, Zhou K, Xie R, Lin J, Georgiev D, Paraschiv A, Zhao R, Stevens MM. Puffball-Inspired Microrobotic Systems with Robust Payload, Strong Protection, and Targeted Locomotion for On-Demand Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204791. [PMID: 36066311 PMCID: PMC11475404 DOI: 10.1002/adma.202204791] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Microrobots are recognized as transformative solutions for drug delivery systems (DDSs) because they can navigate through the body to specific locations and enable targeted drug release. However, their realization is substantially limited by insufficient payload capacity, unavoidable drug leakage/deactivation, and strict modification/stability criteria for drugs. Natural puffballs possess fascinating features that are highly desirable for DDSs, including a large fruitbody for storing spores, a flexible protective cap, and environmentally triggered release mechanisms. This report presents a puffball-inspired microrobotic system which incorporates an internal chamber for loading large drug quantities and spatial drug separation, and a near-infrared-responsive top-sealing layer offering strong drug protection and on-demand release. These puffball-inspired microrobots (PIMs) display tunable loading capacities up to high concentrations and enhanced drug protection with minimal drug leakage. Upon near-infrared laser irradiation, on-demand drug delivery with rapid release efficiency is achieved. The PIMs also demonstrate translational motion velocities, switchable motion modes, and precise locomotion under a rotating magnetic field. This work provides strong proof-of-concept for a DDS that combines the superior locomotion capability of microrobots with the unique characteristics of puffballs, thereby illustrating a versatile avenue for development of a new generation of microrobots for targeted drug delivery.
Collapse
Affiliation(s)
- Xin Song
- Department of MaterialsDepartment of BioengineeringInstitute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Rujie Sun
- Department of MaterialsDepartment of BioengineeringInstitute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Richard Wang
- Department of MaterialsDepartment of BioengineeringInstitute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Kun Zhou
- Department of MaterialsDepartment of BioengineeringInstitute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Ruoxiao Xie
- Department of MaterialsDepartment of BioengineeringInstitute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Junliang Lin
- Department of MaterialsDepartment of BioengineeringInstitute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Dimitar Georgiev
- Department of MaterialsDepartment of BioengineeringInstitute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
- Department of ComputingUKRI Centre for Doctoral Training in AI for HealthcareImperial College LondonLondonSW7 2AZUK
| | - Andrei‐Alexandru Paraschiv
- Department of MaterialsDepartment of BioengineeringInstitute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
- Department of ChemistryImperial College LondonLondonSW7 2AZUK
| | - Ruibo Zhao
- Department of MaterialsDepartment of BioengineeringInstitute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
- Institute of Smart BiomaterialsSchool of Materials Science and EngineeringZhejiang Sci‐Tech UniversityHangzhouZhejiang310018China
| | - Molly M. Stevens
- Department of MaterialsDepartment of BioengineeringInstitute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
37
|
Zhu S, Zheng W, Wang J, Fang X, Zhang L, Niu F, Wang Y, Luo T, Liu G, Yang R. Interactive and synergistic behaviours of multiple heterogeneous microrobots. LAB ON A CHIP 2022; 22:3412-3423. [PMID: 35880648 DOI: 10.1039/d2lc00265e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microrobots have been extensively studied for biomedical applications, and significant innovations and advances have been made in diverse aspects of the field. However, most studies have been based on individual microrobots with limited capabilities, constraining their scalability of functions for practical use. Here, we demonstrate the interactive and synergistic behaviours of multiple microrobots that are heterogeneous or incompletely homogeneous. A frequency-response theory is proposed where in a certain frequency range of an external rotating magnetic field (RMF), microrobots with dispersed and linearly aligned magnetic nanoparticles (MNPs) would exhibit similar and different behaviour, respectively. These microrobots rotate following the rotation of the external field, and such complete rotational motion is interrupted when the frequency exceeds a certain value, called the critical frequency (cf), but such behaviour is more prominent in microrobots with linear MNPs. Upon further investigating the effect of various parameters on the cf of the microrobots during the fabrication process, we find that heterogeneous microrobots with specific cf values can be customized. In addition, experiments and simulations are combined to show the hydrodynamic behaviours around the rotating microrobots at different frequencies. Based on these findings, the interactive and synergistic behaviours of multiple microrobots are presented, which suggests great potential for the independent execution of multiple tasks or the synergistic performance of complex tasks and is significant for the future development of interactive synergistic microrobots in the biomedical field.
Collapse
Affiliation(s)
- Shilu Zhu
- School of Biomedical Engineering and the 3D-Printing and Tissue Engineering Center (3DPTEC), Anhui Medical University, Hefei 230032, China.
| | - Weijie Zheng
- School of Biomedical Engineering and the 3D-Printing and Tissue Engineering Center (3DPTEC), Anhui Medical University, Hefei 230032, China.
| | - Jian Wang
- School of Biomedical Engineering and the 3D-Printing and Tissue Engineering Center (3DPTEC), Anhui Medical University, Hefei 230032, China.
| | - Xingmiao Fang
- School of Biomedical Engineering and the 3D-Printing and Tissue Engineering Center (3DPTEC), Anhui Medical University, Hefei 230032, China.
| | - Lijiu Zhang
- Dastroenterology Department, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Fuzhou Niu
- School of Mechanical Engineering Suzhou University of Science and Technology Suzhou, Jiangsu 215009, China
| | - Ying Wang
- School of Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Tingting Luo
- School of Biomedical Engineering and the 3D-Printing and Tissue Engineering Center (3DPTEC), Anhui Medical University, Hefei 230032, China.
| | - Guangli Liu
- School of Biomedical Engineering and the 3D-Printing and Tissue Engineering Center (3DPTEC), Anhui Medical University, Hefei 230032, China.
| | - Runhuai Yang
- School of Biomedical Engineering and the 3D-Printing and Tissue Engineering Center (3DPTEC), Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
38
|
Wang L, Chen L, Zheng X, Yu Z, Lv W, Sheng M, Wang L, Nie P, Li H, Guan D, Cui H. Multimodal Bubble Microrobot Near an Air-Water Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203872. [PMID: 36045100 DOI: 10.1002/smll.202203872] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/09/2022] [Indexed: 05/27/2023]
Abstract
The development of multifunctional and robust swimming microrobots working at the free air-liquid interface has encountered challenge as new manipulation strategies are needed to overcome the complicated interfacial restrictions. Here, flexible but reliable mechanisms are shown that achieve a remote-control bubble microrobot with multiple working modes and high maneuverability by the assistance of a soft air-liquid interface. This bubble microrobot is developed from a hollow Janus microsphere (JM) regulated by a magnetic field, which can implement switchable working modes like pusher, gripper, anchor, and sweeper. The collapse of the microbubble and the accompanying directional jet flow play a key role for functioning in these working modes, which is analogous to a "bubble tentacle." Using a simple gamepad, the orientation and the navigation of the bubble microrobot can be easily manipulated. In particular, a speed modulation method is found for the bubble microrobot, which uses vertical magnetic field to control the orientation of the JM and the direction of the bubble-induced jet flow without changing the fuel concentration. The findings demonstrate a substantial advance of the bubble microrobot specifically working at the air-liquid interface and depict some nonintuitive mechanisms that can help develop more complicated microswimmers.
Collapse
Affiliation(s)
- Leilei Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Science, Beijing, 100190, China
| | - Li Chen
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xu Zheng
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Science, Beijing, 100190, China
| | - Zexiong Yu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Wenchao Lv
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Minjia Sheng
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lina Wang
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Pengcheng Nie
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Science, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hangyu Li
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Science, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongshi Guan
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Science, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haihang Cui
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
39
|
Pane S, Zhang M, Iacovacci V, Zhang L, Menciassi A. Contrast-enhanced ultrasound tracking of helical propellers with acoustic phase analysis and comparison with color Doppler. APL Bioeng 2022; 6:036102. [PMID: 35935094 PMCID: PMC9348897 DOI: 10.1063/5.0097145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/05/2022] [Indexed: 11/14/2022] Open
Abstract
Medical microrobots (MRs) hold the potential to radically transform several interventional procedures. However, to guarantee therapy success when operating in hard-to-reach body districts, a precise and robust imaging strategy is required for monitoring and controlling MRs in real-time. Ultrasound (US) may represent a powerful technology, but MRs' visibility with US needs to be improved, especially when targeting echogenic tissues. In this context, motions of MRs have been exploited to enhance their contrast, e.g., by Doppler imaging. To exploit a more selective contrast-enhancement mechanism, in this study, we analyze in detail the characteristic motions of one of the most widely adopted MR concepts, i.e., the helical propeller, with a particular focus on its interactions with the backscattered US waves. We combine a kinematic analysis of the propeller 3D motion with an US acoustic phase analysis (APA) performed on the raw radio frequency US data in order to improve imaging and tracking in bio-mimicking environments. We validated our US-APA approach in diverse scenarios, aimed at simulating realistic in vivo conditions, and compared the results to those obtained with standard US Doppler. Overall, our technique provided a precise and stable feedback to visualize and track helical propellers in echogenic tissues (chicken breast), tissue-mimicking phantoms with bifurcated lumina, and in the presence of different motion disturbances (e.g., physiological flows and tissue motions), where standard Doppler showed poor performance. Furthermore, the proposed US-APA technique allowed for real-time estimation of MR velocity, where standard Doppler failed.
Collapse
Affiliation(s)
| | - M Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - L Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
40
|
Ramos‐Sebastian A, Hwang S, Kim SH. Single Coil Mechano-Electromagnetic System for the Automatic 1-Axis Position Feedback 3D Locomotion Control of Magnetic Robots and Their Selective Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201968. [PMID: 35712771 PMCID: PMC9376823 DOI: 10.1002/advs.202201968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/31/2022] [Indexed: 05/13/2023]
Abstract
3D locomotion of magnetic microrobots requires at least one pair of coils per axis and 3D feedback of the position of the microrobot. This results in voluminous systems with high-power usage and a small working space, which require complex and expensive controllers. This study presents a single-coil magneto-electromagnetic system, comprising a parallel robot and coil, capable of precise 3D locomotion control of magnetic millirobots while requiring only feedback of the vertical position of the millirobot. The coil current creates a 2D magnetic trapping point in the horizontal plane, which depends on the position and orientation of the coil and toward which the millirobot moves, eliminating the need for position feedback at such plane. The vertical position of the millirobot is controlled by varying the coil current while receiving feedback from the vertical position of the millirobot. Feedbackless 2D control and 1-axis feedback 3D automatic control of magnetic millirobots are experimentally demonstrated, achieving higher speeds and similar position errors when compared to control systems with 3D position feedback. Furthermore, selective control of two millirobots is demonstrated by matching the region of maximum vertical magnetic force and the targeted millirobot, achieving selective levitation and control of such millirobots.
Collapse
Affiliation(s)
- Armando Ramos‐Sebastian
- Department of Electronics Convergence EngineeringWonkwang UniversityIksan54538Republic of Korea
- Department of IT Convergence Mechatronics EngineeringJeonbuk National UniversityJeonju54896Republic of Korea
| | - Seungchan Hwang
- Department of Electronics Convergence EngineeringWonkwang UniversityIksan54538Republic of Korea
| | - Sung Hoon Kim
- Department of Electronics Convergence EngineeringWonkwang UniversityIksan54538Republic of Korea
- Wonkwang Institute of Materials Science and TechnologyWonkwang UniversityIksan54538Republic of Korea
| |
Collapse
|
41
|
Chen Z, Lu W, Li Y, Liu P, Yang Y, Jiang L. Solid-Liquid State Transformable Magnetorheological Millirobot. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30007-30020. [PMID: 35727886 DOI: 10.1021/acsami.2c05251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Magnetically actuated soft millirobots (magneto-robot) capable of accomplishing on-demand tasks in a remote-control manner using noninvasive magnetic fields are of great interest in biomedical settings. However, the solid magneto-robots are usually restricted by the limited deformability due to the predesigned shape, while the liquid magneto-robots are capable of in situ shape reconfiguration but limited by the low stiffness and geometric instability due to the fluidity. Herein, we propose a magneto-active solid-liquid state transformable millirobot (named MRF-Robot) made from a magnetorheological fluid (MRF). The MRF-Robot can transform freely and rapidly between the Newtonian fluid in the liquid state upon a weak magnetic field (∼0 mT) and the Bingham plasticity in the solid state upon a strong magnetic field (∼100 mT). The MRF-Robot in the liquid state can realize diverse behaviors of large deformation, smooth navigation, in situ splitting, merging, and gradient pulling actuated by a weak magnetic field with a high gradient. The MRF-Robot in the solid state is distinguished for the controllable locomotion with reconfigured shapes and versatile object manipulations (including pull, push, and rotate the objects) driven by a strong magnetic field with a high gradient. Moreover, the MRF-Robot could continuously maneuver to accomplish diverse tasks in the comprehensive scenes and achieve liquid-drug delivery, thrombus clearance, and fluid-flow blockage in the phantom vascular model under magnetic actuation.
Collapse
Affiliation(s)
- Zhipeng Chen
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Weibin Lu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Yuanyuan Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Pengfei Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Yawen Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Lelun Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| |
Collapse
|
42
|
Darmawan BA, Lee SB, Nan M, Nguyen VD, Park JO, Choi E. Shape-Tunable UV-Printed Solid Drugs for Personalized Medicine. Polymers (Basel) 2022; 14:polym14132714. [PMID: 35808759 PMCID: PMC9269401 DOI: 10.3390/polym14132714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Several recent advances have emerged in biotherapy and the development of personal drugs. However, studies exploring effective manufacturing methods of personal drugs remain limited. In this study, solid drugs based on poly(ethylene glycol)diacrylate (PEGDA) hydrogel and doxorubicin were fabricated, and their final geometry was varied through UV-light patterning. The results suggested that the final drug concentration was affected by the geometrical volume as well as the UV-light exposure time. The analysis of PEGDA showed no effect on the surrounding cells, indicating its high biocompatibility. However, with the addition of doxorubicin, it showed an excellent therapeutic effect, indicating that drugs inside the PEGDA structure could be successfully released. This approach enables personal drugs to be fabricated in a simple, fast, and uniform manner, with perfectly tuned geometry.
Collapse
Affiliation(s)
- Bobby Aditya Darmawan
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (B.A.D.); (M.N.); (V.D.N.)
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Korea
| | - Sang Bong Lee
- THERABEST, Co., Ltd., Seocho-daero 40-gil, Seoul 06657, Korea;
| | - Minghui Nan
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (B.A.D.); (M.N.); (V.D.N.)
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Korea
| | - Van Du Nguyen
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (B.A.D.); (M.N.); (V.D.N.)
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Korea
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Korea
- Correspondence: (J.-O.P.); (E.C.)
| | - Eunpyo Choi
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (B.A.D.); (M.N.); (V.D.N.)
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Korea
- Correspondence: (J.-O.P.); (E.C.)
| |
Collapse
|
43
|
Zimmermann CJ, Schraeder T, Reynolds B, DeBoer EM, Neeves KB, Marr DW. Delivery and actuation of aerosolized microbots. NANO SELECT 2022; 3:1185-1191. [PMID: 38737633 PMCID: PMC11086685 DOI: 10.1002/nano.202100353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
For disease of the lung, the physical key to effective inhalation-based therapy is size; too large (10's of μm) and the particles or droplets do not remain suspended in air to reach deep within the lungs, too small (subμm) and they are simply exhaled without deposition. μBots within this ideal low-μm size range however are challenging to fabricate and would lead to devices that lack the speed and power necessary for performing work throughout the pulmonary network. To uncouple size from structure and function, here we demonstrate an approach where individual building blocks are aerosolized and subsequently assembled in situ into μbots capable of translation, drug delivery, and mechanical work deep within lung mimics. With this strategy, a variety of pulmonary diseases previously difficult to treat may now be receptive to μbot-based therapies.
Collapse
Affiliation(s)
- Coy J. Zimmermann
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Tyler Schraeder
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Brandon Reynolds
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Emily M. DeBoer
- Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Keith B. Neeves
- Departments of Bioengineering and Pediatrics, Hemophilia and Thrombosis Center, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - David W.M. Marr
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA
| |
Collapse
|
44
|
Sikorski J, Heunis CM, Obeid R, Venkiteswaran VK, Misra S. A Flexible Catheter System for Ultrasound-Guided Magnetic Projectile Delivery. IEEE T ROBOT 2022. [DOI: 10.1109/tro.2021.3123865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jakub Sikorski
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, NB, The Netherlands
| | - Christoff Marthinus Heunis
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, NB, The Netherlands
| | - Rafic Obeid
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, NB, The Netherlands
| | | | - Sarthak Misra
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, NB, The Netherlands
| |
Collapse
|
45
|
Darmawan BA, Gong D, Park H, Jeong S, Go G, Kim S, Nguyen KT, Zheng S, Nan M, Nguyen VD, Bang D, Kim CS, Kim H, Park JO, Choi E. Magnetically controlled reversible shape-morphing microrobots with real-time X-ray imaging for stomach cancer applications. J Mater Chem B 2022; 10:4509-4518. [PMID: 35616358 DOI: 10.1039/d2tb00760f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stomach cancer is a global health concern as millions of cases are reported each year. In the present study, we developed a pH-responsive microrobot with good biocompatibility, magnetic-field controlled movements, and the ability to be visualized via X-ray imaging. The microrobot consisted of composite resin and a pH-responsive layer. This microrobot was found to fold itself in high pH environments and unfold itself in low pH environments. In addition, the neodymium (NdFeB) magnetic nanoparticles present inside the composite resin provided the microrobot with an ability to be controlled by a magnetic field through an electromagnetic actuation system, and the monomeric triiodobenzoate-based particles were found to act as contrast agents for real-time X-ray imaging. The doxorubicin coating on the microrobot's surface resulted in a high cancer-cell killing effect. Finally, we demonstrated the proposed microrobot under an ex vivo environment using a pig's stomach. Thus, this approach can be a potential alternative to targeted drug carriers, especially for stomach cancer applications.
Collapse
Affiliation(s)
- Bobby Aditya Darmawan
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208 beon-gil, Buk-gu, Gwangju 61011, Korea. .,School of Mechanical Engineering, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Korea
| | - Dohoon Gong
- School of Mechanical Engineering, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Korea
| | - Hyeongyu Park
- School of Mechanical Engineering, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Korea
| | - Songah Jeong
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| | - Gwangjun Go
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208 beon-gil, Buk-gu, Gwangju 61011, Korea. .,School of Mechanical Engineering, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Korea
| | - Seokjae Kim
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208 beon-gil, Buk-gu, Gwangju 61011, Korea. .,School of Mechanical Engineering, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Korea
| | - Kim Tien Nguyen
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208 beon-gil, Buk-gu, Gwangju 61011, Korea.
| | - Shirong Zheng
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208 beon-gil, Buk-gu, Gwangju 61011, Korea. .,School of Mechanical Engineering, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Korea
| | - Minghui Nan
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208 beon-gil, Buk-gu, Gwangju 61011, Korea. .,School of Mechanical Engineering, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Korea
| | - Van Du Nguyen
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208 beon-gil, Buk-gu, Gwangju 61011, Korea. .,School of Mechanical Engineering, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Korea
| | - Doyeon Bang
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208 beon-gil, Buk-gu, Gwangju 61011, Korea. .,College of AI Convergence, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Korea
| | - Chang-Sei Kim
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208 beon-gil, Buk-gu, Gwangju 61011, Korea. .,School of Mechanical Engineering, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Korea
| | - Hyungwoo Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208 beon-gil, Buk-gu, Gwangju 61011, Korea. .,School of Mechanical Engineering, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Korea
| | - Eunpyo Choi
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208 beon-gil, Buk-gu, Gwangju 61011, Korea. .,School of Mechanical Engineering, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Korea
| |
Collapse
|
46
|
Babeer A, Oh MJ, Ren Z, Liu Y, Marques F, Poly A, Karabucak B, Steager E, Koo H. Microrobotics for Precision Biofilm Diagnostics and Treatment. J Dent Res 2022; 101:1009-1014. [PMID: 35450484 PMCID: PMC9305841 DOI: 10.1177/00220345221087149] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Advances in small-scale robotics and nanotechnology are providing previously unimagined opportunities for new diagnostic and therapeutic approaches with high precision, control, and efficiency. We designed microrobots for tetherless biofilm treatment and retrieval using iron oxide nanoparticles (NPs) with dual catalytic-magnetic functionality as building blocks. We show 2 distinct microrobotic platforms. The first system is formed from NPs that assemble into aggregated microswarms under magnetic fields that can be controlled to disrupt and retrieve biofilm samples for microbial analysis. The second platform is composed of 3-dimensional (3D) micromolded opacifier-infused soft helicoids with embedded catalytic-magnetic NPs that can be visualized via existing radiographic imaging techniques and controlled magnetically inside the root canal, uninterrupted by the soft and hard tissues surrounding the teeth in an ex vivo model. These microrobots placed inside the root canal can remove biofilms and be efficiently guided with microscale precision. The proof-of-concept paradigm described here can be adapted to target difficult-to-reach anatomical spaces in other natural and implanted surfaces in an automated and tether-free manner.
Collapse
Affiliation(s)
- A Babeer
- Biofilm Research Laboratories, Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Oral Biology, King Abdulaziz University, Jeddah, KSA
| | - M J Oh
- Biofilm Research Laboratories, Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Z Ren
- Biofilm Research Laboratories, Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Y Liu
- Biofilm Research Laboratories, Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - F Marques
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A Poly
- Proclin Department, School of Dentistry, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - B Karabucak
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E Steager
- Biofilm Research Laboratories, Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,GRASP Laboratory, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - H Koo
- Biofilm Research Laboratories, Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
47
|
Lee YW, Chun S, Son D, Hu X, Schneider M, Sitti M. A Tissue Adhesion-Controllable and Biocompatible Small-Scale Hydrogel Adhesive Robot. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109325. [PMID: 35060215 DOI: 10.1002/adma.202109325] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Recently, the realization of minimally invasive medical interventions on targeted tissues using wireless small-scale medical robots has received an increasing attention. For effective implementation, such robots should have a strong adhesion capability to biological tissues and at the same time easy controlled detachment should be possible, which has been challenging. To address such issue, a small-scale soft robot with octopus-inspired hydrogel adhesive (OHA) is proposed. Hydrogels of different Young's moduli are adapted to achieve a biocompatible adhesive with strong wet adhesion by preventing the collapse of the octopus-inspired patterns during preloading. Introduction of poly(N-isopropylacrylamide) hydrogel for dome-like protuberance structure inside the sucker wall of polyethylene glycol diacrylate hydrogel provides a strong tissue attachment in underwater and at the same time enables easy detachment by temperature changes due to its temperature-dependent volume change property. It is finally demonstrated that the small-scale soft OHA robot can efficiently implement biomedical functions owing to strong adhesion and controllable detachment on biological tissues while operating inside the body. Such robots with repeatable tissue attachment and detachment possibility pave the way for future wireless soft miniature robots with minimally invasive medical interventions.
Collapse
Affiliation(s)
- Yun-Woo Lee
- Physical Intelligence Department, Max Planck Institute for Intelligent System, 70569, Stuttgart, Germany
| | - Sungwoo Chun
- Physical Intelligence Department, Max Planck Institute for Intelligent System, 70569, Stuttgart, Germany
- Department of Electronics and Information Engineering, Korea University, Sejong, 30019, Republic of Korea
| | - Donghoon Son
- Physical Intelligence Department, Max Planck Institute for Intelligent System, 70569, Stuttgart, Germany
- School of Mechanical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Xinghao Hu
- Physical Intelligence Department, Max Planck Institute for Intelligent System, 70569, Stuttgart, Germany
| | - Martina Schneider
- Physical Intelligence Department, Max Planck Institute for Intelligent System, 70569, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent System, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, Zürich, 8092, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul, 34450, Turkey
| |
Collapse
|
48
|
Liu Y, Lin G, Bao G, Guan M, Yang L, Liu Y, Wang D, Zhang X, Liao J, Fang G, Di X, Huang G, Zhou J, Cheng YY, Jin D. Stratified Disk Microrobots with Dynamic Maneuverability and Proton-Activatable Luminescence for in Vivo Imaging. ACS NANO 2021; 15:19924-19937. [PMID: 34714044 DOI: 10.1021/acsnano.1c07431] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microrobots can expand our abilities to access remote, confined, and enclosed spaces. Their potential applications inside our body are obvious, e.g., to diagnose diseases, deliver medicine, and monitor treatment efficacy. However, critical requirements exist in relation to their operations in gastrointestinal environments, including resistance to strong gastric acid, responsivity to a narrow proton variation window, and locomotion in confined cavities with hierarchical terrains. Here, we report a proton-activatable microrobot to enable real-time, repeated, and site-selective pH sensing and monitoring in physiological relevant environments. This is achieved by stratifying a hydrogel disk to combine a range of functional nanomaterials, including proton-responsive molecular switches, upconversion nanoparticles, and near-infrared (NIR) emitters. By leveraging the 3D magnetic gradient fields and the anisotropic composition, the microrobot can be steered to locomote as a gyrating "Euler's disk", i.e., aslant relative to the surface and along its low-friction outer circumference, exhibiting a high motility of up to 60 body lengths/s. The enhanced magnetomotility can boost the pH-sensing kinetics by 2-fold. The fluorescence of the molecular switch can respond to pH variations with over 600-fold enhancement when the pH decreases from 8 to 1, and the integration of upconversion nanoparticles further allows both the efficient sensitization of NIR light through deep tissue and energy transfer to activate the pH probes. Moreover, the embedded down-shifting NIR emitters provide sufficient contrast for imaging of a single microrobot inside a live mouse. This work suggests great potential in developing multifunctional microrobots to perform generic site-selective tasks in vivo.
Collapse
Affiliation(s)
- Yuan Liu
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Gungun Lin
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Guochen Bao
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Ming Guan
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan Qu, Shenzhen 518055, China
| | - Liu Yang
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan Qu, Shenzhen 518055, China
| | - Yongtao Liu
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Dejiang Wang
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Xun Zhang
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan Qu, Shenzhen 518055, China
| | - Jiayan Liao
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Guocheng Fang
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Xiangjun Di
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Guan Huang
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Jiajia Zhou
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Yuen Yee Cheng
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan Qu, Shenzhen 518055, China
| |
Collapse
|
49
|
Zhang J. Evolving from Laboratory Toys towards Life-Savers: Small-Scale Magnetic Robotic Systems with Medical Imaging Modalities. MICROMACHINES 2021; 12:1310. [PMID: 34832722 PMCID: PMC8620623 DOI: 10.3390/mi12111310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022]
Abstract
Small-scale magnetic robots are remotely actuated and controlled by an externally applied magnetic field. These robots have a characteristic size ranging from several millimetres down to a few nanometres. They are often untethered in order to access constrained and hard-to-reach space buried deep in human body. Thus, they promise to bring revolutionary improvement to minimally invasive diagnostics and therapeutics. However, existing research is still mostly limited to scenarios in over-simplified laboratory environment with unrealistic working conditions. Further advancement of this field demands researchers to consider complex unstructured biological workspace. In order to deliver its promised potentials, next-generation small-scale magnetic robotic systems need to address the constraints and meet the demands of real-world clinical tasks. In particular, integrating medical imaging modalities into the robotic systems is a critical step in their evolution from laboratory toys towards potential life-savers. This review discusses the recent efforts made in this direction to push small-scale magnetic robots towards genuine biomedical applications. This review examines the accomplishment achieved so far and sheds light on the open challenges. It is hoped that this review can offer a perspective on how next-generation robotic systems can not only effectively integrate medical imaging methods, but also take full advantage of the imaging equipments to enable additional functionalities.
Collapse
Affiliation(s)
- Jiachen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
50
|
A Review of Microrobot's System: Towards System Integration for Autonomous Actuation In Vivo. MICROMACHINES 2021; 12:mi12101249. [PMID: 34683300 PMCID: PMC8540518 DOI: 10.3390/mi12101249] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022]
Abstract
Microrobots have received great attention due to their great potential in the biomedical field, and there has been extraordinary progress on them in many respects, making it possible to use them in vivo clinically. However, the most important question is how to get microrobots to a given position accurately. Therefore, autonomous actuation technology based on medical imaging has become the solution receiving the most attention considering its low precision and efficiency of manual control. This paper investigates key components of microrobot’s autonomous actuation systems, including actuation systems, medical imaging systems, and control systems, hoping to help realize system integration of them. The hardware integration has two situations according to sharing the transmitting equipment or not, with the consideration of interference, efficiency, microrobot’s material and structure. Furthermore, system integration of hybrid actuation and multimodal imaging can improve the navigation effect of the microrobot. The software integration needs to consider the characteristics and deficiencies of the existing actuation algorithms, imaging algorithms, and the complex 3D working environment in vivo. Additionally, considering the moving distance in the human body, the autonomous actuation system combined with rapid delivery methods can deliver microrobots to specify position rapidly and precisely.
Collapse
|