1
|
Afonso AL, Cavaleiro CT, Castanho MARB, Neves V, Cavaco M. The Potential of Peptide-Based Inhibitors in Disrupting Protein-Protein Interactions for Targeted Cancer Therapy. Int J Mol Sci 2025; 26:3117. [PMID: 40243822 PMCID: PMC11988805 DOI: 10.3390/ijms26073117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Protein-protein interactions (PPIs) form an intricate cellular network known as the interactome, which is essential for various cellular processes, such as gene regulation, signal transduction, and metabolic pathways. The dysregulation of this network has been closely linked to various disease states. In cancer, these aberrant PPIs, termed oncogenic PPIs (OncoPPIs), are involved in tumour formation and proliferation. Therefore, the inhibition of OncoPPIs becomes a strategy for targeted cancer therapy. Small molecule inhibitors have been the dominant strategy for PPI inhibition owing to their small size and ability to cross cell membranes. However, peptide-based inhibitors have emerged as compelling alternatives, offering distinct advantages over small molecule inhibitors. Peptides, with their larger size and flexible backbones, can effectively engage with the broad interfaces of PPIs. Their high specificity, lower toxicity, and ease of modification make them promising candidates for targeted cancer therapy. Over the past decade, significant advancements have been made in developing peptide-based inhibitors. This review discusses the critical aspects of targeting PPIs, emphasizes the significance of OncoPPIs in cancer therapy, and explores the advantages of using peptide-based inhibitors as therapeutic agents. It also highlights recent progress in peptide design aimed at overcoming the limitations of peptide therapeutics, offering a comprehensive overview of the current landscape and potential of peptide-based inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Alexandra L. Afonso
- Gulbenkian Institute for Molecular Medicine, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (A.L.A.); (C.T.C.); or (M.A.R.B.C.)
| | - Catarina T. Cavaleiro
- Gulbenkian Institute for Molecular Medicine, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (A.L.A.); (C.T.C.); or (M.A.R.B.C.)
| | - Miguel A. R. B. Castanho
- Gulbenkian Institute for Molecular Medicine, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (A.L.A.); (C.T.C.); or (M.A.R.B.C.)
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Vera Neves
- Gulbenkian Institute for Molecular Medicine, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (A.L.A.); (C.T.C.); or (M.A.R.B.C.)
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Marco Cavaco
- Gulbenkian Institute for Molecular Medicine, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (A.L.A.); (C.T.C.); or (M.A.R.B.C.)
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
2
|
Gong J, Zhu M, Zhao L, Wang T, Qiao W, Huang Q, Xing Y, Zhao J. 99mTc-Labeled D-Type PTP as a Plectin-Targeting Single-Photon Emission Computed Tomography Probe for Hepatocellular Carcinoma Imaging. Bioconjug Chem 2024; 35:1997-2005. [PMID: 39571181 DOI: 10.1021/acs.bioconjchem.4c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Plectin, a scaffolding protein overexpressed in tumor cells, plays a significant role in hepatocellular carcinoma (HCC) proliferation, invasion, and migration. However, the use of L-type peptides for targeting plectin is hindered by their limited stability and retention. We designed a D-type plectin-targeting peptide (DPTP) and developed a novel single-photon emission computed tomography (SPECT) probe for HCC imaging. The DPTP targeting ability was evaluated in vitro using flow cytometry and ex vivo fluorescence imaging. 99mTc radiolabeling was performed using tricine and ethylenediamine-N,N'-diacetic acid (EDDA) as coligands after modification with 6-hydrazino nicotinamide (HYNIC) at the N termini of DPTP. The radiochemical purity (RCP), in vitro stability, and binding affinity of the prepared 99mTc-HYNIC-DPTP were analyzed. Tumor uptake, metabolic stability, biodistribution, and pharmacokinetics of 99mTc-HYNIC-DPTP were investigated and compared with those of 99mTc-labeled L-type PTP (99mTc-HYNIC-PTP) in HCC tumor-bearing mice. DPTP could be efficiently radiolabeled with 99mTc using the HYNIC/tricine/EDDA system with a high RCP and good in vitro stability. Compared with the L-type PTP, DPTP exhibited improved targeting ability, and 99mTc-HYNIC-DPTP displayed higher tumor uptake, better metabolic stability, longer blood circulation time, and lower kidney retention, resulting in superior imaging performance and biodistribution in vivo. 99mTc-HYNIC-DPTP has great potential as a novel SPECT probe for diagnosing HCC.
Collapse
Affiliation(s)
- JiaLi Gong
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Meilin Zhu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia,China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Taisong Wang
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wenli Qiao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Qingqing Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Yan Xing
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
3
|
Qiao X, Wu X, Chen S, Niu MM, Hua H, Zhang Y. Discovery of novel and potent dual-targeting AXL/HDAC2 inhibitors for colorectal cancer treatment via structure-based pharmacophore modelling, virtual screening, and molecular docking, molecular dynamics simulation studies, and biological evaluation. J Enzyme Inhib Med Chem 2024; 39:2295241. [PMID: 38134358 PMCID: PMC10763849 DOI: 10.1080/14756366.2023.2295241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. Nowadays, owing to the complex mechanism of tumorigenesis, simultaneous inhibition of multiple targets is an important anticancer strategy. Recent studies have demonstrated receptor tyrosine kinase AXL (AXL) and histone deacetylase 2 (HDAC2) are closely associated with colorectal cancer. Herein, we identified five hit compounds concurrently targeting AXL and HDAC2 using virtual screening. Inhibitory experiments revealed these hit compounds potently inhibited AXL and HDAC2 in the nanomolar range. Among them, Hit-3 showed the strongest inhibitory effects which were better than that of the positive control groups. Additionally, MD assays showed that Hit-3 could bind stably to the AXL and HDAC2 active pockets. Further MTT assays demonstrated that Hit-3 showed potent anti-proliferative activity. Most importantly, Hit-3 exhibited significant in vivo antitumor efficacy in xenograft models. Collectively, this study is the first discovery of dual-targeting AXL/HDAC2 inhibitors for colorectal cancer treatment.
Collapse
Affiliation(s)
- Xiao Qiao
- Department of Gastroenterology, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Xiangyu Wu
- Department of Gastroenterology, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Shutong Chen
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Huilian Hua
- Department of Pharmacy, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Yan Zhang
- Department of Pharmacy, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
4
|
Cai X, Xu W, Ren C, Zhang L, Zhang C, Liu J, Yang C. Recent progress in quantitative analysis of self-assembled peptides. EXPLORATION (BEIJING, CHINA) 2024; 4:20230064. [PMID: 39175887 PMCID: PMC11335468 DOI: 10.1002/exp.20230064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/05/2023] [Indexed: 08/24/2024]
Abstract
Self-assembled peptides have been among the important biomaterials due to its excellent biocompatibility and diverse functions. Over the past decades, substantial progress and breakthroughs have been made in designing self-assembled peptides with multifaceted biomedical applications. The techniques for quantitative analysis, including imaging-based quantitative techniques, chromatographic technique and computational approach (molecular dynamics simulation), are becoming powerful tools for exploring the structure, properties, biomedical applications, and even supramolecular assembly processes of self-assembled peptides. However, a comprehensive review concerning these quantitative techniques remains scarce. In this review, recent progress in techniques for quantitative investigation of biostability, cellular uptake, biodistribution, self-assembly behaviors of self-assembled peptide etc., are summarized. Specific applications and roles of these techniques are highlighted in detail. Finally, challenges and outlook in this field are concluded. It is believed that this review will provide technical guidance for researchers in the field of peptide-based materials and pharmaceuticals, and facilitate related research for newcomers in this field.
Collapse
Affiliation(s)
- Xiaoyao Cai
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Wei Xu
- Department of PathologyCharacteristic Medical Center of Chinese People's Armed Police ForcesTianjinP. R. China
| | - Chunhua Ren
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Liping Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Congrou Zhang
- Metabolomics and Analytics Center, Leiden Academic Centre of Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Cuihong Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| |
Collapse
|
5
|
Zheng L, Zhang Y, Mei S, Xie T, Zou Y, Wang Y, Jing H, Xu S, Dramou P, Xu Z, Li J, Zhou Y, Niu MM. Discovery of a Potent Dual Son of Sevenless 1 (SOS1) and Epidermal Growth Factor Receptor (EGFR) Inhibitor for the Treatment of Prostate Cancer. J Med Chem 2024; 67:7130-7145. [PMID: 38630077 DOI: 10.1021/acs.jmedchem.3c02433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Multitarget medications represent an appealing therapy against the disease with multifactorial abnormalities─cancer. Therefore, simultaneously targeting son of sevenless 1 (SOS1) and epidermal growth factor receptor (EGFR), two aberrantly expressed proteins crucial for the oncogenesis and progression of prostate cancer, may achieve active antitumor effects. Here, we discovered dual SOS1/EGFR-targeting compounds via pharmacophore-based docking screening. The most prominent compound SE-9 exhibited nanomolar inhibition activity against both SOS1 and EGFR and efficiently suppressed the phosphorylation of ERK and AKT in prostate cancer cells PC-3. Cellular assays also revealed that SE-9 displayed strong antiproliferative activities through diverse mechanisms, such as induction of cell apoptosis and G1 phase cell cycle arrest, as well as reduction of angiogenesis and migration. Further in vivo findings showed that SE-9 potently inhibited tumor growth in PC-3 xenografts without obvious toxicity. Overall, SE-9 is a novel dual-targeting SOS1/EGFR inhibitor that represents a promising treatment strategy for prostate cancer.
Collapse
Affiliation(s)
- Lufeng Zheng
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 211198, China
| | - Yuxin Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 211198, China
| | - Shuang Mei
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| | - Tianyuan Xie
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 211198, China
| | - Yunting Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| | - Yuting Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 211198, China
| | - Han Jing
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 211198, China
| | - Shengtao Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Pierre Dramou
- Department of Analytical Chemistry, School of Sciences, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen Xu
- Department of Pharmacy, Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Jindong Li
- Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Yang Zhou
- Department of Pathology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Miao-Miao Niu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
6
|
Kim K, Park MH. Role of Functionalized Peptides in Nanomedicine for Effective Cancer Therapy. Biomedicines 2024; 12:202. [PMID: 38255307 PMCID: PMC10813321 DOI: 10.3390/biomedicines12010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Peptide-functionalized nanomedicine, which addresses the challenges of specificity and efficacy in drug delivery, is emerging as a pivotal approach for cancer therapy. Globally, cancer remains a leading cause of mortality, and conventional treatments, such as chemotherapy, often lack precision and cause adverse effects. The integration of peptides into nanomedicine offers a promising solution for enhancing the targeting and delivery of therapeutic agents. This review focuses on the three primary applications of peptides: cancer cell-targeting ligands, building blocks for self-assembling nanostructures, and elements of stimuli-responsive systems. Nanoparticles modified with peptides improved targeting of cancer cells, minimized damage to healthy tissues, and optimized drug delivery. The versatility of self-assembled peptide structures makes them an innovative vehicle for drug delivery by leveraging their biocompatibility and diverse nanoarchitectures. In particular, the mechanism of cell death induced by self-assembled structures offers a novel approach to cancer therapy. In addition, peptides in stimuli-responsive systems enable precise drug release in response to specific conditions in the tumor microenvironment. The use of peptides in nanomedicine not only augments the efficacy and safety of cancer treatments but also suggests new research directions. In this review, we introduce systems and functionalization methods using peptides or peptide-modified nanoparticles to overcome challenges in the treatment of specific cancers, including breast cancer, lung cancer, colon cancer, prostate cancer, pancreatic cancer, liver cancer, skin cancer, glioma, osteosarcoma, and cervical cancer.
Collapse
Affiliation(s)
- Kibeom Kim
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Republic of Korea;
- Department of Chemistry and Life Science, Sahmyook University, Seoul 01795, Republic of Korea
| | - Myoung-Hwan Park
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Republic of Korea;
- Department of Chemistry and Life Science, Sahmyook University, Seoul 01795, Republic of Korea
- Department of Convergence Science, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
7
|
Yang Y, Chen S, Wang Q, Niu MM, Qu Y, Zhou Y. Identification of novel and potent dual-targeting HDAC1/SPOP inhibitors using structure-based virtual screening, molecular dynamics simulation and evaluation of in vitro and in vivo antitumor activity. Front Pharmacol 2023; 14:1208740. [PMID: 37492092 PMCID: PMC10363607 DOI: 10.3389/fphar.2023.1208740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023] Open
Abstract
Cancer is one of the important factors threatening human health. Hence, it is essential to create novel potent drugs to treat it. Due to the strong correlation among histone deacetylase1 (HDAC1), speckle-type POZ protein (SPOP) and cancers, dual inhibition of HDAC1 and SPOP may be a promising strategy for cancer treatment. In this study, we successfully identified four potential dual-targeting HDAC1/SPOP candidate compounds with structure-based virtual screening. In vitro inhibition experiments confirmed that the four compounds had dual inhibitory effects on HDAC1 and SPOP. Among them, compound HS-2 had a stronger inhibitory effect on HDAC1 and SPOP than the positive controls. Further molecular dynamics simulations indicated that HS-2 could stably bind to HDAC1 and SPOP. In addition, MTT assay indicated that HS-2 inhibited the growth of tumor cells in the micromolar range. In vivo evaluation showed that HS-2 could obviously inhibit the growth of tumor in nude mice without obvious toxicity. These findings suggest that HS-2 is a novel and potent dual-targeting HDAC1/SPOP inhibitor for cancer treatment.
Collapse
Affiliation(s)
- Yingxue Yang
- Department of Gastroenterology, The First People’s Hospital of Kunshan, Suzhou, China
| | - Shutong Chen
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Qinghua Wang
- Department of Gastroenterology, The First People’s Hospital of Kunshan, Suzhou, China
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Yuanqian Qu
- Department of Pathology, Department of Gastrointestinal Surgery, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Yang Zhou
- Department of Pathology, Department of Gastrointestinal Surgery, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
8
|
Development of sulfonium tethered peptides conjugated with HDAC inhibitor to improve selective toxicity for cancer cells. Bioorg Med Chem 2023; 83:117213. [PMID: 36934526 DOI: 10.1016/j.bmc.2023.117213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
The anti-cancer peptides emerged as new weapons for cancer therapy due to their potent toxicity toward various cancer cells. However, their therapeutic promise is often limited by non-specific toxicity to normal cells. How to improve peptides' selectivity to cancer cells is always a matter to solve. In this manuscript, we designed a sulfonium tethered lytic peptide conjugated with a HDAC inhibitor to improve the selectivity of cancer cells. The sulfonium tethered lytic peptide with improved hydrophilicity and positive charge showed reduced toxicity to both cancer cells and normal cells. When conjugated with the HDAC inhibitor, this peptide showed increased toxicity to cancer cells. Besides, the stabilized peptide HDAC conjugate showed better serum stability than the linear peptide conjugate. For cellular function, the stabilized peptide conjugate could induce cancer cell apoptosis, cell cycle arrest, and influence multiple signal pathways through transcriptome analysis. This design may provide an alternative approach for the development of safe and effective anti-cancer drugs.
Collapse
|
9
|
Wang H, Wen J, Yang Y, Liu H, Wang S, Ding X, Zhou C, Zhang X. Identification of highly effective inhibitors against SARS-CoV-2 main protease: From virtual screening to in vitro study. Front Pharmacol 2022; 13:1036208. [PMID: 36467060 PMCID: PMC9715617 DOI: 10.3389/fphar.2022.1036208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/07/2022] [Indexed: 05/29/2024] Open
Abstract
Background and Objective: The public's safety has been significantly jeopardized by the pandemic of COVID-19, which is brought on by the highly virulent and contagious SARS-CoV-2 virus. Finding novel antiviral drugs is currently of utmost importance for the treatment of patients with COVID-19. Main protease (3CLpro) of SARS-CoV-2 is involved in replication of virus, so it is considered as a promising target. Using small molecules to inhibit SARS-CoV-2-3CLpro activity may be an effective way to prevent viral replication to fight COVID-19. Despite the fact that some SARS-CoV-2-3CLpro inhibitors have been described, only few of them have high levels of inhibition at nanomolar concentrations. In this study, we aimed to screen out effective SARS-CoV-2-3CLpro inhibitors. Methods: To identify highly effective SARS-CoV-2-3CLpro inhibitors, a pharmacophore mapping and multiple-conformation docking were efficiently applied to find novel hit compounds from a database. Then, the stability of the 3CLpro-hit complexes was validated by using molecular dynamics simulation. Finally, biological assay was used to assess the inhibition effects of hit compounds on SARS-CoV-2-3CLpro. Results: Four hit compounds were identified by using computer-assisted strategy. Molecular dynamics simulation suggested that these hits bound stably to the 3CLpro-active pocket. Bioassay showed that all the hits had potent inhibition against SARS-CoV-2-3CLpro with IC50 values in the range of 0.017-0.83 μM. Particularly, hit one was the best 3CLpro inhibitor and its inhibition effect of SARS-CoV-2-3CLpro (IC50 = 0.017 ± 0.003 µM) was about 236 times stronger than that of ML300 (IC50 = 4.01 ± 0.66 µM). Conclusion: These data indicate that hit one could be regarded as an anti-SARS-CoV-2 candidate worth exploring further for the treatment of COVID-19.
Collapse
Affiliation(s)
- Hu Wang
- Department of Pharmacy, The First People’s Hospital of Chongqing Liang Jiang New Area, Chongqing, China
| | - Jun Wen
- Department of Pharmacy, The First People’s Hospital of Chongqing Liang Jiang New Area, Chongqing, China
| | - Yang Yang
- Department of Pharmacy, The First People’s Hospital of Chongqing Liang Jiang New Area, Chongqing, China
| | - Hailin Liu
- Department of Pharmacy, The First People’s Hospital of Chongqing Liang Jiang New Area, Chongqing, China
| | - Song Wang
- Department of Pharmacy, The First People’s Hospital of Chongqing Liang Jiang New Area, Chongqing, China
| | - Xiaoli Ding
- Department of Pharmacy, The First People’s Hospital of Chongqing Liang Jiang New Area, Chongqing, China
| | - Chunqiao Zhou
- Department of Pharmacy, The First People’s Hospital of Chongqing Liang Jiang New Area, Chongqing, China
| | - Xuelin Zhang
- Department of Pharmacy, The First People’s Hospital of Chongqing Liang Jiang New Area, Chongqing, China
| |
Collapse
|
10
|
Xia M, Wang S, Ye Y, Tu Y, Huang T, Gao L. Effect of the m6ARNA gene on the prognosis of thyroid cancer, immune infiltration, and promising immunotherapy. Front Immunol 2022; 13:995645. [PMID: 36389678 PMCID: PMC9664221 DOI: 10.3389/fimmu.2022.995645] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/17/2022] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Accumulating evidence suggests that N6-methyladenosine (m6A) RNA methylation plays an important role in tumor proliferation and growth. However, its effect on the clinical prognosis, immune infiltration, and immunotherapy response of thyroid cancer patients has not been investigated in detail. METHODS Clinical data and RNA expression profiles of thyroid cancer were extracted from the Cancer Genome Atlas-thyroid carcinoma (TCGA-THCA) and preprocessed for consensus clustering. The risk model was constructed based on differentially expressed genes (DEGs) using Least Absolute Shrinkage and Selection Operator (LASSO) and Cox regression analyses. The associations between risk score and clinical traits, immune infiltration, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA), immune infiltration, and immunotherapy were assessed. Immunohistochemistry was used to substantiate the clinical traits of our samples. RESULTS Gene expression analysis showed that 17 genes, except YHTDF2, had significant differences (vs healthy control, P<0.001). Consensus clustering yielded 2 clusters according to their clinical features and estimated a poorer prognosis for Cluster 1 (P=0.03). The heatmap between the 2 clusters showed differences in T (P<0.01), N (P<0.001) and stage (P<0.01). Based on univariate Cox and LASSO regression, a risk model consisting of three high-risk genes (KIAA1429, RBM15, FTO) was established, and the expression difference between normal and tumor tissues of three genes was confirmed by immunohistochemical results of our clinical tissues. KEGG and GSEA analyses showed that the risk DEGs were related mainly to proteolysis, immune response, and cancer pathways. The levels of immune infiltration in the high- and low-risk groups were different mainly in iDCs (P<0.05), NK cells (P<0.05), and type-INF-II (P<0.001). Immunotherapy analysis yielded 30 drugs associated with the expression of each gene and 20 drugs associated with the risk score. CONCLUSIONS Our risk model can act as an independent marker for thyroid cancer and provides promising immunotherapy targets for its treatment.
Collapse
Affiliation(s)
- Minqi Xia
- Department of Endocrinology and Metabolism, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuo Wang
- Department of Endocrinology and Metabolism, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingchun Ye
- Department of Endocrinology and Metabolism, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Tu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tiantian Huang
- Department of Endocrinology and Metabolism, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Gao
- Department of Endocrinology and Metabolism, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Gao S, Jiang X, Wang L, Jiang S, Luo H, Chen Y, Peng C. The pathogenesis of liver cancer and the therapeutic potential of bioactive substances. Front Pharmacol 2022; 13:1029601. [PMID: 36278230 PMCID: PMC9581229 DOI: 10.3389/fphar.2022.1029601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Liver cancer is the third most common cause of cancer-related deaths in the world and has become an urgent problem for global public health. Bioactive substances are widely used for the treatment of liver cancer due to their widespread availability and reduced side effects. This review summarizes the main pathogenic factors involved in the development of liver cancer, including metabolic fatty liver disease, viral infection, and alcoholic cirrhosis, and focuses on the mechanism of action of bioactive components such as polysaccharides, alkaloids, phenols, peptides, and active bacteria/fungi. In addition, we also summarize transformation methods, combined therapy and modification of bioactive substances to improve the treatment efficiency against liver cancer, highlighting new ideas in this field.
Collapse
Affiliation(s)
- Song Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xingyue Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liang Wang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shanshan Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hanyuan Luo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yan Chen, ; Cheng Peng,
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yan Chen, ; Cheng Peng,
| |
Collapse
|
12
|
de Bartolomeis A, Vellucci L, Austin MC, De Simone G, Barone A. Rational and Translational Implications of D-Amino Acids for Treatment-Resistant Schizophrenia: From Neurobiology to the Clinics. Biomolecules 2022; 12:biom12070909. [PMID: 35883465 PMCID: PMC9312470 DOI: 10.3390/biom12070909] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia has been conceptualized as a neurodevelopmental disorder with synaptic alterations and aberrant cortical–subcortical connections. Antipsychotics are the mainstay of schizophrenia treatment and nearly all share the common feature of dopamine D2 receptor occupancy, whereas glutamatergic abnormalities are not targeted by the presently available therapies. D-amino acids, acting as N-methyl-D-aspartate receptor (NMDAR) modulators, have emerged in the last few years as a potential augmentation strategy in those cases of schizophrenia that do not respond well to antipsychotics, a condition defined as treatment-resistant schizophrenia (TRS), affecting almost 30–40% of patients, and characterized by serious cognitive deficits and functional impairment. In the present systematic review, we address with a direct and reverse translational perspective the efficacy of D-amino acids, including D-serine, D-aspartate, and D-alanine, in poor responders. The impact of these molecules on the synaptic architecture is also considered in the light of dendritic spine changes reported in schizophrenia and antipsychotics’ effect on postsynaptic density proteins. Moreover, we describe compounds targeting D-amino acid oxidase and D-aspartate oxidase enzymes. Finally, other drugs acting at NMDAR and proxy of D-amino acids function, such as D-cycloserine, sarcosine, and glycine, are considered in the light of the clinical burden of TRS, together with other emerging molecules.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
- Correspondence: ; Tel.: +39-081-7463673 or +39-081-7463884 or +39-3662745592; Fax: +39-081-7462644
| | - Licia Vellucci
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| | - Mark C. Austin
- Clinical Psychopharmacology Program, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA;
| | - Giuseppe De Simone
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| | - Annarita Barone
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| |
Collapse
|
13
|
Tian X, Zhao Q, Chen X, Peng Z, Tan X, Wang Q, Chen L, Yang Y. Discovery of Novel and Highly Potent Inhibitors of SARS CoV-2 Papain-Like Protease Through Structure-Based Pharmacophore Modeling, Virtual Screening, Molecular Docking, Molecular Dynamics Simulations, and Biological Evaluation. Front Pharmacol 2022; 13:817715. [PMID: 35264955 PMCID: PMC8899470 DOI: 10.3389/fphar.2022.817715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/03/2022] [Indexed: 01/09/2023] Open
Abstract
Background and Objective: COVID-19 has struck our society as a great calamity, and the need for effective anti-viral drugs is more urgent than ever. Papain-like protease (PLpro) of SARS CoV-2 plays important roles in virus maturation, dysregulation of host inflammation, and antiviral immune responses, which is being regarded as a promising druggable target for the treatment of COVID-19. Here, we carried out a combined screening approach to identify novel and highly potent PLpro inhibitors for the treatment of COVID-19. Methods: We used a combined screening approach of structure-based pharmacophore modeling and molecular docking to screen an in-house database containing 35,000 compounds. SARS CoV-2 PLpro inhibition assay was used to carry out the biological evaluation of hit compounds. Molecular dynamics (MD) simulations were conducted to check the stability of the PLpro-hit complexes predicted by molecular docking. Results: We found that four hit compounds showed excellent inhibitory activities against PLpro with IC50 values ranging from 0.6 to 2.4 μM. Among them, the most promising compound, hit 2 is the best PLpro inhibitor and its inhibitory activity was about 4 times higher than that of the positive control (GRL0617). The study of MD simulations indicated that four hits could bind stably to the active site of PLpro. Further study of interaction analysis indicated that hit 2 could form hydrogen-bond interactions with the key amino acids such as Gln269 and Asp164 in the PLpro-active site. Conclusion: Hit 2 is a novel and highly potent PLpro inhibitor, which will open the way for the development of clinical PLpro inhibitors for the treatment of COVID-19.
Collapse
Affiliation(s)
- Xiaoyan Tian
- Department of Pharmacology, Chongqing Health Center for Women and Children, Chongqing, China
| | - Quanfeng Zhao
- Department of Pharmacy, Southwest Hospital, First Affiliated Hospital to TMMU, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaohong Chen
- Department of Pharmacology, Chongqing Health Center for Women and Children, Chongqing, China
| | - Zhe Peng
- Department of Pharmacology, Chongqing Health Center for Women and Children, Chongqing, China
| | - Xiaodan Tan
- Department of Pharmacology, Chongqing Health Center for Women and Children, Chongqing, China
| | - Qin Wang
- Department of Pharmacology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Lin Chen
- Department of Pharmacology, Chongqing Health Center for Women and Children, Chongqing, China
| | - Yang Yang
- Department of Pharmacology, Chongqing Health Center for Women and Children, Chongqing, China
| |
Collapse
|
14
|
Peng Z, Zhao Q, Tian X, Lei T, Xiang R, Chen L, Yang Y. Discovery of Potent and Isoform‐Selective Histone Deacetylase Inhibitors Using Structure‐Based Virtual Screening and Biological Evaluation. Mol Inform 2022; 41:e2100295. [DOI: 10.1002/minf.202100295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/26/2022] [Indexed: 11/10/2022]
|
15
|
Yang Y, Zhao Q, Peng Z, Zhou Y, Niu MM, Chen L. A GSH/CB Dual-Controlled Self-Assembled Nanomedicine for High-Efficacy Doxorubicin-Resistant Breast Cancer Therapy. Front Pharmacol 2022; 12:811724. [PMID: 35095524 PMCID: PMC8795745 DOI: 10.3389/fphar.2021.811724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
Chemoresistance is a major therapeutic obstacle in the treatment of breast cancer. Therefore, how to overcome chemoresistance is a problem to be solved. Here, a glutathione (GSH)/cathepsin B (CB) dual-controlled nanomedicine formed by cyclic disulfide-bridged peptide (cyclic-1a) as a potent anticancer agent is reported. Under the sequential treatment of GSH and CB, cyclic-1a can efficiently self-assemble into nanofibers. In vitro studies show that cyclic-1a promotes the apoptosis of MCF-7/DOX cells by inducing the cleavages of caspase-3 and PARP. In vivo studies confirm that cyclic-1a significantly inhibits the progression of MCF-7/DOX cells-derived xenograft in nude mice, with no obvious adverse reactions. This study provides a paradigm of GSH/CB dual-controlled nanomedicine for high-efficacy and low-toxic DOX-resistant breast cancer therapy.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology, Chongqing Health Center for Women and Children, Chongqing, China,*Correspondence: Yang Yang, ; Lin Chen,
| | - Quanfeng Zhao
- Department of Pharmacy, Southwest Hospital, First Affiliated Hospital to TMMU, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhe Peng
- Department of Pharmacology, Chongqing Health Center for Women and Children, Chongqing, China
| | - Yunjiang Zhou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Miao-Miao Niu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lin Chen
- Department of Pharmacology, Chongqing Health Center for Women and Children, Chongqing, China,Department of Pharmacology, Chongqing Medical University, Chongqing, China,*Correspondence: Yang Yang, ; Lin Chen,
| |
Collapse
|
16
|
Engel H, Guischard F, Krause F, Nandy J, Kaas P, Höfflin N, Köhn M, Kilb N, Voigt K, Wolf S, Aslan T, Baezner F, Hahne S, Ruckes C, Weygant J, Zinina A, Akmeriç EB, Antwi EB, Dombrovskij D, Franke P, Lesch KL, Vesper N, Weis D, Gensch N, Di Ventura B, Öztürk MA. finDr: A web server for in silico D-peptide ligand identification. Synth Syst Biotechnol 2021; 6:402-413. [PMID: 34901479 PMCID: PMC8632724 DOI: 10.1016/j.synbio.2021.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/20/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022] Open
Abstract
In the rapidly expanding field of peptide therapeutics, the short in vivo half-life of peptides represents a considerable limitation for drug action. D-peptides, consisting entirely of the dextrorotatory enantiomers of naturally occurring levorotatory amino acids (AAs), do not suffer from these shortcomings as they are intrinsically resistant to proteolytic degradation, resulting in a favourable pharmacokinetic profile. To experimentally identify D-peptide binders to interesting therapeutic targets, so-called mirror-image phage display is typically performed, whereby the target is synthesized in D-form and L-peptide binders are screened as in conventional phage display. This technique is extremely powerful, but it requires the synthesis of the target in D-form, which is challenging for large proteins. Here we present finDr, a novel web server for the computational identification and optimization of D-peptide ligands to any protein structure (https://findr.biologie.uni-freiburg.de/). finDr performs molecular docking to virtually screen a library of helical 12-mer peptides extracted from the RCSB Protein Data Bank (PDB) for their ability to bind to the target. In a separate, heuristic approach to search the chemical space of 12-mer peptides, finDr executes a customizable evolutionary algorithm (EA) for the de novo identification or optimization of D-peptide ligands. As a proof of principle, we demonstrate the validity of our approach to predict optimal binders to the pharmacologically relevant target phenol soluble modulin alpha 3 (PSMα3), a toxin of methicillin-resistant Staphylococcus aureus (MRSA). We validate the predictions using in vitro binding assays, supporting the success of this approach. Compared to conventional methods, finDr provides a low cost and easy-to-use alternative for the identification of D-peptide ligands against protein targets of choice without size limitation. We believe finDr will facilitate D-peptide discovery with implications in biotechnology and biomedicine.
Collapse
Key Words
- D-AA, dextrorotatory amino acid
- D-peptide
- EA, evolutionary algorithm
- Evolutionary algorithm
- L-AA, levorotatory amino acid
- MD, molecular dynamics
- MIEA, mirror-image evolutionary algorithm
- MIPD, mirror-image phage display
- MIVS, mirror-image virtual screening
- MRSA, methicillin-resistant Staphylococcus aureus
- Mirror-image phage display
- Molecular docking
- NCL, native chemical ligation
- PD-1, receptor programmed death 1
- PPI, protein-protein interaction
- PSMα3, phenol soluble modulin alpha 3
- Peptide design
- SPPS, solid phase peptide synthesis
- Web server
Collapse
Affiliation(s)
- Helena Engel
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Felix Guischard
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Fabian Krause
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Janina Nandy
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Paulina Kaas
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Nico Höfflin
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Maja Köhn
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Normann Kilb
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
- AG Roth-Lab for MicroarrayCopying, ZBSA–Centre for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany
| | - Karsten Voigt
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Steffen Wolf
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3a, 79104, Freiburg, Germany
| | - Tahira Aslan
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Fabian Baezner
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Salomé Hahne
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Carolin Ruckes
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Joshua Weygant
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Alisa Zinina
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Emir Bora Akmeriç
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Enoch B. Antwi
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Dennis Dombrovskij
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Philipp Franke
- Institute for Biochemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Klara L. Lesch
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19A, 79104, Freiburg, Germany
- Internal Medicine IV, Department of Medicine, Medical Center, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Niklas Vesper
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Daniel Weis
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Nicole Gensch
- Core Facility Signalling Factory, Centre for Biological Signaling Studies (BIOSS), University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
- Corresponding author. Core Facility Signalling Factory, Centre for Biological Signaling Studies (BIOSS), University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany.
| | - Barbara Di Ventura
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
- Corresponding author. Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany.
| | - Mehmet Ali Öztürk
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
- Corresponding author. Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany.
| |
Collapse
|
17
|
Zhang X, Zhou C, Yang Y, Liu H, Wang S, Ding X, Wang H. The Discovery of Potential MDM2 Inhibitors: A Combination of Pharmacophore Modeling, Virtual Screening, Molecular Docking Studies, and in vitro/in vivo Biological Evaluation. ChemMedChem 2021; 17:e202100517. [PMID: 34806333 DOI: 10.1002/cmdc.202100517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/04/2021] [Indexed: 11/09/2022]
Abstract
Small-molecule inhibitors of MDM2 that block the MDM2-p53 protein-protein interaction have been considered as potential therapeutic agents for the treatment of cancer. Here, we identify five highly potent inhibitors of MDM2 (termed as WY 1-5) that display significant inhibitory effects on MDM2-p53 interaction by using a combined strategy of pharmacophore modeling, virtual screening, and molecular docking studies. Among them, WY-5 is the most active MDM2 inhibitor with an IC50 value of 14.1±2.8 nM. Moreover, WY-5 significantly up-regulate the protein level of p53 in SK-Hep-1 cells harboring wild-type p53. In vitro anticancer study reveals that WY-5 markedly inhibits the survival of SK-Hep-1 cells. In vivo anticancer study suggests that WY-5 significantly inhibits the growth of SK-Hep-1 cells-derived xenograft in nude mice, with no observable toxicity. Our results demonstrate that WY-5 may be a promising candidate for the treatment of cancer harboring wild-type p53.
Collapse
Affiliation(s)
- Xuelin Zhang
- Department of Pharmacy, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, China
| | - Chunqiao Zhou
- Department of Pharmacy, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, China
| | - Yang Yang
- Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Hailin Liu
- Department of Pharmacy, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, China
| | - Song Wang
- Department of Pharmacy, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, China
| | - Xiaoli Ding
- Department of Pharmacy, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, China
| | - Hu Wang
- Department of Pharmacy, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, China
| |
Collapse
|
18
|
Zheng L, Ren R, Sun X, Zou Y, Shi Y, Di B, Niu MM. Discovery of a Dual Tubulin and Poly(ADP-Ribose) Polymerase-1 Inhibitor by Structure-Based Pharmacophore Modeling, Virtual Screening, Molecular Docking, and Biological Evaluation. J Med Chem 2021; 64:15702-15715. [PMID: 34670362 DOI: 10.1021/acs.jmedchem.1c00932] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Dual inhibition of tubulin and poly(ADP-ribose) polymerase-1 (PARP-1) may become an attractive approach for cancer therapy. Here, we discover a dual tubulin/PARP-1 inhibitor (termed as TP-3) using structure-based virtual screening. TP-3 shows strong dual inhibitory effects on both tubulin and PARP-1. Cellular assays reveal that TP-3 shows superior antiproliferative activities against human cancer cells, including breast, liver, ovarian, and cervical cancers. Further studies indicate that TP-3 plays an antitumor role through multiple mechanisms, including the disturbance of the microtubule network and the PARP-1 DNA repairing function, accumulation of DNA double-strand breaks, inhibition of the tube formation, and induction of G2/M cell cycle arrest and apoptosis. In vivo assessment indicates that TP-3 inhibits the growth of MDA-MB-231 xenograft tumors in nude mouse with no notable side effects. These data demonstrate that TP-3 is a dual-targeting, high-efficacy, and low-toxic antitumor agent.
Collapse
Affiliation(s)
- Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, China
| | - Ren Ren
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Yunting Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Yiru Shi
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Di
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Miao-Miao Niu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
19
|
Liu X, Du J, Xie Z, Wang L, Liu X, Hou Z, Wang X, Tang R. Lactobionic acid-modified phycocyanin nanoparticles loaded with doxorubicin for synergistic chemo-photodynamic therapy. Int J Biol Macromol 2021; 186:206-217. [PMID: 34246671 DOI: 10.1016/j.ijbiomac.2021.07.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/02/2023]
Abstract
Phycocyanin (PC) is considered to be an effective natural photosensitizer, but it has not been well utilized as its inefficient biostability and intracellular accumulation. To overcome these limitations, the nano-sized PC particles (LAPC/DOX) were developed by grafting with lactobionic acid (LA) and loading with doxorubicin (DOX). Compared to the PC solution, the storage-stability and photostability of PC particles were remarkably increased, and the formation of nanoparticles further improved its biostability. Besides, CLSM images confirmed that LA could also enhance cellular uptake, resulting in more intracellular PC and DOX accumulation. MTT assay revealed that LAPC/DOX caused the highest cytotoxicity by combined chemo-photodynamic therapy. Finally, LAPC/DOX could efficiently accumulate and spread in tumoral multicellular spheroids, resulting in the enhanced growth inhibition. Overall, the LAPC/DOX is effective in cancer treatment, which provides new insights for the usage of functional proteins in vivo.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Jianyong Du
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Zheng Xie
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Lijuan Wang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Xin Liu
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Zhongkai Hou
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Xin Wang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China.
| |
Collapse
|