1
|
Kwokdinata C, Chew SY. Additive manufacturing in spatial patterning for spinal cord injury treatment. Adv Drug Deliv Rev 2025; 218:115523. [PMID: 39880332 DOI: 10.1016/j.addr.2025.115523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/03/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Combinatorial treatments integrating cells and biomolecules within scaffolds have been investigated to address the multifactorial nature of spinal cord injury (SCI). Current regenerative treatments have been ineffective as they do not consider the spatial positions of various cell types to effectively form functional neural pathways. Emulating the complex heterogeneity of cells in the native spinal cord requires translating the existing biological understanding of spatial patterning in neural development, as well as the influence of biomolecule and mechanical patterning on regional specification and axonal regeneration, to engineer a scaffold for spinal cord regeneration. This review explores the potential of 3D bioprinting to precisely control material, cell and drug patterns in scaffolds, achieving spatial phenotype specification and providing axonal guidance to form appropriate connections. We also discuss the application of extrusion-based and digital light processing bioprinting in integrating mechanical, chemical and biological cues within a scaffold to advance spatially patterned 3D bioprinted scaffold, as well as current challenges and future perspectives in these bioengineering strategies.
Collapse
Affiliation(s)
- Christy Kwokdinata
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 637459 Singapore
| | - Sing Yian Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 637459 Singapore; Critical Analytics for Manufacturing Personalized-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology, Campus for Research Excellence and Technological Enterprise 138602 Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University 308232 Singapore; School of Materials Science and Engineering 639798 Singapore; National Neuroscience Institute, 11 Jalan Tan Tock Seng 308433 Singapore.
| |
Collapse
|
2
|
Sharifi M, Salehi M, Ebrahimi-Barough S, Alizadeh M, Jahromi HK, Kamalabadi-Farahani M. Synergic effects of core-shell nanospheres and magnetic field for sciatic nerve regeneration in decellularized artery conduits with Schwann cells. J Nanobiotechnology 2024; 22:776. [PMID: 39696412 DOI: 10.1186/s12951-024-03048-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Numerous conduits have been developed to improve peripheral nerve regeneration. However, challenges remain, including remote control of conduit function, and programmed cell behaviors like orientation. We synthesized Fe3O4-MnO2@Zirconium-based Metal-organic frameworks@Retinoic acid (FMZMR) core-shell and assessed their impact on Schwann cell function and behavior within conduits made from decellularized human umbilical arteries (DHUCA) under magnetic field (MF). FMZMR core-shell, featuring a spherical porous structure and catalytic properties, effectively scavenges radicals and facilitates controlled drug release under MF. The histology of the DHUCA indicates effective decellularization with adequate tensile strength and Young's modulus for sciatic nerve regeneration. In-vitro results demonstrate that FMZMR core-shell is biocompatible and promotes Schwann cell proliferation through remotely controlled drug release. Furthermore, its synergy with MF enhances cell orientation and increases neurite length by ~ 1.93-fold. Functional and histological evaluations indicate that the FMZMR core-shell combined with MF promotes nerve regeneration, decreases muscle atrophy, and enhances new neuron growth and myelin formation, without negatively affecting vital tissues. This study suggests that the synergistic effect of FMZMR core-shell with MF can alleviate some of the treatment challenges.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mohammad Kamalabadi-Farahani
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
3
|
Sands I, Demarco R, Thurber L, Esteban-Linares A, Song D, Meng E, Chen Y. Interface-Mediated Neurogenic Signaling: The Impact of Surface Geometry and Chemistry on Neural Cell Behavior for Regenerative and Brain-Machine Interfacing Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401750. [PMID: 38961531 PMCID: PMC11326983 DOI: 10.1002/adma.202401750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/17/2024] [Indexed: 07/05/2024]
Abstract
Nanomaterial advancements have driven progress in central and peripheral nervous system applications such as tissue regeneration and brain-machine interfacing. Ideally, neural interfaces with native tissue shall seamlessly integrate, a process that is often mediated by the interfacial material properties. Surface topography and material chemistry are significant extracellular stimuli that can influence neural cell behavior to facilitate tissue integration and augment therapeutic outcomes. This review characterizes topographical modifications, including micropillars, microchannels, surface roughness, and porosity, implemented on regenerative scaffolding and brain-machine interfaces. Their impact on neural cell response is summarized through neurogenic outcome and mechanistic analysis. The effects of surface chemistry on neural cell signaling with common interfacing compounds like carbon-based nanomaterials, conductive polymers, and biologically inspired matrices are also reviewed. Finally, the impact of these extracellular mediated neural cues on intracellular signaling cascades is discussed to provide perspective on the manipulation of neuron and neuroglia cell microenvironments to drive therapeutic outcomes.
Collapse
Affiliation(s)
- Ian Sands
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Ryan Demarco
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Laura Thurber
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Alberto Esteban-Linares
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Dong Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ellis Meng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
4
|
Sharifi M, Kamalabadi-Farahani M, Salehi M, Ebrahimi-Barough S, Alizadeh M. Recent advances in enhances peripheral nerve orientation: the synergy of micro or nano patterns with therapeutic tactics. J Nanobiotechnology 2024; 22:194. [PMID: 38643117 PMCID: PMC11031871 DOI: 10.1186/s12951-024-02475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024] Open
Abstract
Several studies suggest that topographical patterns influence nerve cell fate. Efforts have been made to improve nerve cell functionality through this approach, focusing on therapeutic strategies that enhance nerve cell function and support structures. However, inadequate nerve cell orientation can impede long-term efficiency, affecting nerve tissue repair. Therefore, enhancing neurites/axons directional growth and cell orientation is crucial for better therapeutic outcomes, reducing nerve coiling, and ensuring accurate nerve fiber connections. Conflicting results exist regarding the effects of micro- or nano-patterns on nerve cell migration, directional growth, immunogenic response, and angiogenesis, complicating their clinical use. Nevertheless, advances in lithography, electrospinning, casting, and molding techniques to intentionally control the fate and neuronal cells orientation are being explored to rapidly and sustainably improve nerve tissue efficiency. It appears that this can be accomplished by combining micro- and nano-patterns with nanomaterials, biological gradients, and electrical stimulation. Despite promising outcomes, the unclear mechanism of action, the presence of growth cones in various directions, and the restriction of outcomes to morphological and functional nerve cell markers have presented challenges in utilizing this method. This review seeks to clarify how micro- or nano-patterns affect nerve cell morphology and function, highlighting the potential benefits of cell orientation, especially in combined approaches.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | | | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
5
|
Vecchi JT, Rhomberg M, Guymon CA, Hansen MR. The geometry of photopolymerized topography influences neurite pathfinding by directing growth cone morphology and migration. J Neural Eng 2024; 21:026027. [PMID: 38547528 PMCID: PMC10993768 DOI: 10.1088/1741-2552/ad38dc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Objective. Cochlear implants provide auditory perception to those with severe to profound sensorineural hearing loss: however, the quality of sound perceived by users does not approximate natural hearing. This limitation is due in part to the large physical gap between the stimulating electrodes and their target neurons. Therefore, directing the controlled outgrowth of processes from spiral ganglion neurons (SGNs) into close proximity to the electrode array could provide significantly increased hearing function.Approach.For this objective to be properly designed and implemented, the ability and limits of SGN neurites to be guided must first be determined. In this work, we engineer precise topographical microfeatures with angle turn challenges of various geometries to study SGN pathfinding and use live imaging to better understand how neurite growth is guided by these cues.Main Results.We find that the geometry of the angled microfeatures determines the ability of neurites to navigate the angled microfeature turns. SGN neurite pathfinding fidelity is increased by 20%-70% through minor increases in microfeature amplitude (depth) and by 25% if the angle of the patterned turn is made obtuse. Further, we see that dorsal root ganglion neuron growth cones change their morphology and migration to become more elongated within microfeatures. Our observations also indicate complexities in studying neurite turning. First, as the growth cone pathfinds in response to the various cues, the associated neurite often reorients across the angle topographical microfeatures. Additionally, neurite branching is observed in response to topographical guidance cues, most frequently when turning decisions are most uncertain.Significance.Overall, the multi-angle channel micropatterned substrate is a versatile and efficient system to assess neurite turning and pathfinding in response to topographical cues. These findings represent fundamental principles of neurite pathfinding that will be essential to consider for the design of 3D systems aiming to guide neurite growthin vivo.
Collapse
Affiliation(s)
- Joseph T Vecchi
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States of America
- Department of Otolaryngology Head-Neck Surgery, University of Iowa, Iowa City, IA, United States of America
| | - Madeline Rhomberg
- Department of Otolaryngology Head-Neck Surgery, University of Iowa, Iowa City, IA, United States of America
| | - C Allan Guymon
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA, United States of America
| | - Marlan R Hansen
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States of America
- Department of Otolaryngology Head-Neck Surgery, University of Iowa, Iowa City, IA, United States of America
| |
Collapse
|
6
|
Quan Y, Huang Z, Wang Y, Liu Y, Ding S, Zhao Q, Chen X, Li H, Tang Z, Zhou B, Zhou Y. Coupling of static ultramicromagnetic field with elastic micropillar-structured substrate for cell response. Mater Today Bio 2023; 23:100831. [PMID: 37881448 PMCID: PMC10594574 DOI: 10.1016/j.mtbio.2023.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/19/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023] Open
Abstract
Micropillars have emerged as promising tools for a wide range of biological applications, while the influence of magnetic fields on cell behavior regulation has been increasingly recognized. However, the combined effect of micropillars and magnetic fields on cell behaviors remains poorly understood. In this study, we investigated the responses of H9c2 cells to ultramicromagnetic micropillar arrays using NdFeB as the tuned magnetic particles. We conducted a comparative analysis between PDMS micropillars and NdFeB/PDMS micropillars to assess their impact on cell function. Our results revealed that H9c2 cells exhibited significantly enhanced proliferation and notable cytoskeletal rearrangements on the ultramicromagnetic micropillars, surpassing the effects observed with pure PDMS micropillars. Immunostaining further indicated that cells cultured on ultramicromagnetic micropillars displayed heightened contractility compared to those on PDMS micropillars. Remarkably, the ultramicromagnetic micropillars also demonstrated the ability to decrease reactive oxygen species (ROS) levels, thereby preventing F-actin degeneration. Consequently, this study introduces ultramicromagnetic micropillars as a novel tool for the regulation and detection of cell behaviors, thus paving the way for advanced investigations in tissue engineering, single-cell analysis, and the development of flexible sensors for cellular-level studies.
Collapse
Affiliation(s)
- Yue Quan
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Ziyu Huang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Yuxin Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Yu Liu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Sen Ding
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Qian Zhao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Haifeng Li
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| |
Collapse
|
7
|
Zhu YD, Ma XY, Li LP, Yang QJ, Jin F, Chen ZN, Wu CP, Shi HB, Feng ZQ, Yin SK, Li CY. Surface Functional Modification by Ti 3 C 2 T x MXene on PLLA Nanofibers for Optimizing Neural Stem Cell Engineering. Adv Healthc Mater 2023; 12:e2300731. [PMID: 37341969 DOI: 10.1002/adhm.202300731] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/18/2023] [Indexed: 06/22/2023]
Abstract
Optimizing cell substrates by surface modification of neural stem cells (NSCs), for efficient and oriented neurogenesis, represents a promising strategy for treating neurological diseases. However, developing substrates with the advanced surface functionality, conductivity, and biocompatibility required for practical application is still challenging. Here, Ti3 C2 Tx MXene is introduced as a coating nanomaterial for aligned poly(l-lactide) (PLLA) nanofibers (M-ANF) to enhance NSC neurogenesis and simultaneously tailor the cell growth direction. Ti3 C2 Tx MXene treatment provides a superior conductivity substrate with a surface rich in functional groups, hydrophilicity, and roughness, which can provide biochemical and physical cues to support NSC adhesion and proliferation. Moreover, Ti3 C2 Tx MXene coating significantly promotes NSC differentiation into both neurons and astrocytes. Interestingly, Ti3 C2 Tx MXene acts synergistically with the alignment of nanofibers to promote the growth of neurites, indicating enhanced maturation of these neurons. RNA sequencing analysis further reveals the molecular mechanism by which Ti3 C2 Tx MXene modulates the fate of NSCs. Notably, surface modification by Ti3 C2 Tx MXene mitigates the in vivo foreign body response to implanted PLLA nanofibers. This study confirms that Ti3 C2 Tx MXene provides multiple advantages for decorating the aligned PLLA nanofibers to cooperatively improve neural regeneration.
Collapse
Affiliation(s)
- Yi-Dan Zhu
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xi-Ying Ma
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lin-Peng Li
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Quan-Jun Yang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Fei Jin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zheng-Nong Chen
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Cui-Ping Wu
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Hai-Bo Shi
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhang-Qi Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shan-Kai Yin
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chun-Yan Li
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
8
|
Yao Z, Lundqvist E, Kuang Y, Ardoña HAM. Engineering Multi-Scale Organization for Biotic and Organic Abiotic Electroactive Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205381. [PMID: 36670065 PMCID: PMC10074131 DOI: 10.1002/advs.202205381] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Multi-scale organization of molecular and living components is one of the most critical parameters that regulate charge transport in electroactive systems-whether abiotic, biotic, or hybrid interfaces. In this article, an overview of the current state-of-the-art for controlling molecular order, nanoscale assembly, microstructure domains, and macroscale architectures of electroactive organic interfaces used for biomedical applications is provided. Discussed herein are the leading strategies and challenges to date for engineering the multi-scale organization of electroactive organic materials, including biomolecule-based materials, synthetic conjugated molecules, polymers, and their biohybrid analogs. Importantly, this review provides a unique discussion on how the dependence of conduction phenomena on structural organization is observed for electroactive organic materials, as well as for their living counterparts in electrogenic tissues and biotic-abiotic interfaces. Expansion of fabrication capabilities that enable higher resolution and throughput for the engineering of ordered, patterned, and architecture electroactive systems will significantly impact the future of bioelectronic technologies for medical devices, bioinspired harvesting platforms, and in vitro models of electroactive tissues. In summary, this article presents how ordering at multiple scales is important for modulating transport in both the electroactive organic, abiotic, and living components of bioelectronic systems.
Collapse
Affiliation(s)
- Ze‐Fan Yao
- Department of Chemical and Biomolecular EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
- Department of ChemistrySchool of Physical SciencesUniversity of CaliforniaIrvineCA92697USA
| | - Emil Lundqvist
- Department of Biomedical EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
| | - Yuyao Kuang
- Department of Chemical and Biomolecular EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
| | - Herdeline Ann M. Ardoña
- Department of Chemical and Biomolecular EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
- Department of ChemistrySchool of Physical SciencesUniversity of CaliforniaIrvineCA92697USA
- Department of Biomedical EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
- Sue & Bill Gross Stem Cell Research CenterUniversity of CaliforniaIrvineCA92697USA
| |
Collapse
|
9
|
Kim E, Jeon S, Yang YS, Jin C, Kim JY, Oh YS, Rah JC, Choi H. A Neurospheroid-Based Microrobot for Targeted Neural Connections in a Hippocampal Slice. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208747. [PMID: 36640750 DOI: 10.1002/adma.202208747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Functional restoration by the re-establishment of cellular or neural connections remains a major challenge in targeted cell therapy and regenerative medicine. Recent advances in magnetically powered microrobots have shown potential for use in controlled and targeted cell therapy. In this study, a magnetic neurospheroid (Mag-Neurobot) that can form both structural and functional connections with an organotypic hippocampal slice (OHS) is assessed using an ex vivo model as a bridge toward in vivo application. The Mag-Neurobot consists of hippocampal neurons and superparamagnetic nanoparticles (SPIONs); it is precisely and skillfully manipulated by an external magnetic field. Furthermore, the results of patch-clamp recordings of hippocampal neurons indicate that neither the neuronal excitabilities nor the synaptic functions of SPION-loaded cells are significantly affected. Analysis of neural activity propagation using high-density multi-electrode arrays shows that the delivered Mag-Neurobot is functionally connected with the OHS. The applications of this study include functional verification for targeted cell delivery through the characterization of novel synaptic connections and the functionalities of transported and transplanted cells. The success of the Mag-Neurobot opens up new avenues of research and application; it offers a test platform for functional neural connections and neural regenerative processes through cell transplantation.
Collapse
Affiliation(s)
- Eunhee Kim
- IMsystem Co., Ltd., 333, Technojungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Sungwoong Jeon
- IMsystem Co., Ltd., 333, Technojungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Yoon-Sil Yang
- Emerging Infectious Disease Vaccines Division, National Institute of Food and Drug Safety Evaluation, 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28159, Republic of Korea
- Korea Brain Research Institute, 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Chaewon Jin
- DGIST-ETH Microrobotics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jin-Young Kim
- DGIST-ETH Microrobotics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Department of Robotics and Mechatronics Engineering, DGIST, Daegu, 42988, Republic of Korea
| | - Yong-Seok Oh
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea
| | - Jong-Cheol Rah
- Korea Brain Research Institute, 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea
| | - Hongsoo Choi
- DGIST-ETH Microrobotics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Department of Robotics and Mechatronics Engineering, DGIST, Daegu, 42988, Republic of Korea
- Robotics and Mechatronics Engineering Research Center, DGIST, Daegu, 42988, Republic of Korea
| |
Collapse
|
10
|
Ros O, Nicol X. Axon pathfinding and targeting: (R)evolution of insights from in vitro assays. Neuroscience 2023; 508:110-122. [PMID: 36096337 DOI: 10.1016/j.neuroscience.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 01/17/2023]
Abstract
Investigating axonal behaviors while neurons are connecting with each other has been a challenge since the early studies on nervous system development. While molecule-driven axon pathfinding has been theorized by observing neurons at different developmental stages in vivo, direct observation and measurements of axon guidance behaviors required the invention of in vitro systems enabling to test the impact of molecules or cellular extracts on axons growing in vitro. With time, the development of novel in vivo approaches has confirmed the mechanisms highlighted in culture and has led in vitro systems to be adapted for cellular processes that are still inaccessible in intact organisms. We here review the evolution of these in vitro assays, which started with crucial contributions from the Bonhoeffer lab.
Collapse
Affiliation(s)
- Oriol Ros
- Universitat de Barcelona, Department of Cell Biology, Physiology and Immunology, Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain
| | - Xavier Nicol
- Sorbonne Université, Inserm, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
| |
Collapse
|
11
|
Zu L, Shi H, Yang J, Zhang C, Fu Y, Xi N, Liu L, Wang W. Unidirectional diphenylalanine nanotubes for dynamically guiding neurite outgrowth. Biomed Mater 2022; 18. [PMID: 36541466 DOI: 10.1088/1748-605x/aca737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022]
Abstract
Neural networks have been culturedin vitroto investigate brain functions and diseases, clinical treatments for brain damage, and device development. However, it remains challenging to form complex neural network structures with desired orientations and connectionsin vitro. Here, we introduce a dynamic strategy by using diphenylalanine (FF) nanotubes for controlling physical patterns on a substrate to regulate neurite-growth orientation in cultivating neural networks. Parallel FF nanotube patterns guide neurons to develop neurites through the unidirectional FF nanotubes while restricting their polarization direction. Subsequently, the FF nanotubes disassemble and the restriction of neurites disappear, and secondary neurite development of the neural network occurs in other direction. Experiments were conducted that use the hippocampal neurons, and the results demonstrated that the cultured neural networks by using the proposed dynamic approach can form a significant cross-connected structure with substantially more lateral neural connections than static substrates. The proposed dynamic approach for neurite outgrowing enables the construction of oriented innervation and cross-connected neural networksin vitroand may explore the way for the bio-fabrication of highly complex structures in tissue engineering.
Collapse
Affiliation(s)
- Lipeng Zu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.,Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huiyao Shi
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.,Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jia Yang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.,Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chuang Zhang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.,Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
| | - Yuanyuan Fu
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang 110122, People's Republic of China
| | - Ning Xi
- Department of Industrial and Manufacturing Systems Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.,Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
| | - Wenxue Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.,Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
| |
Collapse
|
12
|
Tian M, Ma ZC, Han Q, Suo Q, Zhang Z, Han B. Emerging applications of femtosecond laser fabrication in neurobiological research. Front Chem 2022; 10:1051061. [PMID: 36405321 PMCID: PMC9671932 DOI: 10.3389/fchem.2022.1051061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/24/2022] [Indexed: 10/06/2023] Open
Abstract
As a typical micro/nano processing technique, femtosecond laser fabrication provides the opportunity to achieve delicate microstructures. The outstanding advantages, including nanoscale feature size and 3D architecting, can bridge the gap between the complexity of the central nervous system in virto and in vivo. Up to now, various types of microstructures made by femtosecond laser are widely used in the field of neurobiological research. In this mini review, we present the recent advancement of femtosecond laser fabrication and its emerging applications in neurobiology. Typical structures are sorted out from nano, submicron to micron scale, including nanoparticles, micro/nano-actuators, and 3D scaffolds. Then, several functional units applied in neurobiological fields are summarized, such as central nervous system drug carriers, micro/nano robots and cell/tissue scaffolds. Finally, the current challenges and future perspective of integrated neurobiology research platform are discussed.
Collapse
Affiliation(s)
- Mingzhen Tian
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuo-Chen Ma
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- Department of Automation, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qingqing Han
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- Department of Automation, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Suo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Han
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Mariano A, Bovio CL, Criscuolo V, Santoro F. Bioinspired micro- and nano-structured neural interfaces. NANOTECHNOLOGY 2022; 33:492501. [PMID: 35947922 DOI: 10.1088/1361-6528/ac8881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The development of a functional nervous system requires neurons to interact with and promptly respond to a wealth of biochemical, mechanical and topographical cues found in the neural extracellular matrix (ECM). Among these, ECM topographical cues have been found to strongly influence neuronal function and behavior. Here, we discuss how the blueprint of the architectural organization of the brain ECM has been tremendously useful as a source of inspiration to design biomimetic substrates to enhance neural interfaces and dictate neuronal behavior at the cell-material interface. In particular, we focus on different strategies to recapitulate cell-ECM and cell-cell interactions. In order to mimic cell-ECM interactions, we introduce roughness as a first approach to provide informative topographical biomimetic cues to neurons. We then examine 3D scaffolds and hydrogels, as softer 3D platforms for neural interfaces. Moreover, we will discuss how anisotropic features such as grooves and fibers, recapitulating both ECM fibrils and axonal tracts, may provide recognizable paths and tracks that neuron can follow as they develop and establish functional connections. Finally, we show how isotropic topographical cues, recapitulating shapes, and geometries of filopodia- and mushroom-like dendritic spines, have been instrumental to better reproduce neuron-neuron interactions for applications in bioelectronics and neural repair strategies. The high complexity of the brain architecture makes the quest for the fabrication of create more biologically relevant biomimetic architectures in continuous and fast development. Here, we discuss how recent advancements in two-photon polymerization and remotely reconfigurable dynamic interfaces are paving the way towards to a new class of smart biointerfaces forin vitroapplications spanning from neural tissue engineering as well as neural repair strategies.
Collapse
Affiliation(s)
- Anna Mariano
- Tissue Electronics, Istituto Italiano di Tecnologia, I-80125 Naples, Italy
| | - Claudia Latte Bovio
- Tissue Electronics, Istituto Italiano di Tecnologia, I-80125 Naples, Italy
- Dipartimento di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, I-80125, Naples, Italy
| | - Valeria Criscuolo
- Faculty of Electrical Engineering and IT, RWTH Aachen, D-52074, Germany
| | - Francesca Santoro
- Tissue Electronics, Istituto Italiano di Tecnologia, I-80125 Naples, Italy
- Faculty of Electrical Engineering and IT, RWTH Aachen, D-52074, Germany
- Institute for Biological Information Processing-Bioelectronics, Forschungszentrum Juelich, D-52428, Germany
| |
Collapse
|
14
|
Recent Developments in Surface Topography-Modulated Neurogenesis. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|