1
|
Yao S, Cui X, Zhang C, Cui W, Li Z. Force-electric biomaterials and devices for regenerative medicine. Biomaterials 2025; 320:123288. [PMID: 40138962 DOI: 10.1016/j.biomaterials.2025.123288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/02/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
There is a growing recognition that force-electric conversion biomaterials and devices can convert mechanical energy into electrical energy without an external power source, thus potentially revolutionizing the use of electrical stimulation in the biomedical field. Based on this, this review explores the application of force-electric biomaterials and devices in the field of regenerative medicine. The article focuses on piezoelectric biomaterials, piezoelectric devices and triboelectric devices, detailing their categorization, mechanisms of electrical generation and methods of improving electrical output performance. Subsequently, different sources of driving force for electroactive biomaterials and devices are explored. Finally, the biological applications of force-electric biomaterials and devices in regenerative medicine are presented, including tissue regeneration, functional modulation of organisms, and electrical stimulation therapy. The aim of this review is to emphasize the role of electrical stimulation generated by force-electric conversion biomaterials and devices on the regulation of bioactive molecules, ion channels and information transfer in living systems, and thus affects the metabolic processes of organisms. In the future, physiological modulation of electrical stimulation based on force-electric conversion is expected to bring important scientific advances in the field of regenerative medicine.
Collapse
Affiliation(s)
- Shuncheng Yao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Xi Cui
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China; School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Chao Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China; School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Zheng L, Li K, Tang X, Li C, Nie H, Han L, Li Y. A microfluidic co-culture platform for lung cancer cells electrotaxis study under the existence of stromal cells. Bioelectrochemistry 2025; 164:108917. [PMID: 39904303 DOI: 10.1016/j.bioelechem.2025.108917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/06/2025]
Abstract
Tumor metastasis is an important reason for the poor prognosis and high mortality in cancer patients. As major component of stromal cells in tumor microenvironment, cancer-associated fibroblasts (CAFs) secreted various factors to promote tumor metastasis. Studies have indicated that endogenous direct current electric field (dcEF) around tumor tissue induced directional migration of cancer cells. However, the regulatory effect of CAFs on cancer migration under dcEF stimulation is still unknown. In this study, a two-layers polydimethylsiloxane (PDMS)-based microfluidic chip was fabricated. The introduction of concave structures achieved the non-contacted co-culture of different cell types, and parallel channels in the chip provided stable and homogeneous dcEF. Cells electrotactic response was evaluated under co-culture circumstance. The results showed that CAFs exhibited directional migration towards anode under dcEF stimulation, while A549 cells had a trend of directional migration towards cathode. The co-existence of CAFs and dcEF significantly enhanced the motility and cathodal migration of A549 cells, suggesting synergistic influences of chemotaxis from CAFs and electrotaxis from dcEF stimulation. Moreover, we demonstrated that lung normal fibroblasts acquired CAFs properties after stimulated by dcEF, characterizing by increasing gene expression of α-SMA and IL-6. Overall, Our device and study provide new insight for tumor electrotaxis in complex microenvironment.
Collapse
Affiliation(s)
- Lina Zheng
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Keying Li
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Xianmei Tang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Cuiping Li
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Hailiang Nie
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Lirong Han
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China.
| | - Yaping Li
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China.
| |
Collapse
|
3
|
Peng X, Li G, Zhao J, Liu H, Wu C, Su Z, Liu Z, Fan S, Chen Y, Wu Y, Liu W, Shen H, Zheng G. Promotion of quiescence and maintenance of function of mesenchymal stem cells on substrates with surface potential. Bioelectrochemistry 2025; 164:108920. [PMID: 39904300 DOI: 10.1016/j.bioelechem.2025.108920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/20/2025] [Accepted: 01/26/2025] [Indexed: 02/06/2025]
Abstract
The widespread use of human mesenchymal stem cells(hMSCs) is impeded by functional loss during prolonged expansion. Although multiple approaches have been attempted to preserve hMSCs stemness, a suitable culture system remains to be modified. The interaction between electrical signals and stem cells is expected to better maintain the function of stem cells. However, it remains unclear whether the surface potential of substrates has the potential to preserve stem cell function during in vitro expansion. In our study, hMSCs cultured on materials with different surface potentials could be induced into a reversible quiescent state, and we demonstrated that quiescent hMSCs could be reactivated and transitioned back into the proliferation cell cycle. hMSCs cultured under appropriate potential displayed superior differentiation and proliferation abilities within the same generation compared to conventional conditions. These findings underscore the importance of surface potential as a critical physical factor regulating hMSCs stemness. Manipulating the surface potential of hMSCs culture substrates holds promise for optimising preservation and culture conditions, thereby enhancing their application in tissue repair and regeneration engineering.
Collapse
Affiliation(s)
- Xiaoshuai Peng
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Guojian Li
- Department of Spine Orthopedics, Zhuhai People's Hospital, Zhuhai Hospital affiliated with Jinan University, Zhuhai 519000, PR China
| | - Jiu Zhao
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Huatao Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Changhua Wu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Zepeng Su
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Zhidong Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Shuai Fan
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Yuanquan Chen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, PR China
| | - Wenjie Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China.
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China.
| | - Guan Zheng
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China.
| |
Collapse
|
4
|
Xie X, Zhu C, Zhao J, Fan Y, Lei H, Fan D. Combined treatment strategy of hydrogel dressing and physiotherapy for rapid wound healing. Adv Colloid Interface Sci 2025; 341:103477. [PMID: 40139070 DOI: 10.1016/j.cis.2025.103477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/17/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Wound care for open wounds is essential for reducing pain, protecting open wounds, speeding up the healing process and avoiding scar formation. Among the various three-dimensional (3D) carrier biomaterials such as films, sponges, and hydrogels, hydrogels are chemically and physically most similar to the natural extracellular matrix (ECM). Meanwhile, hydrogels are also common 3D carriers that can be efficiently loaded with drugs or cells. In addition, it forms a protective barrier on the wound surface to prevent secondary external infections and has the effect of directing skin cell expansion, tissue infiltration, and wound closure. However, the role of functional drugs in wound healing also faces a number of issues such as resistance, dosage, activity, and stability; therefore, a richer array of therapies is needed for wound repair and other areas of development. Physiotherapy, also known as nonpharmacological therapy, is a commonly used clinical treatment. Recently, more and more physiotherapy have been used for wound repair due to their high efficiency and low irritation. In recent reports, many researchers have tended to use hydrogel dressings in combination with physiotherapy, and this combination therapy is beneficial because it can both protect the wound microenvironment and accelerates wound healing. Therefore, this paper reviews the combined use of hydrogel dressings and physiotherapy in wound healing. We present the characteristics of hydrogel and physiotherapy and focus on the progress and problems of these two combined therapies in recent years.
Collapse
Affiliation(s)
- Xiaofei Xie
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China.
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China.
| | - Jing Zhao
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China.
| | - Yanru Fan
- The College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Huan Lei
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China.
| |
Collapse
|
5
|
Niu Q, Shen J, Liang W, Fan S, Yao X, Wei H, Zhang Y. Fully biodegradable ion-induced silk fibroin-based triboelectric nanogenerators with enhanced performance prevent muscle atrophy. Biomaterials 2025; 318:123185. [PMID: 39965421 DOI: 10.1016/j.biomaterials.2025.123185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/06/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Applying electrical stimulation (ES) on nerve or muscle denervation can significantly restore the nerve function and prevent muscle atrophy. The triboelectric nanogenerator (TENG) can couple the mechanical energy and electrical energy for ES. However, the triboelectric performance of fully biodegradable TENGs and the effect of ES need to be optimized and verified. Here, the triboelectric performance of silk fibroin (SF) is regulated by ions to fabricate SF-TENGs with full biodegradability, good biocompatibility, and excellent output. This SF-TENG shows a good electrostimulation recovery effect and is used for function restoration of the injured sciatic nerve and innervated muscle. Li+ effectively improves the dielectric constant and increases the positively charged ability of SF. The highest output power density of SF-TENG is 128 mW/m2, which is superior to most reported fully biodegradable TENGs. The morphology, protein expression levels, neural/muscular function are assessed to evaluate the recovery of damaged nerves and innervated muscle. The function restoration of the injured nerve and innervated muscle under ES of SF-TENG is significantly close to the normal nerve and muscle. This TENG has great potential to achieve in vivo energy generation, ES, and biodegradability as an implantable electrical stimulator for the therapy of nerve, muscle, and tissue injury.
Collapse
Affiliation(s)
- Qianqian Niu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Junjie Shen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Wenhao Liang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Suna Fan
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiang Yao
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Haifeng Wei
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yaopeng Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
6
|
Tian X, Wen Y, Zhang Z, Zhu J, Song X, Phan TT, Li J. Recent advances in smart hydrogels derived from polysaccharides and their applications for wound dressing and healing. Biomaterials 2025; 318:123134. [PMID: 39904188 DOI: 10.1016/j.biomaterials.2025.123134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/06/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Owing to their inherent biocompatibility and biodegradability, hydrogels derived from polysaccharides have emerged as promising candidates for wound management. However, the complex nature of wound healing often requires the development of smart hydrogels---intelligent materials capable of responding dynamically to specific physical or chemical stimuli. Over the past decade, an increasing number of stimuli-responsive polysaccharide-based hydrogels have been developed to treat various types of wounds. While a range of hydrogel types and their versatile functions for wound management have been discussed in the literature, there is still a need for a review of the crosslinking strategies used to create smart hydrogels from polysaccharides. This review provides a comprehensive overview of how stimuli-responsive hydrogels can be designed and made using five key polysaccharides: chitosan, hyaluronic acid, alginate, dextran, and cellulose. Various methods, such as chemical crosslinking, dynamic crosslinking, and physical crosslinking, which are used to form networks within these hydrogels, ultimately determine their ability to respond to stimuli, have been explored. This article further looks at different polysaccharide-based hydrogel wound dressings that can respond to factors such as reactive oxygen species, temperature, pH, glucose, light, and ultrasound in the wound environment and discusses how these responses can enhance wound healing. Finally, this review provides insights into how stimuli-responsive polysaccharide-based hydrogels can be developed further as advanced wound dressings in the future.
Collapse
Affiliation(s)
- Xuehao Tian
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Yuting Wen
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing, 401120, China.
| | - Zhongxing Zhang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Xia Song
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Toan Thang Phan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, 119228, Singapore; Cell Research Corporation Pte. Ltd., 048943, Singapore
| | - Jun Li
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing, 401120, China; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
7
|
Wu C, Liu B, Wen Q, Zhai Q. A carbon nanotube/pyrrolidonecarboxylic acid zinc sponge for programmed management of diabetic wounds: Hemostatic, antibacterial, anti-inflammatory, and healing properties. Mater Today Bio 2025; 32:101769. [PMID: 40290885 PMCID: PMC12033991 DOI: 10.1016/j.mtbio.2025.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/24/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
Wound healing in patients with diabetes is challenging because of chronic inflammation, inadequate vascularization, and susceptibility to infection. Current wound dressings often target specific stages of healing and lack comprehensive therapeutic approaches. This study introduces a novel approach using a photodetachable sponge scaffold incorporating carbon nanotubes (CNTs), known for their high photothermal conversion efficiency, electrical conductivity, and water absorption properties. The scaffold incorporated pyrrolidonecarboxylic acid zinc (PC1Z2), a compound with anti-inflammatory and moisturizing properties, which was cross-linked within a network of CNTs and a decellularized dermal matrix. The resulting shape-memory sponge scaffold actively interfaces with endogenous electric fields, facilitating electrical signal transmission to skin cells and accelerating tissue repair. Upon exposure to near-infrared (NIR) light, the PC1Z2 scaffold enhanced antibacterial efficacy (98 %) through photothermal conversion, promoting tissue metabolism at the wound site. Notably, the scaffold absorbed wound exudates and gradually released Zn2+, effectively reducing chronic inflammation in the mice. In a diabetic rat wound model, the PC1Z2 scaffold absorbed exudates, reduced inflammation, and accelerated granulation tissue formation, wound angiogenesis, and re-epithelialization. This innovative PC1Z2 sponge dressing shows promise for enhancing the healing of diabetic wounds.
Collapse
Affiliation(s)
- Chenwei Wu
- Department of Urology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, 341000, China
| | - Bo Liu
- Department of Burns and Plastics Surgery, Liuzhou Worker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, 545000, China
| | - Qiulan Wen
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Qiliang Zhai
- Department of Urology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
8
|
Du L, Zhang L, Bao S, Yan F, Jiang W, Wang H, Dong C. Electric Stimulation Combined with Biomaterials for Repairing Spinal Cord Injury. ACS Biomater Sci Eng 2025. [PMID: 40403155 DOI: 10.1021/acsbiomaterials.5c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Spinal cord injury (SCI) is a central nervous system (CNS) disease with a high disability rate, and reconstructing motor function after SCI remains a global challenge. Recent advancements in rehabilitation and regenerative medicine offer new approaches to SCI repair. Electrical stimulation has been shown to alter cell membrane charge distribution, generating action potentials, and affecting cell behavior. This method aids axon regeneration and neurotrophic factor upregulation, crucial for nerve repair. Biomaterials, used as scaffolds or coatings in cell culture and tissue engineering, enhance cell proliferation, migration, differentiation, and tissue regeneration. Electroactive biomaterials combined with electrical stimulation show promise in regenerating nerve, heart, and bone tissues. In this paper, different types of electrical stimulation and biomaterials applied to SCI are described, and the current application and research progress of electrical stimulation combined with biomaterials in the treatment of SCI are described, as well as the future prospects and challenges.
Collapse
Affiliation(s)
- Lulu Du
- Department of Anatomy, Medical College of Nantong University, Nantong 226019, China
| | - Liya Zhang
- Department of Anatomy, Medical College of Nantong University, Nantong 226019, China
| | - Shengzhe Bao
- Department of Anatomy, Medical College of Nantong University, Nantong 226019, China
| | - Fangsu Yan
- Department of Anatomy, Medical College of Nantong University, Nantong 226019, China
| | - Wenwei Jiang
- Department of Anatomy, Medical College of Nantong University, Nantong 226019, China
| | - Hui Wang
- Department of Emergency, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province China
| | - Chuanming Dong
- Department of Anatomy, Medical College of Nantong University, Nantong 226019, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu Province China
| |
Collapse
|
9
|
He L, Li Z, Wang J, Wu Z, Li X, Li Z, Hu Z. Innovative Self-Powered Electrically Stimulated Fabric Dressing for Enhanced Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40377115 DOI: 10.1021/acsami.5c03857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Electrical stimulation (ES) therapy has emerged as a promising method for improving wound healing by mimicking the body's natural electric fields. However, traditional ES devices often fall short in practical applications due to their bulkiness and inefficiency. Current tools for electrical stimulation are hindered by issues such as poor sustainability, limited flexibility, and inadequate biocompatibility. To address these challenges, we have developed a novel self-powered electrical stimulation fabric dressing (SESFD). This innovative dressing employs advanced electrochemical deposition technology to integrate fiber electrodes seamlessly into the fabric using standard textile manufacturing methods. Additionally, we incorporated a gel electrolyte infused with antimicrobial agents to enhance protection against bacterial infections during electrical stimulation. To evaluate the effectiveness of the SESFD in promoting healing for chronic diabetic wounds, we conducted rigorous in vivo studies. The results demonstrated that the SESFD significantly improved cell proliferation and migration within the wound tissue while effectively reducing bacterial growth. These enhancements contributed to faster wound closure, decreased inflammatory response, increased collagen deposition, and improved angiogenesis. Furthermore, the SESFD displayed excellent mechanical properties, extended discharge durability, and stable voltage output even under mechanical deformation. These attributes greatly enhance user experience and comfort for patients throughout the healing process. This study positions the SESFD as a groundbreaking solution that combines electrical stimulation with antimicrobial treatment for diabetic wound care. It represents a sustainable, flexible, and biocompatible approach to accelerating wound healing and improving treatment outcomes.
Collapse
Affiliation(s)
- Lin He
- College of Textiles and Clothing, XinJiang University, Urumqi, Xinjiang 830046, China
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zihan Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National and Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Junping Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Mechanical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Zhongdong Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xinyu Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
- Key Laboratory of Hunan Province for Advanced Carbon-Based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Zhihui Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zongqian Hu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
10
|
Wang S, Liu Z, Chen C, Zhang S, Hu R, Cao Y, Xu J, Chen J, Yu L. Flexible Amorphous Silicon Radial Junction Patches Promote Skin Regeneration by Offering Wireless Photoelectric Neuromodulation. ACS NANO 2025. [PMID: 40372000 DOI: 10.1021/acsnano.4c16337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Photoelectric stimulation offers a promising method for creating noninvasive and durable interfaces with biological tissues, particularly in treating nerve injuries. However, developing flexible and high-performance photoelectric stimulators remains a challenge. In this study, we present an accessible and cost-effective strategy for fabricating an ultraflexible and biocompatible photoelectric patch designed for wireless, light-induced electrical stimulation to promote nerve repair in skin wounds. Using low-temperature chemical vapor deposition, we created flexible photoelectric films based on three-dimensional (3D) amorphous silicon radial p-i-n junction (RJ) nanowires, which exhibit a high open-circuit voltage of 0.79 V and a short-circuit current of 10.5 mA/cm2 under standard AM 1.5 G illumination conditions. The device exhibits good electrochemical performance in solution, featuring high interfacial capacitance and efficient photocurrent generation (∼0.64 mA/cm2), which ensures a stable, capacitive charge injection crucial for effective bioelectrical stimulation. Importantly, the free-standing RJ films can be reliably transferred onto soft poly(dimethylsiloxane) substrates to produce flexible photoelectric patches that maintain intimate contact with curved tissue surfaces. The RJ patches show high biocompatibility and effectively enhance neurite outgrowth and wound healing under safe visible light, promoting both vascular regeneration and neural restoration. This flexible patch holds potential in wireless electrical stimulation, providing a robust and noninvasive solution for comprehensive wound repair and functional tissue regeneration.
Collapse
Affiliation(s)
- Shuyi Wang
- School of Electronic Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, 210023 Nanjing, China
| | - Zongguang Liu
- College of Physics Science and Technology/Microelectronics Industry Research Institute, Yangzhou University, 225009 Yangzhou, China
| | - Cheng Chen
- College of Physics Science and Technology/Microelectronics Industry Research Institute, Yangzhou University, 225009 Yangzhou, China
| | - Shaobo Zhang
- College of Physics Science and Technology/Microelectronics Industry Research Institute, Yangzhou University, 225009 Yangzhou, China
| | - Ruijin Hu
- College of Physics Science and Technology/Microelectronics Industry Research Institute, Yangzhou University, 225009 Yangzhou, China
| | - Yunqing Cao
- College of Physics Science and Technology/Microelectronics Industry Research Institute, Yangzhou University, 225009 Yangzhou, China
| | - Jun Xu
- School of Electronic Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, 210023 Nanjing, China
- School of Microelectronics and School of Integrated Circuit, Nantong University, 226019 Nantong, China
| | - Jianmei Chen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Institute of Translational Medicine, School of Medicine, Yangzhou University, 225009 Yangzhou, China
| | - Linwei Yu
- School of Electronic Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, 210023 Nanjing, China
| |
Collapse
|
11
|
Xu Y, Xu X, Zhao Y, Tian Y, Ma Y, Zhang X, Li F, Zhao W, Ma J, Xu Q, Sun Q. A self-powered casein hydrogel E-dressing with synergistic photothermal therapy, electrical stimulation, and antibacterial effects for chronic wound management. Acta Biomater 2025; 198:63-84. [PMID: 40157697 DOI: 10.1016/j.actbio.2025.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/26/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Triboelectric nanogenerators (TENGs) have recently demonstrated great application potential for accelerating wound healing in the field of medical research due to their unique electrical stimulation effect. Among the various types of TENGs, solid-liquid TENGs have attracted much attention due to their significant advantages, such as high contact-separation efficiency and a wide range of liquid motion. Therefore, this study innovatively proposed a solid-liquid biphasic TENG electronic dressing constructed from a casein hydrogel enhanced by the metal-organic framework Zeolitic Imidazolate Framework-8 (ZIF-8). This hydrogel dressing comprised sodium caseinate (SC)/multi-walled carbon nanotubes-polydopamine@polydopamine (MWCNT@PDA)/polyacrylamide (PAM)/ZIF-8. It ingeniously integrates multiple functions such as photothermal, photodynamic antibacterial, and electrical stimulation therapies, thereby establishing a new multimodal synergistic treatment paradigm. Notably, the addition of ZIF-8 not only controlled photothermal release of antibacterial agents but also facilitates the development of a distinctive solid-liquid biphasic operational modality in TENG system, achieving a 131 V peak output voltage through significant enhancement of electrical performance parameters. In addition, the TENG-based system adopts a non-contact electrical stimulation method for wound treatment, fundamentally reducing the risk of infection caused by direct contact. Experiments using mouse fibroblasts revealed that the simultaneous real-time use of near-infrared light and TENG can significantly improve the cell migration process. Empirical studies on animals demonstrated that it could accelerate tissue regeneration and wound healing by increasing collagen deposition and angiogenesis. Based on these results, this study provides new perspectives for the developing intelligent biomedical composites for future wound management. STATEMENT OF SIGNIFICANCE: Chronic wounds have become a major threat to global medical and health fields due to pathogenic infections. Traditional wound dressings mostly focus on passive healing, which has limited effectiveness. To overcome these limitations, we developed an electronic dressing of a casein-based hydrogel TENG enhanced by a MOF. This electronic dressing combines photothermal, photodynamic antibacterial, and electrical stimulation functions and efficiently promotes wound healing through multifunctional synergy. This research provides a promising solution for diabetic wound care and a broader field of chronic wound treatment. It is a solid step in the scientific exploration of interdisciplinary integration, offering new ideas for making the wound treatment field more intelligent, efficient, and precise.
Collapse
Affiliation(s)
- Yuhang Xu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyu Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Yuan Zhao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - YaNing Tian
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yubo Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fanni Li
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wei Zhao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China.
| | - Qunna Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China.
| | - Qi Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
12
|
Mengru Z, Qinyi W, Zimo Y, Bingqing G, Zhongyu X, Xu J. MXenes in the application of diabetic foot: mechanisms, therapeutic implications and future perspectives. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:42. [PMID: 40374863 PMCID: PMC12081522 DOI: 10.1007/s10856-025-06895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/22/2025] [Indexed: 05/18/2025]
Abstract
Diabetic foot represents a significant healthcare challenge, accounting for a substantial portion of diabetes-related hospitalizations and amputations globally. The complexity of diabetic foot management stems from the interplay of poor glycemic control, neuropathy, and peripheral vascular disease, which hinder wound healing processes. The high incidence, recurrence, and amputation rates associated with diabetic foot underscore the urgency for innovative treatment strategies. Recent advancements in nanotechnology, particularly the emergence of MXenes (two-dimensional transition metal carbides and/or nitrides), have shown promising potential in addressing these challenges by offering unique physicochemical and biological properties suitable for various biomedical applications. It is a novel potential strategy for diabetic foot wound healing in the future. This review comprehensively summarizes current knowledge, unique characteristics, and underlying mechanisms of MXenes in the context of diabetic foot management. Additionally, we propose the potential application of MXenes-based therapeutic strategies in diabetes foot. Furthermore, we also provide an overview of their current challenges and the future perspectives in related fields of diabetic wound healing.
Collapse
Affiliation(s)
- Zhang Mengru
- Department of Orthopaedics, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu Province, China
| | - Wu Qinyi
- Department of Orthopaedics, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu Province, China
| | - Yao Zimo
- The Fourth Clinical School of Nanjing Medical University, Nanjing City, Jiangsu Province, China
| | - Guo Bingqing
- Department of Orthopaedics, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu Province, China
| | - Xia Zhongyu
- Department of Orthopaedics, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu Province, China.
| | - Jianda Xu
- Department of Orthopaedics, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu Province, China.
| |
Collapse
|
13
|
Mondal B, Arora M, Panwar V, Ghosh D, Mandal D. Piezoelectret Textile Dressing for Biosignal Monitored Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503130. [PMID: 40351106 DOI: 10.1002/smll.202503130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/22/2025] [Indexed: 05/14/2025]
Abstract
In recent years, smart textile sensors have gained exponential growth in various sectors such as wearable technology and healthcare. However, addressing the demand for wearable textiles that offer both exceptional functionality (e.g., air-permeability, flexibility) and comfort remains a significant challenge. In this context, a rotary jet-spun textile piezoelectret is demonstrated, which is not reported so far. The piezoelectric output of the all-organic textile sensor is improved by 150% in voltage and 200% for current upon electrical poling. The finite element method revealed that the enhanced piezo-potential is attributed to the trapped polarized charges within the piezoelectret matrix. It exhibited outstanding piezoelectric properties with sensitivity of 400 mV kPa-1 (pressure range, 0.6-7 kPa), waterproofness (water contact angle ≈134°) and high breathability (10 kg m-2 per day), ensuring wearer comfort. Apart from monitoring different physiological signals such as pulse and respiratory rate, it also acted as a sensor array that displays the deep learning-aided pressure mapping with the accuracy of 98%. In addition, this textile accelerated faster proliferation and migration of L929 cell due to its piezoelectricity induced electrical stimulation, suggesting its potential application in wound dressings. Thus, this approach has huge potential to offer a scalable and versatile solution for biomedical technology.
Collapse
Affiliation(s)
- Bidya Mondal
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, India
| | - Malika Arora
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, India
| | - Vineeta Panwar
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, India
| | - Deepa Ghosh
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, India
| | - Dipankar Mandal
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, India
| |
Collapse
|
14
|
Liu J, Lin Z, Wu H, Zhang J, Wang F, Wang L, Lu S, Gao J. Dual-regulation biomimetic composite nerve scaffold with oriented structure and conductive function for skin peripheral nerve injury repair. Colloids Surf B Biointerfaces 2025; 253:114768. [PMID: 40347663 DOI: 10.1016/j.colsurfb.2025.114768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Skin peripheral nerve injury repair still faces significant clinical challenges. Although nerve tissue engineering scaffolds show potential, issues such as limited functionality and low repair efficiency persist. This study developed a dual-regulation biomimetic composite nerve scaffold with oriented structure and conductive function to promote nerve injury repair. The structural layer was a chitosan (CS)/polycaprolactone (PCL) oriented nanofiber membrane, which could promote cell adhesion and induce directional growth of cells. The functional layer was a CS/sodium alginate (SA) ionic conductive hydrogel, which could enhance endogenous electric fields to promote cell proliferation and differentiation. The two layers were combined through physical crosslinking, avoiding the use of chemical adhesives and preserving the surface morphology of the nanofibrous membrane and the porous structure of the hydrogel. The biomimetic composite nerve scaffold exhibited layered degradability, excellent orientation, conductivity, and biocompatibility. Cell experiments indicated that the scaffold effectively induced directional migration, growth, and differentiation of cells and enhanced cell activity, thereby providing a favorable microenvironment for nerve regeneration. This study not only overcomes the limitation of functional singularity in traditional nerve scaffolds but also aligns with the forefront trend in tissue engineering toward multifunctional and biomimetic materials. It demonstrates great potential for treating complex conditions such as traumatic nerve defects and post-surgical nerve regeneration and has broad application prospects in the field of neural tissue engineering.
Collapse
Affiliation(s)
- Jinzhi Liu
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Zhiyuan Lin
- Hantech Medical Device Co. Ltd., No.288 Sanheng Road, Changhe Industrial Park, Cixi, Ningbo 315326, China
| | - Huanyou Wu
- Hantech Medical Device Co. Ltd., No.288 Sanheng Road, Changhe Industrial Park, Cixi, Ningbo 315326, China
| | - Jianming Zhang
- Hantech Medical Device Co. Ltd., No.288 Sanheng Road, Changhe Industrial Park, Cixi, Ningbo 315326, China
| | - Fujun Wang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, China
| | - Lu Wang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, China
| | - Shuliang Lu
- Shanghai Burn Institute, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, China
| | - Jing Gao
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, China.
| |
Collapse
|
15
|
Luo J, Liang Z, Zhao X, Huang S, Gu Y, Deng Z, Ye J, Cai X, Han Y, Guo B. Piezoelectric dual-network tough hydrogel with on-demand thermal contraction and sonopiezoelectric effect for promoting infected-joint-skin-wound healing via FAK and AKT signaling pathways. Natl Sci Rev 2025; 12:nwaf118. [PMID: 40309345 PMCID: PMC12042750 DOI: 10.1093/nsr/nwaf118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/08/2025] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
The dynamic and whole stage management of infected wound healing throughout the entire repair process, including intelligent on-demand wound closure and the regulation of the transition from bactericidal to reparative phases, remains a major challenge. This study develops sonopiezoelectric-effect-mediated on-demand reactive-oxygen-species release by incorporating piezoelectric barium titanate modified with gold nanoparticles and a thermally responsive dual-network tough hydrogel dressing with a physical network structure based on ureidopyrimidinone-modified gelatin crosslinked by multiple hydrogen bonds, and with a chemical network structure based on N-isopropylacrylamide and methacryloyl gelatin formed via radical polymerization. This hydrogel exhibits temperature-sensitive softening, on-demand thermal contraction performance, high mechanical strength, good tissue adhesion, outstanding piezoelectricity, tunable sonopiezoelectric behavior, regulatable photothermal properties and desirable biocompatibility. The tunable sonopiezoelectric effect enables the hydrogel to eliminate wound bacteria in the short term, and effectively promote human fibroblast proliferation and migration over the long term. The hydrogel dressing actively contracts to close wound edges and further promotes the healing of MRSA-infected skin defects in the neck of mice by promoting fibroblast migration, enhancing collagen deposition and facilitating angiogenesis via up-regulating the FAK and AKT signaling pathways, providing a novel design strategy for developing dressings targeting chronic joint-skin wounds.
Collapse
Affiliation(s)
- Jinlong Luo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhen Liang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shengfei Huang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yanan Gu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zexing Deng
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jing Ye
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xingmei Cai
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
16
|
Zhang Y, Zheng Z, Zhu S, Xu L, Zhang Q, Gao J, Ye M, Shen S, Xing J, Wu M, Xu RX. Electroactive Electrospun Nanofibrous Scaffolds: Innovative Approaches for Improved Skin Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416267. [PMID: 40190057 PMCID: PMC12079356 DOI: 10.1002/advs.202416267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/05/2025] [Indexed: 05/16/2025]
Abstract
The incidence and burden of skin wounds, especially chronic and complex wounds, have a profound impact on healthcare. Effective wound healing strategies require a multidisciplinary approach, and advances in materials science and bioengineering have paved the way for the development of novel wound healing dressing. In this context, electrospun nanofibers can mimic the architecture of the natural extracellular matrix and provide new opportunities for wound healing. Inspired by the bioelectric phenomena in the human body, electrospun nanofibrous scaffolds with electroactive characteristics are gaining widespread attention and gradually emerging. To this end, this review first summarizes the basic process of wound healing, the causes of chronic wounds, and the current status of clinical treatment, highlighting the urgency and importance of wound dressings. Then, the biological effects of electric fields, the preparation materials, and manufacturing techniques of electroactive electrospun nanofibrous (EEN) scaffolds are discussed. The latest progress of EEN scaffolds in enhancing skin wound healing is systematically reviewed, mainly including treatment and monitoring. Finally, the importance of EEN scaffold strategies to enhance wound healing is emphasized, and the challenges and prospects of EEN scaffolds are summarized.
Collapse
Affiliation(s)
- Yang Zhang
- Department of RehabilitationThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Department of Precision Machinery and InstrumentationSchool of Engineering ScienceUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Zhiyuan Zheng
- Department of Precision Machinery and InstrumentationSchool of Engineering ScienceUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Shilu Zhu
- School of Biomedical EngineeringDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Suzhou Institute for Advanced ResearchUniversity of Science and Technology of ChinaSuzhou215000China
| | - Liang Xu
- School of Biomedical EngineeringDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Suzhou Institute for Advanced ResearchUniversity of Science and Technology of ChinaSuzhou215000China
| | - Qingdong Zhang
- Department of Precision Machinery and InstrumentationSchool of Engineering ScienceUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- School of Biomedical EngineeringDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Suzhou Institute for Advanced ResearchUniversity of Science and Technology of ChinaSuzhou215000China
| | - Jie Gao
- School of Biomedical EngineeringDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Suzhou Institute for Advanced ResearchUniversity of Science and Technology of ChinaSuzhou215000China
| | - Min Ye
- School of Biomedical EngineeringDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Suzhou Institute for Advanced ResearchUniversity of Science and Technology of ChinaSuzhou215000China
| | - Shuwei Shen
- School of Biomedical EngineeringDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Suzhou Institute for Advanced ResearchUniversity of Science and Technology of ChinaSuzhou215000China
| | - Jinyu Xing
- Department of Precision Machinery and InstrumentationSchool of Engineering ScienceUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Ming Wu
- Department of RehabilitationThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Ronald X. Xu
- Department of Precision Machinery and InstrumentationSchool of Engineering ScienceUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- School of Biomedical EngineeringDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Suzhou Institute for Advanced ResearchUniversity of Science and Technology of ChinaSuzhou215000China
| |
Collapse
|
17
|
Yang SB, Yuan ZD, Yu BY, Wang TT, Wang W, Li T, Wang Y, Huang J, Yuan FL, Dong WF. Sound Wave-Activated Self-Powered Adhesive Dressing for Accelerated Wound Healing. Adv Healthc Mater 2025; 14:e2405155. [PMID: 40159778 DOI: 10.1002/adhm.202405155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Self-powered wound dressings are effective in treating chronic wounds because of their low toxicity and convenience. However, current self-powered dressings rely on the bending movements of the skin or additional large ultrasonic devices. Herein, a flexible adhesive self-powered wound dressing (FASW) that promotes skin regeneration through daily sound wave driving without relying on skin bending or external sound devices is proposed. The FASW dressing consists of a bioadhesive film (BAF), a unidirectional fluorinated conductive film (UFCF), and a liquid metal (LM) interlayer. Benefiting from the cross-linking of chitosan, the dressing exhibits excellent properties, such as biocompatibility, stretchability, tissue adhesion, and recyclability. In vivo experiments show that the FASW dressing reduced inflammation and stimulated hair follicle regeneration. This wound dressing utilizes previously overlooked natural energies for the treatment of chronic wounds, thereby enhancing the therapeutic effect of traditional self-powered dressings on individuals with movement disorders.
Collapse
Affiliation(s)
- Shuo-Bing Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Bai-Yang Yu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Tong-Tong Wang
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Wei Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Yang Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Jing Huang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Wei-Fu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| |
Collapse
|
18
|
Zhang Y, Qiao N, Liu L, Shang H, Wei D, Ji Z, Wang R, Ding Y. Advances in the study of polysaccharide-based hydrogel wound dressings. Int J Biol Macromol 2025; 307:142134. [PMID: 40090647 DOI: 10.1016/j.ijbiomac.2025.142134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/25/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Due to the complexity of wound healing, the rapid promotion of wound healing has been a major unresolved challenge for the medical community. If a suitable wound dressing is not found, it can easily induce wound infection and slow down the wound repair process. Hydrogels have been recognized as the best alternative to traditional wound dressings due to their unique water-retention properties as well as their drug-carrying properties. We first outlined the entire process of wound healing, while introducing the biological activities of ten different natural polysaccharides and their mechanisms for promoting wound healing. Subsequently, we summarized the advantages and limitations of various polysaccharides in use and proposed corresponding solutions. In addition, wound dressings for a wide range of wounds, including diabetes, burns, and radiation, have also been reviewed, providing a comprehensive understanding of the applications of these hydrogels in different wound types. This paper provides an important reference for the biomedical application and clinical research of natural polysaccharide-based hydrogel in wound dressings.
Collapse
Affiliation(s)
- Yu Zhang
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Ning Qiao
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, China.
| | - Lihua Liu
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, China.
| | - Hongzhou Shang
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, China.
| | - Dingxiang Wei
- College of Pharmacy, North China University of Science and Technology, Tangshan 063210, China
| | - Zechao Ji
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Ruize Wang
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Yajie Ding
- College of Pharmacy, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
19
|
Su S, Wang Y, Hao M, Wang Y, Wei S. Calcium-ion-driving assembly of polysaccharide deriving from Zizyphus jujuba to hemostatic hydrogel for treating diabetic wound. Int J Biol Macromol 2025; 307:141896. [PMID: 40064259 DOI: 10.1016/j.ijbiomac.2025.141896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Due to good biocompatibility and biodegradable, natural polysaccharide-based hydrogels have received worldwide attentions, where polysaccharide polymers were usually chemically modified to meet the specific elastic requirements. However, it remained highly challenging to develop polysaccharide-based hydrogels with desired mechanical properties and biological functions devoid of any structural modifications. Herein, with the coordination of Ca2+ (15.0 mM), the jujuba polysaccharide (JPS, 1 %) was facilely fabricated to a hydrogel (JPS-gel) within 1 min at pH 10, where the residual proteins also played crucial roles on the assembly. The JPS-gel showed outstanding stability and mechanical properties, which were tunable by adjusting the content of Ca2+/JPS. The JPS-gel also revealed excellent biocompatibility, and could expedite the migration and proliferation of healing-related cells, angiogenesis and alleviate inflammation response. More interestingly, the JPS-gel had hemostatic capacity, where the hemostatic time and blood loss in liver incision model were 13 ± 3 s and 6.3 ± 1.6 mg after 120 s treatment with JPS-gel, respectively. All these superiorities endowed JPS-gel high performance healing in diabetic wounds (10 days). Specially, the expressions of inflammation-related genes were downregulated, but gene expressions associated with cell migration and proliferation, and angiogenesis were upregulated, thus uncovering the action mechanism of JPS-gel on accelerating wound contraction.
Collapse
Affiliation(s)
- Siqi Su
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Yinghui Wang
- College of Science, Chang'an University, Xi'an 710064, China
| | - Mengke Hao
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Yuhui Wang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Simin Wei
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China.
| |
Collapse
|
20
|
Zhang Y, Li Y, Lu S, Zhang S, Wang R, Gan D, Liu P, Shen J. Bacterial microenvironment-responsive antibacterial, adhesive, and injectable oxidized dextran-based hydrogel for chronic diabetic wound healing. Int J Biol Macromol 2025; 309:143095. [PMID: 40233910 DOI: 10.1016/j.ijbiomac.2025.143095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 04/17/2025]
Abstract
Diabetic wounds are highly susceptible to bacterial infections, often resulting in chronic wounds that pose a substantial challenge to clinical treatment. Furthermore, the irregular shapes of these wounds limit the effectiveness of conventional dressings. Therefore, development of a new type of antibacterial dressing that can accommodate various wound shapes is urgently required. In this study, we designed injectable hydrogels with bacterial microenvironment-responsive antibacterial, adhesive, and antioxidant properties. These hydrogels were developed by incorporating polydopamine nanoparticles (PDA NPs) into a gelatin/oxidized dextran (Gel-oDex) network crosslinked via dynamic Schiff base reactions. Notably, the Gel-oDex-PDA-PHMB hydrogel demonstrated strong antibacterial efficacy against S. aureus, E. coli, and MRSA (all exceeding 99%), with PHMB-release experiments confirming its responsiveness to the bacterial microenvironment. Additionally, the hydrogel exhibited significant antioxidant activity, as evidenced by the DPPH radical scavenging assays. With good biocompatibility, the Gel-oDex-PDA-PHMB hydrogel also demonstrated effectiveness in killing bacteria and promoting the regeneration and functional reconstruction of skin tissue in bacteria-infected diabetic rats.
Collapse
Affiliation(s)
- Yu Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Youxin Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Siyu Lu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Song Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Rui Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Donglin Gan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, China.
| | - Pingsheng Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, China.
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
| |
Collapse
|
21
|
Kreve S, Reis AC. Efficacy of electrical stimulation for antimicrobial capacity of titanium materials implants: a systematic review and meta-analysis. J Oral Biosci 2025; 67:100669. [PMID: 40316013 DOI: 10.1016/j.job.2025.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND Antimicrobial resistance undermines the effectiveness of drugs for treating implant-associated infections. Consequently, there is growing interest in identifying alternative methods to prevent and eliminate infections. The aim of this systematic review was to ascertain whether the electrical stimulation of titanium implants or titanium-based implant materials has antimicrobial properties against bacterial biofilms. The search was conducted in various databases, including PubMed/Medline, Web of Science, EMBASE, SCOPUS, and Google Scholar, in February 2024. In addition, a manual search of the reference lists of the included articles was conducted. The eligibility criteria included in vivo and in vitro studies evaluating the effects of electrical stimulation on titanium implants or titanium-based implant materials in reducing biofilm formation or adhesion as well as eradicating or reducing the viability of bacterial biofilms. The variability between studies was determined using the inverse variance method with random- and fixed-effects models. Heterogeneity was assessed using the I2 and prediction interval statistics. Publication bias was qualitatively evaluated using funnel plots. HIGHLIGHTS Different electrical stimulation (ES) parameters (current and voltage) exhibited antibacterial activity, resulting in either bacteriostatic or bactericidal effects. CONCLUSIONS ES in titanium or titanium-based implant materials confers antimicrobial capacity against bacterial biofilms, and its effectiveness depends on the applied tension. The association between ES and antimicrobials was more robust than with ES administered individually.
Collapse
Affiliation(s)
- Simone Kreve
- Department of Dental Materials and Prosthodontics, Ribeirao Preto Dental School, USP-University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| | - Andréa C Reis
- Department of Dental Materials and Prosthodontics, Ribeirao Preto Dental School, USP-University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
22
|
Qin Y, Jia S, Shi XL, Gao S, Zhao J, Ma H, Wei Y, Huang Q, Yang L, Chen ZG, Sun Q. Self-Powered Thermoelectric Hydrogels Accelerate Wound Healing. ACS NANO 2025; 19:15924-15940. [PMID: 40241245 DOI: 10.1021/acsnano.5c01742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Electrical stimulation (ES) serves as a biological cue that regulates critical cellular processes, including proliferation and migration, offering an effective approach to accelerating wound healing. Thermoelectrics, capable of generating electricity by exploiting the temperature difference between skin and the surrounding environment without external energy input, present a promising avenue for ES-based therapies. Herein, we developed Ag2Se@gelatin methacrylate (Ag2Se@GelMA) thermoelectric hydrogels with high room-temperature thermoelectric performance and employed them as self-powered ES devices for wound repair. Systematic in vivo and in vitro investigations elucidated their biological mechanisms for enhancing wound healing. Our findings reveal that the Ag2Se@GelMA thermoelectric hydrogels can significantly accelerate the wound closure by amplifying the endogenous electric field, thereby promoting cell proliferation, migration, and angiogenesis. Comprehensive in vitro experiments demonstrated that ES generated by the hydrogels activates voltage-gated calcium ion channels, elevating intracellular Ca2+ levels and enhancing mitochondrial functions through the Ca2+/CaMKKβ/AMPK/Nrf2 pathway. This cascade improves mitochondrial dynamics and angiogenesis, thereby accelerating tissue regeneration. The newly developed Ag2Se@GelMA thermoelectric hydrogels represent a marked progress in wound dressing technology with the potential to improve clinical strategies in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Yuandong Qin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shiyu Jia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiao-Lei Shi
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jiangqi Zhao
- School of Materials Science & Engineering, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Huangshui Ma
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yanxing Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qinlin Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lei Yang
- School of Materials Science & Engineering, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Zhi-Gang Chen
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Qiang Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
23
|
Qiu X, Xiang F, Liu H, Zhan F, Liu X, Bu P, Zhou B, Duan Q, Ji M, Feng Q. Electrical hydrogel: electrophysiological-based strategy for wound healing. Biomater Sci 2025; 13:2274-2296. [PMID: 40131331 DOI: 10.1039/d4bm01734j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Wound healing remains a significant challenge in clinical practice, driving ongoing exploration of innovative therapeutic approaches. In recent years, electrophysiological-based wound healing strategies have gained considerable attention. Specifically, electrical hydrogels combine the synergistic effects of electrical stimulation and hydrogel properties, offering a range of functional benefits for wound healing, including antibacterial activity, real-time wound monitoring, controlled drug release, and electrical treatment. Despite significant progress made in electrical hydrogel research for wound healing, there is a lack of comprehensive, systematic reviews summarizing this field. In this review, we survey the latest advancements in electrical hydrogel technology. After analyzing the mechanisms of electrical stimulation in promoting wound healing, we establish a novel classification framework for electrical hydrogels based on their operational principles. The review further provides an in-depth evaluation of the therapeutic efficacy of these hydrogels in various types of wounds. Finally, we propose future directions and challenges for the development of electrical hydrogels for wound healing.
Collapse
Affiliation(s)
- Xingan Qiu
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing 404010, China.
- School of Medicine, Chongqing University, Chongqing 404010, China
| | - Feng Xiang
- Key laboratory of Biorheological Science and Technology, Ministry of Educations, Collage of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Hong Liu
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing 404010, China.
- School of Medicine, Chongqing University, Chongqing 404010, China
| | - Fangbiao Zhan
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing 404010, China.
- School of Medicine, Chongqing University, Chongqing 404010, China
| | - Xuezhe Liu
- Key laboratory of Biorheological Science and Technology, Ministry of Educations, Collage of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Pengzhen Bu
- Key laboratory of Biorheological Science and Technology, Ministry of Educations, Collage of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Bikun Zhou
- Key laboratory of Biorheological Science and Technology, Ministry of Educations, Collage of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Qiaojian Duan
- Key laboratory of Biorheological Science and Technology, Ministry of Educations, Collage of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Ming Ji
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing 404010, China.
- School of Medicine, Chongqing University, Chongqing 404010, China
| | - Qian Feng
- Key laboratory of Biorheological Science and Technology, Ministry of Educations, Collage of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
24
|
Li H, Li C, Zhao H, Li Q, Zhao Y, Gong J, Li G, Yu H, Tian Q, Liu Z, Han F. Flexible fibrous electrodes for implantable biosensing. NANOSCALE 2025; 17:9870-9894. [PMID: 40172544 DOI: 10.1039/d4nr04542d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Flexible fibrous electrodes have emerged as a promising technology for implantable biosensing applications, offering significant advancements in the monitoring and manipulation of biological signals. This review systematically explores the key aspects of flexible fibrous electrodes, including the materials, structural designs, and fabrication methods. A detailed discussion of electrode performance metrics is provided, covering factors such as conductivity, stretchability, axial channel count, and implantation duration. The diverse applications of these electrodes in electrophysiological signal monitoring, electrochemical sensing, tissue strain monitoring, and in vivo electrical stimulation are reviewed, highlighting their potential in biomedical settings. Finally, the review discusses the eight major challenges currently faced by implantable fibrous electrodes and explores future development directions, providing critical technical analysis and potential solutions for the advancement of next-generation flexible implantable fiber-based biosensors.
Collapse
Affiliation(s)
- Hanfei Li
- School of Mechanical, Electrical & Information Engineering, Shandong University, 264209 Weihai, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligent Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- WeiHai Research Institute of Industrial Technology of Shandong University, 264209 Weihai, China
| | - Chenyang Li
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligent Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hang Zhao
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligent Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qingsong Li
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligent Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yang Zhao
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligent Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianhong Gong
- School of Mechanical, Electrical & Information Engineering, Shandong University, 264209 Weihai, China
- WeiHai Research Institute of Industrial Technology of Shandong University, 264209 Weihai, China
| | - Guanglin Li
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligent Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huan Yu
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligent Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiong Tian
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligent Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhiyuan Liu
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligent Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Multimodality Non-Invasive Brain-Computer Interfaces, Shenzhen 518055, China
| | - Fei Han
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligent Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Multimodality Non-Invasive Brain-Computer Interfaces, Shenzhen 518055, China
| |
Collapse
|
25
|
Zhang R, Tang P, Chen Z, Tang M, Yang K, Tang Y, Zhang H, Wang Q. Microneedle hierarchical structure construction for promoting multi-stage wound healing. Int J Pharm 2025; 674:125474. [PMID: 40086651 DOI: 10.1016/j.ijpharm.2025.125474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/13/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
As a new type of drug delivery system, microneedle have received extensive attention in wound healing due to their penetrability, painlessness, and high drug delivery efficiency. However, microneedle are often unable to penetrate the skin completely due to the limitations of the skin's mechanical properties, resulting in low drug delivery efficiency during wound repair. Therefore, it is particularly important to optimize the multi-level structural design of microneedles. This article systematically summarizes the multi-level structural design of microneedles that promote wound healing, including the structural parameters of a single microneedle, microneedle array design, and microneedle system structural optimization. It also summarizes the research progress on the functional design of microneedle systems at various stages of wound repair. This paper reviews the current status and limitations of microneedle patch design, and provides theoretical guidance for the design of smart microneedle wound management/healing.
Collapse
Affiliation(s)
- Rui Zhang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Pengfei Tang
- Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Zhenfeng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Ming Tang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis 38105, United States
| | - Kun Yang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Youhong Tang
- Medical Device Research Institute, Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Hongping Zhang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Qingyuan Wang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China; Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture & Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
26
|
Zhu J, Chen Z, Dong B. Functional hydrogels for accelerated wound healing: advances in conductive hydrogels and self-powered electrical stimulation. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-32. [PMID: 40227875 DOI: 10.1080/09205063.2025.2486858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025]
Abstract
Compared to traditional dressings, hydrogel dressings not only protect the wound surface and prevent bacterial infection but also possess excellent moisturizing properties, which can provide an optimal moist environment for wound healing, and exhibit good biocompatibility, making them considered the best wound treatment materials. This review focuses on the research status and application progress of various functional hydrogel dressings, such as hemostatic, antimicrobial, anti-inflammatory, antioxidant, and conductive hydrogels. It proposes the combination of conductive hydrogels with flexible solar cells to form self-powered devices. Compared to traditional externally powered devices, this approach can reduce carbon footprints by utilizing clean energy, aligning with carbon neutrality policy requirements. Additionally, it eliminates the need for frequent battery replacement or power connections, effectively saving labor and operational costs. Self-powered devices can convert solar energy into electrical energy, which is conducted to the wound site through hydrogels, generating continuous electrical stimulation (ES). This electrical stimulation guides the directional migration of keratinocytes and fibroblasts toward the center of the wound; activates the MAPK/ERK signaling pathway to accelerate the cell cycle process, and upregulates the expression of vascular endothelial growth factor, thereby inducing endothelial cell proliferation and lumen formation. These multiple mechanisms work synergistically to promote wound healing. Finally, the review provides an outlook on the emergence and applications of multifunctional hydrogels and stimuli-responsive hydrogels, highlighting common challenges in the future development of hydrogels, such as weak mechanical strength and poor long-term stability, as well as feasible solutions to these issues.
Collapse
Affiliation(s)
- Junyi Zhu
- School of Materials Science and Engineering, Hubei University, Wuhan, China
| | - Zesheng Chen
- School of Materials Science and Engineering, Hubei University, Wuhan, China
- Department of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Binghai Dong
- School of Materials Science and Engineering, Hubei University, Wuhan, China
| |
Collapse
|
27
|
Liu M, Wang Y, Wang H, Qi L, Shang Y, Song J, Feng X, Chen Y, Memon WA, Shen Y, Wu X, Cao J, Zhao Y, Jiang Z, Liu D, Shafique S, Li S, Lu G, Wei Z, Liu Z, Zhou K, Quan Y, Zhang X, Zou X, Wang X, Liu N, Zhang Y, Hu Y, Han C, Wang W. Electret-Inspired Charge-Injected Hydrogel for Scar-Free Healing of Bacterially Infected Burns Through Bioelectrical Stimulation and Immune Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411889. [PMID: 39951351 PMCID: PMC11967837 DOI: 10.1002/advs.202411889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/13/2025] [Indexed: 02/16/2025]
Abstract
In this study, an electret-inspired, charge-injected hydrogel called QOSP hydrogel (QCS/OD/SDI/PANI/PS/Plasma) that promotes scar-free healing of bacteria-infected burns through bioelectrical stimulation and immune modulation, is presented. The hydrogel, composed of quaternized chitosan (QCS), oxidized dextran (OD), sulfadiazine (SDI), polystyrene (PS), and polyaniline nanowires (PANI), forms a conductive network capable of storing and releasing electric charges, emulating an electret-like mechanism. This structure delivers bioelectrical signals continuously, enhancing wound healing by regulating immune responses and minimizing fibrosis. In a mouse model of second-degree burns infected with Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA), the hydrogel accelerates wound healing by 32% and reduces bacterial load by 60%, significantly inhibited scar formation by 40% compared to controls. QOSP hydrogel modulates the Th1/Th2 immune balance toward a Th1-dominant antifibrotic state through quaternized chitosan, thereby reducing collagen deposition by 35%. Electro-dielectric characterization reveals a dielectric constant of 6.2, a 34% improvement in conductivity (3.33 × 10-5 S/m) and a 30 °C increase in thermal stability. Proteomic analysis highlights a 50% down-regulation of pro-inflammatory and pro-fibrotic pathways, suggesting a controlled immune response conducive to scar-free healing. This study underscores the potential of bioelectrically active hydrogels as a novel approach for treating infected wounds prone to scarring.
Collapse
Affiliation(s)
- Mujie Liu
- Functional and Molecular Imaging Key Lab of Shaanxi ProvinceDepartment of RadiologyTangdu HospitalAir Force Medical UniversityXi'an710032China
- Health Science CenterNingbo UniversityNingbo315211China
| | - Yuheng Wang
- Functional and Molecular Imaging Key Lab of Shaanxi ProvinceDepartment of RadiologyTangdu HospitalAir Force Medical UniversityXi'an710032China
- State Key Laboratory of Electrical Insulation and Power EquipmentCentre for Plasma Biomedicine, School of Electrical EngineeringXi'an Jiaotong UniversityXi'an710049China
| | - Haodong Wang
- Health Science CenterNingbo UniversityNingbo315211China
| | - Lihong Qi
- Department of Geriatric MedicineThe Affiliated Hospital of Southwest Medical UniversityLuzhou646000China
| | - Yuxuan Shang
- Functional and Molecular Imaging Key Lab of Shaanxi ProvinceDepartment of RadiologyTangdu HospitalAir Force Medical UniversityXi'an710032China
| | - Jiajie Song
- Functional and Molecular Imaging Key Lab of Shaanxi ProvinceDepartment of RadiologyTangdu HospitalAir Force Medical UniversityXi'an710032China
| | - Xiulong Feng
- Functional and Molecular Imaging Key Lab of Shaanxi ProvinceDepartment of RadiologyTangdu HospitalAir Force Medical UniversityXi'an710032China
| | - Yiwei Chen
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Waqar Ali Memon
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
| | - Yuping Shen
- The Second Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou310000China
| | - Xiaodong Wu
- Department of Anesthesiologythe First Medical Center of Chinese PLA General HospitalBeijing100853China
| | - Jiangbei Cao
- Department of Anesthesiologythe First Medical Center of Chinese PLA General HospitalBeijing100853China
| | - Yifan Zhao
- State Key Laboratory for Manufacturing Systems EngineeringInternational Joint Laboratory for Micro/Nano Manufacturing and Measurement TechnologiesSchool of Instrument Science and TechnologyXi'an Jiaotong UniversityXi'an710049China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems EngineeringInternational Joint Laboratory for Micro/Nano Manufacturing and Measurement TechnologiesSchool of Instrument Science and TechnologyXi'an Jiaotong UniversityXi'an710049China
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power EquipmentCentre for Plasma Biomedicine, School of Electrical EngineeringXi'an Jiaotong UniversityXi'an710049China
| | - Shareen Shafique
- State Key Laboratory for Manufacturing Systems EngineeringInternational Joint Laboratory for Micro/Nano Manufacturing and Measurement TechnologiesSchool of Instrument Science and TechnologyXi'an Jiaotong UniversityXi'an710049China
| | - Shengtao Li
- State Key Laboratory of Electrical Insulation and Power EquipmentCentre for Plasma Biomedicine, School of Electrical EngineeringXi'an Jiaotong UniversityXi'an710049China
| | - Guanghao Lu
- State Key Laboratory of Electrical Insulation and Power EquipmentCentre for Plasma Biomedicine, School of Electrical EngineeringXi'an Jiaotong UniversityXi'an710049China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationCAS Center for Excellence in Nanoscience National Center for Nanoscience and TechnologyBeijing100190China
| | - Zhijie Liu
- State Key Laboratory of Electrical Insulation and Power EquipmentCentre for Plasma Biomedicine, School of Electrical EngineeringXi'an Jiaotong UniversityXi'an710049China
| | - Kun Zhou
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong KongShenzhen (CUHK‐Shenzhen)Guangdong518172China
| | - Yuping Quan
- Department of Plastic Surgery and Regenerative MedicineFujian Medical University Union HospitalFuzhou350001China
| | - Xiaoyu Zhang
- Department of Medical EngineeringXinqiao HospitalArmy Medical UniversityChongqing400037China
| | - Xin Zou
- Department of Medical EngineeringXinqiao HospitalArmy Medical UniversityChongqing400037China
| | - Xuefeng Wang
- Functional and Molecular Imaging Key Lab of Shaanxi ProvinceDepartment of RadiologyTangdu HospitalAir Force Medical UniversityXi'an710032China
| | - Na Liu
- Functional and Molecular Imaging Key Lab of Shaanxi ProvinceDepartment of RadiologyTangdu HospitalAir Force Medical UniversityXi'an710032China
| | - Yaqing Zhang
- Department of Pediatric OrthopaedicsXinhua Hospital Affiliated to Shanghai Jiao Tong UniversitySchool of MedicineShanghai200092China
| | - Yiwei Hu
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Chao Han
- The Second Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou310000China
| | - Wen Wang
- Functional and Molecular Imaging Key Lab of Shaanxi ProvinceDepartment of RadiologyTangdu HospitalAir Force Medical UniversityXi'an710032China
| |
Collapse
|
28
|
Luo R, Fan Y, Qi Y, Bai Y, Xiao M, Lv Y, Liang J, Tang M, Zhang J, Li Z, Luo D. Self-Manipulating Sodium Ion Gradient-Based Endogenic Electrical Stimulation Dressing for Wound Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419149. [PMID: 39951003 DOI: 10.1002/adma.202419149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/14/2025] [Indexed: 04/03/2025]
Abstract
Endogenous electric field (EF) originating from differences in ionic gradients plays a decisive role in the wound healing process. Based on this understanding, a self-manipulating sodium ion gradient-based endogenic electrical stimulation dressing (smig-EESD) is developed to achieve passive, non-invasive, endogenic electrical stimulation of wounds, which avoids the side effects of electrode occupancy, electrochemical reactions, and thermal effects present in traditional exogenous electrical stimulation. smig-EESD reduced the potential at the center of the wound by specifically absorbing Na+ in the exudate, ultimately strengthening the wound endogenous EF. Importantly, smig-EESD converted the active transport dependent on Na+/K+-ATPase into passive diffusion by adsorbing extracellular matrix Na+, and the saved ATP consumption promoted tissue repair process. smig-EESD regulated innate and adaptive immune responses by upregulating the secretion of multiple cytokines, thereby suppressing injury-associated inflammatory responses and reducing scar formation. smig-EESD reveals an endogenic electrical stimulation strategy that is independent of electrodes and circuits, and provides new insights into the future development of electronic medicine.
Collapse
Affiliation(s)
- Ruizeng Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, School of Biomedical Engineering, Tsinghua Medicine, Tsinghua University, Beijing, 100084, China
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yijie Fan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yilin Qi
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Bai
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Center on Nanoenergy Research, School of Physical Science & Technology, Guangxi University, Nanning, 530004, China
| | - Meng Xiao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujia Lv
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Jinrui Liang
- State Key Laboratory of Chemical Resource Engineering, Department of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mingcheng Tang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, School of Biomedical Engineering, Tsinghua Medicine, Tsinghua University, Beijing, 100084, China
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center on Nanoenergy Research, School of Physical Science & Technology, Guangxi University, Nanning, 530004, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| |
Collapse
|
29
|
She Y, Wu P, Wan W, Liu H, Liu R, Wang T, Wang M, Shen L, Yang Y, Huang X, Zhang X, Tian Y, Zhang K. Polysaccharides, proteins and DNA based stimulus responsive hydrogels promoting wound healing and repair: A review. Int J Biol Macromol 2025; 304:140961. [PMID: 39952504 DOI: 10.1016/j.ijbiomac.2025.140961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
The healing of various wounds remains a serious challenge in the medical field, hydrogel has high hydrophilicity and biocompatibility due to its unique network structure, which shows a strong advantage in the field of wound healing. Stimulus responsive hydrogels are particularly effective,which can control the material properties according to the external stimulus source, and provide more targeted treatment for different wounds. Here, we review physiological mechanisms of wound healing and the relationship between polysaccharides, proteins and DNA based stimulus responsive hydrogels and wound healing, materials commonly used of polysaccharides, proteins and DNA based stimulus responsive hydrogels, mechanisms of stimulus responsive hydrogels formation and network structure types, common properties of polysaccharides, proteins and DNA based stimulus responsive hydrogels for promoting wound healing and discuss their applications in medicine. Finally, the limitations and application prospects of polysaccharides, proteins and DNA based stimulus responsive hydrogels were discussed and evaluated. The review focuses on the biomedical use of polysaccharides, proteins and DNA based stimulus responsive hydrogels in wound healing and repair, and provides insights for the development of clinical related materials.
Collapse
Affiliation(s)
- Yumo She
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, China
| | - Peng Wu
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, China
| | - Wenyu Wan
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, China; Key Laboratory of Immunodermatology, National Health Commission of the People's Republic of China, The First Hospital of China Medical University, China; National and Local Joint Engineering Research Center of Immunodermatological Theranostics, The First Hospital of China Medical University, China
| | - He Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Ruonan Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Tingting Wang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, China
| | - Mengyao Wang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, China
| | - Lufan Shen
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, China
| | - Yuanyuan Yang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, China
| | - Xingyong Huang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, China
| | - Xiaoyue Zhang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, China
| | - Ye Tian
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; Foshan Graduate School of Innovation, Northeastern University, Foshan 528300, China.
| | - Kai Zhang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, China; Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
30
|
Luo B, Bai X, Hou Y, Guo J, Liu Z, Duan Y, Wu Z. Research progress on MXenes in polysaccharide-based hemostasis and wound healing: A review. Int J Biol Macromol 2025; 303:140613. [PMID: 39900158 DOI: 10.1016/j.ijbiomac.2025.140613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/16/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Traumatic events occur frequently in daily life, and hemostasis and infection prevention represent key challenges in trauma care. Polysaccharide-based materials (chitosan, cellulose, etc.) are widely used as hemostasis materials due to their excellent designability and biocompatibility. However, their insufficient antibacterial activity and limited hemostatic capabilities diminish their effectiveness in wound care. As emerging two-dimensional nanomaterials, MXene offers promising solutions to these limitations. With superior hydrophilicity, antibacterial properties and biocompatibility, MXene enhances the performance of polysaccharide-based hemostasis materials. This review summarizes the characteristics and synthesis methods of MXenes and outlines recent advances in MXene/polysaccharide composites for promoting wound healing by controlling bleeding and preventing infection. Additionally, we discuss the preparation methods, the mechanisms of action, and challenges in practical applications of MXene/polysaccharide composites, and propose future research directions. By integrating the advantages of MXenes and polysaccharides, we hope to provide a more effective solution for the research of polysaccharide-based hemostatic materials.
Collapse
Affiliation(s)
- Bichong Luo
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China.
| | - Xiaofei Bai
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujie Hou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongshuang Liu
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Yongbing Duan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Zhengguo Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
31
|
Kreller T, Boccaccini AR, Jonitz-Heincke A, Detsch R. Alternating electrical fields to stimulate osteogenic cells and biomimetic calcium phosphate-coated titanium substrates-A combinatorial approach to bone regeneration. BIOMATERIALS ADVANCES 2025; 169:214191. [PMID: 39842166 DOI: 10.1016/j.bioadv.2025.214191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Biophysical stimuli such as alternating electrical fields can mimic endogenous electrical potentials and currents in natural bone. This can help to improve the healing and reconstruction of bone tissue. However, little is known about the combined influence of biomaterials and alternating electric fields on bone cells. Therefore, this study aimed to investigate the impact of both, biomaterials and alternating electric fields, on osteoblast as well as osteoclast differentiation. Initially, either RAW 264.7 or MC3T3-E1 cells were seeded on Ti6Al4V substrates as a load-bearing implant material, modified with biomimetic calcium phosphate (BCP), or uncoated as a reference. The cells were stimulated towards osteoclastic and osteoblastic differentiation via respective growth factors. The effects of BCP substrate modification on cell differentiation were examined after 7 days for RAW 264.7 and after 14 days for MC3T3-E1 cells. In a further series of tests, either RAW 264.7 or MC3T3-E1 cells were seeded on BCP-modified Ti6Al4V substrates, stimulated towards differentiation using growth factors, and further electrically stimulated via alternating electric fields of different voltages and frequencies. In parallel to the first test series RAW 264.7 and MC3T3-E1 cells were stimulated for 7 and 14 days, respectively. Cell morphology was examined via scanning electron microscopy. Cell viabilities were assessed via WST-8 assay. Electrically stimulated MC3T3-E1 cell orientation was evaluated based on fluorescence microscopy images. Marker genes were examined via qPCR. While BCP increased osteoclast-specific gene expression, it had the opposite effect on osteoblast-related genes compared to respective cells seeded on uncoated Ti6Al4V substrates. ES with different parameters showed a broad cellular response due to electrocoupling. While cell viability assessments and gene expression analyses showed clear differences between ES samples and unstimulated controls, only minor cell morphology and orientation differences were observed. Furthermore, there was no clear trend towards a dominant influence of either voltage or frequency as control parameters. Further studies were initiated to investigate the underlying intracellular mechanisms targeted by ES. This work provides an introduction to the targeted control of cellular processes using defined electric fields. The optimization of voltage and frequency could provide therapeutic windows to control specific cellular functions and potentially improve bone regeneration and remodeling processes.
Collapse
Affiliation(s)
- T Kreller
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - A R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - A Jonitz-Heincke
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Center, 18057 Rostock, Germany
| | - R Detsch
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
32
|
Peng Q, Qian Y, Xiao X, Gao F, Ren G, Pennisi CP. Advancing Chronic Wound Healing through Electrical Stimulation and Adipose-Derived Stem Cells. Adv Healthc Mater 2025; 14:e2403777. [PMID: 40025921 PMCID: PMC12004429 DOI: 10.1002/adhm.202403777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/24/2025] [Indexed: 03/04/2025]
Abstract
Chronic cutaneous wounds are a major clinical challenge worldwide due to delayed healing, recurrent infections, and resistance to conventional therapies. Adipose-derived stem cells (ASCs) have shown promise as a cell-based therapy, but their therapeutic efficacy is often compromised by the harsh microenvironment of chronic wounds. Recent advances in bioengineering, particularly the application of electrical stimulation (ES), offer an innovative approach to enhancing the regenerative properties of ASCs. By restoring the natural electrical current in the wound, ES provides a strong stimulus to the cells involved in healing, thereby accelerating the overall wound-healing process. Recent studies show that ASCs can be significantly activated by ES, which increases their viability, proliferation, migration, and secretory capacity, all of which are crucial for the proper healing of chronic wounds. This review examines the synergistic effects of ES and ASCs on wound healing, focusing on the biological mechanisms involved. The review also highlights novel self-powered systems and other emerging technologies such as advanced conductive materials and devices that promise to improve the clinical translation of ES-based treatments. By summarizing the current state of knowledge, this review aims to provide a framework for future research and clinical application of ES and ASCs in wound care.
Collapse
Affiliation(s)
- Qiuyue Peng
- Department of Health Science and TechnologyAalborg UniversityGistrup9260Denmark
| | - Yu Qian
- Department of Health Science and TechnologyAalborg UniversityGistrup9260Denmark
| | - Xinxin Xiao
- Department of Chemistry and BioscienceAalborg UniversityGistrup9260Denmark
| | - Fengdi Gao
- Department of Health Science and TechnologyAalborg UniversityGistrup9260Denmark
| | - Guoqiang Ren
- The Affiliated Lihuili Hospital of Ningbo University, Department of DermatologyNingbo315046China
| | | |
Collapse
|
33
|
Wang Y, Gao C, Cheng S, Li Y, Huang Y, Cao X, Zhang Z, Huang J. 3D Bioprinting of Double-Layer Conductive Skin for Wound Healing. Adv Healthc Mater 2025; 14:e2404388. [PMID: 40018834 DOI: 10.1002/adhm.202404388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/17/2025] [Indexed: 03/01/2025]
Abstract
Conductive hydrogels are highly attractive in 3D bioprinting of tissue engineered scaffolds for skin injury repair. However, their application is limited by mismatched electrical signal conduction mode and poor printability. Herein, the 3D bioprinting-assisted fabrication of a double-layer ionic conductive skin scaffold using a newly designed ionic conductive biomimetic bioink (GHCM) is reported, which is composed of gelatin methacrylate (GelMA), oxidized hyaluronic acid (OHA), carboxymethyl chitosan (CMCS), and 2-methacryloyloxyethyl phosphorylcholine (MPC) for the treatment of full-thickness skin defects. The combination of rigid (GelMA) and dynamic (OHA-CMCS) polymer networks imparts GHCM bioink excellent reversible thixotropy, enabling good printability, and allowing the creation of skin-like constructs with high shape fidelity and cell activity by convenient one-step bioprinting. Moreover, the incorporation of zwitterionic MPC endows the bioink with electrical signaling pattern similar to that of natural skin tissue. By integrating human foreskin fibroblasts (HFF-1), human umbilical vein endothelial cells (HUVECs), and human immortalized keratinocytes (HaCaTs), a double-layer conductive skin scaffold comprising an epidermal layer and a vascularized dermal layer is created. In vivo experiments have demonstrated that the conductive skin scaffolds provide an appropriate conductive microenvironment for cellular signaling, growth, migration, and differentiation, ultimately accelerating the re-epithelialization, collagen deposition, and vascularization of skin wounds, which may represent a general and versatile strategy for precise engineering of electroactive tissues for regenerative medicine applications.
Collapse
Affiliation(s)
- Yuhan Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Chen Gao
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Shengnan Cheng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yuxuan Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Ying Huang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xiaoling Cao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhijun Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jie Huang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
34
|
Chen W, Wei Y, Chang J, Hui Y, Ye J, Weng G, Li M, Wang Y, Wu Q. Electrostimulation combined with biodegradable electroactive oriented nanofiber polycaprolactone/gelatin/carbon nanotube to accelerate wound healing. Mater Today Bio 2025; 31:101490. [PMID: 39896286 PMCID: PMC11786698 DOI: 10.1016/j.mtbio.2025.101490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 02/04/2025] Open
Abstract
Wound healing is a complex but precise physiological process. Howener, existing treatments are often difficult to meet the needs of different wound healing. With the background that exogenous electrical stimulation (ES) has been proven to be effective in regulating cell behavior, we constructed a electroactive wound dressing derived from carbon nanotubes (CNT) by electrospinning technology. The scaffold has a moderate hydrophilicity, which benefits to collecting of effusion, adhering to the wound site, and safely removing. Furthermore, the oriented structure has the potential to promote cell oriented growth, while the coupling of endogenous electric field (EFs) and ES could effectively regulate the phenotype of macrophages and reshape the immune microenvironment. At the same time, the active electrical stimulation promotes the secretion of active factors and the proliferation and migration of fibroblasts and endothelial cells. In vivo assays further confirm that PCL/GE/CNT combined ES strategy can significantly inhibit the early inflammatory response, while promoting vascular regeneration and collagen deposition. RNA sequencing analysis is used to reveal the mechanism at the molecular level. Overall, this study employed a composite strategy of combining CNT with moderately hydrophilic biocompatible nanofibers to achieve ES delivery simply and effectively, significantly improving tissue engineering outcomes. This innovative strategy provides a feasible approach for efficient wound repair, and provides an important experimental basis and theoretical guidance for future development in the field of skin tissue engineering.
Collapse
Affiliation(s)
- Weizhi Chen
- Department of Trauma Center and Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Trauma Center & Emergency Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yiliu Wei
- Department of Trauma Center and Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jing Chang
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, China
- National Center for Trauma Medicine, Beijing, China
- Trauma Medicine Center, Peking University People's Hospital, Beijing, China
| | - Yuwen Hui
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, China
- National Center for Trauma Medicine, Beijing, China
- Trauma Medicine Center, Peking University People's Hospital, Beijing, China
| | - Junchen Ye
- Department of Trauma Center and Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Geng Weng
- Fujian Institute for Food and Drug Quality Control, Fuzhou, China
| | - Ming Li
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, China
- National Center for Trauma Medicine, Beijing, China
- Trauma Medicine Center, Peking University People's Hospital, Beijing, China
| | - Yanhua Wang
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, China
- National Center for Trauma Medicine, Beijing, China
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
| | - Qiaoyi Wu
- Department of Trauma Center and Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Trauma Center & Emergency Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
35
|
Gong Y, Liang X, Bai L, Yu M, Yang X, Yao C, Cui H, Xie L, Lu B, Na S, Zhao G, Tu J, Xu F. Ta-Ag Coatings on TC4: A Strategy to Leverage Bioelectric Microenvironments for Enhanced Antibacterial Activity. Biotechnol J 2025; 20:e70000. [PMID: 40223638 PMCID: PMC11995244 DOI: 10.1002/biot.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/04/2025] [Accepted: 02/27/2025] [Indexed: 04/15/2025]
Abstract
Dental implant-related infections are serious complications after surgery that can results in loosening or even complete loss of the implant. Although endogenous electric fields (EEF) play an integral role in the human body, current methods involving external electrical stimulation are invasive and not suitable for clinical application. In this study, we using DC magnetron sputtering, investigates the effects of tantalum-silver (Ta-Ag) coatings on titanium alloy (TC4) surfaces, focusing on their potential to influence EEF that enhances antibacterial activity In this design, Ta-Ag configuration effectively increased the surface potential difference of TC4, and furthermore, promoting Ta/Ag ions release and reducing bacterial adhesion. The study concludes that the Ta-Ag coating, particularly the TT/A implant, promotes a stable EEF, enhancing the long-term antibacterial and osteogenic properties of implants. This work provides a promising strategy for developing advanced implant materials with improved clinical efficacy.
Collapse
Affiliation(s)
- Yuxin Gong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi’ an Jiaotong UniversityXi’ anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi'an Jiaotong UniversityXi’ anChina
- Department of Oral and Maxillofacial SurgeryCollege of StomatologyXi'an Jiaotong UniversityXi'anChina
- State Key Laboratory for Manufacturing System EngineeringSchool of Mechanical EngineeringXi'an Jiaotong UniversityXi'anChina
| | - Xiang Liang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi’ an Jiaotong UniversityXi’ anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi'an Jiaotong UniversityXi’ anChina
- Department of Oral and Maxillofacial SurgeryCollege of StomatologyXi'an Jiaotong UniversityXi'anChina
| | - Le Bai
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi’ an Jiaotong UniversityXi’ anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi'an Jiaotong UniversityXi’ anChina
- Department of Oral and Maxillofacial SurgeryCollege of StomatologyXi'an Jiaotong UniversityXi'anChina
| | - Ming Yu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi’ an Jiaotong UniversityXi’ anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi'an Jiaotong UniversityXi’ anChina
- Department of Oral and Maxillofacial SurgeryCollege of StomatologyXi'an Jiaotong UniversityXi'anChina
| | - Xin Yang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi’ an Jiaotong UniversityXi’ anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi'an Jiaotong UniversityXi’ anChina
- Department of Oral and Maxillofacial SurgeryCollege of StomatologyXi'an Jiaotong UniversityXi'anChina
| | - Chonghao Yao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi’ an Jiaotong UniversityXi’ anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi'an Jiaotong UniversityXi’ anChina
- Department of Oral and Maxillofacial SurgeryCollege of StomatologyXi'an Jiaotong UniversityXi'anChina
| | - Hao Cui
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi’ an Jiaotong UniversityXi’ anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi'an Jiaotong UniversityXi’ anChina
- Department of Oral and Maxillofacial SurgeryCollege of StomatologyXi'an Jiaotong UniversityXi'anChina
| | - Linyang Xie
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi’ an Jiaotong UniversityXi’ anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi'an Jiaotong UniversityXi’ anChina
- Department of Oral and Maxillofacial SurgeryCollege of StomatologyXi'an Jiaotong UniversityXi'anChina
| | - Bingheng Lu
- State Key Laboratory for Manufacturing System EngineeringSchool of Mechanical EngineeringXi'an Jiaotong UniversityXi'anChina
| | - Sijia Na
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi’ an Jiaotong UniversityXi’ anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi'an Jiaotong UniversityXi’ anChina
- Department of Oral and Maxillofacial SurgeryCollege of StomatologyXi'an Jiaotong UniversityXi'anChina
| | - Guangbin Zhao
- State Key Laboratory for Manufacturing System EngineeringSchool of Mechanical EngineeringXi'an Jiaotong UniversityXi'anChina
| | - Junbo Tu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi’ an Jiaotong UniversityXi’ anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi'an Jiaotong UniversityXi’ anChina
- Department of Oral and Maxillofacial SurgeryCollege of StomatologyXi'an Jiaotong UniversityXi'anChina
| | - Fangfang Xu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi’ an Jiaotong UniversityXi’ anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi'an Jiaotong UniversityXi’ anChina
- Department of Oral and Maxillofacial SurgeryCollege of StomatologyXi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
36
|
Geng Y, Yao B, Zhong W, Zhao H, Zhou S, Liu T, Xu J, Wang Z, Fu J. A General Strategy for Exceptionally Robust Conducting Polymer-Based Bioelectrodes with Multimodal Capabilities Through Decoupled Charge Transport Mechanisms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417827. [PMID: 40072301 DOI: 10.1002/adma.202417827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/08/2025] [Indexed: 04/24/2025]
Abstract
Bioelectrodes function as a critical interface for signal transduction between living organisms and electronics. Conducting polymers (CPs), particularly poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), are among the most promising materials for bioelectrodes, due to their electrical performance, high compactness, and ease of processing, but often suffer from degradation or de-doping even in some common environments (e.g., electrical stimulation, chemicals, and high temperatures). This instability therefore severely undermines their reliability in practical application. To resolve this critical issue, a novel strategy of separating electron transfer from electron-ion transduction is proposed. Specifically, chemically derived holey graphene (HG), serving as an ultra-stable mixed ion-electron conductor, is introduced into the CP matrix. The HG can restore the CP's destructed conductive pathways, whilst its porosity and its intercalation by the CP synergically preserve fast ionic and molecular diffusion. The resulting bioelectrode therefore exhibits excellent low impedance, high charge injection capacity, electrochemical activity, and outstanding resilience to various harsh conditions, outperforming HG, reduced graphene oxide, CP, or graphene-coated CP electrodes. Furthermore, this strategy also exhibits broad compatibility with various processing techniques and proves adaptable to other electrode systems, such as stretchable electrodes, paving the way for practical applications in electrophysical capture, neuron modulation, and biochemical analysis.
Collapse
Affiliation(s)
- Yuhao Geng
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Bowen Yao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Wei Zhong
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Haojie Zhao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Shuai Zhou
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Tong Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jianhua Xu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Zhifeng Wang
- Testing Center, Yangzhou University, Wenhui East Road, Yangzhou, 225002, P. R. China
| | - Jiajun Fu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
37
|
Liu J, Wang H, Zhang C. Acteoside-Loaded Self-Healing Hydrogel Enhances Skin Wound Healing through Modulation of Hair Follicle Stem Cells. Cell Mol Bioeng 2025; 18:163-183. [PMID: 40290106 PMCID: PMC12018657 DOI: 10.1007/s12195-025-00845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/18/2025] [Indexed: 04/30/2025] Open
Abstract
Background Skin wound healing is a complex biological process involving cellular, molecular, and physiological events. Traditional treatments often fail to provide optimal outcomes, particularly for chronic wounds. Objectives This study aimed to develop a self-healing hydrogel loaded with Acteoside, a bioactive compound with antioxidant and anti-inflammatory properties, to enhance skin wound healing. Methods Using transcriptomic analysis, Rab31 was identified as a key target of Acteoside in regulating hair follicle stem cells (HFSCs). In vitro assays demonstrated that Acteoside promotes HFSC proliferation, migration, and differentiation by upregulating Rab31 expression. The self-healing hydrogel was prepared using quaternized chitosan derivatives, which exhibited excellent mechanical properties, antibacterial, and antioxidant activities. Results In vivo studies in a mouse model showed that Acteoside-loaded hydrogel significantly accelerated wound healing, promoting skin regeneration and improving wound closure. Conclusions This research highlights the potential of Acteoside-loaded self-healing hydrogels as an innovative therapeutic strategy for enhancing skin wound healing. By modulating HFSC activity, this hydrogel offers a promising solution for improving healing outcomes in challenging wound environments. Graphical Abstract Schematic representation of an injectable self-healing hydrogel loaded with the phenylethanoid compound acteoside for regulating the proliferation and differentiation of HFSCs to mediate the healing of skin wounds. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-025-00845-2.
Collapse
Affiliation(s)
- Junyu Liu
- Shandong Ruixin Pharmaceutical Company, Yishui County, Intersection of Tengfei East Road and East Second Ring Road, Linyi, 276400 Shandong Province China
| | - Hua Wang
- Shandong Luoxin Pharmaceutical Group Stock Company, Linyi, 276017 China
| | - Caihua Zhang
- Shandong Ruixin Pharmaceutical Company, Yishui County, Intersection of Tengfei East Road and East Second Ring Road, Linyi, 276400 Shandong Province China
| |
Collapse
|
38
|
Mao K, Yue M, Ma H, Li Z, Liu Y. Electro- and Magneto-Active Biomaterials for Diabetic Tissue Repair: Advantages and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501817. [PMID: 40159915 DOI: 10.1002/adma.202501817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Indexed: 04/02/2025]
Abstract
The diabetic tissue repair process is frequently hindered by persistent inflammation, infection risks, and a compromised tissue microenvironment, which lead to delayed wound healing and significantly impact the quality of life for diabetic patients. Electromagnetic biomaterials offer a promising solution by enabling the intelligent detection of diabetic wounds through electric and magnetic effects, while simultaneously improving the pathological microenvironment by reducing oxidative stress, modulating immune responses, and exhibiting antibacterial action. Additionally, these materials inherently promote tissue regeneration by regulating cellular behavior and facilitating vascular and neural repair. Compared to traditional biomaterials, electromagnetic biomaterials provide advantages such as noninvasiveness, deep tissue penetration, intelligent responsiveness, and multi-stimuli synergy, demonstrating significant potential to overcome the challenges of diabetic tissue repair. This review comprehensively examines the superiority of electromagnetic biomaterials in diabetic tissue repair, elucidates the underlying biological mechanisms, and discusses specific design strategies and applications tailored to the pathological characteristics of diabetic wounds, with a focus on skin wound healing and bone defect repair. By addressing current limitations and pursuing multi-faceted strategies, electromagnetic biomaterials hold significant potential to improve clinical outcomes and enhance the quality of life for diabetic patients.
Collapse
Affiliation(s)
- Kai Mao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Muxin Yue
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Huiping Ma
- Department of Stomatology, Zhengzhou Shuqing Medical College, 6 Gongming Road, Erqi District, Zhengzhou, 450064, P. R. China
| | - Zheng Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| |
Collapse
|
39
|
Pedraza ZS, Pan F, Chen P, Melendez Rosario S, Wu G, Wang D, Kim J, Yang Q, Liu B, Wang X. Inhibitory effects on smooth muscle cell adhesion and proliferation due to oscillating electric fields by nanogenerators. NANOSCALE 2025; 17:7244-7252. [PMID: 40013546 PMCID: PMC11952044 DOI: 10.1039/d4nr04405c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
A common complication of the removal of atherosclerotic plaques or thrombi deposits to restore blood flow is restenosis. It is known that the excessive adhesion and proliferation of smooth muscle cells (SMCs) is the primary reason for restenosis. In this work, we conducted an in vitro study to show that a weak oscillating electric field (EF) generated by a mechanically-driven nanogenerator could prohibit SMC adhesion and proliferation on a substrate surface. Our results revealed a decrease in the cell number when an oscillating EF was introduced underneath the substrate. The cell coverage was found to be dependent on the EF strength and oscillating frequency, where higher EF strength and frequency yielded a stronger inhibitory effect. Compared to the control, this reduction in cell coverage reached up to 54% under the optimal EF parameters. This inhibitory effect was attributed to the EF-induced surface charge oscillation, which weakened the electrostatic interaction between the cell membrane and substrate. Our discovery suggests the potential for self-powered anti-restenosis solutions by integrating NG-induced oscillating EFs with biomedical device surfaces.
Collapse
Affiliation(s)
- Zulmari Silva Pedraza
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | - Fengdan Pan
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | - Pengfei Chen
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | - Steven Melendez Rosario
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | - Grace Wu
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | - Derui Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | - Jooyong Kim
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53792, USA.
| | - Qianfan Yang
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53792, USA.
| | - Bo Liu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53792, USA.
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| |
Collapse
|
40
|
Datta D, Colaco V, Bandi SP, Dhas N, Janardhanam LSL, Singh S, Vora LK. Stimuli-Responsive Self-Healing Ionic Gels: A Promising Approach for Dermal and Tissue Engineering Applications. ACS Biomater Sci Eng 2025; 11:1338-1372. [PMID: 39999055 PMCID: PMC11897956 DOI: 10.1021/acsbiomaterials.4c02264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
The rapid increase in the number of stimuli-responsive polymers, also known as smart polymers, has significantly advanced their applications in various fields. These polymers can respond to multiple stimuli, such as temperature, pH, solvent, ionic strength, light, and electrical and magnetic fields, making them highly valuable in both the academic and industrial sectors. Recent studies have focused on developing hydrogels with self-healing properties that can autonomously recover their structural integrity and mechanical properties after damage. These hydrogels, formed through dynamic covalent reactions, exhibit superior biocompatibility, mechanical strength, and responsiveness to stimuli, particularly pH changes. However, conventional hydrogels are limited by their weak and brittle nature. To address this, ionizable moieties within polyelectrolytes can be tuned to create ionically cross-linked hydrogels, leveraging natural polymers such as alginate, chitosan, hyaluronic acid, and cellulose. The integration of ionic liquids into these hydrogels enhances their mechanical properties and conductivity, positioning them as significant self-healing agents. This review focuses on the emerging field of stimuli-responsive ionic-based hydrogels and explores their potential in dermal applications and tissue engineering.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Viola Colaco
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sony Priyanka Bandi
- Department
of Pharmacy, Birla Institute of Technology
and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Namdev Dhas
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Leela Sai Lokesh Janardhanam
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Sudarshan Singh
- Faculty
of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Office
of Research Administrations, Chiang Mai
University, Chiang
Mai 50200, Thailand
| | - Lalitkumar K. Vora
- School of
Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| |
Collapse
|
41
|
Wu T, Ren M, Li Y, Yang Q, Xiang K, Liu F, Yang S. Bioelectrically Reprogramming Hydrogels Rejuvenate Vascularized Bone Regeneration in Senescence. Adv Healthc Mater 2025; 14:e2403837. [PMID: 39801203 DOI: 10.1002/adhm.202403837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/02/2025] [Indexed: 03/04/2025]
Abstract
Senescent bone tissue displays a pathological imbalance characterized by decreased angiogenesis, disrupted bioelectric signaling, ion dysregulation, and reduced stem cell differentiation. Once bone defects occur, this pathological imbalance makes them difficult to repair. An innovative synergistic therapeutic strategy is utilized to reverse these pathological imbalances via a conductive hydrogel doped with magnesium ion (Mg2+)-modified black phosphorus (BP). The hydrogel reprograms electrical signals, restores Mg2+ homeostasis, reconstructs physiological signals, and promotes blood vessel regeneration in senile bone defects. The conductive hydrogel synergistically restores both the chemical and bioelectric signals within the bone microenvironment. This hydrogel increases the expression of vascular endothelial growth factor (VEGF) and VEGF receptor-2 (VEGFR2), activates the PI3K-AKT-eNOS pathway, and significantly increases the angiogenic ability of vascular endothelial cells in the aged state. In addition, the conductive hydrogel normalizes calcium ion (Ca2+) influx, increases the accumulation of osteogenic transcription factors in the nucleus, and promotes the osteogenic differentiation of senescent stem cells. This innovative treatment strategy restores bone-vascular coupling in areas of senile bone defects, achieves effective vascularized bone regeneration, and has good potential for the treatment of senile bone defects.
Collapse
Affiliation(s)
- Tianli Wu
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Mingxing Ren
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Yuzhou Li
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Qian Yang
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Kai Xiang
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Fengyi Liu
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Sheng Yang
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| |
Collapse
|
42
|
Kapp DL, Serena T, Chaffin AE, Desvigne M, Kirby J, Suski MD, Tettelbach WH, Dillingham C, Couch AL, Davenport TA, Matthews M, Mehan V, Molnar J. Cellular, acellular, and matrix-like products (CAMPs) for soft-tissue reconstruction in acute surgical and traumatic wounds. J Wound Care 2025; 34:S1-S23. [PMID: 40317464 DOI: 10.12968/jowc.2025.34.sup3a.s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Affiliation(s)
- Daniel L Kapp
- Chief of Plastic Surgery, Palm Beach Gardens Medical Center, West Palm Beach, FL, US
| | | | - Abigail E Chaffin
- Professor of Surgery and Chief, Division of Plastic and Reconstructive Surgery, Tulane University, New Orleans, Louisiana, US
| | - Michael Desvigne
- Plastic and Reconstructive Surgeon, Valley Wound Care Specialists, Arizona, US
| | - John Kirby
- Acute and Critical Care Surgeon, Washington University School of Medicine, St Louis, MO, US
| | - Mark D Suski
- Plastic Surgeon, Los Robles Hospital and Medical Center, Thousand Oaks, CA, US
| | - William H Tettelbach
- Chief Medical Officer, Restorix Health, Park City, UT; Adjunct Assistant Professor, Duke University School of Medicine, Durham, NC, US
| | - Claire Dillingham
- Chief of Plastic Surgery, Cone Health Medical Group Cone Health West Virginia School of Osteopathic Medicine Greensboro, NC, US
| | - Amy L Couch
- Wound Care Physician, Mercy Hospital, St Louis, MO, US
| | | | - Marc Matthews
- Arizona Burn Center, Valleywise Health Medical Center, US
| | - Vineet Mehan
- Plastic Surgeon, Dominion Plastic Surgery, Falls Church, VA, US
| | - Joseph Molnar
- Professor of Plastic and Reconstructive Surgery and Regenerative Medicine, Wake Forest University School of Medicine, NC, US
| |
Collapse
|
43
|
Ghosh S, Zheng M, He J, Wu Y, Zhang Y, Wang W, Shen J, Yeung KWK, Neelakantan P, Xu C, Qiao W. Electrically-driven drug delivery into deep cutaneous tissue by conductive microneedles for fungal infection eradication and protective immunity. Biomaterials 2025; 314:122908. [PMID: 39454504 DOI: 10.1016/j.biomaterials.2024.122908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Fungal infections affect over 13 million people worldwide and are responsible for 1.5 million deaths annually. Some deep cutaneous fungal infections may extend the dermal barriers to cause systemic infection, resulting in substantial morbidity and mortality. However, the management of deep cutaneous fungal infection is challenging and yet overlooked by traditional treatments, which only offer limited drug availability within deep tissue. In this study, we have developed an electrically stimulated microneedle patch to deliver miconazole into the subcutaneous layer. We tested its antifungal efficacy using in vitro and ex vivo models that mimic fungal infection. Moreover, we confirmed its anti-fungal and wound-healing effects in a murine subcutaneous fungal infection model. Furthermore, our findings also showed that the combination of miconazole and applied current synergistically stimulated the nociceptive sensory nerves, thereby activating protective cutaneous immunity mediated by dermal dendritic and γδ-T cells. Collectively, this study provides a new strategy for minimally invasive delivery of therapeutic agents and the modulation of the neuro-immune axis in deep tissue.
Collapse
Affiliation(s)
- Sumanta Ghosh
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China; Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Mengjia Zheng
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Jiahui He
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yefeng Wu
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yaming Zhang
- Department of Pharmacy and Pharmacology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Weiping Wang
- Department of Pharmacy and Pharmacology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Kelvin W K Yeung
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Prasanna Neelakantan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China; Mike Petryk School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| | - Wei Qiao
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
44
|
Yan R, Zhang X, Wang H, Wang T, Ren G, Sun Q, Liang F, Zhu Y, Huang W, Yu HD. Autonomous, Moisture-Driven Flexible Electrogenerative Dressing for Enhanced Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418074. [PMID: 39962841 DOI: 10.1002/adma.202418074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/19/2025] [Indexed: 03/27/2025]
Abstract
Electrotherapy has shown considerable potential in treating chronic wounds, but conventional approaches relying on bulky external power supplies and mechanical force are limited in their clinical utility. This study introduces an autonomous, moisture-driven flexible electrogenerative dressing (AMFED) that overcomes these limitations. The AMFED integrates a moist-electric generator (MEG), an antibacterial hydrogel dressing, and concentric molybdenum (Mo) electrodes to provide a self-sustaining electrical supply and potent antibacterial activity against Staphylococcus aureus and Escherichia coli. The MEG harnesses chemical energy from moisture to produce a stable direct current of 0.61 V without external input, delivering this therapeutic electrical stimulation to the wound site through the Mo electrodes. The AMFED facilitates macrophage polarization toward reparative M2 phenotype and regulates inflammatory cytokines. Moreover, in vivo studies suggest that the AMFED group significantly enhances chronic wound healing, with an approximate 41% acceleration compared to the control group. Using a diabetic mouse wound model, the AMFED demonstrates its effectiveness in promoting nerve regulation, epithelial migration, and vasculogenesis. These findings present a novel and efficient platform for accelerating chronic wound healing.
Collapse
Affiliation(s)
- Ren Yan
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xueliang Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hai Wang
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Tikang Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Guozhang Ren
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qizeng Sun
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Fei Liang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hai-Dong Yu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
45
|
Zhou J, Sun Z, Wang X, Wang S, Jiang W, Tang D, Xia T, Xiao F. Low-temperature cold plasma promotes wound healing by inhibiting skin inflammation and improving skin microbiome. Front Bioeng Biotechnol 2025; 13:1511259. [PMID: 40051835 PMCID: PMC11882593 DOI: 10.3389/fbioe.2025.1511259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
Wound healing includes four consecutive and overlapping stages of hemostasis, inflammation, proliferation, and remodeling. Factors such as aging, infection, and chronic diseases can lead to chronic wounds and delayed healing. Low-temperature cold plasma (LTCP) is an emerging physical therapy for wound healing, characterized by its safety, environmental friendliness, and ease of operation. This study utilized a self-developed LTCP device to investigate its biological effects and mechanisms on wound healing in adult and elderly mice. Histopathological studies found that LTCP significantly accelerated the healing rate of skin wounds in mice, with particularly pronounced effects in elderly mice. LTCP can markedly inhibit the expression of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) and senescence-associated secretory phenotype factors (MMP-3, MMP-9), while significantly increasing the expression of tissue repair-related factors, such as VEGF, bFGF, TGF-β, COL-I, and α-SMA. It also regulated the expression of genes related to cell proliferation and migration (Aqp5, Spint1), inflammation response (Nlrp3, Icam1), and angiogenesis (Ptx3, Thbs1), promoting cell proliferation and inhibit apoptosis. Furthermore, LTCP treatment reduced the relative abundance of harmful bacteria such as Delftia, Stenotrophomonas, Enterococcus, and Enterobacter in skin wounds, while increasing the relative abundance of beneficial bacteria such as Muribaculaceae, Acinetobacter, Lachnospiraceae NK4A136_group, and un_f__Lachnospiraceae, thereby improving the microbial community structure of skin wounds. These research findings are of significant implications for understanding the mechanism of skin wound healing, as well as for the treatment and clinical applications of skin wounds, especially aging skin.
Collapse
Affiliation(s)
- Jie Zhou
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Zengkun Sun
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Xiaoru Wang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Shouguo Wang
- Academy of Advanced Interdisciplinary Studies, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Wen Jiang
- Beijing Zhongsu Titanium Alloy Vacuum Plasma Technology Research Institute, Beijing, China
| | - Dongqi Tang
- Center for Gene and Immunotherapy, Multidisciplinary Innovation Center for Nephrology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tao Xia
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Fang Xiao
- Department of Gerontology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
46
|
Zhuang Y, Zhang Q, Wan Z, Geng H, Xue Z, Cao H. Self-powered biomedical devices: biology, materials, and their interfaces. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2025; 7:022003. [PMID: 39879660 DOI: 10.1088/2516-1091/adaff2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/29/2025] [Indexed: 01/31/2025]
Abstract
Integrating biomedical electronic devices holds profound promise for advancements in healthcare and enhancing individuals' quality of life. However, the persistent challenges associated with the traditional batteries' limited lifespan and bulkiness hinder these devices' long-term functionality and consistent power supply. Here, we delve into the biology and material interfaces in self-powered medical devices by summarizing the intrinsic electric demands in humans, analyzing material and biological mechanisms for electricity generation and storage, and discussing the pathways toward self-chargeable powering. As a result, the current challenges in material designs and biological integrations emerged to shape the future directions in advancing self-powered medical devices. This paper calls on the community to integrate biology and material science to develop self-powering medical devices and improve their clinical prospects.
Collapse
Affiliation(s)
- Yuan Zhuang
- Interfacial Electrochemistry and Biomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Quan Zhang
- Interfacial Electrochemistry and Biomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Zhanxun Wan
- Interfacial Electrochemistry and Biomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Hao Geng
- Advanced Carbon Materials Research Center, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Zhongying Xue
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Huiliang Cao
- Interfacial Electrochemistry and Biomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
47
|
Özcan MS, Aşcı H, Karabacak P, Özden ES, Taner R, Özmen Ö, Tepebaşı MY, Çömlekçi S. Effect of 10 kV/m Electric Field Therapy in a Pressure Injury Model in Rats: An Innovative Preliminary Report. Bioengineering (Basel) 2025; 12:183. [PMID: 40001702 PMCID: PMC11851812 DOI: 10.3390/bioengineering12020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/30/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Pressure injuries are still an important health problem worldwide, although many therapies have been applied to date. This study aimed to determine the optimal duration of external application of a 10 kV/m direct current (DC, static) electric field in a pressure injury model in rats. Methods: Twelve male Wistar-Albino rats were divided into three groups: Grade-1, Grade-2, and Grade-3. Two round magnets were placed 4 h daily for one day in Grade-1, two days in Grade-2, and three days in Grade-3. Following wound formation, one rat from each group was designated the control, while the other rats were exposed to a 10 kV/m electric field for 15, 30, or 60 min. Results: Histopathological improvements were observed after 15 and 30 min of application, whereas a sharp decrease in the gene expression of growth factors at 30 min revealed that 15 min of application was optimal overall. Conclusions: According to the results of this study, 15 min applications of an external 10 kV/m electric field are promising for providing satisfactory results in wound healing. Further studies should examine in greater detail the effects of electric fields on growth factors and the mechanisms underlying these responses.
Collapse
Affiliation(s)
- Mustafa Soner Özcan
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Suleyman Demirel University, Isparta 32260, Turkey; (P.K.); (E.S.Ö.)
| | - Halil Aşcı
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta 32260, Turkey;
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, Isparta 32260, Turkey; (R.T.); (S.Ç.)
| | - Pınar Karabacak
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Suleyman Demirel University, Isparta 32260, Turkey; (P.K.); (E.S.Ö.)
| | - Eyyüp Sabri Özden
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Suleyman Demirel University, Isparta 32260, Turkey; (P.K.); (E.S.Ö.)
| | - Rümeysa Taner
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, Isparta 32260, Turkey; (R.T.); (S.Ç.)
| | - Özlem Özmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur 15030, Turkey;
| | - Muhammet Yusuf Tepebaşı
- Department of Genetics, Faculty of Medicine, Suleyman Demirel University, Isparta 32260, Turkey;
| | - Selçuk Çömlekçi
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, Isparta 32260, Turkey; (R.T.); (S.Ç.)
- Department of Electronics and Communication Engineering, Faculty of Engineering, Suleyman Demirel University, Isparta 32260, Turkey
| |
Collapse
|
48
|
Jian X, Deng Y, Xiao S, Qi F, Deng C. Microneedles in diabetic wound care: multifunctional solutions for enhanced healing. BURNS & TRAUMA 2025; 13:tkae076. [PMID: 39958434 PMCID: PMC11827613 DOI: 10.1093/burnst/tkae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/19/2024] [Accepted: 11/09/2024] [Indexed: 02/18/2025]
Abstract
Diabetic wounds present a significant challenge in clinical treatment and are characterized by chronic inflammation, oxidative stress, impaired angiogenesis, peripheral neuropathy, and a heightened risk of infection during the healing process. By creating small channels in the surface of the skin, microneedle technology offers a minimally invasive and efficient approach for drug delivery and treatment. This article begins by outlining the biological foundation of normal skin wound healing and the unique pathophysiological mechanisms of diabetic wounds. It then delves into the various types, materials, and preparation processes of microneedles. The focus is on the application of multifunctional microneedles in diabetic wound treatment, highlighting their antibacterial, anti-inflammatory, immunomodulatory, antioxidant, angiogenic and neural repair properties. These multifunctional microneedles demonstrate synergistic therapeutic effects by directly influencing the wound microenvironment, ultimately accelerating the healing of diabetic wounds. The advancement of microneedle technology not only holds promise for enhancing the treatment outcomes of diabetic wounds but also offers new strategies for addressing other chronic wounds.
Collapse
Affiliation(s)
- Xichao Jian
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, P.R. China
| | - Yaping Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, P.R. China
| | - Shune Xiao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, P.R. China
- Collaborative Innovation Center of Tissue Repair and Regenerative Medicine, No. 6 Xuefu West Road, Xinpu New District, Zunyi, Guizhou 563003, P.R. China
| | - Fang Qi
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, P.R. China
- Collaborative Innovation Center of Tissue Repair and Regenerative Medicine, No. 6 Xuefu West Road, Xinpu New District, Zunyi, Guizhou 563003, P.R. China
| | - Chengliang Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, P.R. China
- Collaborative Innovation Center of Tissue Repair and Regenerative Medicine, No. 6 Xuefu West Road, Xinpu New District, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
49
|
Liao Z, Liu T, Yao Z, Hu T, Ji X, Yao B. Harnessing stimuli-responsive biomaterials for advanced biomedical applications. EXPLORATION (BEIJING, CHINA) 2025; 5:20230133. [PMID: 40040822 PMCID: PMC11875454 DOI: 10.1002/exp.20230133] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/18/2024] [Indexed: 03/06/2025]
Abstract
Cell behavior is intricately intertwined with the in vivo microenvironment and endogenous pathways. The ability to guide cellular behavior toward specific goals can be achieved by external stimuli, notably electricity, light, ultrasound, and magnetism, simultaneously harnessed through biomaterial-mediated responses. These external triggers become focal points within the body due to interactions with biomaterials, facilitating a range of cellular pathways: electrical signal transmission, biochemical cues, drug release, cell loading, and modulation of mechanical stress. Stimulus-responsive biomaterials hold immense potential in biomedical research, establishing themselves as a pivotal focal point in interdisciplinary pursuits. This comprehensive review systematically elucidates prevalent physical stimuli and their corresponding biomaterial response mechanisms. Moreover, it delves deeply into the application of biomaterials within the domain of biomedicine. A balanced assessment of distinct physical stimulation techniques is provided, along with a discussion of their merits and limitations. The review aims to shed light on the future trajectory of physical stimulus-responsive biomaterials in disease treatment and outline their application prospects and potential for future development. This review is poised to spark novel concepts for advancing intelligent, stimulus-responsive biomaterials.
Collapse
Affiliation(s)
- Ziming Liao
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinP. R. China
| | - Tingting Liu
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolCambridgeMassachusettsUSA
- Research Center for Nano‐Biomaterials and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Biomedical EngineeringTaiyuan University of TechnologyTaiyuanShanxiP. R. China
- Department of Laboratory DiagnosisThe 971th HospitalQingdaoP. R. China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingP. R. China
| | - Zhimin Yao
- Sichuan Preschool Educators' CollegeMianyangP. R. China
| | - Tian Hu
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular Medicine, University of OxfordJohn Radcliffe HospitalOxfordUK
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinP. R. China
| | - Bin Yao
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinP. R. China
| |
Collapse
|
50
|
Zhang C, Song W, Guo X, Li Z, Kong Y, Du J, Hou L, Feng Y, Wang Y, Zhang M, Liang L, Huang Y, Li J, Zhu D, Liu Q, Tan Y, Zhao Z, Zhao Y, Fu X, Huang S. Piezoelectric nanocomposite electrospun dressings: Tailoring mechanics for scar-free wound recovery. BIOMATERIALS ADVANCES 2025; 167:214119. [PMID: 39556886 DOI: 10.1016/j.bioadv.2024.214119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
Rational wound management and enhancing healing quality are critical in clinical practice. Electrical stimulation therapy (EST) has emerged as a valuable adjunctive treatment due to its safety and cost-effectiveness. Integrating piezoelectric materials into dressings offers a way to miniaturize and personalize electrotherapy, enhancing convenience. To address the impact of physical factors of dressings on wound healing, a nanocomposite piezoelectric electrospun dressing using poly(L-lactic acid) (PLLA) and barium titanate (BaTiO3) was developed. We intentionally exaggerated design flaws to mimic the characteristics of scar extracellular matrix (ECM), including the oriented thick fibers and high Young's modulus. Initially, these dressings promoted fibrosis and hindered functional regeneration. However, when the piezoelectric effect was triggered by ultrasound, the fibrotic phenotype was reversed, leading to scar-free healing with well-regenerated functional structures. This study highlights the significant therapeutic potential of piezoelectric dressings in skin wound treatment and underscores the importance of carefully designing the static physical properties of dressings for optimal efficacy.
Collapse
Affiliation(s)
- Chao Zhang
- School of Medicine, Nankai University, Tianjin 300071, China; Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Wei Song
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Xu Guo
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China; College of Graduate, Tianjin Medical University, Tianjin 300203, China
| | - Zhao Li
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Yi Kong
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Jinpeng Du
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Linhao Hou
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Yu Feng
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Yuzhen Wang
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Mengde Zhang
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Liting Liang
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Yuyan Huang
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Jianjun Li
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Dongzhen Zhu
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Qinghua Liu
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Yaxin Tan
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Ziteng Zhao
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yantao Zhao
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Xiaobing Fu
- School of Medicine, Nankai University, Tianjin 300071, China; Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China; College of Graduate, Tianjin Medical University, Tianjin 300203, China.
| | - Sha Huang
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China.
| |
Collapse
|